2 * Intel Wireless WiMAX Connection 2400m
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
57 * Upon entrance to boot mode, the device sends (preceded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
72 * indicate if the device did reset during the process.
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
87 * Once firmware is uploaded, we are good to go :)
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
101 * BACKEND IMPLEMENTATION
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
124 * i2400m_fw_bootstrap
126 * i2400m_fw_hdr_check
131 * i2400m_bootrom_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
141 * i2400m_dnload_finalize
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
148 * i2400m_is_boot_barker
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
153 * i2400m_pm_notifier Called on Power Management events
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
168 static const __le32 i2400m_ACK_BARKER
[4] = {
169 cpu_to_le32(I2400M_ACK_BARKER
),
170 cpu_to_le32(I2400M_ACK_BARKER
),
171 cpu_to_le32(I2400M_ACK_BARKER
),
172 cpu_to_le32(I2400M_ACK_BARKER
)
177 * Prepare a boot-mode command for delivery
179 * @cmd: pointer to bootrom header to prepare
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header
*cmd
)
190 if (i2400m_brh_get_use_checksum(cmd
)) {
193 const u32
*checksum_ptr
= (void *) cmd
->payload
;
194 for (i
= 0; i
< cmd
->data_size
/ 4; i
++)
195 checksum
+= cpu_to_le32(*checksum_ptr
++);
196 checksum
+= cmd
->command
+ cmd
->target_addr
+ cmd
->data_size
;
197 cmd
->block_checksum
= cpu_to_le32(checksum
);
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare
);
204 * Database of known barkers.
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
211 static struct i2400m_barker_db
{
214 static size_t i2400m_barker_db_used
, i2400m_barker_db_size
;
218 int i2400m_zrealloc_2x(void **ptr
, size_t *_count
, size_t el_size
,
221 size_t old_count
= *_count
,
222 new_count
= old_count
? 2 * old_count
: 2,
223 old_size
= el_size
* old_count
,
224 new_size
= el_size
* new_count
;
225 void *nptr
= krealloc(*ptr
, new_size
, gfp_flags
);
227 /* zero the other half or the whole thing if old_count
230 memset(nptr
, 0, new_size
);
232 memset(nptr
+ old_size
, 0, old_size
);
242 * Add a barker to the database
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
248 int i2400m_barker_db_add(u32 barker_id
)
252 struct i2400m_barker_db
*barker
;
253 if (i2400m_barker_db_used
>= i2400m_barker_db_size
) {
254 result
= i2400m_zrealloc_2x(
255 (void **) &i2400m_barker_db
, &i2400m_barker_db_size
,
256 sizeof(i2400m_barker_db
[0]), GFP_KERNEL
);
260 barker
= i2400m_barker_db
+ i2400m_barker_db_used
++;
261 barker
->data
[0] = le32_to_cpu(barker_id
);
262 barker
->data
[1] = le32_to_cpu(barker_id
);
263 barker
->data
[2] = le32_to_cpu(barker_id
);
264 barker
->data
[3] = le32_to_cpu(barker_id
);
269 void i2400m_barker_db_exit(void)
271 kfree(i2400m_barker_db
);
272 i2400m_barker_db
= NULL
;
273 i2400m_barker_db_size
= 0;
274 i2400m_barker_db_used
= 0;
279 * Helper function to add all the known stable barkers to the barker
283 int i2400m_barker_db_known_barkers(void)
287 result
= i2400m_barker_db_add(I2400M_NBOOT_BARKER
);
290 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER
);
293 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050
);
302 * Initialize the barker database
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
307 * @options: command line argument with extra barkers to
308 * recognize. This is a comma-separated list of 32-bit hex
309 * numbers. They are appended to the existing list. Setting 0
310 * cleans the existing list and starts a new one.
312 int i2400m_barker_db_init(const char *_options
)
315 char *options
= NULL
, *options_orig
, *token
;
317 i2400m_barker_db
= NULL
;
318 i2400m_barker_db_size
= 0;
319 i2400m_barker_db_used
= 0;
321 result
= i2400m_barker_db_known_barkers();
324 /* parse command line options from i2400m.barkers */
325 if (_options
!= NULL
) {
328 options_orig
= kstrdup(_options
, GFP_KERNEL
);
329 if (options_orig
== NULL
)
331 options
= options_orig
;
333 while ((token
= strsep(&options
, ",")) != NULL
) {
334 if (*token
== '\0') /* eat joint commas */
336 if (sscanf(token
, "%x", &barker
) != 1
337 || barker
> 0xffffffff) {
338 printk(KERN_ERR
"%s: can't recognize "
339 "i2400m.barkers value '%s' as "
346 /* clean list and start new */
347 i2400m_barker_db_exit();
350 result
= i2400m_barker_db_add(barker
);
360 kfree(i2400m_barker_db
);
366 * Recognize a boot barker
368 * @buf: buffer where the boot barker.
369 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
370 * here so the function can check it for the caller.
372 * Note that as a side effect, upon identifying the obtained boot
373 * barker, this function will set i2400m->barker to point to the right
374 * barker database entry. Subsequent calls to the function will result
375 * in verifying that the same type of boot barker is returned when the
376 * device [re]boots (as long as the same device instance is used).
378 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
379 * buffer in @buf doesn't match any boot barker in the database or
380 * -EILSEQ if the buffer doesn't have the right size.
382 int i2400m_is_boot_barker(struct i2400m
*i2400m
,
383 const void *buf
, size_t buf_size
)
386 struct device
*dev
= i2400m_dev(i2400m
);
387 struct i2400m_barker_db
*barker
;
391 if (buf_size
!= sizeof(i2400m_barker_db
[i
].data
))
394 /* Short circuit if we have already discovered the barker
395 * associated with the device. */
397 && !memcmp(buf
, i2400m
->barker
, sizeof(i2400m
->barker
->data
))) {
398 unsigned index
= (i2400m
->barker
- i2400m_barker_db
)
399 / sizeof(*i2400m
->barker
);
400 d_printf(2, dev
, "boot barker cache-confirmed #%u/%08x\n",
401 index
, le32_to_cpu(i2400m
->barker
->data
[0]));
405 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
406 barker
= &i2400m_barker_db
[i
];
407 BUILD_BUG_ON(sizeof(barker
->data
) != 16);
408 if (memcmp(buf
, barker
->data
, sizeof(barker
->data
)))
411 if (i2400m
->barker
== NULL
) {
412 i2400m
->barker
= barker
;
413 d_printf(1, dev
, "boot barker set to #%u/%08x\n",
414 i
, le32_to_cpu(barker
->data
[0]));
415 if (barker
->data
[0] == le32_to_cpu(I2400M_NBOOT_BARKER
))
419 } else if (i2400m
->barker
!= barker
) {
420 dev_err(dev
, "HW inconsistency: device "
421 "reports a different boot barker "
422 "than set (from %08x to %08x)\n",
423 le32_to_cpu(i2400m
->barker
->data
[0]),
424 le32_to_cpu(barker
->data
[0]));
427 d_printf(2, dev
, "boot barker confirmed #%u/%08x\n",
428 i
, le32_to_cpu(barker
->data
[0]));
434 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker
);
438 * Verify the ack data received
440 * Given a reply to a boot mode command, chew it and verify everything
443 * @opcode: opcode which generated this ack. For error messages.
444 * @ack: pointer to ack data we received
445 * @ack_size: size of that data buffer
446 * @flags: I2400M_BM_CMD_* flags we called the command with.
448 * Way too long function -- maybe it should be further split
451 ssize_t
__i2400m_bm_ack_verify(struct i2400m
*i2400m
, int opcode
,
452 struct i2400m_bootrom_header
*ack
,
453 size_t ack_size
, int flags
)
455 ssize_t result
= -ENOMEM
;
456 struct device
*dev
= i2400m_dev(i2400m
);
458 d_fnstart(8, dev
, "(i2400m %p opcode %d ack %p size %zu)\n",
459 i2400m
, opcode
, ack
, ack_size
);
460 if (ack_size
< sizeof(*ack
)) {
462 dev_err(dev
, "boot-mode cmd %d: HW BUG? notification didn't "
463 "return enough data (%zu bytes vs %zu expected)\n",
464 opcode
, ack_size
, sizeof(*ack
));
465 goto error_ack_short
;
467 result
= i2400m_is_boot_barker(i2400m
, ack
, ack_size
);
469 result
= -ERESTARTSYS
;
470 d_printf(6, dev
, "boot-mode cmd %d: HW boot barker\n", opcode
);
473 if (ack_size
== sizeof(i2400m_ACK_BARKER
)
474 && memcmp(ack
, i2400m_ACK_BARKER
, sizeof(*ack
)) == 0) {
476 d_printf(3, dev
, "boot-mode cmd %d: HW reboot ack barker\n",
478 goto error_reboot_ack
;
481 if (flags
& I2400M_BM_CMD_RAW
)
483 ack
->data_size
= le32_to_cpu(ack
->data_size
);
484 ack
->target_addr
= le32_to_cpu(ack
->target_addr
);
485 ack
->block_checksum
= le32_to_cpu(ack
->block_checksum
);
486 d_printf(5, dev
, "boot-mode cmd %d: notification for opcode %u "
487 "response %u csum %u rr %u da %u\n",
488 opcode
, i2400m_brh_get_opcode(ack
),
489 i2400m_brh_get_response(ack
),
490 i2400m_brh_get_use_checksum(ack
),
491 i2400m_brh_get_response_required(ack
),
492 i2400m_brh_get_direct_access(ack
));
494 if (i2400m_brh_get_signature(ack
) != 0xcbbc) {
495 dev_err(dev
, "boot-mode cmd %d: HW BUG? wrong signature "
496 "0x%04x\n", opcode
, i2400m_brh_get_signature(ack
));
497 goto error_ack_signature
;
499 if (opcode
!= -1 && opcode
!= i2400m_brh_get_opcode(ack
)) {
500 dev_err(dev
, "boot-mode cmd %d: HW BUG? "
501 "received response for opcode %u, expected %u\n",
502 opcode
, i2400m_brh_get_opcode(ack
), opcode
);
503 goto error_ack_opcode
;
505 if (i2400m_brh_get_response(ack
) != 0) { /* failed? */
506 dev_err(dev
, "boot-mode cmd %d: error; hw response %u\n",
507 opcode
, i2400m_brh_get_response(ack
));
508 goto error_ack_failed
;
510 if (ack_size
< ack
->data_size
+ sizeof(*ack
)) {
511 dev_err(dev
, "boot-mode cmd %d: SW BUG "
512 "driver provided only %zu bytes for %zu bytes "
513 "of data\n", opcode
, ack_size
,
514 (size_t) le32_to_cpu(ack
->data_size
) + sizeof(*ack
));
515 goto error_ack_short_buffer
;
518 /* Don't you love this stack of empty targets? Well, I don't
519 * either, but it helps track exactly who comes in here and
521 error_ack_short_buffer
:
529 d_fnend(8, dev
, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
530 i2400m
, opcode
, ack
, ack_size
, (int) result
);
536 * i2400m_bm_cmd - Execute a boot mode command
538 * @cmd: buffer containing the command data (pointing at the header).
539 * This data can be ANYWHERE (for USB, we will copy it to an
540 * specific buffer). Make sure everything is in proper little
543 * A raw buffer can be also sent, just cast it and set flags to
546 * This function will generate a checksum for you if the
547 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
550 * You can use the i2400m->bm_cmd_buf to stage your commands and
553 * If NULL, no command is sent (we just wait for an ack).
555 * @cmd_size: size of the command. Will be auto padded to the
556 * bus-specific drivers padding requirements.
558 * @ack: buffer where to place the acknowledgement. If it is a regular
559 * command response, all fields will be returned with the right,
562 * You *cannot* use i2400m->bm_ack_buf for this buffer.
564 * @ack_size: size of @ack, 16 aligned; you need to provide at least
565 * sizeof(*ack) bytes and then enough to contain the return data
568 * @flags: see I2400M_BM_CMD_* above.
570 * @returns: bytes received by the notification; if < 0, an errno code
571 * denoting an error or:
573 * -ERESTARTSYS The device has rebooted
575 * Executes a boot-mode command and waits for a response, doing basic
576 * validation on it; if a zero length response is received, it retries
577 * waiting for a response until a non-zero one is received (timing out
578 * after %I2400M_BOOT_RETRIES retries).
581 ssize_t
i2400m_bm_cmd(struct i2400m
*i2400m
,
582 const struct i2400m_bootrom_header
*cmd
, size_t cmd_size
,
583 struct i2400m_bootrom_header
*ack
, size_t ack_size
,
586 ssize_t result
= -ENOMEM
, rx_bytes
;
587 struct device
*dev
= i2400m_dev(i2400m
);
588 int opcode
= cmd
== NULL
? -1 : i2400m_brh_get_opcode(cmd
);
590 d_fnstart(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
591 i2400m
, cmd
, cmd_size
, ack
, ack_size
);
592 BUG_ON(ack_size
< sizeof(*ack
));
593 BUG_ON(i2400m
->boot_mode
== 0);
595 if (cmd
!= NULL
) { /* send the command */
596 result
= i2400m
->bus_bm_cmd_send(i2400m
, cmd
, cmd_size
, flags
);
599 if ((flags
& I2400M_BM_CMD_RAW
) == 0)
601 "boot-mode cmd %d csum %u rr %u da %u: "
602 "addr 0x%04x size %u block csum 0x%04x\n",
603 opcode
, i2400m_brh_get_use_checksum(cmd
),
604 i2400m_brh_get_response_required(cmd
),
605 i2400m_brh_get_direct_access(cmd
),
606 cmd
->target_addr
, cmd
->data_size
,
607 cmd
->block_checksum
);
609 result
= i2400m
->bus_bm_wait_for_ack(i2400m
, ack
, ack_size
);
611 dev_err(dev
, "boot-mode cmd %d: error waiting for an ack: %d\n",
612 opcode
, (int) result
); /* bah, %zd doesn't work */
613 goto error_wait_for_ack
;
616 /* verify the ack and read more if necessary [result is the
617 * final amount of bytes we get in the ack] */
618 result
= __i2400m_bm_ack_verify(i2400m
, opcode
, ack
, ack_size
, flags
);
621 /* Don't you love this stack of empty targets? Well, I don't
622 * either, but it helps track exactly who comes in here and
628 d_fnend(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
629 i2400m
, cmd
, cmd_size
, ack
, ack_size
, (int) result
);
635 * i2400m_download_chunk - write a single chunk of data to the device's memory
637 * @i2400m: device descriptor
638 * @buf: the buffer to write
639 * @buf_len: length of the buffer to write
640 * @addr: address in the device memory space
641 * @direct: bootrom write mode
642 * @do_csum: should a checksum validation be performed
644 static int i2400m_download_chunk(struct i2400m
*i2400m
, const void *chunk
,
645 size_t __chunk_len
, unsigned long addr
,
646 unsigned int direct
, unsigned int do_csum
)
649 size_t chunk_len
= ALIGN(__chunk_len
, I2400M_PL_ALIGN
);
650 struct device
*dev
= i2400m_dev(i2400m
);
652 struct i2400m_bootrom_header cmd
;
653 u8 cmd_payload
[chunk_len
];
655 struct i2400m_bootrom_header ack
;
657 d_fnstart(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
658 "direct %u do_csum %u)\n", i2400m
, chunk
, __chunk_len
,
659 addr
, direct
, do_csum
);
660 buf
= i2400m
->bm_cmd_buf
;
661 memcpy(buf
->cmd_payload
, chunk
, __chunk_len
);
662 memset(buf
->cmd_payload
+ __chunk_len
, 0xad, chunk_len
- __chunk_len
);
664 buf
->cmd
.command
= i2400m_brh_command(I2400M_BRH_WRITE
,
665 __chunk_len
& 0x3 ? 0 : do_csum
,
666 __chunk_len
& 0xf ? 0 : direct
);
667 buf
->cmd
.target_addr
= cpu_to_le32(addr
);
668 buf
->cmd
.data_size
= cpu_to_le32(__chunk_len
);
669 ret
= i2400m_bm_cmd(i2400m
, &buf
->cmd
, sizeof(buf
->cmd
) + chunk_len
,
670 &ack
, sizeof(ack
), 0);
673 d_fnend(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
674 "direct %u do_csum %u) = %d\n", i2400m
, chunk
, __chunk_len
,
675 addr
, direct
, do_csum
, ret
);
681 * Download a BCF file's sections to the device
683 * @i2400m: device descriptor
684 * @bcf: pointer to firmware data (first header followed by the
685 * payloads). Assumed verified and consistent.
686 * @bcf_len: length (in bytes) of the @bcf buffer.
688 * Returns: < 0 errno code on error or the offset to the jump instruction.
690 * Given a BCF file, downloads each section (a command and a payload)
691 * to the device's address space. Actually, it just executes each
692 * command i the BCF file.
694 * The section size has to be aligned to 4 bytes AND the padding has
695 * to be taken from the firmware file, as the signature takes it into
699 ssize_t
i2400m_dnload_bcf(struct i2400m
*i2400m
,
700 const struct i2400m_bcf_hdr
*bcf
, size_t bcf_len
)
703 struct device
*dev
= i2400m_dev(i2400m
);
704 size_t offset
, /* iterator offset */
705 data_size
, /* Size of the data payload */
706 section_size
, /* Size of the whole section (cmd + payload) */
708 const struct i2400m_bootrom_header
*bh
;
709 struct i2400m_bootrom_header ack
;
711 d_fnstart(3, dev
, "(i2400m %p bcf %p bcf_len %zu)\n",
712 i2400m
, bcf
, bcf_len
);
713 /* Iterate over the command blocks in the BCF file that start
714 * after the header */
715 offset
= le32_to_cpu(bcf
->header_len
) * sizeof(u32
);
716 while (1) { /* start sending the file */
717 bh
= (void *) bcf
+ offset
;
718 data_size
= le32_to_cpu(bh
->data_size
);
719 section_size
= ALIGN(sizeof(*bh
) + data_size
, 4);
721 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
722 section
, offset
, sizeof(*bh
) + data_size
,
723 le32_to_cpu(bh
->target_addr
));
725 * We look for JUMP cmd from the bootmode header,
726 * either I2400M_BRH_SIGNED_JUMP for secure boot
727 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
728 * should be the bootmode header with JUMP cmd.
730 if (i2400m_brh_get_opcode(bh
) == I2400M_BRH_SIGNED_JUMP
||
731 i2400m_brh_get_opcode(bh
) == I2400M_BRH_JUMP
) {
732 d_printf(5, dev
, "jump found @%zu\n", offset
);
735 if (offset
+ section_size
> bcf_len
) {
736 dev_err(dev
, "fw %s: bad section #%zu, "
737 "end (@%zu) beyond EOF (@%zu)\n",
738 i2400m
->fw_name
, section
,
739 offset
+ section_size
, bcf_len
);
741 goto error_section_beyond_eof
;
744 ret
= i2400m_bm_cmd(i2400m
, bh
, section_size
,
745 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
747 dev_err(dev
, "fw %s: section #%zu (@%zu %zu B) "
748 "failed %d\n", i2400m
->fw_name
, section
,
749 offset
, sizeof(*bh
) + data_size
, (int) ret
);
752 offset
+= section_size
;
756 error_section_beyond_eof
:
758 d_fnend(3, dev
, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
759 i2400m
, bcf
, bcf_len
, (int) ret
);
765 * Indicate if the device emitted a reboot barker that indicates
769 unsigned i2400m_boot_is_signed(struct i2400m
*i2400m
)
771 return likely(i2400m
->sboot
);
776 * Do the final steps of uploading firmware
778 * @bcf_hdr: BCF header we are actually using
779 * @bcf: pointer to the firmware image (which matches the first header
780 * that is followed by the actual payloads).
781 * @offset: [byte] offset into @bcf for the command we need to send.
783 * Depending on the boot mode (signed vs non-signed), different
784 * actions need to be taken.
787 int i2400m_dnload_finalize(struct i2400m
*i2400m
,
788 const struct i2400m_bcf_hdr
*bcf_hdr
,
789 const struct i2400m_bcf_hdr
*bcf
, size_t offset
)
792 struct device
*dev
= i2400m_dev(i2400m
);
793 struct i2400m_bootrom_header
*cmd
, ack
;
795 struct i2400m_bootrom_header cmd
;
798 size_t signature_block_offset
, signature_block_size
;
800 d_fnstart(3, dev
, "offset %zu\n", offset
);
801 cmd
= (void *) bcf
+ offset
;
802 if (i2400m_boot_is_signed(i2400m
) == 0) {
803 struct i2400m_bootrom_header jump_ack
;
804 d_printf(1, dev
, "unsecure boot, jumping to 0x%08x\n",
805 le32_to_cpu(cmd
->target_addr
));
806 cmd_buf
= i2400m
->bm_cmd_buf
;
807 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
809 /* now cmd points to the actual bootrom_header in cmd_buf */
810 i2400m_brh_set_opcode(cmd
, I2400M_BRH_JUMP
);
812 ret
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
813 &jump_ack
, sizeof(jump_ack
), 0);
815 d_printf(1, dev
, "secure boot, jumping to 0x%08x\n",
816 le32_to_cpu(cmd
->target_addr
));
817 cmd_buf
= i2400m
->bm_cmd_buf
;
818 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
819 signature_block_offset
=
821 + le32_to_cpu(bcf_hdr
->key_size
) * sizeof(u32
)
822 + le32_to_cpu(bcf_hdr
->exponent_size
) * sizeof(u32
);
823 signature_block_size
=
824 le32_to_cpu(bcf_hdr
->modulus_size
) * sizeof(u32
);
825 memcpy(cmd_buf
->cmd_pl
,
826 (void *) bcf_hdr
+ signature_block_offset
,
827 signature_block_size
);
828 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
,
829 sizeof(cmd_buf
->cmd
) + signature_block_size
,
830 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
832 d_fnend(3, dev
, "returning %d\n", ret
);
838 * i2400m_bootrom_init - Reboots a powered device into boot mode
840 * @i2400m: device descriptor
842 * I2400M_BRI_SOFT: a reboot barker has been seen
843 * already, so don't wait for it.
845 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
846 * for a reboot barker notification. This is a one shot; if
847 * the state machine needs to send a reboot command it will.
851 * < 0 errno code on error, 0 if ok.
855 * Tries hard enough to put the device in boot-mode. There are two
856 * main phases to this:
858 * a. (1) send a reboot command and (2) get a reboot barker
860 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
861 * getting an ack barker in return
863 * We want to skip (a) in some cases [soft]. The state machine is
864 * horrible, but it is basically: on each phase, send what has to be
865 * sent (if any), wait for the answer and act on the answer. We might
866 * have to backtrack and retry, so we keep a max tries counter for
869 * It sucks because we don't know ahead of time which is going to be
870 * the reboot barker (the device might send different ones depending
871 * on its EEPROM config) and once the device reboots and waits for the
872 * echo/ack reboot barker being sent back, it doesn't understand
873 * anything else. So we can be left at the point where we don't know
874 * what to send to it -- cold reset and bus reset seem to have little
875 * effect. So the function iterates (in this case) through all the
876 * known barkers and tries them all until an ACK is
877 * received. Otherwise, it gives up.
879 * If we get a timeout after sending a warm reset, we do it again.
881 int i2400m_bootrom_init(struct i2400m
*i2400m
, enum i2400m_bri flags
)
884 struct device
*dev
= i2400m_dev(i2400m
);
885 struct i2400m_bootrom_header
*cmd
;
886 struct i2400m_bootrom_header ack
;
887 int count
= i2400m
->bus_bm_retries
;
888 int ack_timeout_cnt
= 1;
891 BUILD_BUG_ON(sizeof(*cmd
) != sizeof(i2400m_barker_db
[0].data
));
892 BUILD_BUG_ON(sizeof(ack
) != sizeof(i2400m_ACK_BARKER
));
894 d_fnstart(4, dev
, "(i2400m %p flags 0x%08x)\n", i2400m
, flags
);
896 cmd
= i2400m
->bm_cmd_buf
;
897 if (flags
& I2400M_BRI_SOFT
)
903 d_printf(4, dev
, "device reboot: reboot command [%d # left]\n",
905 if ((flags
& I2400M_BRI_NO_REBOOT
) == 0)
906 i2400m_reset(i2400m
, I2400M_RT_WARM
);
907 result
= i2400m_bm_cmd(i2400m
, NULL
, 0, &ack
, sizeof(ack
),
909 flags
&= ~I2400M_BRI_NO_REBOOT
;
913 * at this point, i2400m_bm_cmd(), through
914 * __i2400m_bm_ack_process(), has updated
915 * i2400m->barker and we are good to go.
917 d_printf(4, dev
, "device reboot: got reboot barker\n");
919 case -EISCONN
: /* we don't know how it got here...but we follow it */
920 d_printf(4, dev
, "device reboot: got ack barker - whatever\n");
924 * Device has timed out, we might be in boot mode
925 * already and expecting an ack; if we don't know what
926 * the barker is, we just send them all. Cold reset
927 * and bus reset don't work. Beats me.
929 if (i2400m
->barker
!= NULL
) {
930 dev_err(dev
, "device boot: reboot barker timed out, "
931 "trying (set) %08x echo/ack\n",
932 le32_to_cpu(i2400m
->barker
->data
[0]));
935 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
936 struct i2400m_barker_db
*barker
= &i2400m_barker_db
[i
];
937 memcpy(cmd
, barker
->data
, sizeof(barker
->data
));
938 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
941 if (result
== -EISCONN
) {
942 dev_warn(dev
, "device boot: got ack barker "
943 "after sending echo/ack barker "
944 "#%d/%08x; rebooting j.i.c.\n",
945 i
, le32_to_cpu(barker
->data
[0]));
946 flags
&= ~I2400M_BRI_NO_REBOOT
;
950 dev_err(dev
, "device boot: tried all the echo/acks, could "
951 "not get device to respond; giving up");
954 case -ESHUTDOWN
: /* dev is gone */
955 case -EINTR
: /* user cancelled */
958 dev_err(dev
, "device reboot: error %d while waiting "
959 "for reboot barker - rebooting\n", result
);
960 d_dump(1, dev
, &ack
, result
);
963 /* At this point we ack back with 4 REBOOT barkers and expect
964 * 4 ACK barkers. This is ugly, as we send a raw command --
965 * hence the cast. _bm_cmd() will catch the reboot ack
966 * notification and report it as -EISCONN. */
968 d_printf(4, dev
, "device reboot ack: sending ack [%d # left]\n", count
);
969 memcpy(cmd
, i2400m
->barker
->data
, sizeof(i2400m
->barker
->data
));
970 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
971 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
974 d_printf(4, dev
, "reboot ack: got reboot barker - retrying\n");
979 d_printf(4, dev
, "reboot ack: got ack barker - good\n");
981 case -ETIMEDOUT
: /* no response, maybe it is the other type? */
982 if (ack_timeout_cnt
-- < 0) {
983 d_printf(4, dev
, "reboot ack timedout: retrying\n");
986 dev_err(dev
, "reboot ack timedout too long: "
992 case -ESHUTDOWN
: /* dev is gone */
995 dev_err(dev
, "device reboot ack: error %d while waiting for "
996 "reboot ack barker - rebooting\n", result
);
999 d_printf(2, dev
, "device reboot ack: got ack barker - boot done\n");
1003 d_fnend(4, dev
, "(i2400m %p flags 0x%08x) = %d\n",
1004 i2400m
, flags
, result
);
1008 dev_err(dev
, "Timed out waiting for reboot ack\n");
1009 result
= -ETIMEDOUT
;
1017 * The position this function reads is fixed in device memory and
1018 * always available, even without firmware.
1020 * Note we specify we want to read only six bytes, but provide space
1021 * for 16, as we always get it rounded up.
1023 int i2400m_read_mac_addr(struct i2400m
*i2400m
)
1026 struct device
*dev
= i2400m_dev(i2400m
);
1027 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
1028 struct i2400m_bootrom_header
*cmd
;
1030 struct i2400m_bootrom_header ack
;
1034 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1035 cmd
= i2400m
->bm_cmd_buf
;
1036 cmd
->command
= i2400m_brh_command(I2400M_BRH_READ
, 0, 1);
1037 cmd
->target_addr
= cpu_to_le32(0x00203fe8);
1038 cmd
->data_size
= cpu_to_le32(6);
1039 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
1040 &ack_buf
.ack
, sizeof(ack_buf
), 0);
1042 dev_err(dev
, "BM: read mac addr failed: %d\n", result
);
1043 goto error_read_mac
;
1045 d_printf(2, dev
, "mac addr is %pM\n", ack_buf
.ack_pl
);
1046 if (i2400m
->bus_bm_mac_addr_impaired
== 1) {
1047 ack_buf
.ack_pl
[0] = 0x00;
1048 ack_buf
.ack_pl
[1] = 0x16;
1049 ack_buf
.ack_pl
[2] = 0xd3;
1050 get_random_bytes(&ack_buf
.ack_pl
[3], 3);
1051 dev_err(dev
, "BM is MAC addr impaired, faking MAC addr to "
1052 "mac addr is %pM\n", ack_buf
.ack_pl
);
1055 net_dev
->addr_len
= ETH_ALEN
;
1056 memcpy(net_dev
->perm_addr
, ack_buf
.ack_pl
, ETH_ALEN
);
1057 memcpy(net_dev
->dev_addr
, ack_buf
.ack_pl
, ETH_ALEN
);
1059 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
1065 * Initialize a non signed boot
1067 * This implies sending some magic values to the device's memory. Note
1068 * we convert the values to little endian in the same array
1072 int i2400m_dnload_init_nonsigned(struct i2400m
*i2400m
)
1076 struct device
*dev
= i2400m_dev(i2400m
);
1077 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1078 if (i2400m
->bus_bm_pokes_table
) {
1079 while (i2400m
->bus_bm_pokes_table
[i
].address
) {
1080 ret
= i2400m_download_chunk(
1082 &i2400m
->bus_bm_pokes_table
[i
].data
,
1083 sizeof(i2400m
->bus_bm_pokes_table
[i
].data
),
1084 i2400m
->bus_bm_pokes_table
[i
].address
, 1, 1);
1090 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1096 * Initialize the signed boot process
1098 * @i2400m: device descriptor
1100 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1101 * memory (it has gone through basic validation).
1103 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1106 * This writes the firmware BCF header to the device using the
1107 * HASH_PAYLOAD_ONLY command.
1110 int i2400m_dnload_init_signed(struct i2400m
*i2400m
,
1111 const struct i2400m_bcf_hdr
*bcf_hdr
)
1114 struct device
*dev
= i2400m_dev(i2400m
);
1116 struct i2400m_bootrom_header cmd
;
1117 struct i2400m_bcf_hdr cmd_pl
;
1118 } __packed
*cmd_buf
;
1119 struct i2400m_bootrom_header ack
;
1121 d_fnstart(5, dev
, "(i2400m %p bcf_hdr %p)\n", i2400m
, bcf_hdr
);
1122 cmd_buf
= i2400m
->bm_cmd_buf
;
1123 cmd_buf
->cmd
.command
=
1124 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY
, 0, 0);
1125 cmd_buf
->cmd
.target_addr
= 0;
1126 cmd_buf
->cmd
.data_size
= cpu_to_le32(sizeof(cmd_buf
->cmd_pl
));
1127 memcpy(&cmd_buf
->cmd_pl
, bcf_hdr
, sizeof(*bcf_hdr
));
1128 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
, sizeof(*cmd_buf
),
1129 &ack
, sizeof(ack
), 0);
1132 d_fnend(5, dev
, "(i2400m %p bcf_hdr %p) = %d\n", i2400m
, bcf_hdr
, ret
);
1138 * Initialize the firmware download at the device size
1140 * Multiplex to the one that matters based on the device's mode
1141 * (signed or non-signed).
1144 int i2400m_dnload_init(struct i2400m
*i2400m
,
1145 const struct i2400m_bcf_hdr
*bcf_hdr
)
1148 struct device
*dev
= i2400m_dev(i2400m
);
1150 if (i2400m_boot_is_signed(i2400m
)) {
1151 d_printf(1, dev
, "signed boot\n");
1152 result
= i2400m_dnload_init_signed(i2400m
, bcf_hdr
);
1153 if (result
== -ERESTARTSYS
)
1156 dev_err(dev
, "firmware %s: signed boot download "
1157 "initialization failed: %d\n",
1158 i2400m
->fw_name
, result
);
1160 /* non-signed boot process without pokes */
1161 d_printf(1, dev
, "non-signed boot\n");
1162 result
= i2400m_dnload_init_nonsigned(i2400m
);
1163 if (result
== -ERESTARTSYS
)
1166 dev_err(dev
, "firmware %s: non-signed download "
1167 "initialization failed: %d\n",
1168 i2400m
->fw_name
, result
);
1175 * Run consistency tests on the firmware file and load up headers
1177 * Check for the firmware being made for the i2400m device,
1178 * etc...These checks are mostly informative, as the device will make
1179 * them too; but the driver's response is more informative on what
1182 * This will also look at all the headers present on the firmware
1183 * file, and update i2400m->fw_bcf_hdr to point to them.
1186 int i2400m_fw_hdr_check(struct i2400m
*i2400m
,
1187 const struct i2400m_bcf_hdr
*bcf_hdr
,
1188 size_t index
, size_t offset
)
1190 struct device
*dev
= i2400m_dev(i2400m
);
1192 unsigned module_type
, header_len
, major_version
, minor_version
,
1193 module_id
, module_vendor
, date
, size
;
1195 module_type
= le32_to_cpu(bcf_hdr
->module_type
);
1196 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1197 major_version
= (le32_to_cpu(bcf_hdr
->header_version
) & 0xffff0000)
1199 minor_version
= le32_to_cpu(bcf_hdr
->header_version
) & 0x0000ffff;
1200 module_id
= le32_to_cpu(bcf_hdr
->module_id
);
1201 module_vendor
= le32_to_cpu(bcf_hdr
->module_vendor
);
1202 date
= le32_to_cpu(bcf_hdr
->date
);
1203 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1205 d_printf(1, dev
, "firmware %s #%zd@%08zx: BCF header "
1206 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1207 i2400m
->fw_name
, index
, offset
,
1208 module_type
, module_vendor
, module_id
,
1209 major_version
, minor_version
, header_len
, size
, date
);
1212 if (major_version
!= 1) {
1213 dev_err(dev
, "firmware %s #%zd@%08zx: major header version "
1214 "v%u.%u not supported\n",
1215 i2400m
->fw_name
, index
, offset
,
1216 major_version
, minor_version
);
1220 if (module_type
!= 6) { /* built for the right hardware? */
1221 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1222 "type 0x%x; aborting\n",
1223 i2400m
->fw_name
, index
, offset
,
1228 if (module_vendor
!= 0x8086) {
1229 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1230 "vendor 0x%x; aborting\n",
1231 i2400m
->fw_name
, index
, offset
, module_vendor
);
1235 if (date
< 0x20080300)
1236 dev_warn(dev
, "firmware %s #%zd@%08zx: build date %08x "
1237 "too old; unsupported\n",
1238 i2400m
->fw_name
, index
, offset
, date
);
1244 * Run consistency tests on the firmware file and load up headers
1246 * Check for the firmware being made for the i2400m device,
1247 * etc...These checks are mostly informative, as the device will make
1248 * them too; but the driver's response is more informative on what
1251 * This will also look at all the headers present on the firmware
1252 * file, and update i2400m->fw_hdrs to point to them.
1255 int i2400m_fw_check(struct i2400m
*i2400m
, const void *bcf
, size_t bcf_size
)
1258 struct device
*dev
= i2400m_dev(i2400m
);
1260 const struct i2400m_bcf_hdr
*bcf_hdr
;
1261 const void *itr
, *next
, *top
;
1262 size_t slots
= 0, used_slots
= 0;
1264 for (itr
= bcf
, top
= itr
+ bcf_size
;
1266 headers
++, itr
= next
) {
1267 size_t leftover
, offset
, header_len
, size
;
1269 leftover
= top
- itr
;
1270 offset
= itr
- (const void *) bcf
;
1271 if (leftover
<= sizeof(*bcf_hdr
)) {
1272 dev_err(dev
, "firmware %s: %zu B left at @%zx, "
1273 "not enough for BCF header\n",
1274 i2400m
->fw_name
, leftover
, offset
);
1278 /* Only the first header is supposed to be followed by
1280 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1281 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1285 next
= itr
+ header_len
;
1287 result
= i2400m_fw_hdr_check(i2400m
, bcf_hdr
, headers
, offset
);
1290 if (used_slots
+ 1 >= slots
) {
1291 /* +1 -> we need to account for the one we'll
1292 * occupy and at least an extra one for
1293 * always being NULL */
1294 result
= i2400m_zrealloc_2x(
1295 (void **) &i2400m
->fw_hdrs
, &slots
,
1296 sizeof(i2400m
->fw_hdrs
[0]),
1299 goto error_zrealloc
;
1301 i2400m
->fw_hdrs
[used_slots
] = bcf_hdr
;
1305 dev_err(dev
, "firmware %s: no usable headers found\n",
1316 * Match a barker to a BCF header module ID
1318 * The device sends a barker which tells the firmware loader which
1319 * header in the BCF file has to be used. This does the matching.
1322 unsigned i2400m_bcf_hdr_match(struct i2400m
*i2400m
,
1323 const struct i2400m_bcf_hdr
*bcf_hdr
)
1325 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0])
1327 u32 module_id
= le32_to_cpu(bcf_hdr
->module_id
)
1328 & 0x7fffffff; /* high bit used for something else */
1330 /* special case for 5x50 */
1331 if (barker
== I2400M_SBOOT_BARKER
&& module_id
== 0)
1333 if (module_id
== barker
)
1339 const struct i2400m_bcf_hdr
*i2400m_bcf_hdr_find(struct i2400m
*i2400m
)
1341 struct device
*dev
= i2400m_dev(i2400m
);
1342 const struct i2400m_bcf_hdr
**bcf_itr
, *bcf_hdr
;
1344 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0]);
1346 d_printf(2, dev
, "finding BCF header for barker %08x\n", barker
);
1347 if (barker
== I2400M_NBOOT_BARKER
) {
1348 bcf_hdr
= i2400m
->fw_hdrs
[0];
1349 d_printf(1, dev
, "using BCF header #%u/%08x for non-signed "
1350 "barker\n", 0, le32_to_cpu(bcf_hdr
->module_id
));
1353 for (bcf_itr
= i2400m
->fw_hdrs
; *bcf_itr
!= NULL
; bcf_itr
++, i
++) {
1355 if (i2400m_bcf_hdr_match(i2400m
, bcf_hdr
)) {
1356 d_printf(1, dev
, "hit on BCF hdr #%u/%08x\n",
1357 i
, le32_to_cpu(bcf_hdr
->module_id
));
1360 d_printf(1, dev
, "miss on BCF hdr #%u/%08x\n",
1361 i
, le32_to_cpu(bcf_hdr
->module_id
));
1363 dev_err(dev
, "cannot find a matching BCF header for barker %08x\n",
1370 * Download the firmware to the device
1372 * @i2400m: device descriptor
1373 * @bcf: pointer to loaded (and minimally verified for consistency)
1375 * @bcf_size: size of the @bcf buffer (header plus payloads)
1377 * The process for doing this is described in this file's header.
1379 * Note we only reinitialize boot-mode if the flags say so. Some hw
1380 * iterations need it, some don't. In any case, if we loop, we always
1381 * need to reinitialize the boot room, hence the flags modification.
1384 int i2400m_fw_dnload(struct i2400m
*i2400m
, const struct i2400m_bcf_hdr
*bcf
,
1385 size_t fw_size
, enum i2400m_bri flags
)
1388 struct device
*dev
= i2400m_dev(i2400m
);
1389 int count
= i2400m
->bus_bm_retries
;
1390 const struct i2400m_bcf_hdr
*bcf_hdr
;
1393 d_fnstart(5, dev
, "(i2400m %p bcf %p fw size %zu)\n",
1394 i2400m
, bcf
, fw_size
);
1395 i2400m
->boot_mode
= 1;
1396 wmb(); /* Make sure other readers see it */
1400 dev_err(dev
, "device rebooted too many times, aborting\n");
1401 goto error_too_many_reboots
;
1403 if (flags
& I2400M_BRI_MAC_REINIT
) {
1404 ret
= i2400m_bootrom_init(i2400m
, flags
);
1406 dev_err(dev
, "bootrom init failed: %d\n", ret
);
1407 goto error_bootrom_init
;
1410 flags
|= I2400M_BRI_MAC_REINIT
;
1413 * Initialize the download, push the bytes to the device and
1414 * then jump to the new firmware. Note @ret is passed with the
1415 * offset of the jump instruction to _dnload_finalize()
1417 * Note we need to use the BCF header in the firmware image
1418 * that matches the barker that the device sent when it
1419 * rebooted, so it has to be passed along.
1422 bcf_hdr
= i2400m_bcf_hdr_find(i2400m
);
1423 if (bcf_hdr
== NULL
)
1424 goto error_bcf_hdr_find
;
1426 ret
= i2400m_dnload_init(i2400m
, bcf_hdr
);
1427 if (ret
== -ERESTARTSYS
)
1428 goto error_dev_rebooted
;
1430 goto error_dnload_init
;
1433 * bcf_size refers to one header size plus the fw sections size
1434 * indicated by the header,ie. if there are other extended headers
1435 * at the tail, they are not counted
1437 bcf_size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1438 ret
= i2400m_dnload_bcf(i2400m
, bcf
, bcf_size
);
1439 if (ret
== -ERESTARTSYS
)
1440 goto error_dev_rebooted
;
1442 dev_err(dev
, "fw %s: download failed: %d\n",
1443 i2400m
->fw_name
, ret
);
1444 goto error_dnload_bcf
;
1447 ret
= i2400m_dnload_finalize(i2400m
, bcf_hdr
, bcf
, ret
);
1448 if (ret
== -ERESTARTSYS
)
1449 goto error_dev_rebooted
;
1451 dev_err(dev
, "fw %s: "
1452 "download finalization failed: %d\n",
1453 i2400m
->fw_name
, ret
);
1454 goto error_dnload_finalize
;
1457 d_printf(2, dev
, "fw %s successfully uploaded\n",
1459 i2400m
->boot_mode
= 0;
1460 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1461 error_dnload_finalize
:
1466 error_too_many_reboots
:
1467 d_fnend(5, dev
, "(i2400m %p bcf %p size %zu) = %d\n",
1468 i2400m
, bcf
, fw_size
, ret
);
1472 dev_err(dev
, "device rebooted, %d tries left\n", count
);
1473 /* we got the notification already, no need to wait for it again */
1474 flags
|= I2400M_BRI_SOFT
;
1479 int i2400m_fw_bootstrap(struct i2400m
*i2400m
, const struct firmware
*fw
,
1480 enum i2400m_bri flags
)
1483 struct device
*dev
= i2400m_dev(i2400m
);
1484 const struct i2400m_bcf_hdr
*bcf
; /* Firmware data */
1486 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1487 bcf
= (void *) fw
->data
;
1488 ret
= i2400m_fw_check(i2400m
, bcf
, fw
->size
);
1490 ret
= i2400m_fw_dnload(i2400m
, bcf
, fw
->size
, flags
);
1492 dev_err(dev
, "%s: cannot use: %d, skipping\n",
1493 i2400m
->fw_name
, ret
);
1494 kfree(i2400m
->fw_hdrs
);
1495 i2400m
->fw_hdrs
= NULL
;
1496 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1501 /* Refcounted container for firmware data */
1504 const struct firmware
*fw
;
1509 void i2400m_fw_destroy(struct kref
*kref
)
1511 struct i2400m_fw
*i2400m_fw
=
1512 container_of(kref
, struct i2400m_fw
, kref
);
1513 release_firmware(i2400m_fw
->fw
);
1519 struct i2400m_fw
*i2400m_fw_get(struct i2400m_fw
*i2400m_fw
)
1521 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1522 kref_get(&i2400m_fw
->kref
);
1528 void i2400m_fw_put(struct i2400m_fw
*i2400m_fw
)
1530 kref_put(&i2400m_fw
->kref
, i2400m_fw_destroy
);
1535 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537 * @i2400m: device descriptor
1539 * Returns: >= 0 if ok, < 0 errno code on error.
1541 * This sets up the firmware upload environment, loads the firmware
1542 * file from disk, verifies and then calls the firmware upload process
1545 * Can be called either from probe, or after a warm reset. Can not be
1546 * called from within an interrupt. All the flow in this code is
1547 * single-threade; all I/Os are synchronous.
1549 int i2400m_dev_bootstrap(struct i2400m
*i2400m
, enum i2400m_bri flags
)
1552 struct device
*dev
= i2400m_dev(i2400m
);
1553 struct i2400m_fw
*i2400m_fw
;
1554 const struct i2400m_bcf_hdr
*bcf
; /* Firmware data */
1555 const struct firmware
*fw
;
1556 const char *fw_name
;
1558 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1561 spin_lock(&i2400m
->rx_lock
);
1562 i2400m_fw
= i2400m_fw_get(i2400m
->fw_cached
);
1563 spin_unlock(&i2400m
->rx_lock
);
1564 if (i2400m_fw
== (void *) ~0) {
1565 dev_err(dev
, "can't load firmware now!");
1567 } else if (i2400m_fw
!= NULL
) {
1568 dev_info(dev
, "firmware %s: loading from cache\n",
1570 ret
= i2400m_fw_bootstrap(i2400m
, i2400m_fw
->fw
, flags
);
1571 i2400m_fw_put(i2400m_fw
);
1575 /* Load firmware files to memory. */
1576 for (itr
= 0, bcf
= NULL
, ret
= -ENOENT
; ; itr
++) {
1577 fw_name
= i2400m
->bus_fw_names
[itr
];
1578 if (fw_name
== NULL
) {
1579 dev_err(dev
, "Could not find a usable firmware image\n");
1582 d_printf(1, dev
, "trying firmware %s (%d)\n", fw_name
, itr
);
1583 ret
= request_firmware(&fw
, fw_name
, dev
);
1585 dev_err(dev
, "fw %s: cannot load file: %d\n",
1589 i2400m
->fw_name
= fw_name
;
1590 ret
= i2400m_fw_bootstrap(i2400m
, fw
, flags
);
1591 release_firmware(fw
);
1592 if (ret
>= 0) /* firmware loaded successfully */
1594 i2400m
->fw_name
= NULL
;
1597 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1600 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap
);
1603 void i2400m_fw_cache(struct i2400m
*i2400m
)
1606 struct i2400m_fw
*i2400m_fw
;
1607 struct device
*dev
= i2400m_dev(i2400m
);
1609 /* if there is anything there, free it -- now, this'd be weird */
1610 spin_lock(&i2400m
->rx_lock
);
1611 i2400m_fw
= i2400m
->fw_cached
;
1612 spin_unlock(&i2400m
->rx_lock
);
1613 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0) {
1614 i2400m_fw_put(i2400m_fw
);
1615 WARN(1, "%s:%u: still cached fw still present?\n",
1616 __func__
, __LINE__
);
1619 if (i2400m
->fw_name
== NULL
) {
1620 dev_err(dev
, "firmware n/a: can't cache\n");
1621 i2400m_fw
= (void *) ~0;
1625 i2400m_fw
= kzalloc(sizeof(*i2400m_fw
), GFP_ATOMIC
);
1626 if (i2400m_fw
== NULL
)
1628 kref_init(&i2400m_fw
->kref
);
1629 result
= request_firmware(&i2400m_fw
->fw
, i2400m
->fw_name
, dev
);
1631 dev_err(dev
, "firmware %s: failed to cache: %d\n",
1632 i2400m
->fw_name
, result
);
1634 i2400m_fw
= (void *) ~0;
1636 dev_info(dev
, "firmware %s: cached\n", i2400m
->fw_name
);
1638 spin_lock(&i2400m
->rx_lock
);
1639 i2400m
->fw_cached
= i2400m_fw
;
1640 spin_unlock(&i2400m
->rx_lock
);
1644 void i2400m_fw_uncache(struct i2400m
*i2400m
)
1646 struct i2400m_fw
*i2400m_fw
;
1648 spin_lock(&i2400m
->rx_lock
);
1649 i2400m_fw
= i2400m
->fw_cached
;
1650 i2400m
->fw_cached
= NULL
;
1651 spin_unlock(&i2400m
->rx_lock
);
1653 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1654 i2400m_fw_put(i2400m_fw
);