sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / bnx2x / bnx2x_init_ops.h
blobaafd0232393fdc28119d80d12328d778d436bbd2
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2011 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
19 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
20 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
21 u32 addr, u32 len);
23 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
24 u32 len)
26 u32 i;
28 for (i = 0; i < len; i++)
29 REG_WR(bp, addr + i*4, data[i]);
32 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
33 u32 len)
35 u32 i;
37 for (i = 0; i < len; i++)
38 REG_WR_IND(bp, addr + i*4, data[i]);
41 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
43 if (bp->dmae_ready)
44 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
45 else
46 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
49 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
51 u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
52 u32 buf_len32 = buf_len/4;
53 u32 i;
55 memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
57 for (i = 0; i < len; i += buf_len32) {
58 u32 cur_len = min(buf_len32, len - i);
60 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
64 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
65 u32 len64)
67 u32 buf_len32 = FW_BUF_SIZE/4;
68 u32 len = len64*2;
69 u64 data64 = 0;
70 u32 i;
72 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
73 data64 = HILO_U64((*(data + 1)), (*data));
75 len64 = min((u32)(FW_BUF_SIZE/8), len64);
76 for (i = 0; i < len64; i++) {
77 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
79 *pdata = data64;
82 for (i = 0; i < len; i += buf_len32) {
83 u32 cur_len = min(buf_len32, len - i);
85 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
89 /*********************************************************
90 There are different blobs for each PRAM section.
91 In addition, each blob write operation is divided into a few operations
92 in order to decrease the amount of phys. contiguous buffer needed.
93 Thus, when we select a blob the address may be with some offset
94 from the beginning of PRAM section.
95 The same holds for the INT_TABLE sections.
96 **********************************************************/
97 #define IF_IS_INT_TABLE_ADDR(base, addr) \
98 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
100 #define IF_IS_PRAM_ADDR(base, addr) \
101 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
103 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
105 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
106 data = INIT_TSEM_INT_TABLE_DATA(bp);
107 else
108 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
109 data = INIT_CSEM_INT_TABLE_DATA(bp);
110 else
111 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
112 data = INIT_USEM_INT_TABLE_DATA(bp);
113 else
114 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
115 data = INIT_XSEM_INT_TABLE_DATA(bp);
116 else
117 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
118 data = INIT_TSEM_PRAM_DATA(bp);
119 else
120 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
121 data = INIT_CSEM_PRAM_DATA(bp);
122 else
123 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
124 data = INIT_USEM_PRAM_DATA(bp);
125 else
126 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
127 data = INIT_XSEM_PRAM_DATA(bp);
129 return data;
132 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
134 if (bp->dmae_ready)
135 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
136 else
137 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
140 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
141 u32 len)
143 const u32 *old_data = data;
145 data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
147 if (bp->dmae_ready) {
148 if (old_data != data)
149 VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
150 else
151 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
152 } else
153 bnx2x_init_ind_wr(bp, addr, data, len);
156 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi)
158 u32 wb_write[2];
160 wb_write[0] = val_lo;
161 wb_write[1] = val_hi;
162 REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
165 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
167 const u8 *data = NULL;
168 int rc;
169 u32 i;
171 data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
173 rc = bnx2x_gunzip(bp, data, len);
174 if (rc)
175 return;
177 /* gunzip_outlen is in dwords */
178 len = GUNZIP_OUTLEN(bp);
179 for (i = 0; i < len; i++)
180 ((u32 *)GUNZIP_BUF(bp))[i] =
181 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
183 bnx2x_write_big_buf_wb(bp, addr, len);
186 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
188 u16 op_start =
189 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
190 u16 op_end =
191 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
192 union init_op *op;
193 int hw_wr;
194 u32 i, op_type, addr, len;
195 const u32 *data, *data_base;
197 /* If empty block */
198 if (op_start == op_end)
199 return;
201 if (CHIP_REV_IS_FPGA(bp))
202 hw_wr = OP_WR_FPGA;
203 else if (CHIP_REV_IS_EMUL(bp))
204 hw_wr = OP_WR_EMUL;
205 else
206 hw_wr = OP_WR_ASIC;
208 data_base = INIT_DATA(bp);
210 for (i = op_start; i < op_end; i++) {
212 op = (union init_op *)&(INIT_OPS(bp)[i]);
214 op_type = op->str_wr.op;
215 addr = op->str_wr.offset;
216 len = op->str_wr.data_len;
217 data = data_base + op->str_wr.data_off;
219 /* HW/EMUL specific */
220 if ((op_type > OP_WB) && (op_type == hw_wr))
221 op_type = OP_WR;
223 switch (op_type) {
224 case OP_RD:
225 REG_RD(bp, addr);
226 break;
227 case OP_WR:
228 REG_WR(bp, addr, op->write.val);
229 break;
230 case OP_SW:
231 bnx2x_init_str_wr(bp, addr, data, len);
232 break;
233 case OP_WB:
234 bnx2x_init_wr_wb(bp, addr, data, len);
235 break;
236 case OP_SI:
237 bnx2x_init_ind_wr(bp, addr, data, len);
238 break;
239 case OP_ZR:
240 bnx2x_init_fill(bp, addr, 0, op->zero.len);
241 break;
242 case OP_ZP:
243 bnx2x_init_wr_zp(bp, addr, len,
244 op->str_wr.data_off);
245 break;
246 case OP_WR_64:
247 bnx2x_init_wr_64(bp, addr, data, len);
248 break;
249 default:
250 /* happens whenever an op is of a diff HW */
251 break;
257 /****************************************************************************
258 * PXP Arbiter
259 ****************************************************************************/
261 * This code configures the PCI read/write arbiter
262 * which implements a weighted round robin
263 * between the virtual queues in the chip.
265 * The values were derived for each PCI max payload and max request size.
266 * since max payload and max request size are only known at run time,
267 * this is done as a separate init stage.
270 #define NUM_WR_Q 13
271 #define NUM_RD_Q 29
272 #define MAX_RD_ORD 3
273 #define MAX_WR_ORD 2
275 /* configuration for one arbiter queue */
276 struct arb_line {
277 int l;
278 int add;
279 int ubound;
282 /* derived configuration for each read queue for each max request size */
283 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
284 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
285 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
286 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
287 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
288 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
289 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
290 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
291 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
292 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
293 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
294 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
295 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
296 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
297 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
298 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
299 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
300 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
301 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
302 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
303 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
304 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
305 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
306 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
307 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
308 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
309 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
310 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
311 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
312 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
315 /* derived configuration for each write queue for each max request size */
316 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
317 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
318 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
319 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
320 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
321 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
322 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
323 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
324 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
325 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
326 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
327 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
328 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
329 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
332 /* register addresses for read queues */
333 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
334 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
335 PXP2_REG_RQ_BW_RD_UBOUND0},
336 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
337 PXP2_REG_PSWRQ_BW_UB1},
338 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
339 PXP2_REG_PSWRQ_BW_UB2},
340 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
341 PXP2_REG_PSWRQ_BW_UB3},
342 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
343 PXP2_REG_RQ_BW_RD_UBOUND4},
344 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
345 PXP2_REG_RQ_BW_RD_UBOUND5},
346 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
347 PXP2_REG_PSWRQ_BW_UB6},
348 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
349 PXP2_REG_PSWRQ_BW_UB7},
350 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
351 PXP2_REG_PSWRQ_BW_UB8},
352 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
353 PXP2_REG_PSWRQ_BW_UB9},
354 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
355 PXP2_REG_PSWRQ_BW_UB10},
356 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
357 PXP2_REG_PSWRQ_BW_UB11},
358 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
359 PXP2_REG_RQ_BW_RD_UBOUND12},
360 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
361 PXP2_REG_RQ_BW_RD_UBOUND13},
362 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
363 PXP2_REG_RQ_BW_RD_UBOUND14},
364 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
365 PXP2_REG_RQ_BW_RD_UBOUND15},
366 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
367 PXP2_REG_RQ_BW_RD_UBOUND16},
368 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
369 PXP2_REG_RQ_BW_RD_UBOUND17},
370 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
371 PXP2_REG_RQ_BW_RD_UBOUND18},
372 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
373 PXP2_REG_RQ_BW_RD_UBOUND19},
374 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
375 PXP2_REG_RQ_BW_RD_UBOUND20},
376 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
377 PXP2_REG_RQ_BW_RD_UBOUND22},
378 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
379 PXP2_REG_RQ_BW_RD_UBOUND23},
380 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
381 PXP2_REG_RQ_BW_RD_UBOUND24},
382 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
383 PXP2_REG_RQ_BW_RD_UBOUND25},
384 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
385 PXP2_REG_RQ_BW_RD_UBOUND26},
386 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
387 PXP2_REG_RQ_BW_RD_UBOUND27},
388 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
389 PXP2_REG_PSWRQ_BW_UB28}
392 /* register addresses for write queues */
393 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
394 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
395 PXP2_REG_PSWRQ_BW_UB1},
396 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
397 PXP2_REG_PSWRQ_BW_UB2},
398 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
399 PXP2_REG_PSWRQ_BW_UB3},
400 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
401 PXP2_REG_PSWRQ_BW_UB6},
402 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
403 PXP2_REG_PSWRQ_BW_UB7},
404 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
405 PXP2_REG_PSWRQ_BW_UB8},
406 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
407 PXP2_REG_PSWRQ_BW_UB9},
408 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
409 PXP2_REG_PSWRQ_BW_UB10},
410 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
411 PXP2_REG_PSWRQ_BW_UB11},
412 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
413 PXP2_REG_PSWRQ_BW_UB28},
414 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
415 PXP2_REG_RQ_BW_WR_UBOUND29},
416 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
417 PXP2_REG_RQ_BW_WR_UBOUND30}
420 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
422 u32 val, i;
424 if (r_order > MAX_RD_ORD) {
425 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
426 r_order, MAX_RD_ORD);
427 r_order = MAX_RD_ORD;
429 if (w_order > MAX_WR_ORD) {
430 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
431 w_order, MAX_WR_ORD);
432 w_order = MAX_WR_ORD;
434 if (CHIP_REV_IS_FPGA(bp)) {
435 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
436 w_order = 0;
438 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
440 for (i = 0; i < NUM_RD_Q-1; i++) {
441 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
442 REG_WR(bp, read_arb_addr[i].add,
443 read_arb_data[i][r_order].add);
444 REG_WR(bp, read_arb_addr[i].ubound,
445 read_arb_data[i][r_order].ubound);
448 for (i = 0; i < NUM_WR_Q-1; i++) {
449 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
450 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
452 REG_WR(bp, write_arb_addr[i].l,
453 write_arb_data[i][w_order].l);
455 REG_WR(bp, write_arb_addr[i].add,
456 write_arb_data[i][w_order].add);
458 REG_WR(bp, write_arb_addr[i].ubound,
459 write_arb_data[i][w_order].ubound);
460 } else {
462 val = REG_RD(bp, write_arb_addr[i].l);
463 REG_WR(bp, write_arb_addr[i].l,
464 val | (write_arb_data[i][w_order].l << 10));
466 val = REG_RD(bp, write_arb_addr[i].add);
467 REG_WR(bp, write_arb_addr[i].add,
468 val | (write_arb_data[i][w_order].add << 10));
470 val = REG_RD(bp, write_arb_addr[i].ubound);
471 REG_WR(bp, write_arb_addr[i].ubound,
472 val | (write_arb_data[i][w_order].ubound << 7));
476 val = write_arb_data[NUM_WR_Q-1][w_order].add;
477 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
478 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
479 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
481 val = read_arb_data[NUM_RD_Q-1][r_order].add;
482 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
483 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
484 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
486 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
487 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
488 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
489 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
491 if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
492 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
494 if (CHIP_IS_E2(bp))
495 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
496 else
497 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
499 if (CHIP_IS_E1H(bp) || CHIP_IS_E2(bp)) {
500 /* MPS w_order optimal TH presently TH
501 * 128 0 0 2
502 * 256 1 1 3
503 * >=512 2 2 3
505 /* DMAE is special */
506 if (CHIP_IS_E2(bp)) {
507 /* E2 can use optimal TH */
508 val = w_order;
509 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
510 } else {
511 val = ((w_order == 0) ? 2 : 3);
512 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
515 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
516 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
517 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
518 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
519 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
520 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
521 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
522 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
523 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
524 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
527 /* Validate number of tags suppoted by device */
528 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
529 val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
530 val &= 0xFF;
531 if (val <= 0x20)
532 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
535 /****************************************************************************
536 * ILT management
537 ****************************************************************************/
539 * This codes hides the low level HW interaction for ILT management and
540 * configuration. The API consists of a shadow ILT table which is set by the
541 * driver and a set of routines to use it to configure the HW.
545 /* ILT HW init operations */
547 /* ILT memory management operations */
548 #define ILT_MEMOP_ALLOC 0
549 #define ILT_MEMOP_FREE 1
551 /* the phys address is shifted right 12 bits and has an added
552 * 1=valid bit added to the 53rd bit
553 * then since this is a wide register(TM)
554 * we split it into two 32 bit writes
556 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
557 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
558 #define ILT_RANGE(f, l) (((l) << 10) | f)
560 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line,
561 u32 size, u8 memop)
563 if (memop == ILT_MEMOP_FREE) {
564 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
565 return 0;
567 BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
568 if (!line->page)
569 return -1;
570 line->size = size;
571 return 0;
575 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop)
577 int i, rc;
578 struct bnx2x_ilt *ilt = BP_ILT(bp);
579 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
581 if (!ilt || !ilt->lines)
582 return -1;
584 if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
585 return 0;
587 for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
588 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
589 ilt_cli->page_size, memop);
591 return rc;
594 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
596 int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
597 if (!rc)
598 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
599 if (!rc)
600 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
601 if (!rc)
602 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
604 return rc;
607 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
608 dma_addr_t page_mapping)
610 u32 reg;
612 if (CHIP_IS_E1(bp))
613 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
614 else
615 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
617 bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
620 static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt,
621 int idx, u8 initop)
623 dma_addr_t null_mapping;
624 int abs_idx = ilt->start_line + idx;
627 switch (initop) {
628 case INITOP_INIT:
629 /* set in the init-value array */
630 case INITOP_SET:
631 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
632 break;
633 case INITOP_CLEAR:
634 null_mapping = 0;
635 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
636 break;
640 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
641 struct ilt_client_info *ilt_cli,
642 u32 ilt_start, u8 initop)
644 u32 start_reg = 0;
645 u32 end_reg = 0;
647 /* The boundary is either SET or INIT,
648 CLEAR => SET and for now SET ~~ INIT */
650 /* find the appropriate regs */
651 if (CHIP_IS_E1(bp)) {
652 switch (ilt_cli->client_num) {
653 case ILT_CLIENT_CDU:
654 start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
655 break;
656 case ILT_CLIENT_QM:
657 start_reg = PXP2_REG_PSWRQ_QM0_L2P;
658 break;
659 case ILT_CLIENT_SRC:
660 start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
661 break;
662 case ILT_CLIENT_TM:
663 start_reg = PXP2_REG_PSWRQ_TM0_L2P;
664 break;
666 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
667 ILT_RANGE((ilt_start + ilt_cli->start),
668 (ilt_start + ilt_cli->end)));
669 } else {
670 switch (ilt_cli->client_num) {
671 case ILT_CLIENT_CDU:
672 start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
673 end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
674 break;
675 case ILT_CLIENT_QM:
676 start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
677 end_reg = PXP2_REG_RQ_QM_LAST_ILT;
678 break;
679 case ILT_CLIENT_SRC:
680 start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
681 end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
682 break;
683 case ILT_CLIENT_TM:
684 start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
685 end_reg = PXP2_REG_RQ_TM_LAST_ILT;
686 break;
688 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
689 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
693 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
694 struct bnx2x_ilt *ilt,
695 struct ilt_client_info *ilt_cli,
696 u8 initop)
698 int i;
700 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
701 return;
703 for (i = ilt_cli->start; i <= ilt_cli->end; i++)
704 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
706 /* init/clear the ILT boundries */
707 bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
710 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
711 struct ilt_client_info *ilt_cli, u8 initop)
713 struct bnx2x_ilt *ilt = BP_ILT(bp);
715 bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
718 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
719 int cli_num, u8 initop)
721 struct bnx2x_ilt *ilt = BP_ILT(bp);
722 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
724 bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
727 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
729 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
730 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
731 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
732 bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
735 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
736 u32 psz_reg, u8 initop)
738 struct bnx2x_ilt *ilt = BP_ILT(bp);
739 struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
741 if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
742 return;
744 switch (initop) {
745 case INITOP_INIT:
746 /* set in the init-value array */
747 case INITOP_SET:
748 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
749 break;
750 case INITOP_CLEAR:
751 break;
756 * called during init common stage, ilt clients should be initialized
757 * prioir to calling this function
759 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
761 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
762 PXP2_REG_RQ_CDU_P_SIZE, initop);
763 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
764 PXP2_REG_RQ_QM_P_SIZE, initop);
765 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
766 PXP2_REG_RQ_SRC_P_SIZE, initop);
767 bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
768 PXP2_REG_RQ_TM_P_SIZE, initop);
771 /****************************************************************************
772 * QM initializations
773 ****************************************************************************/
774 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
775 #define QM_INIT_MIN_CID_COUNT 31
776 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
778 /* called during init port stage */
779 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
780 u8 initop)
782 int port = BP_PORT(bp);
784 if (QM_INIT(qm_cid_count)) {
785 switch (initop) {
786 case INITOP_INIT:
787 /* set in the init-value array */
788 case INITOP_SET:
789 REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
790 qm_cid_count/16 - 1);
791 break;
792 case INITOP_CLEAR:
793 break;
798 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
800 int i;
801 u32 wb_data[2];
803 wb_data[0] = wb_data[1] = 0;
805 for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
806 REG_WR(bp, QM_REG_BASEADDR + i*4,
807 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
808 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
809 wb_data, 2);
811 if (CHIP_IS_E1H(bp)) {
812 REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
813 qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
814 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
815 wb_data, 2);
820 /* called during init common stage */
821 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
822 u8 initop)
824 if (!QM_INIT(qm_cid_count))
825 return;
827 switch (initop) {
828 case INITOP_INIT:
829 /* set in the init-value array */
830 case INITOP_SET:
831 bnx2x_qm_set_ptr_table(bp, qm_cid_count);
832 break;
833 case INITOP_CLEAR:
834 break;
838 /****************************************************************************
839 * SRC initializations
840 ****************************************************************************/
841 #ifdef BCM_CNIC
842 /* called during init func stage */
843 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
844 dma_addr_t t2_mapping, int src_cid_count)
846 int i;
847 int port = BP_PORT(bp);
849 /* Initialize T2 */
850 for (i = 0; i < src_cid_count-1; i++)
851 t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent));
853 /* tell the searcher where the T2 table is */
854 REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
856 bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
857 U64_LO(t2_mapping), U64_HI(t2_mapping));
859 bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
860 U64_LO((u64)t2_mapping +
861 (src_cid_count-1) * sizeof(struct src_ent)),
862 U64_HI((u64)t2_mapping +
863 (src_cid_count-1) * sizeof(struct src_ent)));
865 #endif
866 #endif /* BNX2X_INIT_OPS_H */