1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
49 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
50 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
);
51 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
);
52 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
);
53 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
);
54 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
55 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
);
56 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
);
57 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
58 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
59 u16 words
, u16
*data
);
60 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
61 u16 words
, u16
*data
);
62 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
66 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
67 * @hw: pointer to hardware structure
69 * Starts the hardware by filling the bus info structure and media type, clears
70 * all on chip counters, initializes receive address registers, multicast
71 * table, VLAN filter table, calls routine to set up link and flow control
72 * settings, and leaves transmit and receive units disabled and uninitialized
74 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
78 /* Set the media type */
79 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
81 /* Identify the PHY */
82 hw
->phy
.ops
.identify(hw
);
84 /* Clear the VLAN filter table */
85 hw
->mac
.ops
.clear_vfta(hw
);
87 /* Clear statistics registers */
88 hw
->mac
.ops
.clear_hw_cntrs(hw
);
90 /* Set No Snoop Disable */
91 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
92 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
93 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
94 IXGBE_WRITE_FLUSH(hw
);
96 /* Setup flow control */
97 ixgbe_setup_fc(hw
, 0);
99 /* Clear adapter stopped flag */
100 hw
->adapter_stopped
= false;
106 * ixgbe_start_hw_gen2 - Init sequence for common device family
107 * @hw: pointer to hw structure
109 * Performs the init sequence common to the second generation
111 * Devices in the second generation:
115 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
120 /* Clear the rate limiters */
121 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
122 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
123 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
125 IXGBE_WRITE_FLUSH(hw
);
127 /* Disable relaxed ordering */
128 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
129 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
));
130 regval
&= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN
;
131 IXGBE_WRITE_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
), regval
);
134 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
135 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_RXCTRL(i
));
136 regval
&= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN
|
137 IXGBE_DCA_RXCTRL_DESC_HSRO_EN
);
138 IXGBE_WRITE_REG(hw
, IXGBE_DCA_RXCTRL(i
), regval
);
145 * ixgbe_init_hw_generic - Generic hardware initialization
146 * @hw: pointer to hardware structure
148 * Initialize the hardware by resetting the hardware, filling the bus info
149 * structure and media type, clears all on chip counters, initializes receive
150 * address registers, multicast table, VLAN filter table, calls routine to set
151 * up link and flow control settings, and leaves transmit and receive units
152 * disabled and uninitialized
154 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
158 /* Reset the hardware */
159 status
= hw
->mac
.ops
.reset_hw(hw
);
163 status
= hw
->mac
.ops
.start_hw(hw
);
170 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
171 * @hw: pointer to hardware structure
173 * Clears all hardware statistics counters by reading them from the hardware
174 * Statistics counters are clear on read.
176 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
180 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
181 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
182 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
183 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
184 for (i
= 0; i
< 8; i
++)
185 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
187 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
188 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
189 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
190 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
191 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
192 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
193 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
194 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
196 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
197 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
200 for (i
= 0; i
< 8; i
++) {
201 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
202 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
203 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
204 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
205 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
207 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
208 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
211 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
212 for (i
= 0; i
< 8; i
++)
213 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
214 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
215 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
216 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
217 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
218 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
219 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
220 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
221 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
222 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
223 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
224 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
225 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
226 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
227 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
228 for (i
= 0; i
< 8; i
++)
229 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
230 IXGBE_READ_REG(hw
, IXGBE_RUC
);
231 IXGBE_READ_REG(hw
, IXGBE_RFC
);
232 IXGBE_READ_REG(hw
, IXGBE_ROC
);
233 IXGBE_READ_REG(hw
, IXGBE_RJC
);
234 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
235 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
236 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
237 IXGBE_READ_REG(hw
, IXGBE_TORL
);
238 IXGBE_READ_REG(hw
, IXGBE_TORH
);
239 IXGBE_READ_REG(hw
, IXGBE_TPR
);
240 IXGBE_READ_REG(hw
, IXGBE_TPT
);
241 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
242 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
243 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
244 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
245 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
246 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
247 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
248 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
249 for (i
= 0; i
< 16; i
++) {
250 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
251 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
252 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
253 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
254 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
255 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
256 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
257 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
259 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
260 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
264 if (hw
->mac
.type
== ixgbe_mac_X540
) {
266 hw
->phy
.ops
.identify(hw
);
267 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECL
, &i
);
268 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_PCRC8ECH
, &i
);
269 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECL
, &i
);
270 hw
->phy
.ops
.read_reg(hw
, 0x3, IXGBE_LDPCECH
, &i
);
277 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
278 * @hw: pointer to hardware structure
279 * @pba_num: stores the part number string from the EEPROM
280 * @pba_num_size: part number string buffer length
282 * Reads the part number string from the EEPROM.
284 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
293 if (pba_num
== NULL
) {
294 hw_dbg(hw
, "PBA string buffer was null\n");
295 return IXGBE_ERR_INVALID_ARGUMENT
;
298 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
300 hw_dbg(hw
, "NVM Read Error\n");
304 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
306 hw_dbg(hw
, "NVM Read Error\n");
311 * if data is not ptr guard the PBA must be in legacy format which
312 * means pba_ptr is actually our second data word for the PBA number
313 * and we can decode it into an ascii string
315 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
316 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
318 /* we will need 11 characters to store the PBA */
319 if (pba_num_size
< 11) {
320 hw_dbg(hw
, "PBA string buffer too small\n");
321 return IXGBE_ERR_NO_SPACE
;
324 /* extract hex string from data and pba_ptr */
325 pba_num
[0] = (data
>> 12) & 0xF;
326 pba_num
[1] = (data
>> 8) & 0xF;
327 pba_num
[2] = (data
>> 4) & 0xF;
328 pba_num
[3] = data
& 0xF;
329 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
330 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
333 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
334 pba_num
[9] = pba_ptr
& 0xF;
336 /* put a null character on the end of our string */
339 /* switch all the data but the '-' to hex char */
340 for (offset
= 0; offset
< 10; offset
++) {
341 if (pba_num
[offset
] < 0xA)
342 pba_num
[offset
] += '0';
343 else if (pba_num
[offset
] < 0x10)
344 pba_num
[offset
] += 'A' - 0xA;
350 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
352 hw_dbg(hw
, "NVM Read Error\n");
356 if (length
== 0xFFFF || length
== 0) {
357 hw_dbg(hw
, "NVM PBA number section invalid length\n");
358 return IXGBE_ERR_PBA_SECTION
;
361 /* check if pba_num buffer is big enough */
362 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
363 hw_dbg(hw
, "PBA string buffer too small\n");
364 return IXGBE_ERR_NO_SPACE
;
367 /* trim pba length from start of string */
371 for (offset
= 0; offset
< length
; offset
++) {
372 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
374 hw_dbg(hw
, "NVM Read Error\n");
377 pba_num
[offset
* 2] = (u8
)(data
>> 8);
378 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
380 pba_num
[offset
* 2] = '\0';
386 * ixgbe_get_mac_addr_generic - Generic get MAC address
387 * @hw: pointer to hardware structure
388 * @mac_addr: Adapter MAC address
390 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
391 * A reset of the adapter must be performed prior to calling this function
392 * in order for the MAC address to have been loaded from the EEPROM into RAR0
394 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
400 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
401 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
403 for (i
= 0; i
< 4; i
++)
404 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
406 for (i
= 0; i
< 2; i
++)
407 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
413 * ixgbe_get_bus_info_generic - Generic set PCI bus info
414 * @hw: pointer to hardware structure
416 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
418 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
420 struct ixgbe_adapter
*adapter
= hw
->back
;
421 struct ixgbe_mac_info
*mac
= &hw
->mac
;
424 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
426 /* Get the negotiated link width and speed from PCI config space */
427 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
430 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
431 case IXGBE_PCI_LINK_WIDTH_1
:
432 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
434 case IXGBE_PCI_LINK_WIDTH_2
:
435 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
437 case IXGBE_PCI_LINK_WIDTH_4
:
438 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
440 case IXGBE_PCI_LINK_WIDTH_8
:
441 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
444 hw
->bus
.width
= ixgbe_bus_width_unknown
;
448 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
449 case IXGBE_PCI_LINK_SPEED_2500
:
450 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
452 case IXGBE_PCI_LINK_SPEED_5000
:
453 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
456 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
460 mac
->ops
.set_lan_id(hw
);
466 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
467 * @hw: pointer to the HW structure
469 * Determines the LAN function id by reading memory-mapped registers
470 * and swaps the port value if requested.
472 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
474 struct ixgbe_bus_info
*bus
= &hw
->bus
;
477 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
478 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
479 bus
->lan_id
= bus
->func
;
481 /* check for a port swap */
482 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
483 if (reg
& IXGBE_FACTPS_LFS
)
488 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
489 * @hw: pointer to hardware structure
491 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
492 * disables transmit and receive units. The adapter_stopped flag is used by
493 * the shared code and drivers to determine if the adapter is in a stopped
494 * state and should not touch the hardware.
496 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
498 u32 number_of_queues
;
503 * Set the adapter_stopped flag so other driver functions stop touching
506 hw
->adapter_stopped
= true;
508 /* Disable the receive unit */
509 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
510 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
511 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
512 IXGBE_WRITE_FLUSH(hw
);
513 usleep_range(2000, 4000);
515 /* Clear interrupt mask to stop from interrupts being generated */
516 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
518 /* Clear any pending interrupts */
519 IXGBE_READ_REG(hw
, IXGBE_EICR
);
521 /* Disable the transmit unit. Each queue must be disabled. */
522 number_of_queues
= hw
->mac
.max_tx_queues
;
523 for (i
= 0; i
< number_of_queues
; i
++) {
524 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
525 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
526 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
527 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
532 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
533 * access and verify no pending requests
535 ixgbe_disable_pcie_master(hw
);
541 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
542 * @hw: pointer to hardware structure
543 * @index: led number to turn on
545 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
547 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
549 /* To turn on the LED, set mode to ON. */
550 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
551 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
552 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
553 IXGBE_WRITE_FLUSH(hw
);
559 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
560 * @hw: pointer to hardware structure
561 * @index: led number to turn off
563 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
565 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
567 /* To turn off the LED, set mode to OFF. */
568 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
569 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
570 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
571 IXGBE_WRITE_FLUSH(hw
);
577 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
578 * @hw: pointer to hardware structure
580 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
581 * ixgbe_hw struct in order to set up EEPROM access.
583 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
585 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
589 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
590 eeprom
->type
= ixgbe_eeprom_none
;
591 /* Set default semaphore delay to 10ms which is a well
593 eeprom
->semaphore_delay
= 10;
594 /* Clear EEPROM page size, it will be initialized as needed */
595 eeprom
->word_page_size
= 0;
598 * Check for EEPROM present first.
599 * If not present leave as none
601 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
602 if (eec
& IXGBE_EEC_PRES
) {
603 eeprom
->type
= ixgbe_eeprom_spi
;
606 * SPI EEPROM is assumed here. This code would need to
607 * change if a future EEPROM is not SPI.
609 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
610 IXGBE_EEC_SIZE_SHIFT
);
611 eeprom
->word_size
= 1 << (eeprom_size
+
612 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
615 if (eec
& IXGBE_EEC_ADDR_SIZE
)
616 eeprom
->address_bits
= 16;
618 eeprom
->address_bits
= 8;
619 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
620 "%d\n", eeprom
->type
, eeprom
->word_size
,
621 eeprom
->address_bits
);
628 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
629 * @hw: pointer to hardware structure
630 * @offset: offset within the EEPROM to write
631 * @words: number of words
632 * @data: 16 bit word(s) to write to EEPROM
634 * Reads 16 bit word(s) from EEPROM through bit-bang method
636 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
637 u16 words
, u16
*data
)
642 hw
->eeprom
.ops
.init_params(hw
);
645 status
= IXGBE_ERR_INVALID_ARGUMENT
;
649 if (offset
+ words
> hw
->eeprom
.word_size
) {
650 status
= IXGBE_ERR_EEPROM
;
655 * The EEPROM page size cannot be queried from the chip. We do lazy
656 * initialization. It is worth to do that when we write large buffer.
658 if ((hw
->eeprom
.word_page_size
== 0) &&
659 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
660 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
663 * We cannot hold synchronization semaphores for too long
664 * to avoid other entity starvation. However it is more efficient
665 * to read in bursts than synchronizing access for each word.
667 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
668 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
669 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
670 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
682 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
683 * @hw: pointer to hardware structure
684 * @offset: offset within the EEPROM to be written to
685 * @words: number of word(s)
686 * @data: 16 bit word(s) to be written to the EEPROM
688 * If ixgbe_eeprom_update_checksum is not called after this function, the
689 * EEPROM will most likely contain an invalid checksum.
691 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
692 u16 words
, u16
*data
)
698 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
700 /* Prepare the EEPROM for writing */
701 status
= ixgbe_acquire_eeprom(hw
);
704 if (ixgbe_ready_eeprom(hw
) != 0) {
705 ixgbe_release_eeprom(hw
);
706 status
= IXGBE_ERR_EEPROM
;
711 for (i
= 0; i
< words
; i
++) {
712 ixgbe_standby_eeprom(hw
);
714 /* Send the WRITE ENABLE command (8 bit opcode ) */
715 ixgbe_shift_out_eeprom_bits(hw
,
716 IXGBE_EEPROM_WREN_OPCODE_SPI
,
717 IXGBE_EEPROM_OPCODE_BITS
);
719 ixgbe_standby_eeprom(hw
);
722 * Some SPI eeproms use the 8th address bit embedded
725 if ((hw
->eeprom
.address_bits
== 8) &&
726 ((offset
+ i
) >= 128))
727 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
729 /* Send the Write command (8-bit opcode + addr) */
730 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
731 IXGBE_EEPROM_OPCODE_BITS
);
732 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
733 hw
->eeprom
.address_bits
);
735 page_size
= hw
->eeprom
.word_page_size
;
737 /* Send the data in burst via SPI*/
740 word
= (word
>> 8) | (word
<< 8);
741 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
746 /* do not wrap around page */
747 if (((offset
+ i
) & (page_size
- 1)) ==
750 } while (++i
< words
);
752 ixgbe_standby_eeprom(hw
);
753 usleep_range(10000, 20000);
755 /* Done with writing - release the EEPROM */
756 ixgbe_release_eeprom(hw
);
763 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
764 * @hw: pointer to hardware structure
765 * @offset: offset within the EEPROM to be written to
766 * @data: 16 bit word to be written to the EEPROM
768 * If ixgbe_eeprom_update_checksum is not called after this function, the
769 * EEPROM will most likely contain an invalid checksum.
771 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
775 hw
->eeprom
.ops
.init_params(hw
);
777 if (offset
>= hw
->eeprom
.word_size
) {
778 status
= IXGBE_ERR_EEPROM
;
782 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
789 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
790 * @hw: pointer to hardware structure
791 * @offset: offset within the EEPROM to be read
792 * @words: number of word(s)
793 * @data: read 16 bit words(s) from EEPROM
795 * Reads 16 bit word(s) from EEPROM through bit-bang method
797 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
798 u16 words
, u16
*data
)
803 hw
->eeprom
.ops
.init_params(hw
);
806 status
= IXGBE_ERR_INVALID_ARGUMENT
;
810 if (offset
+ words
> hw
->eeprom
.word_size
) {
811 status
= IXGBE_ERR_EEPROM
;
816 * We cannot hold synchronization semaphores for too long
817 * to avoid other entity starvation. However it is more efficient
818 * to read in bursts than synchronizing access for each word.
820 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
821 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
822 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
824 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
836 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
837 * @hw: pointer to hardware structure
838 * @offset: offset within the EEPROM to be read
839 * @words: number of word(s)
840 * @data: read 16 bit word(s) from EEPROM
842 * Reads 16 bit word(s) from EEPROM through bit-bang method
844 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
845 u16 words
, u16
*data
)
849 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
852 /* Prepare the EEPROM for reading */
853 status
= ixgbe_acquire_eeprom(hw
);
856 if (ixgbe_ready_eeprom(hw
) != 0) {
857 ixgbe_release_eeprom(hw
);
858 status
= IXGBE_ERR_EEPROM
;
863 for (i
= 0; i
< words
; i
++) {
864 ixgbe_standby_eeprom(hw
);
866 * Some SPI eeproms use the 8th address bit embedded
869 if ((hw
->eeprom
.address_bits
== 8) &&
870 ((offset
+ i
) >= 128))
871 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
873 /* Send the READ command (opcode + addr) */
874 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
875 IXGBE_EEPROM_OPCODE_BITS
);
876 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
877 hw
->eeprom
.address_bits
);
880 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
881 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
884 /* End this read operation */
885 ixgbe_release_eeprom(hw
);
892 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
893 * @hw: pointer to hardware structure
894 * @offset: offset within the EEPROM to be read
895 * @data: read 16 bit value from EEPROM
897 * Reads 16 bit value from EEPROM through bit-bang method
899 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
904 hw
->eeprom
.ops
.init_params(hw
);
906 if (offset
>= hw
->eeprom
.word_size
) {
907 status
= IXGBE_ERR_EEPROM
;
911 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
918 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
919 * @hw: pointer to hardware structure
920 * @offset: offset of word in the EEPROM to read
921 * @words: number of word(s)
922 * @data: 16 bit word(s) from the EEPROM
924 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
926 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
927 u16 words
, u16
*data
)
933 hw
->eeprom
.ops
.init_params(hw
);
936 status
= IXGBE_ERR_INVALID_ARGUMENT
;
940 if (offset
>= hw
->eeprom
.word_size
) {
941 status
= IXGBE_ERR_EEPROM
;
945 for (i
= 0; i
< words
; i
++) {
946 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) +
947 IXGBE_EEPROM_RW_REG_START
;
949 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
950 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
953 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
954 IXGBE_EEPROM_RW_REG_DATA
);
956 hw_dbg(hw
, "Eeprom read timed out\n");
965 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
966 * @hw: pointer to hardware structure
967 * @offset: offset within the EEPROM to be used as a scratch pad
969 * Discover EEPROM page size by writing marching data at given offset.
970 * This function is called only when we are writing a new large buffer
971 * at given offset so the data would be overwritten anyway.
973 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
976 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
980 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
983 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
984 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
985 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
986 hw
->eeprom
.word_page_size
= 0;
990 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
995 * When writing in burst more than the actual page size
996 * EEPROM address wraps around current page.
998 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1000 hw_dbg(hw
, "Detected EEPROM page size = %d words.",
1001 hw
->eeprom
.word_page_size
);
1007 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1008 * @hw: pointer to hardware structure
1009 * @offset: offset of word in the EEPROM to read
1010 * @data: word read from the EEPROM
1012 * Reads a 16 bit word from the EEPROM using the EERD register.
1014 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1016 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1020 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1021 * @hw: pointer to hardware structure
1022 * @offset: offset of word in the EEPROM to write
1023 * @words: number of words
1024 * @data: word(s) write to the EEPROM
1026 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1028 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1029 u16 words
, u16
*data
)
1035 hw
->eeprom
.ops
.init_params(hw
);
1038 status
= IXGBE_ERR_INVALID_ARGUMENT
;
1042 if (offset
>= hw
->eeprom
.word_size
) {
1043 status
= IXGBE_ERR_EEPROM
;
1047 for (i
= 0; i
< words
; i
++) {
1048 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1049 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1050 IXGBE_EEPROM_RW_REG_START
;
1052 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1054 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1058 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1060 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1062 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1072 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1073 * @hw: pointer to hardware structure
1074 * @offset: offset of word in the EEPROM to write
1075 * @data: word write to the EEPROM
1077 * Write a 16 bit word to the EEPROM using the EEWR register.
1079 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1081 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1085 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1086 * @hw: pointer to hardware structure
1087 * @ee_reg: EEPROM flag for polling
1089 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1090 * read or write is done respectively.
1092 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1096 s32 status
= IXGBE_ERR_EEPROM
;
1098 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1099 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1100 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1102 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1104 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1114 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1115 * @hw: pointer to hardware structure
1117 * Prepares EEPROM for access using bit-bang method. This function should
1118 * be called before issuing a command to the EEPROM.
1120 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1126 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1127 status
= IXGBE_ERR_SWFW_SYNC
;
1130 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1132 /* Request EEPROM Access */
1133 eec
|= IXGBE_EEC_REQ
;
1134 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1136 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1137 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1138 if (eec
& IXGBE_EEC_GNT
)
1143 /* Release if grant not acquired */
1144 if (!(eec
& IXGBE_EEC_GNT
)) {
1145 eec
&= ~IXGBE_EEC_REQ
;
1146 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1147 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1149 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1150 status
= IXGBE_ERR_EEPROM
;
1153 /* Setup EEPROM for Read/Write */
1155 /* Clear CS and SK */
1156 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1157 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1158 IXGBE_WRITE_FLUSH(hw
);
1166 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1167 * @hw: pointer to hardware structure
1169 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1171 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1173 s32 status
= IXGBE_ERR_EEPROM
;
1178 /* Get SMBI software semaphore between device drivers first */
1179 for (i
= 0; i
< timeout
; i
++) {
1181 * If the SMBI bit is 0 when we read it, then the bit will be
1182 * set and we have the semaphore
1184 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1185 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
1193 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore "
1196 * this release is particularly important because our attempts
1197 * above to get the semaphore may have succeeded, and if there
1198 * was a timeout, we should unconditionally clear the semaphore
1199 * bits to free the driver to make progress
1201 ixgbe_release_eeprom_semaphore(hw
);
1206 * If the SMBI bit is 0 when we read it, then the bit will be
1207 * set and we have the semaphore
1209 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1210 if (!(swsm
& IXGBE_SWSM_SMBI
))
1214 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1216 for (i
= 0; i
< timeout
; i
++) {
1217 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1219 /* Set the SW EEPROM semaphore bit to request access */
1220 swsm
|= IXGBE_SWSM_SWESMBI
;
1221 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1224 * If we set the bit successfully then we got the
1227 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1228 if (swsm
& IXGBE_SWSM_SWESMBI
)
1235 * Release semaphores and return error if SW EEPROM semaphore
1236 * was not granted because we don't have access to the EEPROM
1239 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore "
1241 ixgbe_release_eeprom_semaphore(hw
);
1242 status
= IXGBE_ERR_EEPROM
;
1245 hw_dbg(hw
, "Software semaphore SMBI between device drivers "
1253 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1254 * @hw: pointer to hardware structure
1256 * This function clears hardware semaphore bits.
1258 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1262 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1264 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1265 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1266 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1267 IXGBE_WRITE_FLUSH(hw
);
1271 * ixgbe_ready_eeprom - Polls for EEPROM ready
1272 * @hw: pointer to hardware structure
1274 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1281 * Read "Status Register" repeatedly until the LSB is cleared. The
1282 * EEPROM will signal that the command has been completed by clearing
1283 * bit 0 of the internal status register. If it's not cleared within
1284 * 5 milliseconds, then error out.
1286 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1287 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1288 IXGBE_EEPROM_OPCODE_BITS
);
1289 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1290 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1294 ixgbe_standby_eeprom(hw
);
1298 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1299 * devices (and only 0-5mSec on 5V devices)
1301 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1302 hw_dbg(hw
, "SPI EEPROM Status error\n");
1303 status
= IXGBE_ERR_EEPROM
;
1310 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1311 * @hw: pointer to hardware structure
1313 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1317 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1319 /* Toggle CS to flush commands */
1320 eec
|= IXGBE_EEC_CS
;
1321 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1322 IXGBE_WRITE_FLUSH(hw
);
1324 eec
&= ~IXGBE_EEC_CS
;
1325 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1326 IXGBE_WRITE_FLUSH(hw
);
1331 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1332 * @hw: pointer to hardware structure
1333 * @data: data to send to the EEPROM
1334 * @count: number of bits to shift out
1336 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1343 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1346 * Mask is used to shift "count" bits of "data" out to the EEPROM
1347 * one bit at a time. Determine the starting bit based on count
1349 mask
= 0x01 << (count
- 1);
1351 for (i
= 0; i
< count
; i
++) {
1353 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1354 * "1", and then raising and then lowering the clock (the SK
1355 * bit controls the clock input to the EEPROM). A "0" is
1356 * shifted out to the EEPROM by setting "DI" to "0" and then
1357 * raising and then lowering the clock.
1360 eec
|= IXGBE_EEC_DI
;
1362 eec
&= ~IXGBE_EEC_DI
;
1364 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1365 IXGBE_WRITE_FLUSH(hw
);
1369 ixgbe_raise_eeprom_clk(hw
, &eec
);
1370 ixgbe_lower_eeprom_clk(hw
, &eec
);
1373 * Shift mask to signify next bit of data to shift in to the
1379 /* We leave the "DI" bit set to "0" when we leave this routine. */
1380 eec
&= ~IXGBE_EEC_DI
;
1381 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1382 IXGBE_WRITE_FLUSH(hw
);
1386 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1387 * @hw: pointer to hardware structure
1389 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1396 * In order to read a register from the EEPROM, we need to shift
1397 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1398 * the clock input to the EEPROM (setting the SK bit), and then reading
1399 * the value of the "DO" bit. During this "shifting in" process the
1400 * "DI" bit should always be clear.
1402 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1404 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1406 for (i
= 0; i
< count
; i
++) {
1408 ixgbe_raise_eeprom_clk(hw
, &eec
);
1410 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1412 eec
&= ~(IXGBE_EEC_DI
);
1413 if (eec
& IXGBE_EEC_DO
)
1416 ixgbe_lower_eeprom_clk(hw
, &eec
);
1423 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1424 * @hw: pointer to hardware structure
1425 * @eec: EEC register's current value
1427 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1430 * Raise the clock input to the EEPROM
1431 * (setting the SK bit), then delay
1433 *eec
= *eec
| IXGBE_EEC_SK
;
1434 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1435 IXGBE_WRITE_FLUSH(hw
);
1440 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1441 * @hw: pointer to hardware structure
1442 * @eecd: EECD's current value
1444 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1447 * Lower the clock input to the EEPROM (clearing the SK bit), then
1450 *eec
= *eec
& ~IXGBE_EEC_SK
;
1451 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1452 IXGBE_WRITE_FLUSH(hw
);
1457 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1458 * @hw: pointer to hardware structure
1460 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1464 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1466 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1467 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1469 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1470 IXGBE_WRITE_FLUSH(hw
);
1474 /* Stop requesting EEPROM access */
1475 eec
&= ~IXGBE_EEC_REQ
;
1476 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1478 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1481 * Delay before attempt to obtain semaphore again to allow FW
1482 * access. semaphore_delay is in ms we need us for usleep_range
1484 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1485 hw
->eeprom
.semaphore_delay
* 2000);
1489 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1490 * @hw: pointer to hardware structure
1492 u16
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1501 /* Include 0x0-0x3F in the checksum */
1502 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1503 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1504 hw_dbg(hw
, "EEPROM read failed\n");
1510 /* Include all data from pointers except for the fw pointer */
1511 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1512 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1514 /* Make sure the pointer seems valid */
1515 if (pointer
!= 0xFFFF && pointer
!= 0) {
1516 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1518 if (length
!= 0xFFFF && length
!= 0) {
1519 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1520 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1527 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1533 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1534 * @hw: pointer to hardware structure
1535 * @checksum_val: calculated checksum
1537 * Performs checksum calculation and validates the EEPROM checksum. If the
1538 * caller does not need checksum_val, the value can be NULL.
1540 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1545 u16 read_checksum
= 0;
1548 * Read the first word from the EEPROM. If this times out or fails, do
1549 * not continue or we could be in for a very long wait while every
1552 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1555 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1557 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1560 * Verify read checksum from EEPROM is the same as
1561 * calculated checksum
1563 if (read_checksum
!= checksum
)
1564 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1566 /* If the user cares, return the calculated checksum */
1568 *checksum_val
= checksum
;
1570 hw_dbg(hw
, "EEPROM read failed\n");
1577 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1578 * @hw: pointer to hardware structure
1580 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1586 * Read the first word from the EEPROM. If this times out or fails, do
1587 * not continue or we could be in for a very long wait while every
1590 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1593 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1594 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1597 hw_dbg(hw
, "EEPROM read failed\n");
1604 * ixgbe_validate_mac_addr - Validate MAC address
1605 * @mac_addr: pointer to MAC address.
1607 * Tests a MAC address to ensure it is a valid Individual Address
1609 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1613 /* Make sure it is not a multicast address */
1614 if (IXGBE_IS_MULTICAST(mac_addr
))
1615 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1616 /* Not a broadcast address */
1617 else if (IXGBE_IS_BROADCAST(mac_addr
))
1618 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1619 /* Reject the zero address */
1620 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1621 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1622 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1628 * ixgbe_set_rar_generic - Set Rx address register
1629 * @hw: pointer to hardware structure
1630 * @index: Receive address register to write
1631 * @addr: Address to put into receive address register
1632 * @vmdq: VMDq "set" or "pool" index
1633 * @enable_addr: set flag that address is active
1635 * Puts an ethernet address into a receive address register.
1637 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1640 u32 rar_low
, rar_high
;
1641 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1643 /* Make sure we are using a valid rar index range */
1644 if (index
>= rar_entries
) {
1645 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1646 return IXGBE_ERR_INVALID_ARGUMENT
;
1649 /* setup VMDq pool selection before this RAR gets enabled */
1650 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1653 * HW expects these in little endian so we reverse the byte
1654 * order from network order (big endian) to little endian
1656 rar_low
= ((u32
)addr
[0] |
1657 ((u32
)addr
[1] << 8) |
1658 ((u32
)addr
[2] << 16) |
1659 ((u32
)addr
[3] << 24));
1661 * Some parts put the VMDq setting in the extra RAH bits,
1662 * so save everything except the lower 16 bits that hold part
1663 * of the address and the address valid bit.
1665 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1666 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1667 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1669 if (enable_addr
!= 0)
1670 rar_high
|= IXGBE_RAH_AV
;
1672 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1673 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1679 * ixgbe_clear_rar_generic - Remove Rx address register
1680 * @hw: pointer to hardware structure
1681 * @index: Receive address register to write
1683 * Clears an ethernet address from a receive address register.
1685 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1688 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1690 /* Make sure we are using a valid rar index range */
1691 if (index
>= rar_entries
) {
1692 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1693 return IXGBE_ERR_INVALID_ARGUMENT
;
1697 * Some parts put the VMDq setting in the extra RAH bits,
1698 * so save everything except the lower 16 bits that hold part
1699 * of the address and the address valid bit.
1701 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1702 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1704 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1705 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1707 /* clear VMDq pool/queue selection for this RAR */
1708 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1714 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1715 * @hw: pointer to hardware structure
1717 * Places the MAC address in receive address register 0 and clears the rest
1718 * of the receive address registers. Clears the multicast table. Assumes
1719 * the receiver is in reset when the routine is called.
1721 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1724 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1727 * If the current mac address is valid, assume it is a software override
1728 * to the permanent address.
1729 * Otherwise, use the permanent address from the eeprom.
1731 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1732 IXGBE_ERR_INVALID_MAC_ADDR
) {
1733 /* Get the MAC address from the RAR0 for later reference */
1734 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1736 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1738 /* Setup the receive address. */
1739 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1740 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1742 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1744 /* clear VMDq pool/queue selection for RAR 0 */
1745 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1747 hw
->addr_ctrl
.overflow_promisc
= 0;
1749 hw
->addr_ctrl
.rar_used_count
= 1;
1751 /* Zero out the other receive addresses. */
1752 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1753 for (i
= 1; i
< rar_entries
; i
++) {
1754 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1755 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1759 hw
->addr_ctrl
.mta_in_use
= 0;
1760 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1762 hw_dbg(hw
, " Clearing MTA\n");
1763 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1764 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1766 if (hw
->mac
.ops
.init_uta_tables
)
1767 hw
->mac
.ops
.init_uta_tables(hw
);
1773 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1774 * @hw: pointer to hardware structure
1775 * @mc_addr: the multicast address
1777 * Extracts the 12 bits, from a multicast address, to determine which
1778 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1779 * incoming rx multicast addresses, to determine the bit-vector to check in
1780 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1781 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1782 * to mc_filter_type.
1784 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1788 switch (hw
->mac
.mc_filter_type
) {
1789 case 0: /* use bits [47:36] of the address */
1790 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1792 case 1: /* use bits [46:35] of the address */
1793 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1795 case 2: /* use bits [45:34] of the address */
1796 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1798 case 3: /* use bits [43:32] of the address */
1799 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1801 default: /* Invalid mc_filter_type */
1802 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1806 /* vector can only be 12-bits or boundary will be exceeded */
1812 * ixgbe_set_mta - Set bit-vector in multicast table
1813 * @hw: pointer to hardware structure
1814 * @hash_value: Multicast address hash value
1816 * Sets the bit-vector in the multicast table.
1818 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1824 hw
->addr_ctrl
.mta_in_use
++;
1826 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1827 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1830 * The MTA is a register array of 128 32-bit registers. It is treated
1831 * like an array of 4096 bits. We want to set bit
1832 * BitArray[vector_value]. So we figure out what register the bit is
1833 * in, read it, OR in the new bit, then write back the new value. The
1834 * register is determined by the upper 7 bits of the vector value and
1835 * the bit within that register are determined by the lower 5 bits of
1838 vector_reg
= (vector
>> 5) & 0x7F;
1839 vector_bit
= vector
& 0x1F;
1840 hw
->mac
.mta_shadow
[vector_reg
] |= (1 << vector_bit
);
1844 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1845 * @hw: pointer to hardware structure
1846 * @netdev: pointer to net device structure
1848 * The given list replaces any existing list. Clears the MC addrs from receive
1849 * address registers and the multicast table. Uses unused receive address
1850 * registers for the first multicast addresses, and hashes the rest into the
1853 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
1854 struct net_device
*netdev
)
1856 struct netdev_hw_addr
*ha
;
1860 * Set the new number of MC addresses that we are being requested to
1863 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
1864 hw
->addr_ctrl
.mta_in_use
= 0;
1866 /* Clear mta_shadow */
1867 hw_dbg(hw
, " Clearing MTA\n");
1868 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
1870 /* Update mta shadow */
1871 netdev_for_each_mc_addr(ha
, netdev
) {
1872 hw_dbg(hw
, " Adding the multicast addresses:\n");
1873 ixgbe_set_mta(hw
, ha
->addr
);
1877 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1878 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
1879 hw
->mac
.mta_shadow
[i
]);
1881 if (hw
->addr_ctrl
.mta_in_use
> 0)
1882 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1883 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1885 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1890 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1891 * @hw: pointer to hardware structure
1893 * Enables multicast address in RAR and the use of the multicast hash table.
1895 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1897 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1899 if (a
->mta_in_use
> 0)
1900 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1901 hw
->mac
.mc_filter_type
);
1907 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1908 * @hw: pointer to hardware structure
1910 * Disables multicast address in RAR and the use of the multicast hash table.
1912 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1914 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1916 if (a
->mta_in_use
> 0)
1917 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1923 * ixgbe_fc_enable_generic - Enable flow control
1924 * @hw: pointer to hardware structure
1925 * @packetbuf_num: packet buffer number (0-7)
1927 * Enable flow control according to the current settings.
1929 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1932 u32 mflcn_reg
, fccfg_reg
;
1938 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1941 #endif /* CONFIG_DCB */
1942 /* Negotiate the fc mode to use */
1943 ret_val
= ixgbe_fc_autoneg(hw
);
1944 if (ret_val
== IXGBE_ERR_FLOW_CONTROL
)
1947 /* Disable any previous flow control settings */
1948 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1949 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1951 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1952 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1955 * The possible values of fc.current_mode are:
1956 * 0: Flow control is completely disabled
1957 * 1: Rx flow control is enabled (we can receive pause frames,
1958 * but not send pause frames).
1959 * 2: Tx flow control is enabled (we can send pause frames but
1960 * we do not support receiving pause frames).
1961 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1963 * 4: Priority Flow Control is enabled.
1967 switch (hw
->fc
.current_mode
) {
1970 * Flow control is disabled by software override or autoneg.
1971 * The code below will actually disable it in the HW.
1974 case ixgbe_fc_rx_pause
:
1976 * Rx Flow control is enabled and Tx Flow control is
1977 * disabled by software override. Since there really
1978 * isn't a way to advertise that we are capable of RX
1979 * Pause ONLY, we will advertise that we support both
1980 * symmetric and asymmetric Rx PAUSE. Later, we will
1981 * disable the adapter's ability to send PAUSE frames.
1983 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1985 case ixgbe_fc_tx_pause
:
1987 * Tx Flow control is enabled, and Rx Flow control is
1988 * disabled by software override.
1990 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1993 /* Flow control (both Rx and Tx) is enabled by SW override. */
1994 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1995 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2001 #endif /* CONFIG_DCB */
2003 hw_dbg(hw
, "Flow control param set incorrectly\n");
2004 ret_val
= IXGBE_ERR_CONFIG
;
2009 /* Set 802.3x based flow control settings. */
2010 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2011 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2012 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2014 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
2015 rx_pba_size
>>= IXGBE_RXPBSIZE_SHIFT
;
2017 fcrth
= (rx_pba_size
- hw
->fc
.high_water
) << 10;
2018 fcrtl
= (rx_pba_size
- hw
->fc
.low_water
) << 10;
2020 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
2021 fcrth
|= IXGBE_FCRTH_FCEN
;
2022 if (hw
->fc
.send_xon
)
2023 fcrtl
|= IXGBE_FCRTL_XONE
;
2026 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), fcrth
);
2027 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), fcrtl
);
2029 /* Configure pause time (2 TCs per register) */
2030 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
2031 if ((packetbuf_num
& 1) == 0)
2032 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
2034 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
2035 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
2037 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
2044 * ixgbe_fc_autoneg - Configure flow control
2045 * @hw: pointer to hardware structure
2047 * Compares our advertised flow control capabilities to those advertised by
2048 * our link partner, and determines the proper flow control mode to use.
2050 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2052 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2053 ixgbe_link_speed speed
;
2056 if (hw
->fc
.disable_fc_autoneg
)
2060 * AN should have completed when the cable was plugged in.
2061 * Look for reasons to bail out. Bail out if:
2062 * - FC autoneg is disabled, or if
2065 * Since we're being called from an LSC, link is already known to be up.
2066 * So use link_up_wait_to_complete=false.
2068 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2070 ret_val
= IXGBE_ERR_FLOW_CONTROL
;
2074 switch (hw
->phy
.media_type
) {
2075 /* Autoneg flow control on fiber adapters */
2076 case ixgbe_media_type_fiber
:
2077 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2078 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2081 /* Autoneg flow control on backplane adapters */
2082 case ixgbe_media_type_backplane
:
2083 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2086 /* Autoneg flow control on copper adapters */
2087 case ixgbe_media_type_copper
:
2088 if (ixgbe_device_supports_autoneg_fc(hw
) == 0)
2089 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2098 hw
->fc
.fc_was_autonegged
= true;
2100 hw
->fc
.fc_was_autonegged
= false;
2101 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2107 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2108 * @hw: pointer to hardware structure
2110 * Enable flow control according on 1 gig fiber.
2112 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2114 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2118 * On multispeed fiber at 1g, bail out if
2119 * - link is up but AN did not complete, or if
2120 * - link is up and AN completed but timed out
2123 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2124 if (((linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2125 ((linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
2126 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2130 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2131 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2133 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2134 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2135 IXGBE_PCS1GANA_ASM_PAUSE
,
2136 IXGBE_PCS1GANA_SYM_PAUSE
,
2137 IXGBE_PCS1GANA_ASM_PAUSE
);
2144 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2145 * @hw: pointer to hardware structure
2147 * Enable flow control according to IEEE clause 37.
2149 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2151 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2155 * On backplane, bail out if
2156 * - backplane autoneg was not completed, or if
2157 * - we are 82599 and link partner is not AN enabled
2159 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2160 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0) {
2161 hw
->fc
.fc_was_autonegged
= false;
2162 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2163 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2167 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2168 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2169 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0) {
2170 hw
->fc
.fc_was_autonegged
= false;
2171 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2172 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2177 * Read the 10g AN autoc and LP ability registers and resolve
2178 * local flow control settings accordingly
2180 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2181 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2183 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2184 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2185 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2192 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2193 * @hw: pointer to hardware structure
2195 * Enable flow control according to IEEE clause 37.
2197 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2199 u16 technology_ability_reg
= 0;
2200 u16 lp_technology_ability_reg
= 0;
2202 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2204 &technology_ability_reg
);
2205 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2207 &lp_technology_ability_reg
);
2209 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2210 (u32
)lp_technology_ability_reg
,
2211 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2212 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2216 * ixgbe_negotiate_fc - Negotiate flow control
2217 * @hw: pointer to hardware structure
2218 * @adv_reg: flow control advertised settings
2219 * @lp_reg: link partner's flow control settings
2220 * @adv_sym: symmetric pause bit in advertisement
2221 * @adv_asm: asymmetric pause bit in advertisement
2222 * @lp_sym: symmetric pause bit in link partner advertisement
2223 * @lp_asm: asymmetric pause bit in link partner advertisement
2225 * Find the intersection between advertised settings and link partner's
2226 * advertised settings
2228 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2229 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2231 if ((!(adv_reg
)) || (!(lp_reg
)))
2232 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2234 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2236 * Now we need to check if the user selected Rx ONLY
2237 * of pause frames. In this case, we had to advertise
2238 * FULL flow control because we could not advertise RX
2239 * ONLY. Hence, we must now check to see if we need to
2240 * turn OFF the TRANSMISSION of PAUSE frames.
2242 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2243 hw
->fc
.current_mode
= ixgbe_fc_full
;
2244 hw_dbg(hw
, "Flow Control = FULL.\n");
2246 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2247 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2249 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2250 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2251 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2252 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2253 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2254 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2255 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2256 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2258 hw
->fc
.current_mode
= ixgbe_fc_none
;
2259 hw_dbg(hw
, "Flow Control = NONE.\n");
2265 * ixgbe_setup_fc - Set up flow control
2266 * @hw: pointer to hardware structure
2268 * Called at init time to set up flow control.
2270 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
2273 u32 reg
= 0, reg_bp
= 0;
2277 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
2278 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2282 #endif /* CONFIG_DCB */
2283 /* Validate the packetbuf configuration */
2284 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
2285 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
2286 "is 0-7\n", packetbuf_num
);
2287 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2292 * Validate the water mark configuration. Zero water marks are invalid
2293 * because it causes the controller to just blast out fc packets.
2295 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
2296 hw_dbg(hw
, "Invalid water mark configuration\n");
2297 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2302 * Validate the requested mode. Strict IEEE mode does not allow
2303 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2305 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
2306 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
2308 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2313 * 10gig parts do not have a word in the EEPROM to determine the
2314 * default flow control setting, so we explicitly set it to full.
2316 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
2317 hw
->fc
.requested_mode
= ixgbe_fc_full
;
2320 * Set up the 1G and 10G flow control advertisement registers so the
2321 * HW will be able to do fc autoneg once the cable is plugged in. If
2322 * we link at 10G, the 1G advertisement is harmless and vice versa.
2325 switch (hw
->phy
.media_type
) {
2326 case ixgbe_media_type_fiber
:
2327 case ixgbe_media_type_backplane
:
2328 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2329 reg_bp
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2332 case ixgbe_media_type_copper
:
2333 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2334 MDIO_MMD_AN
, ®_cu
);
2342 * The possible values of fc.requested_mode are:
2343 * 0: Flow control is completely disabled
2344 * 1: Rx flow control is enabled (we can receive pause frames,
2345 * but not send pause frames).
2346 * 2: Tx flow control is enabled (we can send pause frames but
2347 * we do not support receiving pause frames).
2348 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2350 * 4: Priority Flow Control is enabled.
2354 switch (hw
->fc
.requested_mode
) {
2356 /* Flow control completely disabled by software override. */
2357 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2358 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2359 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
2360 IXGBE_AUTOC_ASM_PAUSE
);
2361 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2362 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2364 case ixgbe_fc_rx_pause
:
2366 * Rx Flow control is enabled and Tx Flow control is
2367 * disabled by software override. Since there really
2368 * isn't a way to advertise that we are capable of RX
2369 * Pause ONLY, we will advertise that we support both
2370 * symmetric and asymmetric Rx PAUSE. Later, we will
2371 * disable the adapter's ability to send PAUSE frames.
2373 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2374 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2375 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2376 IXGBE_AUTOC_ASM_PAUSE
);
2377 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2378 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2380 case ixgbe_fc_tx_pause
:
2382 * Tx Flow control is enabled, and Rx Flow control is
2383 * disabled by software override.
2385 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
2386 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
2387 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2388 reg_bp
|= (IXGBE_AUTOC_ASM_PAUSE
);
2389 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
);
2390 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
2391 reg_cu
|= (IXGBE_TAF_ASM_PAUSE
);
2392 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
);
2396 /* Flow control (both Rx and Tx) is enabled by SW override. */
2397 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2398 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
2399 reg_bp
|= (IXGBE_AUTOC_SYM_PAUSE
|
2400 IXGBE_AUTOC_ASM_PAUSE
);
2401 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
2402 reg_cu
|= (IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
2408 #endif /* CONFIG_DCB */
2410 hw_dbg(hw
, "Flow control param set incorrectly\n");
2411 ret_val
= IXGBE_ERR_CONFIG
;
2416 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
2418 * Enable auto-negotiation between the MAC & PHY;
2419 * the MAC will advertise clause 37 flow control.
2421 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
2422 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
2424 /* Disable AN timeout */
2425 if (hw
->fc
.strict_ieee
)
2426 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
2428 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
2429 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
2433 * AUTOC restart handles negotiation of 1G and 10G on backplane
2434 * and copper. There is no need to set the PCS1GCTL register.
2437 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
2438 reg_bp
|= IXGBE_AUTOC_AN_RESTART
;
2439 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_bp
);
2440 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
2441 (ixgbe_device_supports_autoneg_fc(hw
) == 0)) {
2442 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
2443 MDIO_MMD_AN
, reg_cu
);
2446 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
2452 * ixgbe_disable_pcie_master - Disable PCI-express master access
2453 * @hw: pointer to hardware structure
2455 * Disables PCI-Express master access and verifies there are no pending
2456 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2457 * bit hasn't caused the master requests to be disabled, else 0
2458 * is returned signifying master requests disabled.
2460 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2462 struct ixgbe_adapter
*adapter
= hw
->back
;
2465 u32 number_of_queues
;
2469 /* Just jump out if bus mastering is already disabled */
2470 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2473 /* Disable the receive unit by stopping each queue */
2474 number_of_queues
= hw
->mac
.max_rx_queues
;
2475 for (i
= 0; i
< number_of_queues
; i
++) {
2476 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
2477 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
2478 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
2479 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
2483 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
2484 reg_val
|= IXGBE_CTRL_GIO_DIS
;
2485 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
2487 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2488 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2489 goto check_device_status
;
2493 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2494 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2497 * Before proceeding, make sure that the PCIe block does not have
2498 * transactions pending.
2500 check_device_status
:
2501 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2502 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_DEVICE_STATUS
,
2504 if (!(dev_status
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2509 if (i
== IXGBE_PCI_MASTER_DISABLE_TIMEOUT
)
2510 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2515 * Two consecutive resets are required via CTRL.RST per datasheet
2516 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2517 * of this need. The first reset prevents new master requests from
2518 * being issued by our device. We then must wait 1usec for any
2519 * remaining completions from the PCIe bus to trickle in, and then reset
2520 * again to clear out any effects they may have had on our device.
2522 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2530 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2531 * @hw: pointer to hardware structure
2532 * @mask: Mask to specify which semaphore to acquire
2534 * Acquires the SWFW semaphore through the GSSR register for the specified
2535 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2537 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2541 u32 fwmask
= mask
<< 5;
2546 * SW EEPROM semaphore bit is used for access to all
2547 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2549 if (ixgbe_get_eeprom_semaphore(hw
))
2550 return IXGBE_ERR_SWFW_SYNC
;
2552 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2553 if (!(gssr
& (fwmask
| swmask
)))
2557 * Firmware currently using resource (fwmask) or other software
2558 * thread currently using resource (swmask)
2560 ixgbe_release_eeprom_semaphore(hw
);
2561 usleep_range(5000, 10000);
2566 hw_dbg(hw
, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2567 return IXGBE_ERR_SWFW_SYNC
;
2571 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2573 ixgbe_release_eeprom_semaphore(hw
);
2578 * ixgbe_release_swfw_sync - Release SWFW semaphore
2579 * @hw: pointer to hardware structure
2580 * @mask: Mask to specify which semaphore to release
2582 * Releases the SWFW semaphore through the GSSR register for the specified
2583 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2585 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2590 ixgbe_get_eeprom_semaphore(hw
);
2592 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2594 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2596 ixgbe_release_eeprom_semaphore(hw
);
2600 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2601 * @hw: pointer to hardware structure
2602 * @regval: register value to write to RXCTRL
2604 * Enables the Rx DMA unit
2606 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2608 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2614 * ixgbe_blink_led_start_generic - Blink LED based on index.
2615 * @hw: pointer to hardware structure
2616 * @index: led number to blink
2618 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2620 ixgbe_link_speed speed
= 0;
2622 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2623 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2626 * Link must be up to auto-blink the LEDs;
2627 * Force it if link is down.
2629 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2632 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2633 autoc_reg
|= IXGBE_AUTOC_FLU
;
2634 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2635 usleep_range(10000, 20000);
2638 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2639 led_reg
|= IXGBE_LED_BLINK(index
);
2640 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2641 IXGBE_WRITE_FLUSH(hw
);
2647 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2648 * @hw: pointer to hardware structure
2649 * @index: led number to stop blinking
2651 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2653 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2654 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2656 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2657 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2658 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2660 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2661 led_reg
&= ~IXGBE_LED_BLINK(index
);
2662 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2663 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2664 IXGBE_WRITE_FLUSH(hw
);
2670 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2671 * @hw: pointer to hardware structure
2672 * @san_mac_offset: SAN MAC address offset
2674 * This function will read the EEPROM location for the SAN MAC address
2675 * pointer, and returns the value at that location. This is used in both
2676 * get and set mac_addr routines.
2678 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2679 u16
*san_mac_offset
)
2682 * First read the EEPROM pointer to see if the MAC addresses are
2685 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2691 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2692 * @hw: pointer to hardware structure
2693 * @san_mac_addr: SAN MAC address
2695 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2696 * per-port, so set_lan_id() must be called before reading the addresses.
2697 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2698 * upon for non-SFP connections, so we must call it here.
2700 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2702 u16 san_mac_data
, san_mac_offset
;
2706 * First read the EEPROM pointer to see if the MAC addresses are
2707 * available. If they're not, no point in calling set_lan_id() here.
2709 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2711 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2713 * No addresses available in this EEPROM. It's not an
2714 * error though, so just wipe the local address and return.
2716 for (i
= 0; i
< 6; i
++)
2717 san_mac_addr
[i
] = 0xFF;
2719 goto san_mac_addr_out
;
2722 /* make sure we know which port we need to program */
2723 hw
->mac
.ops
.set_lan_id(hw
);
2724 /* apply the port offset to the address offset */
2725 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2726 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2727 for (i
= 0; i
< 3; i
++) {
2728 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2729 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2730 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2739 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2740 * @hw: pointer to hardware structure
2742 * Read PCIe configuration space, and get the MSI-X vector count from
2743 * the capabilities table.
2745 u32
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2747 struct ixgbe_adapter
*adapter
= hw
->back
;
2749 pci_read_config_word(adapter
->pdev
, IXGBE_PCIE_MSIX_82599_CAPS
,
2751 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2753 /* MSI-X count is zero-based in HW, so increment to give proper value */
2760 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2761 * @hw: pointer to hardware struct
2762 * @rar: receive address register index to disassociate
2763 * @vmdq: VMDq pool index to remove from the rar
2765 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2767 u32 mpsar_lo
, mpsar_hi
;
2768 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2770 /* Make sure we are using a valid rar index range */
2771 if (rar
>= rar_entries
) {
2772 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2773 return IXGBE_ERR_INVALID_ARGUMENT
;
2776 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2777 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2779 if (!mpsar_lo
&& !mpsar_hi
)
2782 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2784 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2788 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2791 } else if (vmdq
< 32) {
2792 mpsar_lo
&= ~(1 << vmdq
);
2793 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2795 mpsar_hi
&= ~(1 << (vmdq
- 32));
2796 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2799 /* was that the last pool using this rar? */
2800 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2801 hw
->mac
.ops
.clear_rar(hw
, rar
);
2807 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2808 * @hw: pointer to hardware struct
2809 * @rar: receive address register index to associate with a VMDq index
2810 * @vmdq: VMDq pool index
2812 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2815 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2817 /* Make sure we are using a valid rar index range */
2818 if (rar
>= rar_entries
) {
2819 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2820 return IXGBE_ERR_INVALID_ARGUMENT
;
2824 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2826 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2828 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2829 mpsar
|= 1 << (vmdq
- 32);
2830 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2836 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2837 * @hw: pointer to hardware structure
2839 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2843 for (i
= 0; i
< 128; i
++)
2844 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2850 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2851 * @hw: pointer to hardware structure
2852 * @vlan: VLAN id to write to VLAN filter
2854 * return the VLVF index where this VLAN id should be placed
2857 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2860 u32 first_empty_slot
= 0;
2863 /* short cut the special case */
2868 * Search for the vlan id in the VLVF entries. Save off the first empty
2869 * slot found along the way
2871 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2872 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2873 if (!bits
&& !(first_empty_slot
))
2874 first_empty_slot
= regindex
;
2875 else if ((bits
& 0x0FFF) == vlan
)
2880 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2881 * in the VLVF. Else use the first empty VLVF register for this
2884 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2885 if (first_empty_slot
)
2886 regindex
= first_empty_slot
;
2888 hw_dbg(hw
, "No space in VLVF.\n");
2889 regindex
= IXGBE_ERR_NO_SPACE
;
2897 * ixgbe_set_vfta_generic - Set VLAN filter table
2898 * @hw: pointer to hardware structure
2899 * @vlan: VLAN id to write to VLAN filter
2900 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2901 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2903 * Turn on/off specified VLAN in the VLAN filter table.
2905 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2914 bool vfta_changed
= false;
2917 return IXGBE_ERR_PARAM
;
2920 * this is a 2 part operation - first the VFTA, then the
2921 * VLVF and VLVFB if VT Mode is set
2922 * We don't write the VFTA until we know the VLVF part succeeded.
2926 * The VFTA is a bitstring made up of 128 32-bit registers
2927 * that enable the particular VLAN id, much like the MTA:
2928 * bits[11-5]: which register
2929 * bits[4-0]: which bit in the register
2931 regindex
= (vlan
>> 5) & 0x7F;
2932 bitindex
= vlan
& 0x1F;
2933 targetbit
= (1 << bitindex
);
2934 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
2937 if (!(vfta
& targetbit
)) {
2939 vfta_changed
= true;
2942 if ((vfta
& targetbit
)) {
2944 vfta_changed
= true;
2951 * make sure the vlan is in VLVF
2952 * set the vind bit in the matching VLVFB
2954 * clear the pool bit and possibly the vind
2956 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
2957 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
2960 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
2965 /* set the pool bit */
2967 bits
= IXGBE_READ_REG(hw
,
2968 IXGBE_VLVFB(vlvf_index
*2));
2969 bits
|= (1 << vind
);
2971 IXGBE_VLVFB(vlvf_index
*2),
2974 bits
= IXGBE_READ_REG(hw
,
2975 IXGBE_VLVFB((vlvf_index
*2)+1));
2976 bits
|= (1 << (vind
-32));
2978 IXGBE_VLVFB((vlvf_index
*2)+1),
2982 /* clear the pool bit */
2984 bits
= IXGBE_READ_REG(hw
,
2985 IXGBE_VLVFB(vlvf_index
*2));
2986 bits
&= ~(1 << vind
);
2988 IXGBE_VLVFB(vlvf_index
*2),
2990 bits
|= IXGBE_READ_REG(hw
,
2991 IXGBE_VLVFB((vlvf_index
*2)+1));
2993 bits
= IXGBE_READ_REG(hw
,
2994 IXGBE_VLVFB((vlvf_index
*2)+1));
2995 bits
&= ~(1 << (vind
-32));
2997 IXGBE_VLVFB((vlvf_index
*2)+1),
2999 bits
|= IXGBE_READ_REG(hw
,
3000 IXGBE_VLVFB(vlvf_index
*2));
3005 * If there are still bits set in the VLVFB registers
3006 * for the VLAN ID indicated we need to see if the
3007 * caller is requesting that we clear the VFTA entry bit.
3008 * If the caller has requested that we clear the VFTA
3009 * entry bit but there are still pools/VFs using this VLAN
3010 * ID entry then ignore the request. We're not worried
3011 * about the case where we're turning the VFTA VLAN ID
3012 * entry bit on, only when requested to turn it off as
3013 * there may be multiple pools and/or VFs using the
3014 * VLAN ID entry. In that case we cannot clear the
3015 * VFTA bit until all pools/VFs using that VLAN ID have also
3016 * been cleared. This will be indicated by "bits" being
3020 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
3021 (IXGBE_VLVF_VIEN
| vlan
));
3023 /* someone wants to clear the vfta entry
3024 * but some pools/VFs are still using it.
3026 vfta_changed
= false;
3030 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3034 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
3040 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3041 * @hw: pointer to hardware structure
3043 * Clears the VLAN filer table, and the VMDq index associated with the filter
3045 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3049 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3050 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3052 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3053 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3054 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
3055 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
3062 * ixgbe_check_mac_link_generic - Determine link and speed status
3063 * @hw: pointer to hardware structure
3064 * @speed: pointer to link speed
3065 * @link_up: true when link is up
3066 * @link_up_wait_to_complete: bool used to wait for link up or not
3068 * Reads the links register to determine if link is up and the current speed
3070 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3071 bool *link_up
, bool link_up_wait_to_complete
)
3073 u32 links_reg
, links_orig
;
3076 /* clear the old state */
3077 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3079 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3081 if (links_orig
!= links_reg
) {
3082 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3083 links_orig
, links_reg
);
3086 if (link_up_wait_to_complete
) {
3087 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3088 if (links_reg
& IXGBE_LINKS_UP
) {
3095 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3098 if (links_reg
& IXGBE_LINKS_UP
)
3104 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3105 IXGBE_LINKS_SPEED_10G_82599
)
3106 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3107 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3108 IXGBE_LINKS_SPEED_1G_82599
)
3109 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3110 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3111 IXGBE_LINKS_SPEED_100_82599
)
3112 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3114 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3116 /* if link is down, zero out the current_mode */
3117 if (*link_up
== false) {
3118 hw
->fc
.current_mode
= ixgbe_fc_none
;
3119 hw
->fc
.fc_was_autonegged
= false;
3126 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3128 * @hw: pointer to hardware structure
3129 * @wwnn_prefix: the alternative WWNN prefix
3130 * @wwpn_prefix: the alternative WWPN prefix
3132 * This function will read the EEPROM from the alternative SAN MAC address
3133 * block to check the support for the alternative WWNN/WWPN prefix support.
3135 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3139 u16 alt_san_mac_blk_offset
;
3141 /* clear output first */
3142 *wwnn_prefix
= 0xFFFF;
3143 *wwpn_prefix
= 0xFFFF;
3145 /* check if alternative SAN MAC is supported */
3146 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
3147 &alt_san_mac_blk_offset
);
3149 if ((alt_san_mac_blk_offset
== 0) ||
3150 (alt_san_mac_blk_offset
== 0xFFFF))
3151 goto wwn_prefix_out
;
3153 /* check capability in alternative san mac address block */
3154 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3155 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
3156 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3157 goto wwn_prefix_out
;
3159 /* get the corresponding prefix for WWNN/WWPN */
3160 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3161 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
3163 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3164 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);
3171 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3173 * @hw: pointer to hardware structure
3175 * There are several phys that do not support autoneg flow control. This
3176 * function check the device id to see if the associated phy supports
3177 * autoneg flow control.
3179 static s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
3182 switch (hw
->device_id
) {
3183 case IXGBE_DEV_ID_X540T
:
3185 case IXGBE_DEV_ID_82599_T3_LOM
:
3188 return IXGBE_ERR_FC_NOT_SUPPORTED
;
3193 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3194 * @hw: pointer to hardware structure
3195 * @enable: enable or disable switch for anti-spoofing
3196 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3199 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int pf
)
3202 int pf_target_reg
= pf
>> 3;
3203 int pf_target_shift
= pf
% 8;
3206 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3210 pfvfspoof
= IXGBE_SPOOF_MACAS_MASK
;
3213 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3214 * MAC anti-spoof enables in each register array element.
3216 for (j
= 0; j
< IXGBE_PFVFSPOOF_REG_COUNT
; j
++)
3217 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
3219 /* If not enabling anti-spoofing then done */
3224 * The PF should be allowed to spoof so that it can support
3225 * emulation mode NICs. Reset the bit assigned to the PF
3227 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
));
3228 pfvfspoof
^= (1 << pf_target_shift
);
3229 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(pf_target_reg
), pfvfspoof
);
3233 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3234 * @hw: pointer to hardware structure
3235 * @enable: enable or disable switch for VLAN anti-spoofing
3236 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3239 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3241 int vf_target_reg
= vf
>> 3;
3242 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3245 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3248 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3250 pfvfspoof
|= (1 << vf_target_shift
);
3252 pfvfspoof
&= ~(1 << vf_target_shift
);
3253 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3257 * ixgbe_get_device_caps_generic - Get additional device capabilities
3258 * @hw: pointer to hardware structure
3259 * @device_caps: the EEPROM word with the extra device capabilities
3261 * This function will read the EEPROM location for the device capabilities,
3262 * and return the word through device_caps.
3264 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3266 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);