2 * Intel Wireless WiMAX Connection 2400m
3 * Handle incoming traffic and deliver it to the control or data planes
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * - Initial implementation
38 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
39 * - Use skb_clone(), break up processing in chunks
40 * - Split transport/device specific
41 * - Make buffer size dynamic to exert less memory pressure
42 * - RX reorder support
44 * This handles the RX path.
46 * We receive an RX message from the bus-specific driver, which
47 * contains one or more payloads that have potentially different
48 * destinataries (data or control paths).
50 * So we just take that payload from the transport specific code in
51 * the form of an skb, break it up in chunks (a cloned skb each in the
52 * case of network packets) and pass it to netdev or to the
53 * command/ack handler (and from there to the WiMAX stack).
57 * The format of the buffer is:
59 * HEADER (struct i2400m_msg_hdr)
60 * PAYLOAD DESCRIPTOR 0 (struct i2400m_pld)
61 * PAYLOAD DESCRIPTOR 1
63 * PAYLOAD DESCRIPTOR N
64 * PAYLOAD 0 (raw bytes)
69 * See tx.c for a deeper description on alignment requirements and
70 * other fun facts of it.
74 * In firmwares <= v1.3, data packets have no header for RX, but they
75 * do for TX (currently unused).
77 * In firmware >= 1.4, RX packets have an extended header (16
78 * bytes). This header conveys information for management of host
79 * reordering of packets (the device offloads storage of the packets
80 * for reordering to the host). Read below for more information.
82 * The header is used as dummy space to emulate an ethernet header and
83 * thus be able to act as an ethernet device without having to reallocate.
87 * Starting in firmware v1.4, the device can deliver packets for
88 * delivery with special reordering information; this allows it to
89 * more effectively do packet management when some frames were lost in
92 * Thus, for RX packets that come out of order, the device gives the
93 * driver enough information to queue them properly and then at some
94 * point, the signal to deliver the whole (or part) of the queued
95 * packets to the networking stack. There are 16 such queues.
97 * This only happens when a packet comes in with the "need reorder"
98 * flag set in the RX header. When such bit is set, the following
99 * operations might be indicated:
101 * - reset queue: send all queued packets to the OS
103 * - queue: queue a packet
105 * - update ws: update the queue's window start and deliver queued
106 * packets that meet the criteria
108 * - queue & update ws: queue a packet, update the window start and
109 * deliver queued packets that meet the criteria
111 * (delivery criteria: the packet's [normalized] sequence number is
112 * lower than the new [normalized] window start).
114 * See the i2400m_roq_*() functions for details.
119 * i2400m_rx_msg_hdr_check
120 * i2400m_rx_pl_descr_check
129 * i2400m_roq_update_ws
130 * __i2400m_roq_update_ws
132 * i2400m_roq_queue_update_ws
134 * __i2400m_roq_update_ws
137 * i2400m_msg_size_check
138 * i2400m_report_hook_work [in a workqueue]
142 * wimax_msg_to_user_alloc
144 * i2400m_msg_size_check
147 #include <linux/slab.h>
148 #include <linux/kernel.h>
149 #include <linux/if_arp.h>
150 #include <linux/netdevice.h>
151 #include <linux/workqueue.h>
155 #define D_SUBMODULE rx
156 #include "debug-levels.h"
158 static int i2400m_rx_reorder_disabled
; /* 0 (rx reorder enabled) by default */
159 module_param_named(rx_reorder_disabled
, i2400m_rx_reorder_disabled
, int, 0644);
160 MODULE_PARM_DESC(rx_reorder_disabled
,
161 "If true, RX reordering will be disabled.");
163 struct i2400m_report_hook_args
{
164 struct sk_buff
*skb_rx
;
165 const struct i2400m_l3l4_hdr
*l3l4_hdr
;
167 struct list_head list_node
;
172 * Execute i2400m_report_hook in a workqueue
174 * Goes over the list of queued reports in i2400m->rx_reports and
177 * NOTE: refcounts on i2400m are not needed because we flush the
178 * workqueue this runs on (i2400m->work_queue) before destroying
181 void i2400m_report_hook_work(struct work_struct
*ws
)
183 struct i2400m
*i2400m
= container_of(ws
, struct i2400m
, rx_report_ws
);
184 struct device
*dev
= i2400m_dev(i2400m
);
185 struct i2400m_report_hook_args
*args
, *args_next
;
190 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
191 list_splice_init(&i2400m
->rx_reports
, &list
);
192 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
193 if (list_empty(&list
))
196 d_printf(1, dev
, "processing queued reports\n");
197 list_for_each_entry_safe(args
, args_next
, &list
, list_node
) {
198 d_printf(2, dev
, "processing queued report %p\n", args
);
199 i2400m_report_hook(i2400m
, args
->l3l4_hdr
, args
->size
);
200 kfree_skb(args
->skb_rx
);
201 list_del(&args
->list_node
);
209 * Flush the list of queued reports
212 void i2400m_report_hook_flush(struct i2400m
*i2400m
)
214 struct device
*dev
= i2400m_dev(i2400m
);
215 struct i2400m_report_hook_args
*args
, *args_next
;
219 d_printf(1, dev
, "flushing queued reports\n");
220 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
221 list_splice_init(&i2400m
->rx_reports
, &list
);
222 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
223 list_for_each_entry_safe(args
, args_next
, &list
, list_node
) {
224 d_printf(2, dev
, "flushing queued report %p\n", args
);
225 kfree_skb(args
->skb_rx
);
226 list_del(&args
->list_node
);
233 * Queue a report for later processing
235 * @i2400m: device descriptor
236 * @skb_rx: skb that contains the payload (for reference counting)
237 * @l3l4_hdr: pointer to the control
238 * @size: size of the message
241 void i2400m_report_hook_queue(struct i2400m
*i2400m
, struct sk_buff
*skb_rx
,
242 const void *l3l4_hdr
, size_t size
)
244 struct device
*dev
= i2400m_dev(i2400m
);
246 struct i2400m_report_hook_args
*args
;
248 args
= kzalloc(sizeof(*args
), GFP_NOIO
);
250 args
->skb_rx
= skb_get(skb_rx
);
251 args
->l3l4_hdr
= l3l4_hdr
;
253 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
254 list_add_tail(&args
->list_node
, &i2400m
->rx_reports
);
255 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
256 d_printf(2, dev
, "queued report %p\n", args
);
257 rmb(); /* see i2400m->ready's documentation */
258 if (likely(i2400m
->ready
)) /* only send if up */
259 queue_work(i2400m
->work_queue
, &i2400m
->rx_report_ws
);
261 if (printk_ratelimit())
262 dev_err(dev
, "%s:%u: Can't allocate %zu B\n",
263 __func__
, __LINE__
, sizeof(*args
));
269 * Process an ack to a command
271 * @i2400m: device descriptor
272 * @payload: pointer to message
273 * @size: size of the message
275 * Pass the acknodledgment (in an skb) to the thread that is waiting
276 * for it in i2400m->msg_completion.
278 * We need to coordinate properly with the thread waiting for the
279 * ack. Check if it is waiting or if it is gone. We loose the spinlock
280 * to avoid allocating on atomic contexts (yeah, could use GFP_ATOMIC,
281 * but this is not so speed critical).
284 void i2400m_rx_ctl_ack(struct i2400m
*i2400m
,
285 const void *payload
, size_t size
)
287 struct device
*dev
= i2400m_dev(i2400m
);
288 struct wimax_dev
*wimax_dev
= &i2400m
->wimax_dev
;
290 struct sk_buff
*ack_skb
;
292 /* Anyone waiting for an answer? */
293 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
294 if (i2400m
->ack_skb
!= ERR_PTR(-EINPROGRESS
)) {
295 dev_err(dev
, "Huh? reply to command with no waiters\n");
296 goto error_no_waiter
;
298 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
300 ack_skb
= wimax_msg_alloc(wimax_dev
, NULL
, payload
, size
, GFP_KERNEL
);
302 /* Check waiter didn't time out waiting for the answer... */
303 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
304 if (i2400m
->ack_skb
!= ERR_PTR(-EINPROGRESS
)) {
305 d_printf(1, dev
, "Huh? waiter for command reply cancelled\n");
306 goto error_waiter_cancelled
;
309 dev_err(dev
, "CMD/GET/SET ack: cannot allocate SKB\n");
310 i2400m
->ack_skb
= ack_skb
;
311 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
312 complete(&i2400m
->msg_completion
);
315 error_waiter_cancelled
:
316 if (!IS_ERR(ack_skb
))
319 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
324 * Receive and process a control payload
326 * @i2400m: device descriptor
327 * @skb_rx: skb that contains the payload (for reference counting)
328 * @payload: pointer to message
329 * @size: size of the message
331 * There are two types of control RX messages: reports (asynchronous,
332 * like your every day interrupts) and 'acks' (reponses to a command,
333 * get or set request).
335 * If it is a report, we run hooks on it (to extract information for
336 * things we need to do in the driver) and then pass it over to the
337 * WiMAX stack to send it to user space.
339 * NOTE: report processing is done in a workqueue specific to the
340 * generic driver, to avoid deadlocks in the system.
342 * If it is not a report, it is an ack to a previously executed
343 * command, set or get, so wake up whoever is waiting for it from
344 * i2400m_msg_to_dev(). i2400m_rx_ctl_ack() takes care of that.
346 * Note that the sizes we pass to other functions from here are the
347 * sizes of the _l3l4_hdr + payload, not full buffer sizes, as we have
348 * verified in _msg_size_check() that they are congruent.
350 * For reports: We can't clone the original skb where the data is
351 * because we need to send this up via netlink; netlink has to add
352 * headers and we can't overwrite what's preceding the payload...as
353 * it is another message. So we just dup them.
356 void i2400m_rx_ctl(struct i2400m
*i2400m
, struct sk_buff
*skb_rx
,
357 const void *payload
, size_t size
)
360 struct device
*dev
= i2400m_dev(i2400m
);
361 const struct i2400m_l3l4_hdr
*l3l4_hdr
= payload
;
364 result
= i2400m_msg_size_check(i2400m
, l3l4_hdr
, size
);
366 dev_err(dev
, "HW BUG? device sent a bad message: %d\n",
370 msg_type
= le16_to_cpu(l3l4_hdr
->type
);
371 d_printf(1, dev
, "%s 0x%04x: %zu bytes\n",
372 msg_type
& I2400M_MT_REPORT_MASK
? "REPORT" : "CMD/SET/GET",
374 d_dump(2, dev
, l3l4_hdr
, size
);
375 if (msg_type
& I2400M_MT_REPORT_MASK
) {
377 * Process each report
379 * - has to be ran serialized as well
381 * - the handling might force the execution of
382 * commands. That might cause reentrancy issues with
383 * bus-specific subdrivers and workqueues, so the we
384 * run it in a separate workqueue.
386 * - when the driver is not yet ready to handle them,
387 * they are queued and at some point the queue is
388 * restarted [NOTE: we can't queue SKBs directly, as
389 * this might be a piece of a SKB, not the whole
390 * thing, and this is cheaper than cloning the
393 * Note we don't do refcounting for the device
394 * structure; this is because before destroying
395 * 'i2400m', we make sure to flush the
396 * i2400m->work_queue, so there are no issues.
398 i2400m_report_hook_queue(i2400m
, skb_rx
, l3l4_hdr
, size
);
399 if (unlikely(i2400m
->trace_msg_from_user
))
400 wimax_msg(&i2400m
->wimax_dev
, "echo",
401 l3l4_hdr
, size
, GFP_KERNEL
);
402 result
= wimax_msg(&i2400m
->wimax_dev
, NULL
, l3l4_hdr
, size
,
405 dev_err(dev
, "error sending report to userspace: %d\n",
407 } else /* an ack to a CMD, GET or SET */
408 i2400m_rx_ctl_ack(i2400m
, payload
, size
);
415 * Receive and send up a trace
417 * @i2400m: device descriptor
418 * @skb_rx: skb that contains the trace (for reference counting)
419 * @payload: pointer to trace message inside the skb
420 * @size: size of the message
422 * THe i2400m might produce trace information (diagnostics) and we
423 * send them through a different kernel-to-user pipe (to avoid
426 * As in i2400m_rx_ctl(), we can't clone the original skb where the
427 * data is because we need to send this up via netlink; netlink has to
428 * add headers and we can't overwrite what's preceding the
429 * payload...as it is another message. So we just dup them.
432 void i2400m_rx_trace(struct i2400m
*i2400m
,
433 const void *payload
, size_t size
)
436 struct device
*dev
= i2400m_dev(i2400m
);
437 struct wimax_dev
*wimax_dev
= &i2400m
->wimax_dev
;
438 const struct i2400m_l3l4_hdr
*l3l4_hdr
= payload
;
441 result
= i2400m_msg_size_check(i2400m
, l3l4_hdr
, size
);
443 dev_err(dev
, "HW BUG? device sent a bad trace message: %d\n",
447 msg_type
= le16_to_cpu(l3l4_hdr
->type
);
448 d_printf(1, dev
, "Trace %s 0x%04x: %zu bytes\n",
449 msg_type
& I2400M_MT_REPORT_MASK
? "REPORT" : "CMD/SET/GET",
451 d_dump(2, dev
, l3l4_hdr
, size
);
452 result
= wimax_msg(wimax_dev
, "trace", l3l4_hdr
, size
, GFP_KERNEL
);
454 dev_err(dev
, "error sending trace to userspace: %d\n",
462 * Reorder queue data stored on skb->cb while the skb is queued in the
465 struct i2400m_roq_data
{
466 unsigned sn
; /* Serial number for the skb */
467 enum i2400m_cs cs
; /* packet type for the skb */
474 * @ws: Window Start; sequence number where the current window start
476 * @queue: the skb queue itself
477 * @log: circular ring buffer used to log information about the
478 * reorder process in this queue that can be displayed in case of
479 * error to help diagnose it.
481 * This is the head for a list of skbs. In the skb->cb member of the
482 * skb when queued here contains a 'struct i2400m_roq_data' were we
483 * store the sequence number (sn) and the cs (packet type) coming from
484 * the RX payload header from the device.
489 struct sk_buff_head queue
;
490 struct i2400m_roq_log
*log
;
495 void __i2400m_roq_init(struct i2400m_roq
*roq
)
498 skb_queue_head_init(&roq
->queue
);
503 unsigned __i2400m_roq_index(struct i2400m
*i2400m
, struct i2400m_roq
*roq
)
505 return ((unsigned long) roq
- (unsigned long) i2400m
->rx_roq
)
511 * Normalize a sequence number based on the queue's window start
513 * nsn = (sn - ws) % 2048
515 * Note that if @sn < @roq->ws, we still need a positive number; %'s
516 * sign is implementation specific, so we normalize it by adding 2048
517 * to bring it to be positive.
520 unsigned __i2400m_roq_nsn(struct i2400m_roq
*roq
, unsigned sn
)
523 r
= ((int) sn
- (int) roq
->ws
) % 2048;
531 * Circular buffer to keep the last N reorder operations
533 * In case something fails, dumb then to try to come up with what
537 I2400M_ROQ_LOG_LENGTH
= 32,
540 struct i2400m_roq_log
{
541 struct i2400m_roq_log_entry
{
542 enum i2400m_ro_type type
;
543 unsigned ws
, count
, sn
, nsn
, new_ws
;
544 } entry
[I2400M_ROQ_LOG_LENGTH
];
549 /* Print a log entry */
551 void i2400m_roq_log_entry_print(struct i2400m
*i2400m
, unsigned index
,
553 struct i2400m_roq_log_entry
*e
)
555 struct device
*dev
= i2400m_dev(i2400m
);
558 case I2400M_RO_TYPE_RESET
:
559 dev_err(dev
, "q#%d reset ws %u cnt %u sn %u/%u"
561 index
, e
->ws
, e
->count
, e
->sn
, e
->nsn
, e
->new_ws
);
563 case I2400M_RO_TYPE_PACKET
:
564 dev_err(dev
, "q#%d queue ws %u cnt %u sn %u/%u\n",
565 index
, e
->ws
, e
->count
, e
->sn
, e
->nsn
);
567 case I2400M_RO_TYPE_WS
:
568 dev_err(dev
, "q#%d update_ws ws %u cnt %u sn %u/%u"
570 index
, e
->ws
, e
->count
, e
->sn
, e
->nsn
, e
->new_ws
);
572 case I2400M_RO_TYPE_PACKET_WS
:
573 dev_err(dev
, "q#%d queue_update_ws ws %u cnt %u sn %u/%u"
575 index
, e
->ws
, e
->count
, e
->sn
, e
->nsn
, e
->new_ws
);
578 dev_err(dev
, "q#%d BUG? entry %u - unknown type %u\n",
579 index
, e_index
, e
->type
);
586 void i2400m_roq_log_add(struct i2400m
*i2400m
,
587 struct i2400m_roq
*roq
, enum i2400m_ro_type type
,
588 unsigned ws
, unsigned count
, unsigned sn
,
589 unsigned nsn
, unsigned new_ws
)
591 struct i2400m_roq_log_entry
*e
;
593 int index
= __i2400m_roq_index(i2400m
, roq
);
595 /* if we run out of space, we eat from the end */
596 if (roq
->log
->in
- roq
->log
->out
== I2400M_ROQ_LOG_LENGTH
)
598 cnt_idx
= roq
->log
->in
++ % I2400M_ROQ_LOG_LENGTH
;
599 e
= &roq
->log
->entry
[cnt_idx
];
609 i2400m_roq_log_entry_print(i2400m
, index
, cnt_idx
, e
);
613 /* Dump all the entries in the FIFO and reinitialize it */
615 void i2400m_roq_log_dump(struct i2400m
*i2400m
, struct i2400m_roq
*roq
)
617 unsigned cnt
, cnt_idx
;
618 struct i2400m_roq_log_entry
*e
;
619 int index
= __i2400m_roq_index(i2400m
, roq
);
621 BUG_ON(roq
->log
->out
> roq
->log
->in
);
622 for (cnt
= roq
->log
->out
; cnt
< roq
->log
->in
; cnt
++) {
623 cnt_idx
= cnt
% I2400M_ROQ_LOG_LENGTH
;
624 e
= &roq
->log
->entry
[cnt_idx
];
625 i2400m_roq_log_entry_print(i2400m
, index
, cnt_idx
, e
);
626 memset(e
, 0, sizeof(*e
));
628 roq
->log
->in
= roq
->log
->out
= 0;
633 * Backbone for the queuing of an skb (by normalized sequence number)
635 * @i2400m: device descriptor
636 * @roq: reorder queue where to add
637 * @skb: the skb to add
638 * @sn: the sequence number of the skb
639 * @nsn: the normalized sequence number of the skb (pre-computed by the
640 * caller from the @sn and @roq->ws).
642 * We try first a couple of quick cases:
644 * - the queue is empty
645 * - the skb would be appended to the queue
647 * These will be the most common operations.
649 * If these fail, then we have to do a sorted insertion in the queue,
650 * which is the slowest path.
652 * We don't have to acquire a reference count as we are going to own it.
655 void __i2400m_roq_queue(struct i2400m
*i2400m
, struct i2400m_roq
*roq
,
656 struct sk_buff
*skb
, unsigned sn
, unsigned nsn
)
658 struct device
*dev
= i2400m_dev(i2400m
);
659 struct sk_buff
*skb_itr
;
660 struct i2400m_roq_data
*roq_data_itr
, *roq_data
;
663 d_fnstart(4, dev
, "(i2400m %p roq %p skb %p sn %u nsn %u)\n",
664 i2400m
, roq
, skb
, sn
, nsn
);
666 roq_data
= (struct i2400m_roq_data
*) &skb
->cb
;
667 BUILD_BUG_ON(sizeof(*roq_data
) > sizeof(skb
->cb
));
669 d_printf(3, dev
, "ERX: roq %p [ws %u] nsn %d sn %u\n",
670 roq
, roq
->ws
, nsn
, roq_data
->sn
);
672 /* Queues will be empty on not-so-bad environments, so try
674 if (skb_queue_empty(&roq
->queue
)) {
675 d_printf(2, dev
, "ERX: roq %p - first one\n", roq
);
676 __skb_queue_head(&roq
->queue
, skb
);
679 /* Now try append, as most of the operations will be that */
680 skb_itr
= skb_peek_tail(&roq
->queue
);
681 roq_data_itr
= (struct i2400m_roq_data
*) &skb_itr
->cb
;
682 nsn_itr
= __i2400m_roq_nsn(roq
, roq_data_itr
->sn
);
683 /* NSN bounds assumed correct (checked when it was queued) */
684 if (nsn
>= nsn_itr
) {
685 d_printf(2, dev
, "ERX: roq %p - appended after %p (nsn %d sn %u)\n",
686 roq
, skb_itr
, nsn_itr
, roq_data_itr
->sn
);
687 __skb_queue_tail(&roq
->queue
, skb
);
690 /* None of the fast paths option worked. Iterate to find the
691 * right spot where to insert the packet; we know the queue is
692 * not empty, so we are not the first ones; we also know we
693 * are not going to be the last ones. The list is sorted, so
694 * we have to insert before the the first guy with an nsn_itr
695 * greater that our nsn. */
696 skb_queue_walk(&roq
->queue
, skb_itr
) {
697 roq_data_itr
= (struct i2400m_roq_data
*) &skb_itr
->cb
;
698 nsn_itr
= __i2400m_roq_nsn(roq
, roq_data_itr
->sn
);
699 /* NSN bounds assumed correct (checked when it was queued) */
701 d_printf(2, dev
, "ERX: roq %p - queued before %p "
702 "(nsn %d sn %u)\n", roq
, skb_itr
, nsn_itr
,
704 __skb_queue_before(&roq
->queue
, skb_itr
, skb
);
708 /* If we get here, that is VERY bad -- print info to help
709 * diagnose and crash it */
710 dev_err(dev
, "SW BUG? failed to insert packet\n");
711 dev_err(dev
, "ERX: roq %p [ws %u] skb %p nsn %d sn %u\n",
712 roq
, roq
->ws
, skb
, nsn
, roq_data
->sn
);
713 skb_queue_walk(&roq
->queue
, skb_itr
) {
714 roq_data_itr
= (struct i2400m_roq_data
*) &skb_itr
->cb
;
715 nsn_itr
= __i2400m_roq_nsn(roq
, roq_data_itr
->sn
);
716 /* NSN bounds assumed correct (checked when it was queued) */
717 dev_err(dev
, "ERX: roq %p skb_itr %p nsn %d sn %u\n",
718 roq
, skb_itr
, nsn_itr
, roq_data_itr
->sn
);
722 d_fnend(4, dev
, "(i2400m %p roq %p skb %p sn %u nsn %d) = void\n",
723 i2400m
, roq
, skb
, sn
, nsn
);
728 * Backbone for the update window start operation
730 * @i2400m: device descriptor
731 * @roq: Reorder queue
732 * @sn: New sequence number
734 * Updates the window start of a queue; when doing so, it must deliver
735 * to the networking stack all the queued skb's whose normalized
736 * sequence number is lower than the new normalized window start.
739 unsigned __i2400m_roq_update_ws(struct i2400m
*i2400m
, struct i2400m_roq
*roq
,
742 struct device
*dev
= i2400m_dev(i2400m
);
743 struct sk_buff
*skb_itr
, *tmp_itr
;
744 struct i2400m_roq_data
*roq_data_itr
;
745 unsigned new_nws
, nsn_itr
;
747 new_nws
= __i2400m_roq_nsn(roq
, sn
);
749 * For type 2(update_window_start) rx messages, there is no
750 * need to check if the normalized sequence number is greater 1023.
751 * Simply insert and deliver all packets to the host up to the
754 skb_queue_walk_safe(&roq
->queue
, skb_itr
, tmp_itr
) {
755 roq_data_itr
= (struct i2400m_roq_data
*) &skb_itr
->cb
;
756 nsn_itr
= __i2400m_roq_nsn(roq
, roq_data_itr
->sn
);
757 /* NSN bounds assumed correct (checked when it was queued) */
758 if (nsn_itr
< new_nws
) {
759 d_printf(2, dev
, "ERX: roq %p - release skb %p "
760 "(nsn %u/%u new nws %u)\n",
761 roq
, skb_itr
, nsn_itr
, roq_data_itr
->sn
,
763 __skb_unlink(skb_itr
, &roq
->queue
);
764 i2400m_net_erx(i2400m
, skb_itr
, roq_data_itr
->cs
);
767 break; /* rest of packets all nsn_itr > nws */
777 * @i2400m: device descriptor
780 * Deliver all the packets and reset the window-start to zero. Name is
781 * kind of misleading.
784 void i2400m_roq_reset(struct i2400m
*i2400m
, struct i2400m_roq
*roq
)
786 struct device
*dev
= i2400m_dev(i2400m
);
787 struct sk_buff
*skb_itr
, *tmp_itr
;
788 struct i2400m_roq_data
*roq_data_itr
;
790 d_fnstart(2, dev
, "(i2400m %p roq %p)\n", i2400m
, roq
);
791 i2400m_roq_log_add(i2400m
, roq
, I2400M_RO_TYPE_RESET
,
792 roq
->ws
, skb_queue_len(&roq
->queue
),
794 skb_queue_walk_safe(&roq
->queue
, skb_itr
, tmp_itr
) {
795 roq_data_itr
= (struct i2400m_roq_data
*) &skb_itr
->cb
;
796 d_printf(2, dev
, "ERX: roq %p - release skb %p (sn %u)\n",
797 roq
, skb_itr
, roq_data_itr
->sn
);
798 __skb_unlink(skb_itr
, &roq
->queue
);
799 i2400m_net_erx(i2400m
, skb_itr
, roq_data_itr
->cs
);
802 d_fnend(2, dev
, "(i2400m %p roq %p) = void\n", i2400m
, roq
);
809 * @i2400m: device descriptor
811 * @skb: containing the packet data
812 * @fbn: First block number of the packet in @skb
813 * @lbn: Last block number of the packet in @skb
815 * The hardware is asking the driver to queue a packet for later
816 * delivery to the networking stack.
819 void i2400m_roq_queue(struct i2400m
*i2400m
, struct i2400m_roq
*roq
,
820 struct sk_buff
* skb
, unsigned lbn
)
822 struct device
*dev
= i2400m_dev(i2400m
);
825 d_fnstart(2, dev
, "(i2400m %p roq %p skb %p lbn %u) = void\n",
826 i2400m
, roq
, skb
, lbn
);
827 len
= skb_queue_len(&roq
->queue
);
828 nsn
= __i2400m_roq_nsn(roq
, lbn
);
829 if (unlikely(nsn
>= 1024)) {
830 dev_err(dev
, "SW BUG? queue nsn %d (lbn %u ws %u)\n",
832 i2400m_roq_log_dump(i2400m
, roq
);
833 i2400m_reset(i2400m
, I2400M_RT_WARM
);
835 __i2400m_roq_queue(i2400m
, roq
, skb
, lbn
, nsn
);
836 i2400m_roq_log_add(i2400m
, roq
, I2400M_RO_TYPE_PACKET
,
837 roq
->ws
, len
, lbn
, nsn
, ~0);
839 d_fnend(2, dev
, "(i2400m %p roq %p skb %p lbn %u) = void\n",
840 i2400m
, roq
, skb
, lbn
);
845 * Update the window start in a reorder queue and deliver all skbs
846 * with a lower window start
848 * @i2400m: device descriptor
849 * @roq: Reorder queue
850 * @sn: New sequence number
853 void i2400m_roq_update_ws(struct i2400m
*i2400m
, struct i2400m_roq
*roq
,
856 struct device
*dev
= i2400m_dev(i2400m
);
857 unsigned old_ws
, nsn
, len
;
859 d_fnstart(2, dev
, "(i2400m %p roq %p sn %u)\n", i2400m
, roq
, sn
);
861 len
= skb_queue_len(&roq
->queue
);
862 nsn
= __i2400m_roq_update_ws(i2400m
, roq
, sn
);
863 i2400m_roq_log_add(i2400m
, roq
, I2400M_RO_TYPE_WS
,
864 old_ws
, len
, sn
, nsn
, roq
->ws
);
865 d_fnstart(2, dev
, "(i2400m %p roq %p sn %u) = void\n", i2400m
, roq
, sn
);
870 * Queue a packet and update the window start
872 * @i2400m: device descriptor
874 * @skb: containing the packet data
875 * @fbn: First block number of the packet in @skb
876 * @sn: Last block number of the packet in @skb
878 * Note that unlike i2400m_roq_update_ws(), which sets the new window
879 * start to @sn, in here we'll set it to @sn + 1.
882 void i2400m_roq_queue_update_ws(struct i2400m
*i2400m
, struct i2400m_roq
*roq
,
883 struct sk_buff
* skb
, unsigned sn
)
885 struct device
*dev
= i2400m_dev(i2400m
);
886 unsigned nsn
, old_ws
, len
;
888 d_fnstart(2, dev
, "(i2400m %p roq %p skb %p sn %u)\n",
889 i2400m
, roq
, skb
, sn
);
890 len
= skb_queue_len(&roq
->queue
);
891 nsn
= __i2400m_roq_nsn(roq
, sn
);
893 * For type 3(queue_update_window_start) rx messages, there is no
894 * need to check if the normalized sequence number is greater 1023.
895 * Simply insert and deliver all packets to the host up to the
899 /* If the queue is empty, don't bother as we'd queue
900 * it and immediately unqueue it -- just deliver it.
903 struct i2400m_roq_data
*roq_data
;
904 roq_data
= (struct i2400m_roq_data
*) &skb
->cb
;
905 i2400m_net_erx(i2400m
, skb
, roq_data
->cs
);
907 __i2400m_roq_queue(i2400m
, roq
, skb
, sn
, nsn
);
909 __i2400m_roq_update_ws(i2400m
, roq
, sn
+ 1);
910 i2400m_roq_log_add(i2400m
, roq
, I2400M_RO_TYPE_PACKET_WS
,
911 old_ws
, len
, sn
, nsn
, roq
->ws
);
913 d_fnend(2, dev
, "(i2400m %p roq %p skb %p sn %u) = void\n",
914 i2400m
, roq
, skb
, sn
);
919 * This routine destroys the memory allocated for rx_roq, when no
920 * other thread is accessing it. Access to rx_roq is refcounted by
921 * rx_roq_refcount, hence memory allocated must be destroyed when
922 * rx_roq_refcount becomes zero. This routine gets executed when
923 * rx_roq_refcount becomes zero.
925 static void i2400m_rx_roq_destroy(struct kref
*ref
)
928 struct i2400m
*i2400m
929 = container_of(ref
, struct i2400m
, rx_roq_refcount
);
930 for (itr
= 0; itr
< I2400M_RO_CIN
+ 1; itr
++)
931 __skb_queue_purge(&i2400m
->rx_roq
[itr
].queue
);
932 kfree(i2400m
->rx_roq
[0].log
);
933 kfree(i2400m
->rx_roq
);
934 i2400m
->rx_roq
= NULL
;
938 * Receive and send up an extended data packet
940 * @i2400m: device descriptor
941 * @skb_rx: skb that contains the extended data packet
942 * @single_last: 1 if the payload is the only one or the last one of
944 * @payload: pointer to the packet's data inside the skb
945 * @size: size of the payload
947 * Starting in v1.4 of the i2400m's firmware, the device can send data
948 * packets to the host in an extended format that; this incudes a 16
949 * byte header (struct i2400m_pl_edata_hdr). Using this header's space
950 * we can fake ethernet headers for ethernet device emulation without
951 * having to copy packets around.
953 * This function handles said path.
956 * Receive and send up an extended data packet that requires no reordering
958 * @i2400m: device descriptor
959 * @skb_rx: skb that contains the extended data packet
960 * @single_last: 1 if the payload is the only one or the last one of
962 * @payload: pointer to the packet's data (past the actual extended
963 * data payload header).
964 * @size: size of the payload
966 * Pass over to the networking stack a data packet that might have
967 * reordering requirements.
969 * This needs to the decide if the skb in which the packet is
970 * contained can be reused or if it needs to be cloned. Then it has to
971 * be trimmed in the edges so that the beginning is the space for eth
972 * header and then pass it to i2400m_net_erx() for the stack
974 * Assumes the caller has verified the sanity of the payload (size,
978 void i2400m_rx_edata(struct i2400m
*i2400m
, struct sk_buff
*skb_rx
,
979 unsigned single_last
, const void *payload
, size_t size
)
981 struct device
*dev
= i2400m_dev(i2400m
);
982 const struct i2400m_pl_edata_hdr
*hdr
= payload
;
983 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
987 unsigned ro_needed
, ro_type
, ro_cin
, ro_sn
;
988 struct i2400m_roq
*roq
;
989 struct i2400m_roq_data
*roq_data
;
992 BUILD_BUG_ON(ETH_HLEN
> sizeof(*hdr
));
994 d_fnstart(2, dev
, "(i2400m %p skb_rx %p single %u payload %p "
995 "size %zu)\n", i2400m
, skb_rx
, single_last
, payload
, size
);
996 if (size
< sizeof(*hdr
)) {
997 dev_err(dev
, "ERX: HW BUG? message with short header (%zu "
998 "vs %zu bytes expected)\n", size
, sizeof(*hdr
));
1003 skb
= skb_get(skb_rx
);
1004 d_printf(3, dev
, "ERX: skb %p reusing\n", skb
);
1006 skb
= skb_clone(skb_rx
, GFP_KERNEL
);
1008 dev_err(dev
, "ERX: no memory to clone skb\n");
1009 net_dev
->stats
.rx_dropped
++;
1010 goto error_skb_clone
;
1012 d_printf(3, dev
, "ERX: skb %p cloned from %p\n", skb
, skb_rx
);
1014 /* now we have to pull and trim so that the skb points to the
1015 * beginning of the IP packet; the netdev part will add the
1016 * ethernet header as needed - we know there is enough space
1017 * because we checked in i2400m_rx_edata(). */
1018 skb_pull(skb
, payload
+ sizeof(*hdr
) - (void *) skb
->data
);
1019 skb_trim(skb
, (void *) skb_end_pointer(skb
) - payload
- sizeof(*hdr
));
1021 reorder
= le32_to_cpu(hdr
->reorder
);
1022 ro_needed
= reorder
& I2400M_RO_NEEDED
;
1025 ro_type
= (reorder
>> I2400M_RO_TYPE_SHIFT
) & I2400M_RO_TYPE
;
1026 ro_cin
= (reorder
>> I2400M_RO_CIN_SHIFT
) & I2400M_RO_CIN
;
1027 ro_sn
= (reorder
>> I2400M_RO_SN_SHIFT
) & I2400M_RO_SN
;
1029 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
1030 if (i2400m
->rx_roq
== NULL
) {
1031 kfree_skb(skb
); /* rx_roq is already destroyed */
1032 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
1035 roq
= &i2400m
->rx_roq
[ro_cin
];
1036 kref_get(&i2400m
->rx_roq_refcount
);
1037 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
1039 roq_data
= (struct i2400m_roq_data
*) &skb
->cb
;
1040 roq_data
->sn
= ro_sn
;
1042 d_printf(2, dev
, "ERX: reorder needed: "
1043 "type %u cin %u [ws %u] sn %u/%u len %zuB\n",
1044 ro_type
, ro_cin
, roq
->ws
, ro_sn
,
1045 __i2400m_roq_nsn(roq
, ro_sn
), size
);
1046 d_dump(2, dev
, payload
, size
);
1048 case I2400M_RO_TYPE_RESET
:
1049 i2400m_roq_reset(i2400m
, roq
);
1050 kfree_skb(skb
); /* no data here */
1052 case I2400M_RO_TYPE_PACKET
:
1053 i2400m_roq_queue(i2400m
, roq
, skb
, ro_sn
);
1055 case I2400M_RO_TYPE_WS
:
1056 i2400m_roq_update_ws(i2400m
, roq
, ro_sn
);
1057 kfree_skb(skb
); /* no data here */
1059 case I2400M_RO_TYPE_PACKET_WS
:
1060 i2400m_roq_queue_update_ws(i2400m
, roq
, skb
, ro_sn
);
1063 dev_err(dev
, "HW BUG? unknown reorder type %u\n", ro_type
);
1066 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
1067 kref_put(&i2400m
->rx_roq_refcount
, i2400m_rx_roq_destroy
);
1068 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
1071 i2400m_net_erx(i2400m
, skb
, cs
);
1074 d_fnend(2, dev
, "(i2400m %p skb_rx %p single %u payload %p "
1075 "size %zu) = void\n", i2400m
, skb_rx
, single_last
, payload
, size
);
1080 * Act on a received payload
1082 * @i2400m: device instance
1083 * @skb_rx: skb where the transaction was received
1084 * @single_last: 1 this is the only payload or the last one (so the
1085 * skb can be reused instead of cloned).
1086 * @pld: payload descriptor
1087 * @payload: payload data
1089 * Upon reception of a payload, look at its guts in the payload
1090 * descriptor and decide what to do with it. If it is a single payload
1091 * skb or if the last skb is a data packet, the skb will be referenced
1092 * and modified (so it doesn't have to be cloned).
1095 void i2400m_rx_payload(struct i2400m
*i2400m
, struct sk_buff
*skb_rx
,
1096 unsigned single_last
, const struct i2400m_pld
*pld
,
1097 const void *payload
)
1099 struct device
*dev
= i2400m_dev(i2400m
);
1100 size_t pl_size
= i2400m_pld_size(pld
);
1101 enum i2400m_pt pl_type
= i2400m_pld_type(pld
);
1103 d_printf(7, dev
, "RX: received payload type %u, %zu bytes\n",
1105 d_dump(8, dev
, payload
, pl_size
);
1108 case I2400M_PT_DATA
:
1109 d_printf(3, dev
, "RX: data payload %zu bytes\n", pl_size
);
1110 i2400m_net_rx(i2400m
, skb_rx
, single_last
, payload
, pl_size
);
1112 case I2400M_PT_CTRL
:
1113 i2400m_rx_ctl(i2400m
, skb_rx
, payload
, pl_size
);
1115 case I2400M_PT_TRACE
:
1116 i2400m_rx_trace(i2400m
, payload
, pl_size
);
1118 case I2400M_PT_EDATA
:
1119 d_printf(3, dev
, "ERX: data payload %zu bytes\n", pl_size
);
1120 i2400m_rx_edata(i2400m
, skb_rx
, single_last
, payload
, pl_size
);
1122 default: /* Anything else shouldn't come to the host */
1123 if (printk_ratelimit())
1124 dev_err(dev
, "RX: HW BUG? unexpected payload type %u\n",
1131 * Check a received transaction's message header
1133 * @i2400m: device descriptor
1134 * @msg_hdr: message header
1135 * @buf_size: size of the received buffer
1137 * Check that the declarations done by a RX buffer message header are
1138 * sane and consistent with the amount of data that was received.
1141 int i2400m_rx_msg_hdr_check(struct i2400m
*i2400m
,
1142 const struct i2400m_msg_hdr
*msg_hdr
,
1146 struct device
*dev
= i2400m_dev(i2400m
);
1147 if (buf_size
< sizeof(*msg_hdr
)) {
1148 dev_err(dev
, "RX: HW BUG? message with short header (%zu "
1149 "vs %zu bytes expected)\n", buf_size
, sizeof(*msg_hdr
));
1152 if (msg_hdr
->barker
!= cpu_to_le32(I2400M_D2H_MSG_BARKER
)) {
1153 dev_err(dev
, "RX: HW BUG? message received with unknown "
1154 "barker 0x%08x (buf_size %zu bytes)\n",
1155 le32_to_cpu(msg_hdr
->barker
), buf_size
);
1158 if (msg_hdr
->num_pls
== 0) {
1159 dev_err(dev
, "RX: HW BUG? zero payload packets in message\n");
1162 if (le16_to_cpu(msg_hdr
->num_pls
) > I2400M_MAX_PLS_IN_MSG
) {
1163 dev_err(dev
, "RX: HW BUG? message contains more payload "
1164 "than maximum; ignoring.\n");
1174 * Check a payload descriptor against the received data
1176 * @i2400m: device descriptor
1177 * @pld: payload descriptor
1178 * @pl_itr: offset (in bytes) in the received buffer the payload is
1180 * @buf_size: size of the received buffer
1182 * Given a payload descriptor (part of a RX buffer), check it is sane
1183 * and that the data it declares fits in the buffer.
1186 int i2400m_rx_pl_descr_check(struct i2400m
*i2400m
,
1187 const struct i2400m_pld
*pld
,
1188 size_t pl_itr
, size_t buf_size
)
1191 struct device
*dev
= i2400m_dev(i2400m
);
1192 size_t pl_size
= i2400m_pld_size(pld
);
1193 enum i2400m_pt pl_type
= i2400m_pld_type(pld
);
1195 if (pl_size
> i2400m
->bus_pl_size_max
) {
1196 dev_err(dev
, "RX: HW BUG? payload @%zu: size %zu is "
1197 "bigger than maximum %zu; ignoring message\n",
1198 pl_itr
, pl_size
, i2400m
->bus_pl_size_max
);
1201 if (pl_itr
+ pl_size
> buf_size
) { /* enough? */
1202 dev_err(dev
, "RX: HW BUG? payload @%zu: size %zu "
1203 "goes beyond the received buffer "
1204 "size (%zu bytes); ignoring message\n",
1205 pl_itr
, pl_size
, buf_size
);
1208 if (pl_type
>= I2400M_PT_ILLEGAL
) {
1209 dev_err(dev
, "RX: HW BUG? illegal payload type %u; "
1210 "ignoring message\n", pl_type
);
1220 * i2400m_rx - Receive a buffer of data from the device
1222 * @i2400m: device descriptor
1223 * @skb: skbuff where the data has been received
1225 * Parse in a buffer of data that contains an RX message sent from the
1226 * device. See the file header for the format. Run all checks on the
1227 * buffer header, then run over each payload's descriptors, verify
1228 * their consistency and act on each payload's contents. If
1229 * everything is successful, update the device's statistics.
1231 * Note: You need to set the skb to contain only the length of the
1232 * received buffer; for that, use skb_trim(skb, RECEIVED_SIZE).
1236 * 0 if ok, < 0 errno on error
1238 * If ok, this function owns now the skb and the caller DOESN'T have
1239 * to run kfree_skb() on it. However, on error, the caller still owns
1240 * the skb and it is responsible for releasing it.
1242 int i2400m_rx(struct i2400m
*i2400m
, struct sk_buff
*skb
)
1245 struct device
*dev
= i2400m_dev(i2400m
);
1246 const struct i2400m_msg_hdr
*msg_hdr
;
1247 size_t pl_itr
, pl_size
;
1248 unsigned long flags
;
1249 unsigned num_pls
, single_last
, skb_len
;
1252 d_fnstart(4, dev
, "(i2400m %p skb %p [size %u])\n",
1253 i2400m
, skb
, skb_len
);
1255 msg_hdr
= (void *) skb
->data
;
1256 result
= i2400m_rx_msg_hdr_check(i2400m
, msg_hdr
, skb_len
);
1258 goto error_msg_hdr_check
;
1260 num_pls
= le16_to_cpu(msg_hdr
->num_pls
);
1261 pl_itr
= sizeof(*msg_hdr
) + /* Check payload descriptor(s) */
1262 num_pls
* sizeof(msg_hdr
->pld
[0]);
1263 pl_itr
= ALIGN(pl_itr
, I2400M_PL_ALIGN
);
1264 if (pl_itr
> skb_len
) { /* got all the payload descriptors? */
1265 dev_err(dev
, "RX: HW BUG? message too short (%u bytes) for "
1266 "%u payload descriptors (%zu each, total %zu)\n",
1267 skb_len
, num_pls
, sizeof(msg_hdr
->pld
[0]), pl_itr
);
1268 goto error_pl_descr_short
;
1270 /* Walk each payload payload--check we really got it */
1271 for (i
= 0; i
< num_pls
; i
++) {
1272 /* work around old gcc warnings */
1273 pl_size
= i2400m_pld_size(&msg_hdr
->pld
[i
]);
1274 result
= i2400m_rx_pl_descr_check(i2400m
, &msg_hdr
->pld
[i
],
1277 goto error_pl_descr_check
;
1278 single_last
= num_pls
== 1 || i
== num_pls
- 1;
1279 i2400m_rx_payload(i2400m
, skb
, single_last
, &msg_hdr
->pld
[i
],
1280 skb
->data
+ pl_itr
);
1281 pl_itr
+= ALIGN(pl_size
, I2400M_PL_ALIGN
);
1282 cond_resched(); /* Don't monopolize */
1285 /* Update device statistics */
1286 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
1287 i2400m
->rx_pl_num
+= i
;
1288 if (i
> i2400m
->rx_pl_max
)
1289 i2400m
->rx_pl_max
= i
;
1290 if (i
< i2400m
->rx_pl_min
)
1291 i2400m
->rx_pl_min
= i
;
1293 i2400m
->rx_size_acc
+= skb_len
;
1294 if (skb_len
< i2400m
->rx_size_min
)
1295 i2400m
->rx_size_min
= skb_len
;
1296 if (skb_len
> i2400m
->rx_size_max
)
1297 i2400m
->rx_size_max
= skb_len
;
1298 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
1299 error_pl_descr_check
:
1300 error_pl_descr_short
:
1301 error_msg_hdr_check
:
1302 d_fnend(4, dev
, "(i2400m %p skb %p [size %u]) = %d\n",
1303 i2400m
, skb
, skb_len
, result
);
1306 EXPORT_SYMBOL_GPL(i2400m_rx
);
1309 void i2400m_unknown_barker(struct i2400m
*i2400m
,
1310 const void *buf
, size_t size
)
1312 struct device
*dev
= i2400m_dev(i2400m
);
1314 const __le32
*barker
= buf
;
1315 dev_err(dev
, "RX: HW BUG? unknown barker %08x, "
1316 "dropping %zu bytes\n", le32_to_cpu(*barker
), size
);
1317 snprintf(prefix
, sizeof(prefix
), "%s %s: ",
1318 dev_driver_string(dev
), dev_name(dev
));
1320 print_hex_dump(KERN_ERR
, prefix
, DUMP_PREFIX_OFFSET
,
1322 printk(KERN_ERR
"%s... (only first 64 bytes "
1323 "dumped)\n", prefix
);
1325 print_hex_dump(KERN_ERR
, prefix
, DUMP_PREFIX_OFFSET
,
1326 8, 4, buf
, size
, 0);
1328 EXPORT_SYMBOL(i2400m_unknown_barker
);
1332 * Initialize the RX queue and infrastructure
1334 * This sets up all the RX reordering infrastructures, which will not
1335 * be used if reordering is not enabled or if the firmware does not
1336 * support it. The device is told to do reordering in
1337 * i2400m_dev_initialize(), where it also looks at the value of the
1338 * i2400m->rx_reorder switch before taking a decission.
1340 * Note we allocate the roq queues in one chunk and the actual logging
1341 * support for it (logging) in another one and then we setup the
1342 * pointers from the first to the last.
1344 int i2400m_rx_setup(struct i2400m
*i2400m
)
1347 struct device
*dev
= i2400m_dev(i2400m
);
1349 i2400m
->rx_reorder
= i2400m_rx_reorder_disabled
? 0 : 1;
1350 if (i2400m
->rx_reorder
) {
1353 struct i2400m_roq_log
*rd
;
1357 size
= sizeof(i2400m
->rx_roq
[0]) * (I2400M_RO_CIN
+ 1);
1358 i2400m
->rx_roq
= kzalloc(size
, GFP_KERNEL
);
1359 if (i2400m
->rx_roq
== NULL
) {
1360 dev_err(dev
, "RX: cannot allocate %zu bytes for "
1361 "reorder queues\n", size
);
1362 goto error_roq_alloc
;
1365 size
= sizeof(*i2400m
->rx_roq
[0].log
) * (I2400M_RO_CIN
+ 1);
1366 rd
= kzalloc(size
, GFP_KERNEL
);
1368 dev_err(dev
, "RX: cannot allocate %zu bytes for "
1369 "reorder queues log areas\n", size
);
1371 goto error_roq_log_alloc
;
1374 for(itr
= 0; itr
< I2400M_RO_CIN
+ 1; itr
++) {
1375 __i2400m_roq_init(&i2400m
->rx_roq
[itr
]);
1376 i2400m
->rx_roq
[itr
].log
= &rd
[itr
];
1378 kref_init(&i2400m
->rx_roq_refcount
);
1382 error_roq_log_alloc
:
1383 kfree(i2400m
->rx_roq
);
1389 /* Tear down the RX queue and infrastructure */
1390 void i2400m_rx_release(struct i2400m
*i2400m
)
1392 unsigned long flags
;
1394 if (i2400m
->rx_reorder
) {
1395 spin_lock_irqsave(&i2400m
->rx_lock
, flags
);
1396 kref_put(&i2400m
->rx_roq_refcount
, i2400m_rx_roq_destroy
);
1397 spin_unlock_irqrestore(&i2400m
->rx_lock
, flags
);
1399 /* at this point, nothing can be received... */
1400 i2400m_report_hook_flush(i2400m
);