1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
65 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
66 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
67 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
68 u16 words
, u16
*data
);
69 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
71 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
73 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
75 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
79 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
81 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
82 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
88 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
90 struct e1000_phy_info
*phy
= &hw
->phy
;
93 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
94 phy
->type
= e1000_phy_none
;
99 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
100 phy
->reset_delay_us
= 100;
102 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
103 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
105 switch (hw
->mac
.type
) {
108 phy
->type
= e1000_phy_igp_2
;
111 phy
->type
= e1000_phy_m88
;
115 phy
->type
= e1000_phy_bm
;
116 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
117 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
118 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
119 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
122 return -E1000_ERR_PHY
;
126 /* This can only be done after all function pointers are setup. */
127 ret_val
= e1000_get_phy_id_82571(hw
);
129 e_dbg("Error getting PHY ID\n");
134 switch (hw
->mac
.type
) {
137 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
138 ret_val
= -E1000_ERR_PHY
;
141 if (phy
->id
!= M88E1111_I_PHY_ID
)
142 ret_val
= -E1000_ERR_PHY
;
146 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
147 ret_val
= -E1000_ERR_PHY
;
150 ret_val
= -E1000_ERR_PHY
;
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
166 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
167 u32 eecd
= er32(EECD
);
170 nvm
->opcode_bits
= 8;
172 switch (nvm
->override
) {
173 case e1000_nvm_override_spi_large
:
175 nvm
->address_bits
= 16;
177 case e1000_nvm_override_spi_small
:
179 nvm
->address_bits
= 8;
182 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
183 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
187 switch (hw
->mac
.type
) {
191 if (((eecd
>> 15) & 0x3) == 0x3) {
192 nvm
->type
= e1000_nvm_flash_hw
;
193 nvm
->word_size
= 2048;
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
198 eecd
&= ~E1000_EECD_AUPDEN
;
204 nvm
->type
= e1000_nvm_eeprom_spi
;
205 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
206 E1000_EECD_SIZE_EX_SHIFT
);
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
211 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
213 /* EEPROM access above 16k is unsupported */
216 nvm
->word_size
= 1 << size
;
220 /* Function Pointers */
221 switch (hw
->mac
.type
) {
224 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
225 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
238 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
240 struct e1000_hw
*hw
= &adapter
->hw
;
241 struct e1000_mac_info
*mac
= &hw
->mac
;
242 struct e1000_mac_operations
*func
= &mac
->ops
;
245 bool force_clear_smbi
= false;
248 switch (adapter
->pdev
->device
) {
249 case E1000_DEV_ID_82571EB_FIBER
:
250 case E1000_DEV_ID_82572EI_FIBER
:
251 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
252 hw
->phy
.media_type
= e1000_media_type_fiber
;
254 case E1000_DEV_ID_82571EB_SERDES
:
255 case E1000_DEV_ID_82572EI_SERDES
:
256 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
257 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
258 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
261 hw
->phy
.media_type
= e1000_media_type_copper
;
265 /* Set mta register count */
266 mac
->mta_reg_count
= 128;
267 /* Set rar entry count */
268 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
269 /* Adaptive IFS supported */
270 mac
->adaptive_ifs
= true;
273 switch (hw
->phy
.media_type
) {
274 case e1000_media_type_copper
:
275 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
276 func
->check_for_link
= e1000e_check_for_copper_link
;
277 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
279 case e1000_media_type_fiber
:
280 func
->setup_physical_interface
=
281 e1000_setup_fiber_serdes_link_82571
;
282 func
->check_for_link
= e1000e_check_for_fiber_link
;
283 func
->get_link_up_info
=
284 e1000e_get_speed_and_duplex_fiber_serdes
;
286 case e1000_media_type_internal_serdes
:
287 func
->setup_physical_interface
=
288 e1000_setup_fiber_serdes_link_82571
;
289 func
->check_for_link
= e1000_check_for_serdes_link_82571
;
290 func
->get_link_up_info
=
291 e1000e_get_speed_and_duplex_fiber_serdes
;
294 return -E1000_ERR_CONFIG
;
298 switch (hw
->mac
.type
) {
300 func
->set_lan_id
= e1000_set_lan_id_single_port
;
301 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
302 func
->led_on
= e1000e_led_on_generic
;
303 func
->blink_led
= e1000e_blink_led_generic
;
306 mac
->has_fwsm
= true;
308 * ARC supported; valid only if manageability features are
311 mac
->arc_subsystem_valid
=
312 (er32(FWSM
) & E1000_FWSM_MODE_MASK
)
317 func
->set_lan_id
= e1000_set_lan_id_single_port
;
318 func
->check_mng_mode
= e1000_check_mng_mode_82574
;
319 func
->led_on
= e1000_led_on_82574
;
322 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
323 func
->led_on
= e1000e_led_on_generic
;
324 func
->blink_led
= e1000e_blink_led_generic
;
327 mac
->has_fwsm
= true;
332 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
333 * first NVM or PHY access. This should be done for single-port
334 * devices, and for one port only on dual-port devices so that
335 * for those devices we can still use the SMBI lock to synchronize
336 * inter-port accesses to the PHY & NVM.
338 switch (hw
->mac
.type
) {
343 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
344 /* Only do this for the first interface on this card */
346 swsm2
| E1000_SWSM2_LOCK
);
347 force_clear_smbi
= true;
349 force_clear_smbi
= false;
352 force_clear_smbi
= true;
356 if (force_clear_smbi
) {
357 /* Make sure SWSM.SMBI is clear */
359 if (swsm
& E1000_SWSM_SMBI
) {
360 /* This bit should not be set on a first interface, and
361 * indicates that the bootagent or EFI code has
362 * improperly left this bit enabled
364 e_dbg("Please update your 82571 Bootagent\n");
366 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
370 * Initialize device specific counter of SMBI acquisition
373 hw
->dev_spec
.e82571
.smb_counter
= 0;
378 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
380 struct e1000_hw
*hw
= &adapter
->hw
;
381 static int global_quad_port_a
; /* global port a indication */
382 struct pci_dev
*pdev
= adapter
->pdev
;
383 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
386 rc
= e1000_init_mac_params_82571(adapter
);
390 rc
= e1000_init_nvm_params_82571(hw
);
394 rc
= e1000_init_phy_params_82571(hw
);
398 /* tag quad port adapters first, it's used below */
399 switch (pdev
->device
) {
400 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
401 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
402 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
403 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
404 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
405 /* mark the first port */
406 if (global_quad_port_a
== 0)
407 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
408 /* Reset for multiple quad port adapters */
409 global_quad_port_a
++;
410 if (global_quad_port_a
== 4)
411 global_quad_port_a
= 0;
417 switch (adapter
->hw
.mac
.type
) {
419 /* these dual ports don't have WoL on port B at all */
420 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
421 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
422 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
424 adapter
->flags
&= ~FLAG_HAS_WOL
;
425 /* quad ports only support WoL on port A */
426 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
427 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
428 adapter
->flags
&= ~FLAG_HAS_WOL
;
429 /* Does not support WoL on any port */
430 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
431 adapter
->flags
&= ~FLAG_HAS_WOL
;
436 if (pdev
->device
== E1000_DEV_ID_82573L
) {
437 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
438 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
449 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
450 * @hw: pointer to the HW structure
452 * Reads the PHY registers and stores the PHY ID and possibly the PHY
453 * revision in the hardware structure.
455 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
457 struct e1000_phy_info
*phy
= &hw
->phy
;
461 switch (hw
->mac
.type
) {
465 * The 82571 firmware may still be configuring the PHY.
466 * In this case, we cannot access the PHY until the
467 * configuration is done. So we explicitly set the
470 phy
->id
= IGP01E1000_I_PHY_ID
;
473 return e1000e_get_phy_id(hw
);
477 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
481 phy
->id
= (u32
)(phy_id
<< 16);
483 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
487 phy
->id
|= (u32
)(phy_id
);
488 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
491 return -E1000_ERR_PHY
;
499 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
500 * @hw: pointer to the HW structure
502 * Acquire the HW semaphore to access the PHY or NVM
504 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
507 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
508 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
512 * If we have timedout 3 times on trying to acquire
513 * the inter-port SMBI semaphore, there is old code
514 * operating on the other port, and it is not
515 * releasing SMBI. Modify the number of times that
516 * we try for the semaphore to interwork with this
519 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
522 /* Get the SW semaphore */
523 while (i
< sw_timeout
) {
525 if (!(swsm
& E1000_SWSM_SMBI
))
532 if (i
== sw_timeout
) {
533 e_dbg("Driver can't access device - SMBI bit is set.\n");
534 hw
->dev_spec
.e82571
.smb_counter
++;
536 /* Get the FW semaphore. */
537 for (i
= 0; i
< fw_timeout
; i
++) {
539 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
541 /* Semaphore acquired if bit latched */
542 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
548 if (i
== fw_timeout
) {
549 /* Release semaphores */
550 e1000_put_hw_semaphore_82571(hw
);
551 e_dbg("Driver can't access the NVM\n");
552 return -E1000_ERR_NVM
;
559 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
560 * @hw: pointer to the HW structure
562 * Release hardware semaphore used to access the PHY or NVM
564 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
569 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
573 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
574 * @hw: pointer to the HW structure
576 * Acquire the HW semaphore during reset.
579 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
585 extcnf_ctrl
= er32(EXTCNF_CTRL
);
586 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
588 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
589 extcnf_ctrl
= er32(EXTCNF_CTRL
);
591 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
594 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
596 usleep_range(2000, 4000);
598 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
600 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
601 /* Release semaphores */
602 e1000_put_hw_semaphore_82573(hw
);
603 e_dbg("Driver can't access the PHY\n");
604 ret_val
= -E1000_ERR_PHY
;
613 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
614 * @hw: pointer to the HW structure
616 * Release hardware semaphore used during reset.
619 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
623 extcnf_ctrl
= er32(EXTCNF_CTRL
);
624 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
625 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
628 static DEFINE_MUTEX(swflag_mutex
);
631 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
632 * @hw: pointer to the HW structure
634 * Acquire the HW semaphore to access the PHY or NVM.
637 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
641 mutex_lock(&swflag_mutex
);
642 ret_val
= e1000_get_hw_semaphore_82573(hw
);
644 mutex_unlock(&swflag_mutex
);
649 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
650 * @hw: pointer to the HW structure
652 * Release hardware semaphore used to access the PHY or NVM
655 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
657 e1000_put_hw_semaphore_82573(hw
);
658 mutex_unlock(&swflag_mutex
);
662 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
663 * @hw: pointer to the HW structure
664 * @active: true to enable LPLU, false to disable
666 * Sets the LPLU D0 state according to the active flag.
667 * LPLU will not be activated unless the
668 * device autonegotiation advertisement meets standards of
669 * either 10 or 10/100 or 10/100/1000 at all duplexes.
670 * This is a function pointer entry point only called by
671 * PHY setup routines.
673 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
675 u16 data
= er32(POEMB
);
678 data
|= E1000_PHY_CTRL_D0A_LPLU
;
680 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
687 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
688 * @hw: pointer to the HW structure
689 * @active: boolean used to enable/disable lplu
691 * The low power link up (lplu) state is set to the power management level D3
692 * when active is true, else clear lplu for D3. LPLU
693 * is used during Dx states where the power conservation is most important.
694 * During driver activity, SmartSpeed should be enabled so performance is
697 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
699 u16 data
= er32(POEMB
);
702 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
703 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
704 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
705 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
706 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
714 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
715 * @hw: pointer to the HW structure
717 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
718 * Then for non-82573 hardware, set the EEPROM access request bit and wait
719 * for EEPROM access grant bit. If the access grant bit is not set, release
720 * hardware semaphore.
722 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
726 ret_val
= e1000_get_hw_semaphore_82571(hw
);
730 switch (hw
->mac
.type
) {
734 ret_val
= e1000e_acquire_nvm(hw
);
739 e1000_put_hw_semaphore_82571(hw
);
745 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
746 * @hw: pointer to the HW structure
748 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
750 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
752 e1000e_release_nvm(hw
);
753 e1000_put_hw_semaphore_82571(hw
);
757 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
758 * @hw: pointer to the HW structure
759 * @offset: offset within the EEPROM to be written to
760 * @words: number of words to write
761 * @data: 16 bit word(s) to be written to the EEPROM
763 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
765 * If e1000e_update_nvm_checksum is not called after this function, the
766 * EEPROM will most likely contain an invalid checksum.
768 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
773 switch (hw
->mac
.type
) {
777 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
781 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
784 ret_val
= -E1000_ERR_NVM
;
792 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
793 * @hw: pointer to the HW structure
795 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
796 * up to the checksum. Then calculates the EEPROM checksum and writes the
797 * value to the EEPROM.
799 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
805 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
810 * If our nvm is an EEPROM, then we're done
811 * otherwise, commit the checksum to the flash NVM.
813 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
816 /* Check for pending operations. */
817 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
818 usleep_range(1000, 2000);
819 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
823 if (i
== E1000_FLASH_UPDATES
)
824 return -E1000_ERR_NVM
;
826 /* Reset the firmware if using STM opcode. */
827 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
829 * The enabling of and the actual reset must be done
830 * in two write cycles.
832 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
834 ew32(HICR
, E1000_HICR_FW_RESET
);
837 /* Commit the write to flash */
838 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
841 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
842 usleep_range(1000, 2000);
843 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
847 if (i
== E1000_FLASH_UPDATES
)
848 return -E1000_ERR_NVM
;
854 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
855 * @hw: pointer to the HW structure
857 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
858 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
860 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
862 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
863 e1000_fix_nvm_checksum_82571(hw
);
865 return e1000e_validate_nvm_checksum_generic(hw
);
869 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
870 * @hw: pointer to the HW structure
871 * @offset: offset within the EEPROM to be written to
872 * @words: number of words to write
873 * @data: 16 bit word(s) to be written to the EEPROM
875 * After checking for invalid values, poll the EEPROM to ensure the previous
876 * command has completed before trying to write the next word. After write
877 * poll for completion.
879 * If e1000e_update_nvm_checksum is not called after this function, the
880 * EEPROM will most likely contain an invalid checksum.
882 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
883 u16 words
, u16
*data
)
885 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
890 * A check for invalid values: offset too large, too many words,
891 * and not enough words.
893 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
895 e_dbg("nvm parameter(s) out of bounds\n");
896 return -E1000_ERR_NVM
;
899 for (i
= 0; i
< words
; i
++) {
900 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
901 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
902 E1000_NVM_RW_REG_START
;
904 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
910 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
919 * e1000_get_cfg_done_82571 - Poll for configuration done
920 * @hw: pointer to the HW structure
922 * Reads the management control register for the config done bit to be set.
924 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
926 s32 timeout
= PHY_CFG_TIMEOUT
;
930 E1000_NVM_CFG_DONE_PORT_0
)
932 usleep_range(1000, 2000);
936 e_dbg("MNG configuration cycle has not completed.\n");
937 return -E1000_ERR_RESET
;
944 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
945 * @hw: pointer to the HW structure
946 * @active: true to enable LPLU, false to disable
948 * Sets the LPLU D0 state according to the active flag. When activating LPLU
949 * this function also disables smart speed and vice versa. LPLU will not be
950 * activated unless the device autonegotiation advertisement meets standards
951 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
952 * pointer entry point only called by PHY setup routines.
954 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
956 struct e1000_phy_info
*phy
= &hw
->phy
;
960 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
965 data
|= IGP02E1000_PM_D0_LPLU
;
966 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
970 /* When LPLU is enabled, we should disable SmartSpeed */
971 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
972 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
973 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
977 data
&= ~IGP02E1000_PM_D0_LPLU
;
978 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
980 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
981 * during Dx states where the power conservation is most
982 * important. During driver activity we should enable
983 * SmartSpeed, so performance is maintained.
985 if (phy
->smart_speed
== e1000_smart_speed_on
) {
986 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
991 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
992 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
996 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
997 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1002 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1003 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1014 * e1000_reset_hw_82571 - Reset hardware
1015 * @hw: pointer to the HW structure
1017 * This resets the hardware into a known state.
1019 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
1025 * Prevent the PCI-E bus from sticking if there is no TLP connection
1026 * on the last TLP read/write transaction when MAC is reset.
1028 ret_val
= e1000e_disable_pcie_master(hw
);
1030 e_dbg("PCI-E Master disable polling has failed.\n");
1032 e_dbg("Masking off all interrupts\n");
1033 ew32(IMC
, 0xffffffff);
1036 ew32(TCTL
, E1000_TCTL_PSP
);
1039 usleep_range(10000, 20000);
1042 * Must acquire the MDIO ownership before MAC reset.
1043 * Ownership defaults to firmware after a reset.
1045 switch (hw
->mac
.type
) {
1047 ret_val
= e1000_get_hw_semaphore_82573(hw
);
1051 ret_val
= e1000_get_hw_semaphore_82574(hw
);
1057 e_dbg("Cannot acquire MDIO ownership\n");
1061 e_dbg("Issuing a global reset to MAC\n");
1062 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
1064 /* Must release MDIO ownership and mutex after MAC reset. */
1065 switch (hw
->mac
.type
) {
1068 e1000_put_hw_semaphore_82574(hw
);
1074 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1076 ctrl_ext
= er32(CTRL_EXT
);
1077 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1078 ew32(CTRL_EXT
, ctrl_ext
);
1082 ret_val
= e1000e_get_auto_rd_done(hw
);
1084 /* We don't want to continue accessing MAC registers. */
1088 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1089 * Need to wait for Phy configuration completion before accessing
1093 switch (hw
->mac
.type
) {
1103 /* Clear any pending interrupt events. */
1104 ew32(IMC
, 0xffffffff);
1107 if (hw
->mac
.type
== e1000_82571
) {
1108 /* Install any alternate MAC address into RAR0 */
1109 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1113 e1000e_set_laa_state_82571(hw
, true);
1116 /* Reinitialize the 82571 serdes link state machine */
1117 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1118 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1124 * e1000_init_hw_82571 - Initialize hardware
1125 * @hw: pointer to the HW structure
1127 * This inits the hardware readying it for operation.
1129 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1131 struct e1000_mac_info
*mac
= &hw
->mac
;
1134 u16 i
, rar_count
= mac
->rar_entry_count
;
1136 e1000_initialize_hw_bits_82571(hw
);
1138 /* Initialize identification LED */
1139 ret_val
= e1000e_id_led_init(hw
);
1141 e_dbg("Error initializing identification LED\n");
1142 /* This is not fatal and we should not stop init due to this */
1144 /* Disabling VLAN filtering */
1145 e_dbg("Initializing the IEEE VLAN\n");
1146 mac
->ops
.clear_vfta(hw
);
1148 /* Setup the receive address. */
1150 * If, however, a locally administered address was assigned to the
1151 * 82571, we must reserve a RAR for it to work around an issue where
1152 * resetting one port will reload the MAC on the other port.
1154 if (e1000e_get_laa_state_82571(hw
))
1156 e1000e_init_rx_addrs(hw
, rar_count
);
1158 /* Zero out the Multicast HASH table */
1159 e_dbg("Zeroing the MTA\n");
1160 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1161 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1163 /* Setup link and flow control */
1164 ret_val
= e1000_setup_link_82571(hw
);
1166 /* Set the transmit descriptor write-back policy */
1167 reg_data
= er32(TXDCTL(0));
1168 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1169 E1000_TXDCTL_FULL_TX_DESC_WB
|
1170 E1000_TXDCTL_COUNT_DESC
;
1171 ew32(TXDCTL(0), reg_data
);
1173 /* ...for both queues. */
1174 switch (mac
->type
) {
1176 e1000e_enable_tx_pkt_filtering(hw
);
1180 reg_data
= er32(GCR
);
1181 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1182 ew32(GCR
, reg_data
);
1185 reg_data
= er32(TXDCTL(1));
1186 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1187 E1000_TXDCTL_FULL_TX_DESC_WB
|
1188 E1000_TXDCTL_COUNT_DESC
;
1189 ew32(TXDCTL(1), reg_data
);
1194 * Clear all of the statistics registers (clear on read). It is
1195 * important that we do this after we have tried to establish link
1196 * because the symbol error count will increment wildly if there
1199 e1000_clear_hw_cntrs_82571(hw
);
1205 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1206 * @hw: pointer to the HW structure
1208 * Initializes required hardware-dependent bits needed for normal operation.
1210 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1214 /* Transmit Descriptor Control 0 */
1215 reg
= er32(TXDCTL(0));
1217 ew32(TXDCTL(0), reg
);
1219 /* Transmit Descriptor Control 1 */
1220 reg
= er32(TXDCTL(1));
1222 ew32(TXDCTL(1), reg
);
1224 /* Transmit Arbitration Control 0 */
1225 reg
= er32(TARC(0));
1226 reg
&= ~(0xF << 27); /* 30:27 */
1227 switch (hw
->mac
.type
) {
1230 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1237 /* Transmit Arbitration Control 1 */
1238 reg
= er32(TARC(1));
1239 switch (hw
->mac
.type
) {
1242 reg
&= ~((1 << 29) | (1 << 30));
1243 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1244 if (er32(TCTL
) & E1000_TCTL_MULR
)
1254 /* Device Control */
1255 switch (hw
->mac
.type
) {
1267 /* Extended Device Control */
1268 switch (hw
->mac
.type
) {
1272 reg
= er32(CTRL_EXT
);
1275 ew32(CTRL_EXT
, reg
);
1281 if (hw
->mac
.type
== e1000_82571
) {
1282 reg
= er32(PBA_ECC
);
1283 reg
|= E1000_PBA_ECC_CORR_EN
;
1287 * Workaround for hardware errata.
1288 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1291 if ((hw
->mac
.type
== e1000_82571
) ||
1292 (hw
->mac
.type
== e1000_82572
)) {
1293 reg
= er32(CTRL_EXT
);
1294 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1295 ew32(CTRL_EXT
, reg
);
1299 /* PCI-Ex Control Registers */
1300 switch (hw
->mac
.type
) {
1308 * Workaround for hardware errata.
1309 * apply workaround for hardware errata documented in errata
1310 * docs Fixes issue where some error prone or unreliable PCIe
1311 * completions are occurring, particularly with ASPM enabled.
1312 * Without fix, issue can cause Tx timeouts.
1324 * e1000_clear_vfta_82571 - Clear VLAN filter table
1325 * @hw: pointer to the HW structure
1327 * Clears the register array which contains the VLAN filter table by
1328 * setting all the values to 0.
1330 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1334 u32 vfta_offset
= 0;
1335 u32 vfta_bit_in_reg
= 0;
1337 switch (hw
->mac
.type
) {
1341 if (hw
->mng_cookie
.vlan_id
!= 0) {
1343 * The VFTA is a 4096b bit-field, each identifying
1344 * a single VLAN ID. The following operations
1345 * determine which 32b entry (i.e. offset) into the
1346 * array we want to set the VLAN ID (i.e. bit) of
1347 * the manageability unit.
1349 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1350 E1000_VFTA_ENTRY_SHIFT
) &
1351 E1000_VFTA_ENTRY_MASK
;
1352 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1353 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1359 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1361 * If the offset we want to clear is the same offset of the
1362 * manageability VLAN ID, then clear all bits except that of
1363 * the manageability unit.
1365 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1366 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1372 * e1000_check_mng_mode_82574 - Check manageability is enabled
1373 * @hw: pointer to the HW structure
1375 * Reads the NVM Initialization Control Word 2 and returns true
1376 * (>0) if any manageability is enabled, else false (0).
1378 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1382 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1383 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1387 * e1000_led_on_82574 - Turn LED on
1388 * @hw: pointer to the HW structure
1392 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1397 ctrl
= hw
->mac
.ledctl_mode2
;
1398 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1400 * If no link, then turn LED on by setting the invert bit
1401 * for each LED that's "on" (0x0E) in ledctl_mode2.
1403 for (i
= 0; i
< 4; i
++)
1404 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1405 E1000_LEDCTL_MODE_LED_ON
)
1406 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1414 * e1000_check_phy_82574 - check 82574 phy hung state
1415 * @hw: pointer to the HW structure
1417 * Returns whether phy is hung or not
1419 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1421 u16 status_1kbt
= 0;
1422 u16 receive_errors
= 0;
1423 bool phy_hung
= false;
1427 * Read PHY Receive Error counter first, if its is max - all F's then
1428 * read the Base1000T status register If both are max then PHY is hung.
1430 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1434 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1435 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1438 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1439 E1000_IDLE_ERROR_COUNT_MASK
)
1447 * e1000_setup_link_82571 - Setup flow control and link settings
1448 * @hw: pointer to the HW structure
1450 * Determines which flow control settings to use, then configures flow
1451 * control. Calls the appropriate media-specific link configuration
1452 * function. Assuming the adapter has a valid link partner, a valid link
1453 * should be established. Assumes the hardware has previously been reset
1454 * and the transmitter and receiver are not enabled.
1456 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1459 * 82573 does not have a word in the NVM to determine
1460 * the default flow control setting, so we explicitly
1463 switch (hw
->mac
.type
) {
1467 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1468 hw
->fc
.requested_mode
= e1000_fc_full
;
1474 return e1000e_setup_link(hw
);
1478 * e1000_setup_copper_link_82571 - Configure copper link settings
1479 * @hw: pointer to the HW structure
1481 * Configures the link for auto-neg or forced speed and duplex. Then we check
1482 * for link, once link is established calls to configure collision distance
1483 * and flow control are called.
1485 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1491 ctrl
|= E1000_CTRL_SLU
;
1492 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1495 switch (hw
->phy
.type
) {
1498 ret_val
= e1000e_copper_link_setup_m88(hw
);
1500 case e1000_phy_igp_2
:
1501 ret_val
= e1000e_copper_link_setup_igp(hw
);
1504 return -E1000_ERR_PHY
;
1511 ret_val
= e1000e_setup_copper_link(hw
);
1517 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1518 * @hw: pointer to the HW structure
1520 * Configures collision distance and flow control for fiber and serdes links.
1521 * Upon successful setup, poll for link.
1523 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1525 switch (hw
->mac
.type
) {
1529 * If SerDes loopback mode is entered, there is no form
1530 * of reset to take the adapter out of that mode. So we
1531 * have to explicitly take the adapter out of loopback
1532 * mode. This prevents drivers from twiddling their thumbs
1533 * if another tool failed to take it out of loopback mode.
1535 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1541 return e1000e_setup_fiber_serdes_link(hw
);
1545 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1546 * @hw: pointer to the HW structure
1548 * Reports the link state as up or down.
1550 * If autonegotiation is supported by the link partner, the link state is
1551 * determined by the result of autonegotiation. This is the most likely case.
1552 * If autonegotiation is not supported by the link partner, and the link
1553 * has a valid signal, force the link up.
1555 * The link state is represented internally here by 4 states:
1558 * 2) autoneg_progress
1559 * 3) autoneg_complete (the link successfully autonegotiated)
1560 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1563 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1565 struct e1000_mac_info
*mac
= &hw
->mac
;
1574 status
= er32(STATUS
);
1577 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1579 /* Receiver is synchronized with no invalid bits. */
1580 switch (mac
->serdes_link_state
) {
1581 case e1000_serdes_link_autoneg_complete
:
1582 if (!(status
& E1000_STATUS_LU
)) {
1584 * We have lost link, retry autoneg before
1585 * reporting link failure
1587 mac
->serdes_link_state
=
1588 e1000_serdes_link_autoneg_progress
;
1589 mac
->serdes_has_link
= false;
1590 e_dbg("AN_UP -> AN_PROG\n");
1592 mac
->serdes_has_link
= true;
1596 case e1000_serdes_link_forced_up
:
1598 * If we are receiving /C/ ordered sets, re-enable
1599 * auto-negotiation in the TXCW register and disable
1600 * forced link in the Device Control register in an
1601 * attempt to auto-negotiate with our link partner.
1602 * If the partner code word is null, stop forcing
1603 * and restart auto negotiation.
1605 if ((rxcw
& E1000_RXCW_C
) || !(rxcw
& E1000_RXCW_CW
)) {
1606 /* Enable autoneg, and unforce link up */
1607 ew32(TXCW
, mac
->txcw
);
1608 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1609 mac
->serdes_link_state
=
1610 e1000_serdes_link_autoneg_progress
;
1611 mac
->serdes_has_link
= false;
1612 e_dbg("FORCED_UP -> AN_PROG\n");
1614 mac
->serdes_has_link
= true;
1618 case e1000_serdes_link_autoneg_progress
:
1619 if (rxcw
& E1000_RXCW_C
) {
1621 * We received /C/ ordered sets, meaning the
1622 * link partner has autonegotiated, and we can
1623 * trust the Link Up (LU) status bit.
1625 if (status
& E1000_STATUS_LU
) {
1626 mac
->serdes_link_state
=
1627 e1000_serdes_link_autoneg_complete
;
1628 e_dbg("AN_PROG -> AN_UP\n");
1629 mac
->serdes_has_link
= true;
1631 /* Autoneg completed, but failed. */
1632 mac
->serdes_link_state
=
1633 e1000_serdes_link_down
;
1634 e_dbg("AN_PROG -> DOWN\n");
1638 * The link partner did not autoneg.
1639 * Force link up and full duplex, and change
1642 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1643 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1646 /* Configure Flow Control after link up. */
1647 ret_val
= e1000e_config_fc_after_link_up(hw
);
1649 e_dbg("Error config flow control\n");
1652 mac
->serdes_link_state
=
1653 e1000_serdes_link_forced_up
;
1654 mac
->serdes_has_link
= true;
1655 e_dbg("AN_PROG -> FORCED_UP\n");
1659 case e1000_serdes_link_down
:
1662 * The link was down but the receiver has now gained
1663 * valid sync, so lets see if we can bring the link
1666 ew32(TXCW
, mac
->txcw
);
1667 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1668 mac
->serdes_link_state
=
1669 e1000_serdes_link_autoneg_progress
;
1670 mac
->serdes_has_link
= false;
1671 e_dbg("DOWN -> AN_PROG\n");
1675 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1676 mac
->serdes_has_link
= false;
1677 mac
->serdes_link_state
= e1000_serdes_link_down
;
1678 e_dbg("ANYSTATE -> DOWN\n");
1681 * Check several times, if Sync and Config
1682 * both are consistently 1 then simply ignore
1683 * the Invalid bit and restart Autoneg
1685 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1688 if ((rxcw
& E1000_RXCW_IV
) &&
1689 !((rxcw
& E1000_RXCW_SYNCH
) &&
1690 (rxcw
& E1000_RXCW_C
))) {
1691 mac
->serdes_has_link
= false;
1692 mac
->serdes_link_state
=
1693 e1000_serdes_link_down
;
1694 e_dbg("ANYSTATE -> DOWN\n");
1699 if (i
== AN_RETRY_COUNT
) {
1701 txcw
|= E1000_TXCW_ANE
;
1703 mac
->serdes_link_state
=
1704 e1000_serdes_link_autoneg_progress
;
1705 mac
->serdes_has_link
= false;
1706 e_dbg("ANYSTATE -> AN_PROG\n");
1715 * e1000_valid_led_default_82571 - Verify a valid default LED config
1716 * @hw: pointer to the HW structure
1717 * @data: pointer to the NVM (EEPROM)
1719 * Read the EEPROM for the current default LED configuration. If the
1720 * LED configuration is not valid, set to a valid LED configuration.
1722 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1726 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1728 e_dbg("NVM Read Error\n");
1732 switch (hw
->mac
.type
) {
1736 if (*data
== ID_LED_RESERVED_F746
)
1737 *data
= ID_LED_DEFAULT_82573
;
1740 if (*data
== ID_LED_RESERVED_0000
||
1741 *data
== ID_LED_RESERVED_FFFF
)
1742 *data
= ID_LED_DEFAULT
;
1750 * e1000e_get_laa_state_82571 - Get locally administered address state
1751 * @hw: pointer to the HW structure
1753 * Retrieve and return the current locally administered address state.
1755 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1757 if (hw
->mac
.type
!= e1000_82571
)
1760 return hw
->dev_spec
.e82571
.laa_is_present
;
1764 * e1000e_set_laa_state_82571 - Set locally administered address state
1765 * @hw: pointer to the HW structure
1766 * @state: enable/disable locally administered address
1768 * Enable/Disable the current locally administered address state.
1770 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1772 if (hw
->mac
.type
!= e1000_82571
)
1775 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1777 /* If workaround is activated... */
1780 * Hold a copy of the LAA in RAR[14] This is done so that
1781 * between the time RAR[0] gets clobbered and the time it
1782 * gets fixed, the actual LAA is in one of the RARs and no
1783 * incoming packets directed to this port are dropped.
1784 * Eventually the LAA will be in RAR[0] and RAR[14].
1786 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1790 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1791 * @hw: pointer to the HW structure
1793 * Verifies that the EEPROM has completed the update. After updating the
1794 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1795 * the checksum fix is not implemented, we need to set the bit and update
1796 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1797 * we need to return bad checksum.
1799 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1801 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1805 if (nvm
->type
!= e1000_nvm_flash_hw
)
1809 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1810 * 10h-12h. Checksum may need to be fixed.
1812 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1816 if (!(data
& 0x10)) {
1818 * Read 0x23 and check bit 15. This bit is a 1
1819 * when the checksum has already been fixed. If
1820 * the checksum is still wrong and this bit is a
1821 * 1, we need to return bad checksum. Otherwise,
1822 * we need to set this bit to a 1 and update the
1825 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1829 if (!(data
& 0x8000)) {
1831 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1834 ret_val
= e1000e_update_nvm_checksum(hw
);
1842 * e1000_read_mac_addr_82571 - Read device MAC address
1843 * @hw: pointer to the HW structure
1845 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1849 if (hw
->mac
.type
== e1000_82571
) {
1851 * If there's an alternate MAC address place it in RAR0
1852 * so that it will override the Si installed default perm
1855 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1860 ret_val
= e1000_read_mac_addr_generic(hw
);
1867 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1868 * @hw: pointer to the HW structure
1870 * In the case of a PHY power down to save power, or to turn off link during a
1871 * driver unload, or wake on lan is not enabled, remove the link.
1873 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1875 struct e1000_phy_info
*phy
= &hw
->phy
;
1876 struct e1000_mac_info
*mac
= &hw
->mac
;
1878 if (!(phy
->ops
.check_reset_block
))
1881 /* If the management interface is not enabled, then power down */
1882 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1883 e1000_power_down_phy_copper(hw
);
1887 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1888 * @hw: pointer to the HW structure
1890 * Clears the hardware counters by reading the counter registers.
1892 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1894 e1000e_clear_hw_cntrs_base(hw
);
1932 static struct e1000_mac_operations e82571_mac_ops
= {
1933 /* .check_mng_mode: mac type dependent */
1934 /* .check_for_link: media type dependent */
1935 .id_led_init
= e1000e_id_led_init
,
1936 .cleanup_led
= e1000e_cleanup_led_generic
,
1937 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1938 .get_bus_info
= e1000e_get_bus_info_pcie
,
1939 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1940 /* .get_link_up_info: media type dependent */
1941 /* .led_on: mac type dependent */
1942 .led_off
= e1000e_led_off_generic
,
1943 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1944 .write_vfta
= e1000_write_vfta_generic
,
1945 .clear_vfta
= e1000_clear_vfta_82571
,
1946 .reset_hw
= e1000_reset_hw_82571
,
1947 .init_hw
= e1000_init_hw_82571
,
1948 .setup_link
= e1000_setup_link_82571
,
1949 /* .setup_physical_interface: media type dependent */
1950 .setup_led
= e1000e_setup_led_generic
,
1951 .read_mac_addr
= e1000_read_mac_addr_82571
,
1954 static struct e1000_phy_operations e82_phy_ops_igp
= {
1955 .acquire
= e1000_get_hw_semaphore_82571
,
1956 .check_polarity
= e1000_check_polarity_igp
,
1957 .check_reset_block
= e1000e_check_reset_block_generic
,
1959 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1960 .get_cfg_done
= e1000_get_cfg_done_82571
,
1961 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1962 .get_info
= e1000e_get_phy_info_igp
,
1963 .read_reg
= e1000e_read_phy_reg_igp
,
1964 .release
= e1000_put_hw_semaphore_82571
,
1965 .reset
= e1000e_phy_hw_reset_generic
,
1966 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1967 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1968 .write_reg
= e1000e_write_phy_reg_igp
,
1969 .cfg_on_link_up
= NULL
,
1972 static struct e1000_phy_operations e82_phy_ops_m88
= {
1973 .acquire
= e1000_get_hw_semaphore_82571
,
1974 .check_polarity
= e1000_check_polarity_m88
,
1975 .check_reset_block
= e1000e_check_reset_block_generic
,
1976 .commit
= e1000e_phy_sw_reset
,
1977 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1978 .get_cfg_done
= e1000e_get_cfg_done
,
1979 .get_cable_length
= e1000e_get_cable_length_m88
,
1980 .get_info
= e1000e_get_phy_info_m88
,
1981 .read_reg
= e1000e_read_phy_reg_m88
,
1982 .release
= e1000_put_hw_semaphore_82571
,
1983 .reset
= e1000e_phy_hw_reset_generic
,
1984 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1985 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1986 .write_reg
= e1000e_write_phy_reg_m88
,
1987 .cfg_on_link_up
= NULL
,
1990 static struct e1000_phy_operations e82_phy_ops_bm
= {
1991 .acquire
= e1000_get_hw_semaphore_82571
,
1992 .check_polarity
= e1000_check_polarity_m88
,
1993 .check_reset_block
= e1000e_check_reset_block_generic
,
1994 .commit
= e1000e_phy_sw_reset
,
1995 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1996 .get_cfg_done
= e1000e_get_cfg_done
,
1997 .get_cable_length
= e1000e_get_cable_length_m88
,
1998 .get_info
= e1000e_get_phy_info_m88
,
1999 .read_reg
= e1000e_read_phy_reg_bm2
,
2000 .release
= e1000_put_hw_semaphore_82571
,
2001 .reset
= e1000e_phy_hw_reset_generic
,
2002 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
2003 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
2004 .write_reg
= e1000e_write_phy_reg_bm2
,
2005 .cfg_on_link_up
= NULL
,
2008 static struct e1000_nvm_operations e82571_nvm_ops
= {
2009 .acquire
= e1000_acquire_nvm_82571
,
2010 .read
= e1000e_read_nvm_eerd
,
2011 .release
= e1000_release_nvm_82571
,
2012 .update
= e1000_update_nvm_checksum_82571
,
2013 .valid_led_default
= e1000_valid_led_default_82571
,
2014 .validate
= e1000_validate_nvm_checksum_82571
,
2015 .write
= e1000_write_nvm_82571
,
2018 struct e1000_info e1000_82571_info
= {
2020 .flags
= FLAG_HAS_HW_VLAN_FILTER
2021 | FLAG_HAS_JUMBO_FRAMES
2023 | FLAG_APME_IN_CTRL3
2024 | FLAG_RX_CSUM_ENABLED
2025 | FLAG_HAS_CTRLEXT_ON_LOAD
2026 | FLAG_HAS_SMART_POWER_DOWN
2027 | FLAG_RESET_OVERWRITES_LAA
/* errata */
2028 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
2029 | FLAG_APME_CHECK_PORT_B
,
2030 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2033 .max_hw_frame_size
= DEFAULT_JUMBO
,
2034 .get_variants
= e1000_get_variants_82571
,
2035 .mac_ops
= &e82571_mac_ops
,
2036 .phy_ops
= &e82_phy_ops_igp
,
2037 .nvm_ops
= &e82571_nvm_ops
,
2040 struct e1000_info e1000_82572_info
= {
2042 .flags
= FLAG_HAS_HW_VLAN_FILTER
2043 | FLAG_HAS_JUMBO_FRAMES
2045 | FLAG_APME_IN_CTRL3
2046 | FLAG_RX_CSUM_ENABLED
2047 | FLAG_HAS_CTRLEXT_ON_LOAD
2048 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
2049 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2052 .max_hw_frame_size
= DEFAULT_JUMBO
,
2053 .get_variants
= e1000_get_variants_82571
,
2054 .mac_ops
= &e82571_mac_ops
,
2055 .phy_ops
= &e82_phy_ops_igp
,
2056 .nvm_ops
= &e82571_nvm_ops
,
2059 struct e1000_info e1000_82573_info
= {
2061 .flags
= FLAG_HAS_HW_VLAN_FILTER
2063 | FLAG_APME_IN_CTRL3
2064 | FLAG_RX_CSUM_ENABLED
2065 | FLAG_HAS_SMART_POWER_DOWN
2067 | FLAG_HAS_SWSM_ON_LOAD
,
2068 .flags2
= FLAG2_DISABLE_ASPM_L1
2069 | FLAG2_DISABLE_ASPM_L0S
,
2071 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2072 .get_variants
= e1000_get_variants_82571
,
2073 .mac_ops
= &e82571_mac_ops
,
2074 .phy_ops
= &e82_phy_ops_m88
,
2075 .nvm_ops
= &e82571_nvm_ops
,
2078 struct e1000_info e1000_82574_info
= {
2080 .flags
= FLAG_HAS_HW_VLAN_FILTER
2082 | FLAG_HAS_JUMBO_FRAMES
2084 | FLAG_APME_IN_CTRL3
2085 | FLAG_RX_CSUM_ENABLED
2086 | FLAG_HAS_SMART_POWER_DOWN
2088 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2089 .flags2
= FLAG2_CHECK_PHY_HANG
2090 | FLAG2_DISABLE_ASPM_L0S
,
2092 .max_hw_frame_size
= DEFAULT_JUMBO
,
2093 .get_variants
= e1000_get_variants_82571
,
2094 .mac_ops
= &e82571_mac_ops
,
2095 .phy_ops
= &e82_phy_ops_bm
,
2096 .nvm_ops
= &e82571_nvm_ops
,
2099 struct e1000_info e1000_82583_info
= {
2101 .flags
= FLAG_HAS_HW_VLAN_FILTER
2103 | FLAG_APME_IN_CTRL3
2104 | FLAG_RX_CSUM_ENABLED
2105 | FLAG_HAS_SMART_POWER_DOWN
2107 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2108 .flags2
= FLAG2_DISABLE_ASPM_L0S
,
2110 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2111 .get_variants
= e1000_get_variants_82571
,
2112 .mac_ops
= &e82571_mac_ops
,
2113 .phy_ops
= &e82_phy_ops_bm
,
2114 .nvm_ops
= &e82571_nvm_ops
,