2 * CAN bus driver for Bosch C_CAN controller
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
7 * Borrowed heavily from the C_CAN driver originally written by:
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
28 #include <linux/kernel.h>
29 #include <linux/version.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/list.h>
37 #include <linux/delay.h>
40 #include <linux/can.h>
41 #include <linux/can/dev.h>
42 #include <linux/can/error.h>
46 /* control register */
47 #define CONTROL_TEST BIT(7)
48 #define CONTROL_CCE BIT(6)
49 #define CONTROL_DISABLE_AR BIT(5)
50 #define CONTROL_ENABLE_AR (0 << 5)
51 #define CONTROL_EIE BIT(3)
52 #define CONTROL_SIE BIT(2)
53 #define CONTROL_IE BIT(1)
54 #define CONTROL_INIT BIT(0)
57 #define TEST_RX BIT(7)
58 #define TEST_TX1 BIT(6)
59 #define TEST_TX2 BIT(5)
60 #define TEST_LBACK BIT(4)
61 #define TEST_SILENT BIT(3)
62 #define TEST_BASIC BIT(2)
65 #define STATUS_BOFF BIT(7)
66 #define STATUS_EWARN BIT(6)
67 #define STATUS_EPASS BIT(5)
68 #define STATUS_RXOK BIT(4)
69 #define STATUS_TXOK BIT(3)
71 /* error counter register */
72 #define ERR_CNT_TEC_MASK 0xff
73 #define ERR_CNT_TEC_SHIFT 0
74 #define ERR_CNT_REC_SHIFT 8
75 #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
76 #define ERR_CNT_RP_SHIFT 15
77 #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
79 /* bit-timing register */
80 #define BTR_BRP_MASK 0x3f
81 #define BTR_BRP_SHIFT 0
82 #define BTR_SJW_SHIFT 6
83 #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
84 #define BTR_TSEG1_SHIFT 8
85 #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
86 #define BTR_TSEG2_SHIFT 12
87 #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
89 /* brp extension register */
90 #define BRP_EXT_BRPE_MASK 0x0f
91 #define BRP_EXT_BRPE_SHIFT 0
93 /* IFx command request */
94 #define IF_COMR_BUSY BIT(15)
96 /* IFx command mask */
97 #define IF_COMM_WR BIT(7)
98 #define IF_COMM_MASK BIT(6)
99 #define IF_COMM_ARB BIT(5)
100 #define IF_COMM_CONTROL BIT(4)
101 #define IF_COMM_CLR_INT_PND BIT(3)
102 #define IF_COMM_TXRQST BIT(2)
103 #define IF_COMM_DATAA BIT(1)
104 #define IF_COMM_DATAB BIT(0)
105 #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
106 IF_COMM_CONTROL | IF_COMM_TXRQST | \
107 IF_COMM_DATAA | IF_COMM_DATAB)
109 /* IFx arbitration */
110 #define IF_ARB_MSGVAL BIT(15)
111 #define IF_ARB_MSGXTD BIT(14)
112 #define IF_ARB_TRANSMIT BIT(13)
114 /* IFx message control */
115 #define IF_MCONT_NEWDAT BIT(15)
116 #define IF_MCONT_MSGLST BIT(14)
117 #define IF_MCONT_CLR_MSGLST (0 << 14)
118 #define IF_MCONT_INTPND BIT(13)
119 #define IF_MCONT_UMASK BIT(12)
120 #define IF_MCONT_TXIE BIT(11)
121 #define IF_MCONT_RXIE BIT(10)
122 #define IF_MCONT_RMTEN BIT(9)
123 #define IF_MCONT_TXRQST BIT(8)
124 #define IF_MCONT_EOB BIT(7)
125 #define IF_MCONT_DLC_MASK 0xf
128 * IFx register masks:
129 * allow easy operation on 16-bit registers when the
130 * argument is 32-bit instead
132 #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
133 #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
135 /* message object split */
136 #define C_CAN_NO_OF_OBJECTS 32
137 #define C_CAN_MSG_OBJ_RX_NUM 16
138 #define C_CAN_MSG_OBJ_TX_NUM 16
140 #define C_CAN_MSG_OBJ_RX_FIRST 1
141 #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
142 C_CAN_MSG_OBJ_RX_NUM - 1)
144 #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
145 #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
146 C_CAN_MSG_OBJ_TX_NUM - 1)
148 #define C_CAN_MSG_OBJ_RX_SPLIT 9
149 #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
151 #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
152 #define RECEIVE_OBJECT_BITS 0x0000ffff
154 /* status interrupt */
155 #define STATUS_INTERRUPT 0x8000
157 /* global interrupt masks */
158 #define ENABLE_ALL_INTERRUPTS 1
159 #define DISABLE_ALL_INTERRUPTS 0
161 /* minimum timeout for checking BUSY status */
162 #define MIN_TIMEOUT_VALUE 6
165 #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
167 /* c_can lec values */
168 enum c_can_lec_type
{
181 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
183 enum c_can_bus_error_types
{
190 static struct can_bittiming_const c_can_bittiming_const
= {
191 .name
= KBUILD_MODNAME
,
192 .tseg1_min
= 2, /* Time segment 1 = prop_seg + phase_seg1 */
194 .tseg2_min
= 1, /* Time segment 2 = phase_seg2 */
198 .brp_max
= 1024, /* 6-bit BRP field + 4-bit BRPE field*/
202 static inline int get_tx_next_msg_obj(const struct c_can_priv
*priv
)
204 return (priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) +
205 C_CAN_MSG_OBJ_TX_FIRST
;
208 static inline int get_tx_echo_msg_obj(const struct c_can_priv
*priv
)
210 return (priv
->tx_echo
& C_CAN_NEXT_MSG_OBJ_MASK
) +
211 C_CAN_MSG_OBJ_TX_FIRST
;
214 static u32
c_can_read_reg32(struct c_can_priv
*priv
, void *reg
)
216 u32 val
= priv
->read_reg(priv
, reg
);
217 val
|= ((u32
) priv
->read_reg(priv
, reg
+ 2)) << 16;
221 static void c_can_enable_all_interrupts(struct c_can_priv
*priv
,
224 unsigned int cntrl_save
= priv
->read_reg(priv
,
225 &priv
->regs
->control
);
228 cntrl_save
|= (CONTROL_SIE
| CONTROL_EIE
| CONTROL_IE
);
230 cntrl_save
&= ~(CONTROL_EIE
| CONTROL_IE
| CONTROL_SIE
);
232 priv
->write_reg(priv
, &priv
->regs
->control
, cntrl_save
);
235 static inline int c_can_msg_obj_is_busy(struct c_can_priv
*priv
, int iface
)
237 int count
= MIN_TIMEOUT_VALUE
;
239 while (count
&& priv
->read_reg(priv
,
240 &priv
->regs
->ifregs
[iface
].com_req
) &
252 static inline void c_can_object_get(struct net_device
*dev
,
253 int iface
, int objno
, int mask
)
255 struct c_can_priv
*priv
= netdev_priv(dev
);
258 * As per specs, after writting the message object number in the
259 * IF command request register the transfer b/w interface
260 * register and message RAM must be complete in 6 CAN-CLK
263 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_mask
,
264 IFX_WRITE_LOW_16BIT(mask
));
265 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_req
,
266 IFX_WRITE_LOW_16BIT(objno
));
268 if (c_can_msg_obj_is_busy(priv
, iface
))
269 netdev_err(dev
, "timed out in object get\n");
272 static inline void c_can_object_put(struct net_device
*dev
,
273 int iface
, int objno
, int mask
)
275 struct c_can_priv
*priv
= netdev_priv(dev
);
278 * As per specs, after writting the message object number in the
279 * IF command request register the transfer b/w interface
280 * register and message RAM must be complete in 6 CAN-CLK
283 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_mask
,
284 (IF_COMM_WR
| IFX_WRITE_LOW_16BIT(mask
)));
285 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].com_req
,
286 IFX_WRITE_LOW_16BIT(objno
));
288 if (c_can_msg_obj_is_busy(priv
, iface
))
289 netdev_err(dev
, "timed out in object put\n");
292 static void c_can_write_msg_object(struct net_device
*dev
,
293 int iface
, struct can_frame
*frame
, int objno
)
298 struct c_can_priv
*priv
= netdev_priv(dev
);
300 if (!(frame
->can_id
& CAN_RTR_FLAG
))
301 flags
|= IF_ARB_TRANSMIT
;
303 if (frame
->can_id
& CAN_EFF_FLAG
) {
304 id
= frame
->can_id
& CAN_EFF_MASK
;
305 flags
|= IF_ARB_MSGXTD
;
307 id
= ((frame
->can_id
& CAN_SFF_MASK
) << 18);
309 flags
|= IF_ARB_MSGVAL
;
311 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
,
312 IFX_WRITE_LOW_16BIT(id
));
313 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
, flags
|
314 IFX_WRITE_HIGH_16BIT(id
));
316 for (i
= 0; i
< frame
->can_dlc
; i
+= 2) {
317 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].data
[i
/ 2],
318 frame
->data
[i
] | (frame
->data
[i
+ 1] << 8));
321 /* enable interrupt for this message object */
322 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
323 IF_MCONT_TXIE
| IF_MCONT_TXRQST
| IF_MCONT_EOB
|
325 c_can_object_put(dev
, iface
, objno
, IF_COMM_ALL
);
328 static inline void c_can_mark_rx_msg_obj(struct net_device
*dev
,
329 int iface
, int ctrl_mask
,
332 struct c_can_priv
*priv
= netdev_priv(dev
);
334 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
335 ctrl_mask
& ~(IF_MCONT_MSGLST
| IF_MCONT_INTPND
));
336 c_can_object_put(dev
, iface
, obj
, IF_COMM_CONTROL
);
340 static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device
*dev
,
345 struct c_can_priv
*priv
= netdev_priv(dev
);
347 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_MSG_RX_LOW_LAST
; i
++) {
348 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
349 ctrl_mask
& ~(IF_MCONT_MSGLST
|
350 IF_MCONT_INTPND
| IF_MCONT_NEWDAT
));
351 c_can_object_put(dev
, iface
, i
, IF_COMM_CONTROL
);
355 static inline void c_can_activate_rx_msg_obj(struct net_device
*dev
,
356 int iface
, int ctrl_mask
,
359 struct c_can_priv
*priv
= netdev_priv(dev
);
361 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
362 ctrl_mask
& ~(IF_MCONT_MSGLST
|
363 IF_MCONT_INTPND
| IF_MCONT_NEWDAT
));
364 c_can_object_put(dev
, iface
, obj
, IF_COMM_CONTROL
);
367 static void c_can_handle_lost_msg_obj(struct net_device
*dev
,
368 int iface
, int objno
)
370 struct c_can_priv
*priv
= netdev_priv(dev
);
371 struct net_device_stats
*stats
= &dev
->stats
;
373 struct can_frame
*frame
;
375 netdev_err(dev
, "msg lost in buffer %d\n", objno
);
377 c_can_object_get(dev
, iface
, objno
, IF_COMM_ALL
& ~IF_COMM_TXRQST
);
379 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
,
380 IF_MCONT_CLR_MSGLST
);
382 c_can_object_put(dev
, 0, objno
, IF_COMM_CONTROL
);
384 /* create an error msg */
385 skb
= alloc_can_err_skb(dev
, &frame
);
389 frame
->can_id
|= CAN_ERR_CRTL
;
390 frame
->data
[1] = CAN_ERR_CRTL_RX_OVERFLOW
;
392 stats
->rx_over_errors
++;
394 netif_receive_skb(skb
);
397 static int c_can_read_msg_object(struct net_device
*dev
, int iface
, int ctrl
)
402 struct c_can_priv
*priv
= netdev_priv(dev
);
403 struct net_device_stats
*stats
= &dev
->stats
;
405 struct can_frame
*frame
;
407 skb
= alloc_can_skb(dev
, &frame
);
413 frame
->can_dlc
= get_can_dlc(ctrl
& 0x0F);
415 flags
= priv
->read_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
);
416 val
= priv
->read_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
) |
419 if (flags
& IF_ARB_MSGXTD
)
420 frame
->can_id
= (val
& CAN_EFF_MASK
) | CAN_EFF_FLAG
;
422 frame
->can_id
= (val
>> 18) & CAN_SFF_MASK
;
424 if (flags
& IF_ARB_TRANSMIT
)
425 frame
->can_id
|= CAN_RTR_FLAG
;
427 for (i
= 0; i
< frame
->can_dlc
; i
+= 2) {
428 data
= priv
->read_reg(priv
,
429 &priv
->regs
->ifregs
[iface
].data
[i
/ 2]);
430 frame
->data
[i
] = data
;
431 frame
->data
[i
+ 1] = data
>> 8;
435 netif_receive_skb(skb
);
438 stats
->rx_bytes
+= frame
->can_dlc
;
443 static void c_can_setup_receive_object(struct net_device
*dev
, int iface
,
444 int objno
, unsigned int mask
,
445 unsigned int id
, unsigned int mcont
)
447 struct c_can_priv
*priv
= netdev_priv(dev
);
449 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].mask1
,
450 IFX_WRITE_LOW_16BIT(mask
));
451 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].mask2
,
452 IFX_WRITE_HIGH_16BIT(mask
));
454 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
,
455 IFX_WRITE_LOW_16BIT(id
));
456 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
,
457 (IF_ARB_MSGVAL
| IFX_WRITE_HIGH_16BIT(id
)));
459 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
, mcont
);
460 c_can_object_put(dev
, iface
, objno
, IF_COMM_ALL
& ~IF_COMM_TXRQST
);
462 netdev_dbg(dev
, "obj no:%d, msgval:0x%08x\n", objno
,
463 c_can_read_reg32(priv
, &priv
->regs
->msgval1
));
466 static void c_can_inval_msg_object(struct net_device
*dev
, int iface
, int objno
)
468 struct c_can_priv
*priv
= netdev_priv(dev
);
470 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb1
, 0);
471 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].arb2
, 0);
472 priv
->write_reg(priv
, &priv
->regs
->ifregs
[iface
].msg_cntrl
, 0);
474 c_can_object_put(dev
, iface
, objno
, IF_COMM_ARB
| IF_COMM_CONTROL
);
476 netdev_dbg(dev
, "obj no:%d, msgval:0x%08x\n", objno
,
477 c_can_read_reg32(priv
, &priv
->regs
->msgval1
));
480 static inline int c_can_is_next_tx_obj_busy(struct c_can_priv
*priv
, int objno
)
482 int val
= c_can_read_reg32(priv
, &priv
->regs
->txrqst1
);
485 * as transmission request register's bit n-1 corresponds to
486 * message object n, we need to handle the same properly.
488 if (val
& (1 << (objno
- 1)))
494 static netdev_tx_t
c_can_start_xmit(struct sk_buff
*skb
,
495 struct net_device
*dev
)
498 struct c_can_priv
*priv
= netdev_priv(dev
);
499 struct can_frame
*frame
= (struct can_frame
*)skb
->data
;
501 if (can_dropped_invalid_skb(dev
, skb
))
504 msg_obj_no
= get_tx_next_msg_obj(priv
);
506 /* prepare message object for transmission */
507 c_can_write_msg_object(dev
, 0, frame
, msg_obj_no
);
508 can_put_echo_skb(skb
, dev
, msg_obj_no
- C_CAN_MSG_OBJ_TX_FIRST
);
511 * we have to stop the queue in case of a wrap around or
512 * if the next TX message object is still in use
515 if (c_can_is_next_tx_obj_busy(priv
, get_tx_next_msg_obj(priv
)) ||
516 (priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) == 0)
517 netif_stop_queue(dev
);
522 static int c_can_set_bittiming(struct net_device
*dev
)
524 unsigned int reg_btr
, reg_brpe
, ctrl_save
;
525 u8 brp
, brpe
, sjw
, tseg1
, tseg2
;
527 struct c_can_priv
*priv
= netdev_priv(dev
);
528 const struct can_bittiming
*bt
= &priv
->can
.bittiming
;
530 /* c_can provides a 6-bit brp and 4-bit brpe fields */
531 ten_bit_brp
= bt
->brp
- 1;
532 brp
= ten_bit_brp
& BTR_BRP_MASK
;
533 brpe
= ten_bit_brp
>> 6;
536 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
- 1;
537 tseg2
= bt
->phase_seg2
- 1;
538 reg_btr
= brp
| (sjw
<< BTR_SJW_SHIFT
) | (tseg1
<< BTR_TSEG1_SHIFT
) |
539 (tseg2
<< BTR_TSEG2_SHIFT
);
540 reg_brpe
= brpe
& BRP_EXT_BRPE_MASK
;
543 "setting BTR=%04x BRPE=%04x\n", reg_btr
, reg_brpe
);
545 ctrl_save
= priv
->read_reg(priv
, &priv
->regs
->control
);
546 priv
->write_reg(priv
, &priv
->regs
->control
,
547 ctrl_save
| CONTROL_CCE
| CONTROL_INIT
);
548 priv
->write_reg(priv
, &priv
->regs
->btr
, reg_btr
);
549 priv
->write_reg(priv
, &priv
->regs
->brp_ext
, reg_brpe
);
550 priv
->write_reg(priv
, &priv
->regs
->control
, ctrl_save
);
556 * Configure C_CAN message objects for Tx and Rx purposes:
557 * C_CAN provides a total of 32 message objects that can be configured
558 * either for Tx or Rx purposes. Here the first 16 message objects are used as
559 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
560 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
561 * See user guide document for further details on configuring message
564 static void c_can_configure_msg_objects(struct net_device
*dev
)
568 /* first invalidate all message objects */
569 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
<= C_CAN_NO_OF_OBJECTS
; i
++)
570 c_can_inval_msg_object(dev
, 0, i
);
572 /* setup receive message objects */
573 for (i
= C_CAN_MSG_OBJ_RX_FIRST
; i
< C_CAN_MSG_OBJ_RX_LAST
; i
++)
574 c_can_setup_receive_object(dev
, 0, i
, 0, 0,
575 (IF_MCONT_RXIE
| IF_MCONT_UMASK
) & ~IF_MCONT_EOB
);
577 c_can_setup_receive_object(dev
, 0, C_CAN_MSG_OBJ_RX_LAST
, 0, 0,
578 IF_MCONT_EOB
| IF_MCONT_RXIE
| IF_MCONT_UMASK
);
582 * Configure C_CAN chip:
583 * - enable/disable auto-retransmission
584 * - set operating mode
585 * - configure message objects
587 static void c_can_chip_config(struct net_device
*dev
)
589 struct c_can_priv
*priv
= netdev_priv(dev
);
591 /* enable automatic retransmission */
592 priv
->write_reg(priv
, &priv
->regs
->control
,
595 if (priv
->can
.ctrlmode
& (CAN_CTRLMODE_LISTENONLY
&
596 CAN_CTRLMODE_LOOPBACK
)) {
597 /* loopback + silent mode : useful for hot self-test */
598 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
599 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
600 priv
->write_reg(priv
, &priv
->regs
->test
,
601 TEST_LBACK
| TEST_SILENT
);
602 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
) {
603 /* loopback mode : useful for self-test function */
604 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
605 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
606 priv
->write_reg(priv
, &priv
->regs
->test
, TEST_LBACK
);
607 } else if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LISTENONLY
) {
608 /* silent mode : bus-monitoring mode */
609 priv
->write_reg(priv
, &priv
->regs
->control
, CONTROL_EIE
|
610 CONTROL_SIE
| CONTROL_IE
| CONTROL_TEST
);
611 priv
->write_reg(priv
, &priv
->regs
->test
, TEST_SILENT
);
614 priv
->write_reg(priv
, &priv
->regs
->control
,
615 CONTROL_EIE
| CONTROL_SIE
| CONTROL_IE
);
617 /* configure message objects */
618 c_can_configure_msg_objects(dev
);
620 /* set a `lec` value so that we can check for updates later */
621 priv
->write_reg(priv
, &priv
->regs
->status
, LEC_UNUSED
);
623 /* set bittiming params */
624 c_can_set_bittiming(dev
);
627 static void c_can_start(struct net_device
*dev
)
629 struct c_can_priv
*priv
= netdev_priv(dev
);
631 /* basic c_can configuration */
632 c_can_chip_config(dev
);
634 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
636 /* reset tx helper pointers */
637 priv
->tx_next
= priv
->tx_echo
= 0;
639 /* enable status change, error and module interrupts */
640 c_can_enable_all_interrupts(priv
, ENABLE_ALL_INTERRUPTS
);
643 static void c_can_stop(struct net_device
*dev
)
645 struct c_can_priv
*priv
= netdev_priv(dev
);
647 /* disable all interrupts */
648 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
650 /* set the state as STOPPED */
651 priv
->can
.state
= CAN_STATE_STOPPED
;
654 static int c_can_set_mode(struct net_device
*dev
, enum can_mode mode
)
659 netif_wake_queue(dev
);
668 static int c_can_get_berr_counter(const struct net_device
*dev
,
669 struct can_berr_counter
*bec
)
671 unsigned int reg_err_counter
;
672 struct c_can_priv
*priv
= netdev_priv(dev
);
674 reg_err_counter
= priv
->read_reg(priv
, &priv
->regs
->err_cnt
);
675 bec
->rxerr
= (reg_err_counter
& ERR_CNT_REC_MASK
) >>
677 bec
->txerr
= reg_err_counter
& ERR_CNT_TEC_MASK
;
683 * theory of operation:
685 * priv->tx_echo holds the number of the oldest can_frame put for
686 * transmission into the hardware, but not yet ACKed by the CAN tx
689 * We iterate from priv->tx_echo to priv->tx_next and check if the
690 * packet has been transmitted, echo it back to the CAN framework.
691 * If we discover a not yet transmitted package, stop looking for more.
693 static void c_can_do_tx(struct net_device
*dev
)
697 struct c_can_priv
*priv
= netdev_priv(dev
);
698 struct net_device_stats
*stats
= &dev
->stats
;
700 for (/* nix */; (priv
->tx_next
- priv
->tx_echo
) > 0; priv
->tx_echo
++) {
701 msg_obj_no
= get_tx_echo_msg_obj(priv
);
702 val
= c_can_read_reg32(priv
, &priv
->regs
->txrqst1
);
703 if (!(val
& (1 << msg_obj_no
))) {
704 can_get_echo_skb(dev
,
705 msg_obj_no
- C_CAN_MSG_OBJ_TX_FIRST
);
706 stats
->tx_bytes
+= priv
->read_reg(priv
,
707 &priv
->regs
->ifregs
[0].msg_cntrl
)
710 c_can_inval_msg_object(dev
, 0, msg_obj_no
);
714 /* restart queue if wrap-up or if queue stalled on last pkt */
715 if (((priv
->tx_next
& C_CAN_NEXT_MSG_OBJ_MASK
) != 0) ||
716 ((priv
->tx_echo
& C_CAN_NEXT_MSG_OBJ_MASK
) == 0))
717 netif_wake_queue(dev
);
721 * theory of operation:
723 * c_can core saves a received CAN message into the first free message
724 * object it finds free (starting with the lowest). Bits NEWDAT and
725 * INTPND are set for this message object indicating that a new message
726 * has arrived. To work-around this issue, we keep two groups of message
727 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
729 * To ensure in-order frame reception we use the following
730 * approach while re-activating a message object to receive further
732 * - if the current message object number is lower than
733 * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
735 * - if the current message object number is equal to
736 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
737 * receive message objects.
738 * - if the current message object number is greater than
739 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
740 * only this message object.
742 static int c_can_do_rx_poll(struct net_device
*dev
, int quota
)
745 unsigned int msg_obj
, msg_ctrl_save
;
746 struct c_can_priv
*priv
= netdev_priv(dev
);
747 u32 val
= c_can_read_reg32(priv
, &priv
->regs
->intpnd1
);
749 for (msg_obj
= C_CAN_MSG_OBJ_RX_FIRST
;
750 msg_obj
<= C_CAN_MSG_OBJ_RX_LAST
&& quota
> 0;
751 val
= c_can_read_reg32(priv
, &priv
->regs
->intpnd1
),
754 * as interrupt pending register's bit n-1 corresponds to
755 * message object n, we need to handle the same properly.
757 if (val
& (1 << (msg_obj
- 1))) {
758 c_can_object_get(dev
, 0, msg_obj
, IF_COMM_ALL
&
760 msg_ctrl_save
= priv
->read_reg(priv
,
761 &priv
->regs
->ifregs
[0].msg_cntrl
);
763 if (msg_ctrl_save
& IF_MCONT_EOB
)
766 if (msg_ctrl_save
& IF_MCONT_MSGLST
) {
767 c_can_handle_lost_msg_obj(dev
, 0, msg_obj
);
773 if (!(msg_ctrl_save
& IF_MCONT_NEWDAT
))
776 /* read the data from the message object */
777 c_can_read_msg_object(dev
, 0, msg_ctrl_save
);
779 if (msg_obj
< C_CAN_MSG_RX_LOW_LAST
)
780 c_can_mark_rx_msg_obj(dev
, 0,
781 msg_ctrl_save
, msg_obj
);
782 else if (msg_obj
> C_CAN_MSG_RX_LOW_LAST
)
783 /* activate this msg obj */
784 c_can_activate_rx_msg_obj(dev
, 0,
785 msg_ctrl_save
, msg_obj
);
786 else if (msg_obj
== C_CAN_MSG_RX_LOW_LAST
)
787 /* activate all lower message objects */
788 c_can_activate_all_lower_rx_msg_obj(dev
,
799 static inline int c_can_has_and_handle_berr(struct c_can_priv
*priv
)
801 return (priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
) &&
802 (priv
->current_status
& LEC_UNUSED
);
805 static int c_can_handle_state_change(struct net_device
*dev
,
806 enum c_can_bus_error_types error_type
)
808 unsigned int reg_err_counter
;
809 unsigned int rx_err_passive
;
810 struct c_can_priv
*priv
= netdev_priv(dev
);
811 struct net_device_stats
*stats
= &dev
->stats
;
812 struct can_frame
*cf
;
814 struct can_berr_counter bec
;
816 /* propagate the error condition to the CAN stack */
817 skb
= alloc_can_err_skb(dev
, &cf
);
821 c_can_get_berr_counter(dev
, &bec
);
822 reg_err_counter
= priv
->read_reg(priv
, &priv
->regs
->err_cnt
);
823 rx_err_passive
= (reg_err_counter
& ERR_CNT_RP_MASK
) >>
826 switch (error_type
) {
827 case C_CAN_ERROR_WARNING
:
828 /* error warning state */
829 priv
->can
.can_stats
.error_warning
++;
830 priv
->can
.state
= CAN_STATE_ERROR_WARNING
;
831 cf
->can_id
|= CAN_ERR_CRTL
;
832 cf
->data
[1] = (bec
.txerr
> bec
.rxerr
) ?
833 CAN_ERR_CRTL_TX_WARNING
:
834 CAN_ERR_CRTL_RX_WARNING
;
835 cf
->data
[6] = bec
.txerr
;
836 cf
->data
[7] = bec
.rxerr
;
839 case C_CAN_ERROR_PASSIVE
:
840 /* error passive state */
841 priv
->can
.can_stats
.error_passive
++;
842 priv
->can
.state
= CAN_STATE_ERROR_PASSIVE
;
843 cf
->can_id
|= CAN_ERR_CRTL
;
845 cf
->data
[1] |= CAN_ERR_CRTL_RX_PASSIVE
;
847 cf
->data
[1] |= CAN_ERR_CRTL_TX_PASSIVE
;
849 cf
->data
[6] = bec
.txerr
;
850 cf
->data
[7] = bec
.rxerr
;
854 priv
->can
.state
= CAN_STATE_BUS_OFF
;
855 cf
->can_id
|= CAN_ERR_BUSOFF
;
857 * disable all interrupts in bus-off mode to ensure that
858 * the CPU is not hogged down
860 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
867 netif_receive_skb(skb
);
869 stats
->rx_bytes
+= cf
->can_dlc
;
874 static int c_can_handle_bus_err(struct net_device
*dev
,
875 enum c_can_lec_type lec_type
)
877 struct c_can_priv
*priv
= netdev_priv(dev
);
878 struct net_device_stats
*stats
= &dev
->stats
;
879 struct can_frame
*cf
;
883 * early exit if no lec update or no error.
884 * no lec update means that no CAN bus event has been detected
885 * since CPU wrote 0x7 value to status reg.
887 if (lec_type
== LEC_UNUSED
|| lec_type
== LEC_NO_ERROR
)
890 /* propagate the error condition to the CAN stack */
891 skb
= alloc_can_err_skb(dev
, &cf
);
896 * check for 'last error code' which tells us the
897 * type of the last error to occur on the CAN bus
900 /* common for all type of bus errors */
901 priv
->can
.can_stats
.bus_error
++;
903 cf
->can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
904 cf
->data
[2] |= CAN_ERR_PROT_UNSPEC
;
907 case LEC_STUFF_ERROR
:
908 netdev_dbg(dev
, "stuff error\n");
909 cf
->data
[2] |= CAN_ERR_PROT_STUFF
;
912 netdev_dbg(dev
, "form error\n");
913 cf
->data
[2] |= CAN_ERR_PROT_FORM
;
916 netdev_dbg(dev
, "ack error\n");
917 cf
->data
[2] |= (CAN_ERR_PROT_LOC_ACK
|
918 CAN_ERR_PROT_LOC_ACK_DEL
);
921 netdev_dbg(dev
, "bit1 error\n");
922 cf
->data
[2] |= CAN_ERR_PROT_BIT1
;
925 netdev_dbg(dev
, "bit0 error\n");
926 cf
->data
[2] |= CAN_ERR_PROT_BIT0
;
929 netdev_dbg(dev
, "CRC error\n");
930 cf
->data
[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ
|
931 CAN_ERR_PROT_LOC_CRC_DEL
);
937 /* set a `lec` value so that we can check for updates later */
938 priv
->write_reg(priv
, &priv
->regs
->status
, LEC_UNUSED
);
940 netif_receive_skb(skb
);
942 stats
->rx_bytes
+= cf
->can_dlc
;
947 static int c_can_poll(struct napi_struct
*napi
, int quota
)
952 struct net_device
*dev
= napi
->dev
;
953 struct c_can_priv
*priv
= netdev_priv(dev
);
955 irqstatus
= priv
->read_reg(priv
, &priv
->regs
->interrupt
);
959 /* status events have the highest priority */
960 if (irqstatus
== STATUS_INTERRUPT
) {
961 priv
->current_status
= priv
->read_reg(priv
,
962 &priv
->regs
->status
);
964 /* handle Tx/Rx events */
965 if (priv
->current_status
& STATUS_TXOK
)
966 priv
->write_reg(priv
, &priv
->regs
->status
,
967 priv
->current_status
& ~STATUS_TXOK
);
969 if (priv
->current_status
& STATUS_RXOK
)
970 priv
->write_reg(priv
, &priv
->regs
->status
,
971 priv
->current_status
& ~STATUS_RXOK
);
973 /* handle state changes */
974 if ((priv
->current_status
& STATUS_EWARN
) &&
975 (!(priv
->last_status
& STATUS_EWARN
))) {
976 netdev_dbg(dev
, "entered error warning state\n");
977 work_done
+= c_can_handle_state_change(dev
,
978 C_CAN_ERROR_WARNING
);
980 if ((priv
->current_status
& STATUS_EPASS
) &&
981 (!(priv
->last_status
& STATUS_EPASS
))) {
982 netdev_dbg(dev
, "entered error passive state\n");
983 work_done
+= c_can_handle_state_change(dev
,
984 C_CAN_ERROR_PASSIVE
);
986 if ((priv
->current_status
& STATUS_BOFF
) &&
987 (!(priv
->last_status
& STATUS_BOFF
))) {
988 netdev_dbg(dev
, "entered bus off state\n");
989 work_done
+= c_can_handle_state_change(dev
,
993 /* handle bus recovery events */
994 if ((!(priv
->current_status
& STATUS_BOFF
)) &&
995 (priv
->last_status
& STATUS_BOFF
)) {
996 netdev_dbg(dev
, "left bus off state\n");
997 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
999 if ((!(priv
->current_status
& STATUS_EPASS
)) &&
1000 (priv
->last_status
& STATUS_EPASS
)) {
1001 netdev_dbg(dev
, "left error passive state\n");
1002 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1005 priv
->last_status
= priv
->current_status
;
1007 /* handle lec errors on the bus */
1008 lec_type
= c_can_has_and_handle_berr(priv
);
1010 work_done
+= c_can_handle_bus_err(dev
, lec_type
);
1011 } else if ((irqstatus
>= C_CAN_MSG_OBJ_RX_FIRST
) &&
1012 (irqstatus
<= C_CAN_MSG_OBJ_RX_LAST
)) {
1013 /* handle events corresponding to receive message objects */
1014 work_done
+= c_can_do_rx_poll(dev
, (quota
- work_done
));
1015 } else if ((irqstatus
>= C_CAN_MSG_OBJ_TX_FIRST
) &&
1016 (irqstatus
<= C_CAN_MSG_OBJ_TX_LAST
)) {
1017 /* handle events corresponding to transmit message objects */
1022 if (work_done
< quota
) {
1023 napi_complete(napi
);
1024 /* enable all IRQs */
1025 c_can_enable_all_interrupts(priv
, ENABLE_ALL_INTERRUPTS
);
1031 static irqreturn_t
c_can_isr(int irq
, void *dev_id
)
1034 struct net_device
*dev
= (struct net_device
*)dev_id
;
1035 struct c_can_priv
*priv
= netdev_priv(dev
);
1037 irqstatus
= priv
->read_reg(priv
, &priv
->regs
->interrupt
);
1041 /* disable all interrupts and schedule the NAPI */
1042 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
1043 napi_schedule(&priv
->napi
);
1048 static int c_can_open(struct net_device
*dev
)
1051 struct c_can_priv
*priv
= netdev_priv(dev
);
1053 /* open the can device */
1054 err
= open_candev(dev
);
1056 netdev_err(dev
, "failed to open can device\n");
1060 /* register interrupt handler */
1061 err
= request_irq(dev
->irq
, &c_can_isr
, IRQF_SHARED
, dev
->name
,
1064 netdev_err(dev
, "failed to request interrupt\n");
1068 /* start the c_can controller */
1071 napi_enable(&priv
->napi
);
1072 netif_start_queue(dev
);
1081 static int c_can_close(struct net_device
*dev
)
1083 struct c_can_priv
*priv
= netdev_priv(dev
);
1085 netif_stop_queue(dev
);
1086 napi_disable(&priv
->napi
);
1088 free_irq(dev
->irq
, dev
);
1094 struct net_device
*alloc_c_can_dev(void)
1096 struct net_device
*dev
;
1097 struct c_can_priv
*priv
;
1099 dev
= alloc_candev(sizeof(struct c_can_priv
), C_CAN_MSG_OBJ_TX_NUM
);
1103 priv
= netdev_priv(dev
);
1104 netif_napi_add(dev
, &priv
->napi
, c_can_poll
, C_CAN_NAPI_WEIGHT
);
1107 priv
->can
.bittiming_const
= &c_can_bittiming_const
;
1108 priv
->can
.do_set_mode
= c_can_set_mode
;
1109 priv
->can
.do_get_berr_counter
= c_can_get_berr_counter
;
1110 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
|
1111 CAN_CTRLMODE_LISTENONLY
|
1112 CAN_CTRLMODE_BERR_REPORTING
;
1116 EXPORT_SYMBOL_GPL(alloc_c_can_dev
);
1118 void free_c_can_dev(struct net_device
*dev
)
1122 EXPORT_SYMBOL_GPL(free_c_can_dev
);
1124 static const struct net_device_ops c_can_netdev_ops
= {
1125 .ndo_open
= c_can_open
,
1126 .ndo_stop
= c_can_close
,
1127 .ndo_start_xmit
= c_can_start_xmit
,
1130 int register_c_can_dev(struct net_device
*dev
)
1132 dev
->flags
|= IFF_ECHO
; /* we support local echo */
1133 dev
->netdev_ops
= &c_can_netdev_ops
;
1135 return register_candev(dev
);
1137 EXPORT_SYMBOL_GPL(register_c_can_dev
);
1139 void unregister_c_can_dev(struct net_device
*dev
)
1141 struct c_can_priv
*priv
= netdev_priv(dev
);
1143 /* disable all interrupts */
1144 c_can_enable_all_interrupts(priv
, DISABLE_ALL_INTERRUPTS
);
1146 unregister_candev(dev
);
1148 EXPORT_SYMBOL_GPL(unregister_c_can_dev
);
1150 MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1151 MODULE_LICENSE("GPL v2");
1152 MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");