sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / irda / au1k_ir.c
bloba3d696a9456a10a9d4f659cc70ad1982f2a7e58d
1 /*
2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/interrupt.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
32 #include <asm/irq.h>
33 #include <asm/io.h>
34 #include <asm/au1000.h>
35 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36 #include <asm/pb1000.h>
37 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38 #include <asm/db1x00.h>
39 #include <asm/mach-db1x00/bcsr.h>
40 #else
41 #error au1k_ir: unsupported board
42 #endif
44 #include <net/irda/irda.h>
45 #include <net/irda/irmod.h>
46 #include <net/irda/wrapper.h>
47 #include <net/irda/irda_device.h>
48 #include "au1000_ircc.h"
50 static int au1k_irda_net_init(struct net_device *);
51 static int au1k_irda_start(struct net_device *);
52 static int au1k_irda_stop(struct net_device *dev);
53 static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
54 static int au1k_irda_rx(struct net_device *);
55 static void au1k_irda_interrupt(int, void *);
56 static void au1k_tx_timeout(struct net_device *);
57 static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
58 static int au1k_irda_set_speed(struct net_device *dev, int speed);
60 static void *dma_alloc(size_t, dma_addr_t *);
61 static void dma_free(void *, size_t);
63 static int qos_mtt_bits = 0x07; /* 1 ms or more */
64 static struct net_device *ir_devs[NUM_IR_IFF];
65 static char version[] __devinitdata =
66 "au1k_ircc:1.2 ppopov@mvista.com\n";
68 #define RUN_AT(x) (jiffies + (x))
70 static DEFINE_SPINLOCK(ir_lock);
73 * IrDA peripheral bug. You have to read the register
74 * twice to get the right value.
76 u32 read_ir_reg(u32 addr)
78 readl(addr);
79 return readl(addr);
84 * Buffer allocation/deallocation routines. The buffer descriptor returned
85 * has the virtual and dma address of a buffer suitable for
86 * both, receive and transmit operations.
88 static db_dest_t *GetFreeDB(struct au1k_private *aup)
90 db_dest_t *pDB;
91 pDB = aup->pDBfree;
93 if (pDB) {
94 aup->pDBfree = pDB->pnext;
96 return pDB;
99 static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
101 db_dest_t *pDBfree = aup->pDBfree;
102 if (pDBfree)
103 pDBfree->pnext = pDB;
104 aup->pDBfree = pDB;
109 DMA memory allocation, derived from pci_alloc_consistent.
110 However, the Au1000 data cache is coherent (when programmed
111 so), therefore we return KSEG0 address, not KSEG1.
113 static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
115 void *ret;
116 int gfp = GFP_ATOMIC | GFP_DMA;
118 ret = (void *) __get_free_pages(gfp, get_order(size));
120 if (ret != NULL) {
121 memset(ret, 0, size);
122 *dma_handle = virt_to_bus(ret);
123 ret = (void *)KSEG0ADDR(ret);
125 return ret;
129 static void dma_free(void *vaddr, size_t size)
131 vaddr = (void *)KSEG0ADDR(vaddr);
132 free_pages((unsigned long) vaddr, get_order(size));
136 static void
137 setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
139 int i;
140 for (i=0; i<NUM_IR_DESC; i++) {
141 aup->rx_ring[i] = (volatile ring_dest_t *)
142 (rx_base + sizeof(ring_dest_t)*i);
144 for (i=0; i<NUM_IR_DESC; i++) {
145 aup->tx_ring[i] = (volatile ring_dest_t *)
146 (tx_base + sizeof(ring_dest_t)*i);
150 static int au1k_irda_init(void)
152 static unsigned version_printed = 0;
153 struct au1k_private *aup;
154 struct net_device *dev;
155 int err;
157 if (version_printed++ == 0) printk(version);
159 dev = alloc_irdadev(sizeof(struct au1k_private));
160 if (!dev)
161 return -ENOMEM;
163 dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
164 err = au1k_irda_net_init(dev);
165 if (err)
166 goto out;
167 err = register_netdev(dev);
168 if (err)
169 goto out1;
170 ir_devs[0] = dev;
171 printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
172 return 0;
174 out1:
175 aup = netdev_priv(dev);
176 dma_free((void *)aup->db[0].vaddr,
177 MAX_BUF_SIZE * 2*NUM_IR_DESC);
178 dma_free((void *)aup->rx_ring[0],
179 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
180 kfree(aup->rx_buff.head);
181 out:
182 free_netdev(dev);
183 return err;
186 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
188 io->head = kmalloc(size, GFP_KERNEL);
189 if (io->head != NULL) {
190 io->truesize = size;
191 io->in_frame = FALSE;
192 io->state = OUTSIDE_FRAME;
193 io->data = io->head;
195 return io->head ? 0 : -ENOMEM;
198 static const struct net_device_ops au1k_irda_netdev_ops = {
199 .ndo_open = au1k_irda_start,
200 .ndo_stop = au1k_irda_stop,
201 .ndo_start_xmit = au1k_irda_hard_xmit,
202 .ndo_tx_timeout = au1k_tx_timeout,
203 .ndo_do_ioctl = au1k_irda_ioctl,
206 static int au1k_irda_net_init(struct net_device *dev)
208 struct au1k_private *aup = netdev_priv(dev);
209 int i, retval = 0, err;
210 db_dest_t *pDB, *pDBfree;
211 dma_addr_t temp;
213 err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
214 if (err)
215 goto out1;
217 dev->netdev_ops = &au1k_irda_netdev_ops;
219 irda_init_max_qos_capabilies(&aup->qos);
221 /* The only value we must override it the baudrate */
222 aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
223 IR_115200|IR_576000 |(IR_4000000 << 8);
225 aup->qos.min_turn_time.bits = qos_mtt_bits;
226 irda_qos_bits_to_value(&aup->qos);
228 retval = -ENOMEM;
230 /* Tx ring follows rx ring + 512 bytes */
231 /* we need a 1k aligned buffer */
232 aup->rx_ring[0] = (ring_dest_t *)
233 dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
234 if (!aup->rx_ring[0])
235 goto out2;
237 /* allocate the data buffers */
238 aup->db[0].vaddr =
239 (void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
240 if (!aup->db[0].vaddr)
241 goto out3;
243 setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
245 pDBfree = NULL;
246 pDB = aup->db;
247 for (i=0; i<(2*NUM_IR_DESC); i++) {
248 pDB->pnext = pDBfree;
249 pDBfree = pDB;
250 pDB->vaddr =
251 (u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
252 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
253 pDB++;
255 aup->pDBfree = pDBfree;
257 /* attach a data buffer to each descriptor */
258 for (i=0; i<NUM_IR_DESC; i++) {
259 pDB = GetFreeDB(aup);
260 if (!pDB) goto out;
261 aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
262 aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
263 aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
264 aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
265 aup->rx_db_inuse[i] = pDB;
267 for (i=0; i<NUM_IR_DESC; i++) {
268 pDB = GetFreeDB(aup);
269 if (!pDB) goto out;
270 aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
271 aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
272 aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
273 aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
274 aup->tx_ring[i]->count_0 = 0;
275 aup->tx_ring[i]->count_1 = 0;
276 aup->tx_ring[i]->flags = 0;
277 aup->tx_db_inuse[i] = pDB;
280 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
281 /* power on */
282 bcsr_mod(BCSR_RESETS, BCSR_RESETS_IRDA_MODE_MASK,
283 BCSR_RESETS_IRDA_MODE_FULL);
284 #endif
286 return 0;
288 out3:
289 dma_free((void *)aup->rx_ring[0],
290 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
291 out2:
292 kfree(aup->rx_buff.head);
293 out1:
294 printk(KERN_ERR "au1k_init_module failed. Returns %d\n", retval);
295 return retval;
299 static int au1k_init(struct net_device *dev)
301 struct au1k_private *aup = netdev_priv(dev);
302 int i;
303 u32 control;
304 u32 ring_address;
306 /* bring the device out of reset */
307 control = 0xe; /* coherent, clock enable, one half system clock */
309 #ifndef CONFIG_CPU_LITTLE_ENDIAN
310 control |= 1;
311 #endif
312 aup->tx_head = 0;
313 aup->tx_tail = 0;
314 aup->rx_head = 0;
316 for (i=0; i<NUM_IR_DESC; i++) {
317 aup->rx_ring[i]->flags = AU_OWN;
320 writel(control, IR_INTERFACE_CONFIG);
321 au_sync_delay(10);
323 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
324 au_sync_delay(1);
326 writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
328 ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
329 writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
330 writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
332 writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
334 writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
335 writel(0, IR_RING_ADDR_CMPR);
337 au1k_irda_set_speed(dev, 9600);
338 return 0;
341 static int au1k_irda_start(struct net_device *dev)
343 int retval;
344 char hwname[32];
345 struct au1k_private *aup = netdev_priv(dev);
347 if ((retval = au1k_init(dev))) {
348 printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
349 return retval;
352 if ((retval = request_irq(AU1000_IRDA_TX_INT, au1k_irda_interrupt,
353 0, dev->name, dev))) {
354 printk(KERN_ERR "%s: unable to get IRQ %d\n",
355 dev->name, dev->irq);
356 return retval;
358 if ((retval = request_irq(AU1000_IRDA_RX_INT, au1k_irda_interrupt,
359 0, dev->name, dev))) {
360 free_irq(AU1000_IRDA_TX_INT, dev);
361 printk(KERN_ERR "%s: unable to get IRQ %d\n",
362 dev->name, dev->irq);
363 return retval;
366 /* Give self a hardware name */
367 sprintf(hwname, "Au1000 SIR/FIR");
368 aup->irlap = irlap_open(dev, &aup->qos, hwname);
369 netif_start_queue(dev);
371 writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
373 aup->timer.expires = RUN_AT((3*HZ));
374 aup->timer.data = (unsigned long)dev;
375 return 0;
378 static int au1k_irda_stop(struct net_device *dev)
380 struct au1k_private *aup = netdev_priv(dev);
382 /* disable interrupts */
383 writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
384 writel(0, IR_CONFIG_1);
385 writel(0, IR_INTERFACE_CONFIG); /* disable clock */
386 au_sync();
388 if (aup->irlap) {
389 irlap_close(aup->irlap);
390 aup->irlap = NULL;
393 netif_stop_queue(dev);
394 del_timer(&aup->timer);
396 /* disable the interrupt */
397 free_irq(AU1000_IRDA_TX_INT, dev);
398 free_irq(AU1000_IRDA_RX_INT, dev);
399 return 0;
402 static void __exit au1k_irda_exit(void)
404 struct net_device *dev = ir_devs[0];
405 struct au1k_private *aup = netdev_priv(dev);
407 unregister_netdev(dev);
409 dma_free((void *)aup->db[0].vaddr,
410 MAX_BUF_SIZE * 2*NUM_IR_DESC);
411 dma_free((void *)aup->rx_ring[0],
412 2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
413 kfree(aup->rx_buff.head);
414 free_netdev(dev);
418 static inline void
419 update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
421 struct au1k_private *aup = netdev_priv(dev);
422 struct net_device_stats *ps = &aup->stats;
424 ps->tx_packets++;
425 ps->tx_bytes += pkt_len;
427 if (status & IR_TX_ERROR) {
428 ps->tx_errors++;
429 ps->tx_aborted_errors++;
434 static void au1k_tx_ack(struct net_device *dev)
436 struct au1k_private *aup = netdev_priv(dev);
437 volatile ring_dest_t *ptxd;
439 ptxd = aup->tx_ring[aup->tx_tail];
440 while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
441 update_tx_stats(dev, ptxd->flags,
442 ptxd->count_1<<8 | ptxd->count_0);
443 ptxd->count_0 = 0;
444 ptxd->count_1 = 0;
445 au_sync();
447 aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
448 ptxd = aup->tx_ring[aup->tx_tail];
450 if (aup->tx_full) {
451 aup->tx_full = 0;
452 netif_wake_queue(dev);
456 if (aup->tx_tail == aup->tx_head) {
457 if (aup->newspeed) {
458 au1k_irda_set_speed(dev, aup->newspeed);
459 aup->newspeed = 0;
461 else {
462 writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
463 IR_CONFIG_1);
464 au_sync();
465 writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
466 IR_CONFIG_1);
467 writel(0, IR_RING_PROMPT);
468 au_sync();
475 * Au1000 transmit routine.
477 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
479 struct au1k_private *aup = netdev_priv(dev);
480 int speed = irda_get_next_speed(skb);
481 volatile ring_dest_t *ptxd;
482 u32 len;
484 u32 flags;
485 db_dest_t *pDB;
487 if (speed != aup->speed && speed != -1) {
488 aup->newspeed = speed;
491 if ((skb->len == 0) && (aup->newspeed)) {
492 if (aup->tx_tail == aup->tx_head) {
493 au1k_irda_set_speed(dev, speed);
494 aup->newspeed = 0;
496 dev_kfree_skb(skb);
497 return NETDEV_TX_OK;
500 ptxd = aup->tx_ring[aup->tx_head];
501 flags = ptxd->flags;
503 if (flags & AU_OWN) {
504 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
505 netif_stop_queue(dev);
506 aup->tx_full = 1;
507 return NETDEV_TX_BUSY;
509 else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
510 printk(KERN_DEBUG "%s: tx_full\n", dev->name);
511 netif_stop_queue(dev);
512 aup->tx_full = 1;
513 return NETDEV_TX_BUSY;
516 pDB = aup->tx_db_inuse[aup->tx_head];
518 #if 0
519 if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
520 printk("tx warning: rx byte cnt %x\n",
521 read_ir_reg(IR_RX_BYTE_CNT));
523 #endif
525 if (aup->speed == 4000000) {
526 /* FIR */
527 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
528 ptxd->count_0 = skb->len & 0xff;
529 ptxd->count_1 = (skb->len >> 8) & 0xff;
532 else {
533 /* SIR */
534 len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
535 ptxd->count_0 = len & 0xff;
536 ptxd->count_1 = (len >> 8) & 0xff;
537 ptxd->flags |= IR_DIS_CRC;
538 au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
540 ptxd->flags |= AU_OWN;
541 au_sync();
543 writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
544 writel(0, IR_RING_PROMPT);
545 au_sync();
547 dev_kfree_skb(skb);
548 aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
549 return NETDEV_TX_OK;
553 static inline void
554 update_rx_stats(struct net_device *dev, u32 status, u32 count)
556 struct au1k_private *aup = netdev_priv(dev);
557 struct net_device_stats *ps = &aup->stats;
559 ps->rx_packets++;
561 if (status & IR_RX_ERROR) {
562 ps->rx_errors++;
563 if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
564 ps->rx_missed_errors++;
565 if (status & IR_MAX_LEN)
566 ps->rx_length_errors++;
567 if (status & IR_CRC_ERROR)
568 ps->rx_crc_errors++;
570 else
571 ps->rx_bytes += count;
575 * Au1000 receive routine.
577 static int au1k_irda_rx(struct net_device *dev)
579 struct au1k_private *aup = netdev_priv(dev);
580 struct sk_buff *skb;
581 volatile ring_dest_t *prxd;
582 u32 flags, count;
583 db_dest_t *pDB;
585 prxd = aup->rx_ring[aup->rx_head];
586 flags = prxd->flags;
588 while (!(flags & AU_OWN)) {
589 pDB = aup->rx_db_inuse[aup->rx_head];
590 count = prxd->count_1<<8 | prxd->count_0;
591 if (!(flags & IR_RX_ERROR)) {
592 /* good frame */
593 update_rx_stats(dev, flags, count);
594 skb=alloc_skb(count+1,GFP_ATOMIC);
595 if (skb == NULL) {
596 aup->netdev->stats.rx_dropped++;
597 continue;
599 skb_reserve(skb, 1);
600 if (aup->speed == 4000000)
601 skb_put(skb, count);
602 else
603 skb_put(skb, count-2);
604 skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
605 skb->dev = dev;
606 skb_reset_mac_header(skb);
607 skb->protocol = htons(ETH_P_IRDA);
608 netif_rx(skb);
609 prxd->count_0 = 0;
610 prxd->count_1 = 0;
612 prxd->flags |= AU_OWN;
613 aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
614 writel(0, IR_RING_PROMPT);
615 au_sync();
617 /* next descriptor */
618 prxd = aup->rx_ring[aup->rx_head];
619 flags = prxd->flags;
622 return 0;
626 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
628 struct net_device *dev = dev_id;
630 writel(0, IR_INT_CLEAR); /* ack irda interrupts */
632 au1k_irda_rx(dev);
633 au1k_tx_ack(dev);
635 return IRQ_HANDLED;
640 * The Tx ring has been full longer than the watchdog timeout
641 * value. The transmitter must be hung?
643 static void au1k_tx_timeout(struct net_device *dev)
645 u32 speed;
646 struct au1k_private *aup = netdev_priv(dev);
648 printk(KERN_ERR "%s: tx timeout\n", dev->name);
649 speed = aup->speed;
650 aup->speed = 0;
651 au1k_irda_set_speed(dev, speed);
652 aup->tx_full = 0;
653 netif_wake_queue(dev);
658 * Set the IrDA communications speed.
660 static int
661 au1k_irda_set_speed(struct net_device *dev, int speed)
663 unsigned long flags;
664 struct au1k_private *aup = netdev_priv(dev);
665 u32 control;
666 int ret = 0, timeout = 10, i;
667 volatile ring_dest_t *ptxd;
668 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
669 unsigned long irda_resets;
670 #endif
672 if (speed == aup->speed)
673 return ret;
675 spin_lock_irqsave(&ir_lock, flags);
677 /* disable PHY first */
678 writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
680 /* disable RX/TX */
681 writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
682 IR_CONFIG_1);
683 au_sync_delay(1);
684 while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
685 mdelay(1);
686 if (!timeout--) {
687 printk(KERN_ERR "%s: rx/tx disable timeout\n",
688 dev->name);
689 break;
693 /* disable DMA */
694 writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
695 au_sync_delay(1);
698 * After we disable tx/rx. the index pointers
699 * go back to zero.
701 aup->tx_head = aup->tx_tail = aup->rx_head = 0;
702 for (i=0; i<NUM_IR_DESC; i++) {
703 ptxd = aup->tx_ring[i];
704 ptxd->flags = 0;
705 ptxd->count_0 = 0;
706 ptxd->count_1 = 0;
709 for (i=0; i<NUM_IR_DESC; i++) {
710 ptxd = aup->rx_ring[i];
711 ptxd->count_0 = 0;
712 ptxd->count_1 = 0;
713 ptxd->flags = AU_OWN;
716 if (speed == 4000000) {
717 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
718 bcsr_mod(BCSR_RESETS, 0, BCSR_RESETS_FIR_SEL);
719 #else /* Pb1000 and Pb1100 */
720 writel(1<<13, CPLD_AUX1);
721 #endif
723 else {
724 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
725 bcsr_mod(BCSR_RESETS, BCSR_RESETS_FIR_SEL, 0);
726 #else /* Pb1000 and Pb1100 */
727 writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
728 #endif
731 switch (speed) {
732 case 9600:
733 writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
734 writel(IR_SIR_MODE, IR_CONFIG_1);
735 break;
736 case 19200:
737 writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
738 writel(IR_SIR_MODE, IR_CONFIG_1);
739 break;
740 case 38400:
741 writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
742 writel(IR_SIR_MODE, IR_CONFIG_1);
743 break;
744 case 57600:
745 writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
746 writel(IR_SIR_MODE, IR_CONFIG_1);
747 break;
748 case 115200:
749 writel(12<<5, IR_WRITE_PHY_CONFIG);
750 writel(IR_SIR_MODE, IR_CONFIG_1);
751 break;
752 case 4000000:
753 writel(0xF, IR_WRITE_PHY_CONFIG);
754 writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
755 break;
756 default:
757 printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
758 ret = -EINVAL;
759 break;
762 aup->speed = speed;
763 writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
764 au_sync();
766 control = read_ir_reg(IR_ENABLE);
767 writel(0, IR_RING_PROMPT);
768 au_sync();
770 if (control & (1<<14)) {
771 printk(KERN_ERR "%s: configuration error\n", dev->name);
773 else {
774 if (control & (1<<11))
775 printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
776 if (control & (1<<12))
777 printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
778 if (control & (1<<13))
779 printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
780 if (control & (1<<10))
781 printk(KERN_DEBUG "%s TX enabled\n", dev->name);
782 if (control & (1<<9))
783 printk(KERN_DEBUG "%s RX enabled\n", dev->name);
786 spin_unlock_irqrestore(&ir_lock, flags);
787 return ret;
790 static int
791 au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
793 struct if_irda_req *rq = (struct if_irda_req *)ifreq;
794 struct au1k_private *aup = netdev_priv(dev);
795 int ret = -EOPNOTSUPP;
797 switch (cmd) {
798 case SIOCSBANDWIDTH:
799 if (capable(CAP_NET_ADMIN)) {
801 * We are unable to set the speed if the
802 * device is not running.
804 if (aup->open)
805 ret = au1k_irda_set_speed(dev,
806 rq->ifr_baudrate);
807 else {
808 printk(KERN_ERR "%s ioctl: !netif_running\n",
809 dev->name);
810 ret = 0;
813 break;
815 case SIOCSMEDIABUSY:
816 ret = -EPERM;
817 if (capable(CAP_NET_ADMIN)) {
818 irda_device_set_media_busy(dev, TRUE);
819 ret = 0;
821 break;
823 case SIOCGRECEIVING:
824 rq->ifr_receiving = 0;
825 break;
826 default:
827 break;
829 return ret;
832 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
833 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
835 module_init(au1k_irda_init);
836 module_exit(au1k_irda_exit);