sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / 8139cp.c
blob10c45051caeae12b33f522f3ad1f774ceafd143a
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/delay.h>
66 #include <linux/ethtool.h>
67 #include <linux/gfp.h>
68 #include <linux/mii.h>
69 #include <linux/if_vlan.h>
70 #include <linux/crc32.h>
71 #include <linux/in.h>
72 #include <linux/ip.h>
73 #include <linux/tcp.h>
74 #include <linux/udp.h>
75 #include <linux/cache.h>
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/uaccess.h>
80 /* VLAN tagging feature enable/disable */
81 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
82 #define CP_VLAN_TAG_USED 1
83 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
84 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
85 #else
86 #define CP_VLAN_TAG_USED 0
87 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
88 do { (tx_desc)->opts2 = 0; } while (0)
89 #endif
91 /* These identify the driver base version and may not be removed. */
92 static char version[] =
93 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
95 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
96 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
97 MODULE_VERSION(DRV_VERSION);
98 MODULE_LICENSE("GPL");
100 static int debug = -1;
101 module_param(debug, int, 0);
102 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
104 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
105 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
106 static int multicast_filter_limit = 32;
107 module_param(multicast_filter_limit, int, 0);
108 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
110 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
111 NETIF_MSG_PROBE | \
112 NETIF_MSG_LINK)
113 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
114 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
115 #define CP_REGS_SIZE (0xff + 1)
116 #define CP_REGS_VER 1 /* version 1 */
117 #define CP_RX_RING_SIZE 64
118 #define CP_TX_RING_SIZE 64
119 #define CP_RING_BYTES \
120 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
121 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
122 CP_STATS_SIZE)
123 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
124 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
125 #define TX_BUFFS_AVAIL(CP) \
126 (((CP)->tx_tail <= (CP)->tx_head) ? \
127 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
128 (CP)->tx_tail - (CP)->tx_head - 1)
130 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
131 #define CP_INTERNAL_PHY 32
133 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
134 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
135 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
136 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
137 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
139 /* Time in jiffies before concluding the transmitter is hung. */
140 #define TX_TIMEOUT (6*HZ)
142 /* hardware minimum and maximum for a single frame's data payload */
143 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
144 #define CP_MAX_MTU 4096
146 enum {
147 /* NIC register offsets */
148 MAC0 = 0x00, /* Ethernet hardware address. */
149 MAR0 = 0x08, /* Multicast filter. */
150 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
151 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
152 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
153 Cmd = 0x37, /* Command register */
154 IntrMask = 0x3C, /* Interrupt mask */
155 IntrStatus = 0x3E, /* Interrupt status */
156 TxConfig = 0x40, /* Tx configuration */
157 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
158 RxConfig = 0x44, /* Rx configuration */
159 RxMissed = 0x4C, /* 24 bits valid, write clears */
160 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
161 Config1 = 0x52, /* Config1 */
162 Config3 = 0x59, /* Config3 */
163 Config4 = 0x5A, /* Config4 */
164 MultiIntr = 0x5C, /* Multiple interrupt select */
165 BasicModeCtrl = 0x62, /* MII BMCR */
166 BasicModeStatus = 0x64, /* MII BMSR */
167 NWayAdvert = 0x66, /* MII ADVERTISE */
168 NWayLPAR = 0x68, /* MII LPA */
169 NWayExpansion = 0x6A, /* MII Expansion */
170 Config5 = 0xD8, /* Config5 */
171 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
172 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
173 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
174 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
175 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
176 TxThresh = 0xEC, /* Early Tx threshold */
177 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
178 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
180 /* Tx and Rx status descriptors */
181 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
182 RingEnd = (1 << 30), /* End of descriptor ring */
183 FirstFrag = (1 << 29), /* First segment of a packet */
184 LastFrag = (1 << 28), /* Final segment of a packet */
185 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
186 MSSShift = 16, /* MSS value position */
187 MSSMask = 0xfff, /* MSS value: 11 bits */
188 TxError = (1 << 23), /* Tx error summary */
189 RxError = (1 << 20), /* Rx error summary */
190 IPCS = (1 << 18), /* Calculate IP checksum */
191 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
192 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
193 TxVlanTag = (1 << 17), /* Add VLAN tag */
194 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
195 IPFail = (1 << 15), /* IP checksum failed */
196 UDPFail = (1 << 14), /* UDP/IP checksum failed */
197 TCPFail = (1 << 13), /* TCP/IP checksum failed */
198 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
199 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
200 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
201 RxProtoTCP = 1,
202 RxProtoUDP = 2,
203 RxProtoIP = 3,
204 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
205 TxOWC = (1 << 22), /* Tx Out-of-window collision */
206 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
207 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
208 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
209 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
210 RxErrFrame = (1 << 27), /* Rx frame alignment error */
211 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
212 RxErrCRC = (1 << 18), /* Rx CRC error */
213 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
214 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
215 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
217 /* StatsAddr register */
218 DumpStats = (1 << 3), /* Begin stats dump */
220 /* RxConfig register */
221 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
222 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
223 AcceptErr = 0x20, /* Accept packets with CRC errors */
224 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
225 AcceptBroadcast = 0x08, /* Accept broadcast packets */
226 AcceptMulticast = 0x04, /* Accept multicast packets */
227 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
228 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
230 /* IntrMask / IntrStatus registers */
231 PciErr = (1 << 15), /* System error on the PCI bus */
232 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
233 LenChg = (1 << 13), /* Cable length change */
234 SWInt = (1 << 8), /* Software-requested interrupt */
235 TxEmpty = (1 << 7), /* No Tx descriptors available */
236 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
237 LinkChg = (1 << 5), /* Packet underrun, or link change */
238 RxEmpty = (1 << 4), /* No Rx descriptors available */
239 TxErr = (1 << 3), /* Tx error */
240 TxOK = (1 << 2), /* Tx packet sent */
241 RxErr = (1 << 1), /* Rx error */
242 RxOK = (1 << 0), /* Rx packet received */
243 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
244 but hardware likes to raise it */
246 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
247 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
248 RxErr | RxOK | IntrResvd,
250 /* C mode command register */
251 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
252 RxOn = (1 << 3), /* Rx mode enable */
253 TxOn = (1 << 2), /* Tx mode enable */
255 /* C+ mode command register */
256 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
257 RxChkSum = (1 << 5), /* Rx checksum offload enable */
258 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
259 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
260 CpRxOn = (1 << 1), /* Rx mode enable */
261 CpTxOn = (1 << 0), /* Tx mode enable */
263 /* Cfg9436 EEPROM control register */
264 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
265 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
267 /* TxConfig register */
268 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
269 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
271 /* Early Tx Threshold register */
272 TxThreshMask = 0x3f, /* Mask bits 5-0 */
273 TxThreshMax = 2048, /* Max early Tx threshold */
275 /* Config1 register */
276 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
277 LWACT = (1 << 4), /* LWAKE active mode */
278 PMEnable = (1 << 0), /* Enable various PM features of chip */
280 /* Config3 register */
281 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
282 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
283 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
285 /* Config4 register */
286 LWPTN = (1 << 1), /* LWAKE Pattern */
287 LWPME = (1 << 4), /* LANWAKE vs PMEB */
289 /* Config5 register */
290 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
291 MWF = (1 << 5), /* Accept Multicast wakeup frame */
292 UWF = (1 << 4), /* Accept Unicast wakeup frame */
293 LANWake = (1 << 1), /* Enable LANWake signal */
294 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
296 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
297 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
298 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
301 static const unsigned int cp_rx_config =
302 (RX_FIFO_THRESH << RxCfgFIFOShift) |
303 (RX_DMA_BURST << RxCfgDMAShift);
305 struct cp_desc {
306 __le32 opts1;
307 __le32 opts2;
308 __le64 addr;
311 struct cp_dma_stats {
312 __le64 tx_ok;
313 __le64 rx_ok;
314 __le64 tx_err;
315 __le32 rx_err;
316 __le16 rx_fifo;
317 __le16 frame_align;
318 __le32 tx_ok_1col;
319 __le32 tx_ok_mcol;
320 __le64 rx_ok_phys;
321 __le64 rx_ok_bcast;
322 __le32 rx_ok_mcast;
323 __le16 tx_abort;
324 __le16 tx_underrun;
325 } __packed;
327 struct cp_extra_stats {
328 unsigned long rx_frags;
331 struct cp_private {
332 void __iomem *regs;
333 struct net_device *dev;
334 spinlock_t lock;
335 u32 msg_enable;
337 struct napi_struct napi;
339 struct pci_dev *pdev;
340 u32 rx_config;
341 u16 cpcmd;
343 struct cp_extra_stats cp_stats;
345 unsigned rx_head ____cacheline_aligned;
346 unsigned rx_tail;
347 struct cp_desc *rx_ring;
348 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
350 unsigned tx_head ____cacheline_aligned;
351 unsigned tx_tail;
352 struct cp_desc *tx_ring;
353 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
355 unsigned rx_buf_sz;
356 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
358 #if CP_VLAN_TAG_USED
359 struct vlan_group *vlgrp;
360 #endif
361 dma_addr_t ring_dma;
363 struct mii_if_info mii_if;
366 #define cpr8(reg) readb(cp->regs + (reg))
367 #define cpr16(reg) readw(cp->regs + (reg))
368 #define cpr32(reg) readl(cp->regs + (reg))
369 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
370 #define cpw16(reg,val) writew((val), cp->regs + (reg))
371 #define cpw32(reg,val) writel((val), cp->regs + (reg))
372 #define cpw8_f(reg,val) do { \
373 writeb((val), cp->regs + (reg)); \
374 readb(cp->regs + (reg)); \
375 } while (0)
376 #define cpw16_f(reg,val) do { \
377 writew((val), cp->regs + (reg)); \
378 readw(cp->regs + (reg)); \
379 } while (0)
380 #define cpw32_f(reg,val) do { \
381 writel((val), cp->regs + (reg)); \
382 readl(cp->regs + (reg)); \
383 } while (0)
386 static void __cp_set_rx_mode (struct net_device *dev);
387 static void cp_tx (struct cp_private *cp);
388 static void cp_clean_rings (struct cp_private *cp);
389 #ifdef CONFIG_NET_POLL_CONTROLLER
390 static void cp_poll_controller(struct net_device *dev);
391 #endif
392 static int cp_get_eeprom_len(struct net_device *dev);
393 static int cp_get_eeprom(struct net_device *dev,
394 struct ethtool_eeprom *eeprom, u8 *data);
395 static int cp_set_eeprom(struct net_device *dev,
396 struct ethtool_eeprom *eeprom, u8 *data);
398 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
399 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
400 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
401 { },
403 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
405 static struct {
406 const char str[ETH_GSTRING_LEN];
407 } ethtool_stats_keys[] = {
408 { "tx_ok" },
409 { "rx_ok" },
410 { "tx_err" },
411 { "rx_err" },
412 { "rx_fifo" },
413 { "frame_align" },
414 { "tx_ok_1col" },
415 { "tx_ok_mcol" },
416 { "rx_ok_phys" },
417 { "rx_ok_bcast" },
418 { "rx_ok_mcast" },
419 { "tx_abort" },
420 { "tx_underrun" },
421 { "rx_frags" },
425 #if CP_VLAN_TAG_USED
426 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
428 struct cp_private *cp = netdev_priv(dev);
429 unsigned long flags;
431 spin_lock_irqsave(&cp->lock, flags);
432 cp->vlgrp = grp;
433 if (grp)
434 cp->cpcmd |= RxVlanOn;
435 else
436 cp->cpcmd &= ~RxVlanOn;
438 cpw16(CpCmd, cp->cpcmd);
439 spin_unlock_irqrestore(&cp->lock, flags);
441 #endif /* CP_VLAN_TAG_USED */
443 static inline void cp_set_rxbufsize (struct cp_private *cp)
445 unsigned int mtu = cp->dev->mtu;
447 if (mtu > ETH_DATA_LEN)
448 /* MTU + ethernet header + FCS + optional VLAN tag */
449 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
450 else
451 cp->rx_buf_sz = PKT_BUF_SZ;
454 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
455 struct cp_desc *desc)
457 skb->protocol = eth_type_trans (skb, cp->dev);
459 cp->dev->stats.rx_packets++;
460 cp->dev->stats.rx_bytes += skb->len;
462 #if CP_VLAN_TAG_USED
463 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
464 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
465 swab16(le32_to_cpu(desc->opts2) & 0xffff));
466 } else
467 #endif
468 netif_receive_skb(skb);
471 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
472 u32 status, u32 len)
474 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
475 rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
489 static inline unsigned int cp_rx_csum_ok (u32 status)
491 unsigned int protocol = (status >> 16) & 0x3;
493 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
494 ((protocol == RxProtoUDP) && !(status & UDPFail)))
495 return 1;
496 else
497 return 0;
500 static int cp_rx_poll(struct napi_struct *napi, int budget)
502 struct cp_private *cp = container_of(napi, struct cp_private, napi);
503 struct net_device *dev = cp->dev;
504 unsigned int rx_tail = cp->rx_tail;
505 int rx;
507 rx_status_loop:
508 rx = 0;
509 cpw16(IntrStatus, cp_rx_intr_mask);
511 while (1) {
512 u32 status, len;
513 dma_addr_t mapping;
514 struct sk_buff *skb, *new_skb;
515 struct cp_desc *desc;
516 const unsigned buflen = cp->rx_buf_sz;
518 skb = cp->rx_skb[rx_tail];
519 BUG_ON(!skb);
521 desc = &cp->rx_ring[rx_tail];
522 status = le32_to_cpu(desc->opts1);
523 if (status & DescOwn)
524 break;
526 len = (status & 0x1fff) - 4;
527 mapping = le64_to_cpu(desc->addr);
529 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
530 /* we don't support incoming fragmented frames.
531 * instead, we attempt to ensure that the
532 * pre-allocated RX skbs are properly sized such
533 * that RX fragments are never encountered
535 cp_rx_err_acct(cp, rx_tail, status, len);
536 dev->stats.rx_dropped++;
537 cp->cp_stats.rx_frags++;
538 goto rx_next;
541 if (status & (RxError | RxErrFIFO)) {
542 cp_rx_err_acct(cp, rx_tail, status, len);
543 goto rx_next;
546 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
547 rx_tail, status, len);
549 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
550 if (!new_skb) {
551 dev->stats.rx_dropped++;
552 goto rx_next;
555 dma_unmap_single(&cp->pdev->dev, mapping,
556 buflen, PCI_DMA_FROMDEVICE);
558 /* Handle checksum offloading for incoming packets. */
559 if (cp_rx_csum_ok(status))
560 skb->ip_summed = CHECKSUM_UNNECESSARY;
561 else
562 skb_checksum_none_assert(skb);
564 skb_put(skb, len);
566 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
567 PCI_DMA_FROMDEVICE);
568 cp->rx_skb[rx_tail] = new_skb;
570 cp_rx_skb(cp, skb, desc);
571 rx++;
573 rx_next:
574 cp->rx_ring[rx_tail].opts2 = 0;
575 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
576 if (rx_tail == (CP_RX_RING_SIZE - 1))
577 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
578 cp->rx_buf_sz);
579 else
580 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
581 rx_tail = NEXT_RX(rx_tail);
583 if (rx >= budget)
584 break;
587 cp->rx_tail = rx_tail;
589 /* if we did not reach work limit, then we're done with
590 * this round of polling
592 if (rx < budget) {
593 unsigned long flags;
595 if (cpr16(IntrStatus) & cp_rx_intr_mask)
596 goto rx_status_loop;
598 spin_lock_irqsave(&cp->lock, flags);
599 __napi_complete(napi);
600 cpw16_f(IntrMask, cp_intr_mask);
601 spin_unlock_irqrestore(&cp->lock, flags);
604 return rx;
607 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
609 struct net_device *dev = dev_instance;
610 struct cp_private *cp;
611 u16 status;
613 if (unlikely(dev == NULL))
614 return IRQ_NONE;
615 cp = netdev_priv(dev);
617 status = cpr16(IntrStatus);
618 if (!status || (status == 0xFFFF))
619 return IRQ_NONE;
621 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
622 status, cpr8(Cmd), cpr16(CpCmd));
624 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
626 spin_lock(&cp->lock);
628 /* close possible race's with dev_close */
629 if (unlikely(!netif_running(dev))) {
630 cpw16(IntrMask, 0);
631 spin_unlock(&cp->lock);
632 return IRQ_HANDLED;
635 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
636 if (napi_schedule_prep(&cp->napi)) {
637 cpw16_f(IntrMask, cp_norx_intr_mask);
638 __napi_schedule(&cp->napi);
641 if (status & (TxOK | TxErr | TxEmpty | SWInt))
642 cp_tx(cp);
643 if (status & LinkChg)
644 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
646 spin_unlock(&cp->lock);
648 if (status & PciErr) {
649 u16 pci_status;
651 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
652 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
653 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
654 status, pci_status);
656 /* TODO: reset hardware */
659 return IRQ_HANDLED;
662 #ifdef CONFIG_NET_POLL_CONTROLLER
664 * Polling receive - used by netconsole and other diagnostic tools
665 * to allow network i/o with interrupts disabled.
667 static void cp_poll_controller(struct net_device *dev)
669 disable_irq(dev->irq);
670 cp_interrupt(dev->irq, dev);
671 enable_irq(dev->irq);
673 #endif
675 static void cp_tx (struct cp_private *cp)
677 unsigned tx_head = cp->tx_head;
678 unsigned tx_tail = cp->tx_tail;
680 while (tx_tail != tx_head) {
681 struct cp_desc *txd = cp->tx_ring + tx_tail;
682 struct sk_buff *skb;
683 u32 status;
685 rmb();
686 status = le32_to_cpu(txd->opts1);
687 if (status & DescOwn)
688 break;
690 skb = cp->tx_skb[tx_tail];
691 BUG_ON(!skb);
693 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
694 le32_to_cpu(txd->opts1) & 0xffff,
695 PCI_DMA_TODEVICE);
697 if (status & LastFrag) {
698 if (status & (TxError | TxFIFOUnder)) {
699 netif_dbg(cp, tx_err, cp->dev,
700 "tx err, status 0x%x\n", status);
701 cp->dev->stats.tx_errors++;
702 if (status & TxOWC)
703 cp->dev->stats.tx_window_errors++;
704 if (status & TxMaxCol)
705 cp->dev->stats.tx_aborted_errors++;
706 if (status & TxLinkFail)
707 cp->dev->stats.tx_carrier_errors++;
708 if (status & TxFIFOUnder)
709 cp->dev->stats.tx_fifo_errors++;
710 } else {
711 cp->dev->stats.collisions +=
712 ((status >> TxColCntShift) & TxColCntMask);
713 cp->dev->stats.tx_packets++;
714 cp->dev->stats.tx_bytes += skb->len;
715 netif_dbg(cp, tx_done, cp->dev,
716 "tx done, slot %d\n", tx_tail);
718 dev_kfree_skb_irq(skb);
721 cp->tx_skb[tx_tail] = NULL;
723 tx_tail = NEXT_TX(tx_tail);
726 cp->tx_tail = tx_tail;
728 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
729 netif_wake_queue(cp->dev);
732 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
733 struct net_device *dev)
735 struct cp_private *cp = netdev_priv(dev);
736 unsigned entry;
737 u32 eor, flags;
738 unsigned long intr_flags;
739 #if CP_VLAN_TAG_USED
740 u32 vlan_tag = 0;
741 #endif
742 int mss = 0;
744 spin_lock_irqsave(&cp->lock, intr_flags);
746 /* This is a hard error, log it. */
747 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
748 netif_stop_queue(dev);
749 spin_unlock_irqrestore(&cp->lock, intr_flags);
750 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
751 return NETDEV_TX_BUSY;
754 #if CP_VLAN_TAG_USED
755 if (vlan_tx_tag_present(skb))
756 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
757 #endif
759 entry = cp->tx_head;
760 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
761 mss = skb_shinfo(skb)->gso_size;
763 if (skb_shinfo(skb)->nr_frags == 0) {
764 struct cp_desc *txd = &cp->tx_ring[entry];
765 u32 len;
766 dma_addr_t mapping;
768 len = skb->len;
769 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
770 CP_VLAN_TX_TAG(txd, vlan_tag);
771 txd->addr = cpu_to_le64(mapping);
772 wmb();
774 flags = eor | len | DescOwn | FirstFrag | LastFrag;
776 if (mss)
777 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
778 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
779 const struct iphdr *ip = ip_hdr(skb);
780 if (ip->protocol == IPPROTO_TCP)
781 flags |= IPCS | TCPCS;
782 else if (ip->protocol == IPPROTO_UDP)
783 flags |= IPCS | UDPCS;
784 else
785 WARN_ON(1); /* we need a WARN() */
788 txd->opts1 = cpu_to_le32(flags);
789 wmb();
791 cp->tx_skb[entry] = skb;
792 entry = NEXT_TX(entry);
793 } else {
794 struct cp_desc *txd;
795 u32 first_len, first_eor;
796 dma_addr_t first_mapping;
797 int frag, first_entry = entry;
798 const struct iphdr *ip = ip_hdr(skb);
800 /* We must give this initial chunk to the device last.
801 * Otherwise we could race with the device.
803 first_eor = eor;
804 first_len = skb_headlen(skb);
805 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
806 first_len, PCI_DMA_TODEVICE);
807 cp->tx_skb[entry] = skb;
808 entry = NEXT_TX(entry);
810 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
811 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
812 u32 len;
813 u32 ctrl;
814 dma_addr_t mapping;
816 len = this_frag->size;
817 mapping = dma_map_single(&cp->pdev->dev,
818 ((void *) page_address(this_frag->page) +
819 this_frag->page_offset),
820 len, PCI_DMA_TODEVICE);
821 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
823 ctrl = eor | len | DescOwn;
825 if (mss)
826 ctrl |= LargeSend |
827 ((mss & MSSMask) << MSSShift);
828 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
829 if (ip->protocol == IPPROTO_TCP)
830 ctrl |= IPCS | TCPCS;
831 else if (ip->protocol == IPPROTO_UDP)
832 ctrl |= IPCS | UDPCS;
833 else
834 BUG();
837 if (frag == skb_shinfo(skb)->nr_frags - 1)
838 ctrl |= LastFrag;
840 txd = &cp->tx_ring[entry];
841 CP_VLAN_TX_TAG(txd, vlan_tag);
842 txd->addr = cpu_to_le64(mapping);
843 wmb();
845 txd->opts1 = cpu_to_le32(ctrl);
846 wmb();
848 cp->tx_skb[entry] = skb;
849 entry = NEXT_TX(entry);
852 txd = &cp->tx_ring[first_entry];
853 CP_VLAN_TX_TAG(txd, vlan_tag);
854 txd->addr = cpu_to_le64(first_mapping);
855 wmb();
857 if (skb->ip_summed == CHECKSUM_PARTIAL) {
858 if (ip->protocol == IPPROTO_TCP)
859 txd->opts1 = cpu_to_le32(first_eor | first_len |
860 FirstFrag | DescOwn |
861 IPCS | TCPCS);
862 else if (ip->protocol == IPPROTO_UDP)
863 txd->opts1 = cpu_to_le32(first_eor | first_len |
864 FirstFrag | DescOwn |
865 IPCS | UDPCS);
866 else
867 BUG();
868 } else
869 txd->opts1 = cpu_to_le32(first_eor | first_len |
870 FirstFrag | DescOwn);
871 wmb();
873 cp->tx_head = entry;
874 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
875 entry, skb->len);
876 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
877 netif_stop_queue(dev);
879 spin_unlock_irqrestore(&cp->lock, intr_flags);
881 cpw8(TxPoll, NormalTxPoll);
883 return NETDEV_TX_OK;
886 /* Set or clear the multicast filter for this adaptor.
887 This routine is not state sensitive and need not be SMP locked. */
889 static void __cp_set_rx_mode (struct net_device *dev)
891 struct cp_private *cp = netdev_priv(dev);
892 u32 mc_filter[2]; /* Multicast hash filter */
893 int rx_mode;
894 u32 tmp;
896 /* Note: do not reorder, GCC is clever about common statements. */
897 if (dev->flags & IFF_PROMISC) {
898 /* Unconditionally log net taps. */
899 rx_mode =
900 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
901 AcceptAllPhys;
902 mc_filter[1] = mc_filter[0] = 0xffffffff;
903 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
904 (dev->flags & IFF_ALLMULTI)) {
905 /* Too many to filter perfectly -- accept all multicasts. */
906 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
907 mc_filter[1] = mc_filter[0] = 0xffffffff;
908 } else {
909 struct netdev_hw_addr *ha;
910 rx_mode = AcceptBroadcast | AcceptMyPhys;
911 mc_filter[1] = mc_filter[0] = 0;
912 netdev_for_each_mc_addr(ha, dev) {
913 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
915 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
916 rx_mode |= AcceptMulticast;
920 /* We can safely update without stopping the chip. */
921 tmp = cp_rx_config | rx_mode;
922 if (cp->rx_config != tmp) {
923 cpw32_f (RxConfig, tmp);
924 cp->rx_config = tmp;
926 cpw32_f (MAR0 + 0, mc_filter[0]);
927 cpw32_f (MAR0 + 4, mc_filter[1]);
930 static void cp_set_rx_mode (struct net_device *dev)
932 unsigned long flags;
933 struct cp_private *cp = netdev_priv(dev);
935 spin_lock_irqsave (&cp->lock, flags);
936 __cp_set_rx_mode(dev);
937 spin_unlock_irqrestore (&cp->lock, flags);
940 static void __cp_get_stats(struct cp_private *cp)
942 /* only lower 24 bits valid; write any value to clear */
943 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
944 cpw32 (RxMissed, 0);
947 static struct net_device_stats *cp_get_stats(struct net_device *dev)
949 struct cp_private *cp = netdev_priv(dev);
950 unsigned long flags;
952 /* The chip only need report frame silently dropped. */
953 spin_lock_irqsave(&cp->lock, flags);
954 if (netif_running(dev) && netif_device_present(dev))
955 __cp_get_stats(cp);
956 spin_unlock_irqrestore(&cp->lock, flags);
958 return &dev->stats;
961 static void cp_stop_hw (struct cp_private *cp)
963 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
964 cpw16_f(IntrMask, 0);
965 cpw8(Cmd, 0);
966 cpw16_f(CpCmd, 0);
967 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
969 cp->rx_tail = 0;
970 cp->tx_head = cp->tx_tail = 0;
973 static void cp_reset_hw (struct cp_private *cp)
975 unsigned work = 1000;
977 cpw8(Cmd, CmdReset);
979 while (work--) {
980 if (!(cpr8(Cmd) & CmdReset))
981 return;
983 schedule_timeout_uninterruptible(10);
986 netdev_err(cp->dev, "hardware reset timeout\n");
989 static inline void cp_start_hw (struct cp_private *cp)
991 cpw16(CpCmd, cp->cpcmd);
992 cpw8(Cmd, RxOn | TxOn);
995 static void cp_init_hw (struct cp_private *cp)
997 struct net_device *dev = cp->dev;
998 dma_addr_t ring_dma;
1000 cp_reset_hw(cp);
1002 cpw8_f (Cfg9346, Cfg9346_Unlock);
1004 /* Restore our idea of the MAC address. */
1005 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1006 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1008 cp_start_hw(cp);
1009 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1011 __cp_set_rx_mode(dev);
1012 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1014 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1015 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1016 cpw8(Config3, PARMEnable);
1017 cp->wol_enabled = 0;
1019 cpw8(Config5, cpr8(Config5) & PMEStatus);
1021 cpw32_f(HiTxRingAddr, 0);
1022 cpw32_f(HiTxRingAddr + 4, 0);
1024 ring_dma = cp->ring_dma;
1025 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1026 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1028 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1029 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1030 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1032 cpw16(MultiIntr, 0);
1034 cpw16_f(IntrMask, cp_intr_mask);
1036 cpw8_f(Cfg9346, Cfg9346_Lock);
1039 static int cp_refill_rx(struct cp_private *cp)
1041 struct net_device *dev = cp->dev;
1042 unsigned i;
1044 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1045 struct sk_buff *skb;
1046 dma_addr_t mapping;
1048 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1049 if (!skb)
1050 goto err_out;
1052 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1053 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1054 cp->rx_skb[i] = skb;
1056 cp->rx_ring[i].opts2 = 0;
1057 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1058 if (i == (CP_RX_RING_SIZE - 1))
1059 cp->rx_ring[i].opts1 =
1060 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1061 else
1062 cp->rx_ring[i].opts1 =
1063 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1066 return 0;
1068 err_out:
1069 cp_clean_rings(cp);
1070 return -ENOMEM;
1073 static void cp_init_rings_index (struct cp_private *cp)
1075 cp->rx_tail = 0;
1076 cp->tx_head = cp->tx_tail = 0;
1079 static int cp_init_rings (struct cp_private *cp)
1081 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1082 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1084 cp_init_rings_index(cp);
1086 return cp_refill_rx (cp);
1089 static int cp_alloc_rings (struct cp_private *cp)
1091 void *mem;
1093 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1094 &cp->ring_dma, GFP_KERNEL);
1095 if (!mem)
1096 return -ENOMEM;
1098 cp->rx_ring = mem;
1099 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1101 return cp_init_rings(cp);
1104 static void cp_clean_rings (struct cp_private *cp)
1106 struct cp_desc *desc;
1107 unsigned i;
1109 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1110 if (cp->rx_skb[i]) {
1111 desc = cp->rx_ring + i;
1112 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1113 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1114 dev_kfree_skb(cp->rx_skb[i]);
1118 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1119 if (cp->tx_skb[i]) {
1120 struct sk_buff *skb = cp->tx_skb[i];
1122 desc = cp->tx_ring + i;
1123 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1124 le32_to_cpu(desc->opts1) & 0xffff,
1125 PCI_DMA_TODEVICE);
1126 if (le32_to_cpu(desc->opts1) & LastFrag)
1127 dev_kfree_skb(skb);
1128 cp->dev->stats.tx_dropped++;
1132 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1133 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1135 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1136 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1139 static void cp_free_rings (struct cp_private *cp)
1141 cp_clean_rings(cp);
1142 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1143 cp->ring_dma);
1144 cp->rx_ring = NULL;
1145 cp->tx_ring = NULL;
1148 static int cp_open (struct net_device *dev)
1150 struct cp_private *cp = netdev_priv(dev);
1151 int rc;
1153 netif_dbg(cp, ifup, dev, "enabling interface\n");
1155 rc = cp_alloc_rings(cp);
1156 if (rc)
1157 return rc;
1159 napi_enable(&cp->napi);
1161 cp_init_hw(cp);
1163 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1164 if (rc)
1165 goto err_out_hw;
1167 netif_carrier_off(dev);
1168 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1169 netif_start_queue(dev);
1171 return 0;
1173 err_out_hw:
1174 napi_disable(&cp->napi);
1175 cp_stop_hw(cp);
1176 cp_free_rings(cp);
1177 return rc;
1180 static int cp_close (struct net_device *dev)
1182 struct cp_private *cp = netdev_priv(dev);
1183 unsigned long flags;
1185 napi_disable(&cp->napi);
1187 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1189 spin_lock_irqsave(&cp->lock, flags);
1191 netif_stop_queue(dev);
1192 netif_carrier_off(dev);
1194 cp_stop_hw(cp);
1196 spin_unlock_irqrestore(&cp->lock, flags);
1198 free_irq(dev->irq, dev);
1200 cp_free_rings(cp);
1201 return 0;
1204 static void cp_tx_timeout(struct net_device *dev)
1206 struct cp_private *cp = netdev_priv(dev);
1207 unsigned long flags;
1208 int rc;
1210 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1211 cpr8(Cmd), cpr16(CpCmd),
1212 cpr16(IntrStatus), cpr16(IntrMask));
1214 spin_lock_irqsave(&cp->lock, flags);
1216 cp_stop_hw(cp);
1217 cp_clean_rings(cp);
1218 rc = cp_init_rings(cp);
1219 cp_start_hw(cp);
1221 netif_wake_queue(dev);
1223 spin_unlock_irqrestore(&cp->lock, flags);
1226 #ifdef BROKEN
1227 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1229 struct cp_private *cp = netdev_priv(dev);
1230 int rc;
1231 unsigned long flags;
1233 /* check for invalid MTU, according to hardware limits */
1234 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1235 return -EINVAL;
1237 /* if network interface not up, no need for complexity */
1238 if (!netif_running(dev)) {
1239 dev->mtu = new_mtu;
1240 cp_set_rxbufsize(cp); /* set new rx buf size */
1241 return 0;
1244 spin_lock_irqsave(&cp->lock, flags);
1246 cp_stop_hw(cp); /* stop h/w and free rings */
1247 cp_clean_rings(cp);
1249 dev->mtu = new_mtu;
1250 cp_set_rxbufsize(cp); /* set new rx buf size */
1252 rc = cp_init_rings(cp); /* realloc and restart h/w */
1253 cp_start_hw(cp);
1255 spin_unlock_irqrestore(&cp->lock, flags);
1257 return rc;
1259 #endif /* BROKEN */
1261 static const char mii_2_8139_map[8] = {
1262 BasicModeCtrl,
1263 BasicModeStatus,
1266 NWayAdvert,
1267 NWayLPAR,
1268 NWayExpansion,
1272 static int mdio_read(struct net_device *dev, int phy_id, int location)
1274 struct cp_private *cp = netdev_priv(dev);
1276 return location < 8 && mii_2_8139_map[location] ?
1277 readw(cp->regs + mii_2_8139_map[location]) : 0;
1281 static void mdio_write(struct net_device *dev, int phy_id, int location,
1282 int value)
1284 struct cp_private *cp = netdev_priv(dev);
1286 if (location == 0) {
1287 cpw8(Cfg9346, Cfg9346_Unlock);
1288 cpw16(BasicModeCtrl, value);
1289 cpw8(Cfg9346, Cfg9346_Lock);
1290 } else if (location < 8 && mii_2_8139_map[location])
1291 cpw16(mii_2_8139_map[location], value);
1294 /* Set the ethtool Wake-on-LAN settings */
1295 static int netdev_set_wol (struct cp_private *cp,
1296 const struct ethtool_wolinfo *wol)
1298 u8 options;
1300 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1301 /* If WOL is being disabled, no need for complexity */
1302 if (wol->wolopts) {
1303 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1304 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1307 cpw8 (Cfg9346, Cfg9346_Unlock);
1308 cpw8 (Config3, options);
1309 cpw8 (Cfg9346, Cfg9346_Lock);
1311 options = 0; /* Paranoia setting */
1312 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1313 /* If WOL is being disabled, no need for complexity */
1314 if (wol->wolopts) {
1315 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1316 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1317 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1320 cpw8 (Config5, options);
1322 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1324 return 0;
1327 /* Get the ethtool Wake-on-LAN settings */
1328 static void netdev_get_wol (struct cp_private *cp,
1329 struct ethtool_wolinfo *wol)
1331 u8 options;
1333 wol->wolopts = 0; /* Start from scratch */
1334 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1335 WAKE_MCAST | WAKE_UCAST;
1336 /* We don't need to go on if WOL is disabled */
1337 if (!cp->wol_enabled) return;
1339 options = cpr8 (Config3);
1340 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1341 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1343 options = 0; /* Paranoia setting */
1344 options = cpr8 (Config5);
1345 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1346 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1347 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1350 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1352 struct cp_private *cp = netdev_priv(dev);
1354 strcpy (info->driver, DRV_NAME);
1355 strcpy (info->version, DRV_VERSION);
1356 strcpy (info->bus_info, pci_name(cp->pdev));
1359 static int cp_get_regs_len(struct net_device *dev)
1361 return CP_REGS_SIZE;
1364 static int cp_get_sset_count (struct net_device *dev, int sset)
1366 switch (sset) {
1367 case ETH_SS_STATS:
1368 return CP_NUM_STATS;
1369 default:
1370 return -EOPNOTSUPP;
1374 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1376 struct cp_private *cp = netdev_priv(dev);
1377 int rc;
1378 unsigned long flags;
1380 spin_lock_irqsave(&cp->lock, flags);
1381 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1382 spin_unlock_irqrestore(&cp->lock, flags);
1384 return rc;
1387 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1389 struct cp_private *cp = netdev_priv(dev);
1390 int rc;
1391 unsigned long flags;
1393 spin_lock_irqsave(&cp->lock, flags);
1394 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1395 spin_unlock_irqrestore(&cp->lock, flags);
1397 return rc;
1400 static int cp_nway_reset(struct net_device *dev)
1402 struct cp_private *cp = netdev_priv(dev);
1403 return mii_nway_restart(&cp->mii_if);
1406 static u32 cp_get_msglevel(struct net_device *dev)
1408 struct cp_private *cp = netdev_priv(dev);
1409 return cp->msg_enable;
1412 static void cp_set_msglevel(struct net_device *dev, u32 value)
1414 struct cp_private *cp = netdev_priv(dev);
1415 cp->msg_enable = value;
1418 static int cp_set_features(struct net_device *dev, u32 features)
1420 struct cp_private *cp = netdev_priv(dev);
1421 unsigned long flags;
1423 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1424 return 0;
1426 spin_lock_irqsave(&cp->lock, flags);
1428 if (features & NETIF_F_RXCSUM)
1429 cp->cpcmd |= RxChkSum;
1430 else
1431 cp->cpcmd &= ~RxChkSum;
1433 cpw16_f(CpCmd, cp->cpcmd);
1434 spin_unlock_irqrestore(&cp->lock, flags);
1436 return 0;
1439 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1440 void *p)
1442 struct cp_private *cp = netdev_priv(dev);
1443 unsigned long flags;
1445 if (regs->len < CP_REGS_SIZE)
1446 return /* -EINVAL */;
1448 regs->version = CP_REGS_VER;
1450 spin_lock_irqsave(&cp->lock, flags);
1451 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1452 spin_unlock_irqrestore(&cp->lock, flags);
1455 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1457 struct cp_private *cp = netdev_priv(dev);
1458 unsigned long flags;
1460 spin_lock_irqsave (&cp->lock, flags);
1461 netdev_get_wol (cp, wol);
1462 spin_unlock_irqrestore (&cp->lock, flags);
1465 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1467 struct cp_private *cp = netdev_priv(dev);
1468 unsigned long flags;
1469 int rc;
1471 spin_lock_irqsave (&cp->lock, flags);
1472 rc = netdev_set_wol (cp, wol);
1473 spin_unlock_irqrestore (&cp->lock, flags);
1475 return rc;
1478 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1480 switch (stringset) {
1481 case ETH_SS_STATS:
1482 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1483 break;
1484 default:
1485 BUG();
1486 break;
1490 static void cp_get_ethtool_stats (struct net_device *dev,
1491 struct ethtool_stats *estats, u64 *tmp_stats)
1493 struct cp_private *cp = netdev_priv(dev);
1494 struct cp_dma_stats *nic_stats;
1495 dma_addr_t dma;
1496 int i;
1498 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1499 &dma, GFP_KERNEL);
1500 if (!nic_stats)
1501 return;
1503 /* begin NIC statistics dump */
1504 cpw32(StatsAddr + 4, (u64)dma >> 32);
1505 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1506 cpr32(StatsAddr);
1508 for (i = 0; i < 1000; i++) {
1509 if ((cpr32(StatsAddr) & DumpStats) == 0)
1510 break;
1511 udelay(10);
1513 cpw32(StatsAddr, 0);
1514 cpw32(StatsAddr + 4, 0);
1515 cpr32(StatsAddr);
1517 i = 0;
1518 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1519 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1520 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1521 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1522 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1523 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1524 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1525 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1526 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1527 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1528 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1529 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1530 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1531 tmp_stats[i++] = cp->cp_stats.rx_frags;
1532 BUG_ON(i != CP_NUM_STATS);
1534 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1537 static const struct ethtool_ops cp_ethtool_ops = {
1538 .get_drvinfo = cp_get_drvinfo,
1539 .get_regs_len = cp_get_regs_len,
1540 .get_sset_count = cp_get_sset_count,
1541 .get_settings = cp_get_settings,
1542 .set_settings = cp_set_settings,
1543 .nway_reset = cp_nway_reset,
1544 .get_link = ethtool_op_get_link,
1545 .get_msglevel = cp_get_msglevel,
1546 .set_msglevel = cp_set_msglevel,
1547 .get_regs = cp_get_regs,
1548 .get_wol = cp_get_wol,
1549 .set_wol = cp_set_wol,
1550 .get_strings = cp_get_strings,
1551 .get_ethtool_stats = cp_get_ethtool_stats,
1552 .get_eeprom_len = cp_get_eeprom_len,
1553 .get_eeprom = cp_get_eeprom,
1554 .set_eeprom = cp_set_eeprom,
1557 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1559 struct cp_private *cp = netdev_priv(dev);
1560 int rc;
1561 unsigned long flags;
1563 if (!netif_running(dev))
1564 return -EINVAL;
1566 spin_lock_irqsave(&cp->lock, flags);
1567 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1568 spin_unlock_irqrestore(&cp->lock, flags);
1569 return rc;
1572 static int cp_set_mac_address(struct net_device *dev, void *p)
1574 struct cp_private *cp = netdev_priv(dev);
1575 struct sockaddr *addr = p;
1577 if (!is_valid_ether_addr(addr->sa_data))
1578 return -EADDRNOTAVAIL;
1580 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1582 spin_lock_irq(&cp->lock);
1584 cpw8_f(Cfg9346, Cfg9346_Unlock);
1585 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1586 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1587 cpw8_f(Cfg9346, Cfg9346_Lock);
1589 spin_unlock_irq(&cp->lock);
1591 return 0;
1594 /* Serial EEPROM section. */
1596 /* EEPROM_Ctrl bits. */
1597 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1598 #define EE_CS 0x08 /* EEPROM chip select. */
1599 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1600 #define EE_WRITE_0 0x00
1601 #define EE_WRITE_1 0x02
1602 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1603 #define EE_ENB (0x80 | EE_CS)
1605 /* Delay between EEPROM clock transitions.
1606 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1609 #define eeprom_delay() readl(ee_addr)
1611 /* The EEPROM commands include the alway-set leading bit. */
1612 #define EE_EXTEND_CMD (4)
1613 #define EE_WRITE_CMD (5)
1614 #define EE_READ_CMD (6)
1615 #define EE_ERASE_CMD (7)
1617 #define EE_EWDS_ADDR (0)
1618 #define EE_WRAL_ADDR (1)
1619 #define EE_ERAL_ADDR (2)
1620 #define EE_EWEN_ADDR (3)
1622 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1624 static void eeprom_cmd_start(void __iomem *ee_addr)
1626 writeb (EE_ENB & ~EE_CS, ee_addr);
1627 writeb (EE_ENB, ee_addr);
1628 eeprom_delay ();
1631 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1633 int i;
1635 /* Shift the command bits out. */
1636 for (i = cmd_len - 1; i >= 0; i--) {
1637 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1638 writeb (EE_ENB | dataval, ee_addr);
1639 eeprom_delay ();
1640 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1641 eeprom_delay ();
1643 writeb (EE_ENB, ee_addr);
1644 eeprom_delay ();
1647 static void eeprom_cmd_end(void __iomem *ee_addr)
1649 writeb (~EE_CS, ee_addr);
1650 eeprom_delay ();
1653 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1654 int addr_len)
1656 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1658 eeprom_cmd_start(ee_addr);
1659 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1660 eeprom_cmd_end(ee_addr);
1663 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1665 int i;
1666 u16 retval = 0;
1667 void __iomem *ee_addr = ioaddr + Cfg9346;
1668 int read_cmd = location | (EE_READ_CMD << addr_len);
1670 eeprom_cmd_start(ee_addr);
1671 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1673 for (i = 16; i > 0; i--) {
1674 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1675 eeprom_delay ();
1676 retval =
1677 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1679 writeb (EE_ENB, ee_addr);
1680 eeprom_delay ();
1683 eeprom_cmd_end(ee_addr);
1685 return retval;
1688 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1689 int addr_len)
1691 int i;
1692 void __iomem *ee_addr = ioaddr + Cfg9346;
1693 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1695 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1697 eeprom_cmd_start(ee_addr);
1698 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1699 eeprom_cmd(ee_addr, val, 16);
1700 eeprom_cmd_end(ee_addr);
1702 eeprom_cmd_start(ee_addr);
1703 for (i = 0; i < 20000; i++)
1704 if (readb(ee_addr) & EE_DATA_READ)
1705 break;
1706 eeprom_cmd_end(ee_addr);
1708 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1711 static int cp_get_eeprom_len(struct net_device *dev)
1713 struct cp_private *cp = netdev_priv(dev);
1714 int size;
1716 spin_lock_irq(&cp->lock);
1717 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1718 spin_unlock_irq(&cp->lock);
1720 return size;
1723 static int cp_get_eeprom(struct net_device *dev,
1724 struct ethtool_eeprom *eeprom, u8 *data)
1726 struct cp_private *cp = netdev_priv(dev);
1727 unsigned int addr_len;
1728 u16 val;
1729 u32 offset = eeprom->offset >> 1;
1730 u32 len = eeprom->len;
1731 u32 i = 0;
1733 eeprom->magic = CP_EEPROM_MAGIC;
1735 spin_lock_irq(&cp->lock);
1737 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1739 if (eeprom->offset & 1) {
1740 val = read_eeprom(cp->regs, offset, addr_len);
1741 data[i++] = (u8)(val >> 8);
1742 offset++;
1745 while (i < len - 1) {
1746 val = read_eeprom(cp->regs, offset, addr_len);
1747 data[i++] = (u8)val;
1748 data[i++] = (u8)(val >> 8);
1749 offset++;
1752 if (i < len) {
1753 val = read_eeprom(cp->regs, offset, addr_len);
1754 data[i] = (u8)val;
1757 spin_unlock_irq(&cp->lock);
1758 return 0;
1761 static int cp_set_eeprom(struct net_device *dev,
1762 struct ethtool_eeprom *eeprom, u8 *data)
1764 struct cp_private *cp = netdev_priv(dev);
1765 unsigned int addr_len;
1766 u16 val;
1767 u32 offset = eeprom->offset >> 1;
1768 u32 len = eeprom->len;
1769 u32 i = 0;
1771 if (eeprom->magic != CP_EEPROM_MAGIC)
1772 return -EINVAL;
1774 spin_lock_irq(&cp->lock);
1776 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1778 if (eeprom->offset & 1) {
1779 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1780 val |= (u16)data[i++] << 8;
1781 write_eeprom(cp->regs, offset, val, addr_len);
1782 offset++;
1785 while (i < len - 1) {
1786 val = (u16)data[i++];
1787 val |= (u16)data[i++] << 8;
1788 write_eeprom(cp->regs, offset, val, addr_len);
1789 offset++;
1792 if (i < len) {
1793 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1794 val |= (u16)data[i];
1795 write_eeprom(cp->regs, offset, val, addr_len);
1798 spin_unlock_irq(&cp->lock);
1799 return 0;
1802 /* Put the board into D3cold state and wait for WakeUp signal */
1803 static void cp_set_d3_state (struct cp_private *cp)
1805 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1806 pci_set_power_state (cp->pdev, PCI_D3hot);
1809 static const struct net_device_ops cp_netdev_ops = {
1810 .ndo_open = cp_open,
1811 .ndo_stop = cp_close,
1812 .ndo_validate_addr = eth_validate_addr,
1813 .ndo_set_mac_address = cp_set_mac_address,
1814 .ndo_set_multicast_list = cp_set_rx_mode,
1815 .ndo_get_stats = cp_get_stats,
1816 .ndo_do_ioctl = cp_ioctl,
1817 .ndo_start_xmit = cp_start_xmit,
1818 .ndo_tx_timeout = cp_tx_timeout,
1819 .ndo_set_features = cp_set_features,
1820 #if CP_VLAN_TAG_USED
1821 .ndo_vlan_rx_register = cp_vlan_rx_register,
1822 #endif
1823 #ifdef BROKEN
1824 .ndo_change_mtu = cp_change_mtu,
1825 #endif
1827 #ifdef CONFIG_NET_POLL_CONTROLLER
1828 .ndo_poll_controller = cp_poll_controller,
1829 #endif
1832 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1834 struct net_device *dev;
1835 struct cp_private *cp;
1836 int rc;
1837 void __iomem *regs;
1838 resource_size_t pciaddr;
1839 unsigned int addr_len, i, pci_using_dac;
1841 #ifndef MODULE
1842 static int version_printed;
1843 if (version_printed++ == 0)
1844 pr_info("%s", version);
1845 #endif
1847 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1848 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1849 dev_info(&pdev->dev,
1850 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1851 pdev->vendor, pdev->device, pdev->revision);
1852 return -ENODEV;
1855 dev = alloc_etherdev(sizeof(struct cp_private));
1856 if (!dev)
1857 return -ENOMEM;
1858 SET_NETDEV_DEV(dev, &pdev->dev);
1860 cp = netdev_priv(dev);
1861 cp->pdev = pdev;
1862 cp->dev = dev;
1863 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1864 spin_lock_init (&cp->lock);
1865 cp->mii_if.dev = dev;
1866 cp->mii_if.mdio_read = mdio_read;
1867 cp->mii_if.mdio_write = mdio_write;
1868 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1869 cp->mii_if.phy_id_mask = 0x1f;
1870 cp->mii_if.reg_num_mask = 0x1f;
1871 cp_set_rxbufsize(cp);
1873 rc = pci_enable_device(pdev);
1874 if (rc)
1875 goto err_out_free;
1877 rc = pci_set_mwi(pdev);
1878 if (rc)
1879 goto err_out_disable;
1881 rc = pci_request_regions(pdev, DRV_NAME);
1882 if (rc)
1883 goto err_out_mwi;
1885 pciaddr = pci_resource_start(pdev, 1);
1886 if (!pciaddr) {
1887 rc = -EIO;
1888 dev_err(&pdev->dev, "no MMIO resource\n");
1889 goto err_out_res;
1891 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1892 rc = -EIO;
1893 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1894 (unsigned long long)pci_resource_len(pdev, 1));
1895 goto err_out_res;
1898 /* Configure DMA attributes. */
1899 if ((sizeof(dma_addr_t) > 4) &&
1900 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1901 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1902 pci_using_dac = 1;
1903 } else {
1904 pci_using_dac = 0;
1906 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1907 if (rc) {
1908 dev_err(&pdev->dev,
1909 "No usable DMA configuration, aborting\n");
1910 goto err_out_res;
1912 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1913 if (rc) {
1914 dev_err(&pdev->dev,
1915 "No usable consistent DMA configuration, aborting\n");
1916 goto err_out_res;
1920 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1921 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1923 dev->features |= NETIF_F_RXCSUM;
1924 dev->hw_features |= NETIF_F_RXCSUM;
1926 regs = ioremap(pciaddr, CP_REGS_SIZE);
1927 if (!regs) {
1928 rc = -EIO;
1929 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1930 (unsigned long long)pci_resource_len(pdev, 1),
1931 (unsigned long long)pciaddr);
1932 goto err_out_res;
1934 dev->base_addr = (unsigned long) regs;
1935 cp->regs = regs;
1937 cp_stop_hw(cp);
1939 /* read MAC address from EEPROM */
1940 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1941 for (i = 0; i < 3; i++)
1942 ((__le16 *) (dev->dev_addr))[i] =
1943 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1944 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1946 dev->netdev_ops = &cp_netdev_ops;
1947 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1948 dev->ethtool_ops = &cp_ethtool_ops;
1949 dev->watchdog_timeo = TX_TIMEOUT;
1951 #if CP_VLAN_TAG_USED
1952 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1953 #endif
1955 if (pci_using_dac)
1956 dev->features |= NETIF_F_HIGHDMA;
1958 /* disabled by default until verified */
1959 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
1961 dev->irq = pdev->irq;
1963 rc = register_netdev(dev);
1964 if (rc)
1965 goto err_out_iomap;
1967 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1968 dev->base_addr, dev->dev_addr, dev->irq);
1970 pci_set_drvdata(pdev, dev);
1972 /* enable busmastering and memory-write-invalidate */
1973 pci_set_master(pdev);
1975 if (cp->wol_enabled)
1976 cp_set_d3_state (cp);
1978 return 0;
1980 err_out_iomap:
1981 iounmap(regs);
1982 err_out_res:
1983 pci_release_regions(pdev);
1984 err_out_mwi:
1985 pci_clear_mwi(pdev);
1986 err_out_disable:
1987 pci_disable_device(pdev);
1988 err_out_free:
1989 free_netdev(dev);
1990 return rc;
1993 static void cp_remove_one (struct pci_dev *pdev)
1995 struct net_device *dev = pci_get_drvdata(pdev);
1996 struct cp_private *cp = netdev_priv(dev);
1998 unregister_netdev(dev);
1999 iounmap(cp->regs);
2000 if (cp->wol_enabled)
2001 pci_set_power_state (pdev, PCI_D0);
2002 pci_release_regions(pdev);
2003 pci_clear_mwi(pdev);
2004 pci_disable_device(pdev);
2005 pci_set_drvdata(pdev, NULL);
2006 free_netdev(dev);
2009 #ifdef CONFIG_PM
2010 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2012 struct net_device *dev = pci_get_drvdata(pdev);
2013 struct cp_private *cp = netdev_priv(dev);
2014 unsigned long flags;
2016 if (!netif_running(dev))
2017 return 0;
2019 netif_device_detach (dev);
2020 netif_stop_queue (dev);
2022 spin_lock_irqsave (&cp->lock, flags);
2024 /* Disable Rx and Tx */
2025 cpw16 (IntrMask, 0);
2026 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2028 spin_unlock_irqrestore (&cp->lock, flags);
2030 pci_save_state(pdev);
2031 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2032 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2034 return 0;
2037 static int cp_resume (struct pci_dev *pdev)
2039 struct net_device *dev = pci_get_drvdata (pdev);
2040 struct cp_private *cp = netdev_priv(dev);
2041 unsigned long flags;
2043 if (!netif_running(dev))
2044 return 0;
2046 netif_device_attach (dev);
2048 pci_set_power_state(pdev, PCI_D0);
2049 pci_restore_state(pdev);
2050 pci_enable_wake(pdev, PCI_D0, 0);
2052 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2053 cp_init_rings_index (cp);
2054 cp_init_hw (cp);
2055 netif_start_queue (dev);
2057 spin_lock_irqsave (&cp->lock, flags);
2059 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2061 spin_unlock_irqrestore (&cp->lock, flags);
2063 return 0;
2065 #endif /* CONFIG_PM */
2067 static struct pci_driver cp_driver = {
2068 .name = DRV_NAME,
2069 .id_table = cp_pci_tbl,
2070 .probe = cp_init_one,
2071 .remove = cp_remove_one,
2072 #ifdef CONFIG_PM
2073 .resume = cp_resume,
2074 .suspend = cp_suspend,
2075 #endif
2078 static int __init cp_init (void)
2080 #ifdef MODULE
2081 pr_info("%s", version);
2082 #endif
2083 return pci_register_driver(&cp_driver);
2086 static void __exit cp_exit (void)
2088 pci_unregister_driver (&cp_driver);
2091 module_init(cp_init);
2092 module_exit(cp_exit);