2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "ar9002_phy.h"
20 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw
*ah
)
24 return (ah
->eeprom
.map9287
.baseEepHeader
.version
>> 12) & 0xF;
27 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw
*ah
)
29 return (ah
->eeprom
.map9287
.baseEepHeader
.version
) & 0xFFF;
32 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
34 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
35 struct ath_common
*common
= ath9k_hw_common(ah
);
37 int addr
, eep_start_loc
= AR9287_EEP_START_LOC
;
38 eep_data
= (u16
*)eep
;
40 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
41 if (!ath9k_hw_nvram_read(common
, addr
+ eep_start_loc
,
43 ath_dbg(common
, ATH_DBG_EEPROM
,
44 "Unable to read eeprom region\n");
53 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw
*ah
)
55 u16
*eep_data
= (u16
*)&ah
->eeprom
.map9287
;
57 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
58 AR9287_HTC_EEP_START_LOC
,
63 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw
*ah
)
65 struct ath_common
*common
= ath9k_hw_common(ah
);
67 if (!ath9k_hw_use_flash(ah
)) {
68 ath_dbg(common
, ATH_DBG_EEPROM
,
69 "Reading from EEPROM, not flash\n");
72 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
73 return __ath9k_hw_usb_ar9287_fill_eeprom(ah
);
75 return __ath9k_hw_ar9287_fill_eeprom(ah
);
78 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw
*ah
)
80 u32 sum
= 0, el
, integer
;
81 u16 temp
, word
, magic
, magic2
, *eepdata
;
83 bool need_swap
= false;
84 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
85 struct ath_common
*common
= ath9k_hw_common(ah
);
87 if (!ath9k_hw_use_flash(ah
)) {
88 if (!ath9k_hw_nvram_read(common
, AR5416_EEPROM_MAGIC_OFFSET
,
90 ath_err(common
, "Reading Magic # failed\n");
94 ath_dbg(common
, ATH_DBG_EEPROM
,
95 "Read Magic = 0x%04X\n", magic
);
97 if (magic
!= AR5416_EEPROM_MAGIC
) {
98 magic2
= swab16(magic
);
100 if (magic2
== AR5416_EEPROM_MAGIC
) {
102 eepdata
= (u16
*)(&ah
->eeprom
);
104 for (addr
= 0; addr
< SIZE_EEPROM_AR9287
; addr
++) {
105 temp
= swab16(*eepdata
);
111 "Invalid EEPROM Magic. Endianness mismatch.\n");
117 ath_dbg(common
, ATH_DBG_EEPROM
, "need_swap = %s.\n",
118 need_swap
? "True" : "False");
121 el
= swab16(ah
->eeprom
.map9287
.baseEepHeader
.length
);
123 el
= ah
->eeprom
.map9287
.baseEepHeader
.length
;
125 if (el
> sizeof(struct ar9287_eeprom
))
126 el
= sizeof(struct ar9287_eeprom
) / sizeof(u16
);
128 el
= el
/ sizeof(u16
);
130 eepdata
= (u16
*)(&ah
->eeprom
);
132 for (i
= 0; i
< el
; i
++)
136 word
= swab16(eep
->baseEepHeader
.length
);
137 eep
->baseEepHeader
.length
= word
;
139 word
= swab16(eep
->baseEepHeader
.checksum
);
140 eep
->baseEepHeader
.checksum
= word
;
142 word
= swab16(eep
->baseEepHeader
.version
);
143 eep
->baseEepHeader
.version
= word
;
145 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
146 eep
->baseEepHeader
.regDmn
[0] = word
;
148 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
149 eep
->baseEepHeader
.regDmn
[1] = word
;
151 word
= swab16(eep
->baseEepHeader
.rfSilent
);
152 eep
->baseEepHeader
.rfSilent
= word
;
154 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
155 eep
->baseEepHeader
.blueToothOptions
= word
;
157 word
= swab16(eep
->baseEepHeader
.deviceCap
);
158 eep
->baseEepHeader
.deviceCap
= word
;
160 integer
= swab32(eep
->modalHeader
.antCtrlCommon
);
161 eep
->modalHeader
.antCtrlCommon
= integer
;
163 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
164 integer
= swab32(eep
->modalHeader
.antCtrlChain
[i
]);
165 eep
->modalHeader
.antCtrlChain
[i
] = integer
;
168 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
169 word
= swab16(eep
->modalHeader
.spurChans
[i
].spurChan
);
170 eep
->modalHeader
.spurChans
[i
].spurChan
= word
;
174 if (sum
!= 0xffff || ah
->eep_ops
->get_eeprom_ver(ah
) != AR9287_EEP_VER
175 || ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_NO_BACK_VER
) {
176 ath_err(common
, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
177 sum
, ah
->eep_ops
->get_eeprom_ver(ah
));
184 static u32
ath9k_hw_ar9287_get_eeprom(struct ath_hw
*ah
,
185 enum eeprom_param param
)
187 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
188 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
189 struct base_eep_ar9287_header
*pBase
= &eep
->baseEepHeader
;
192 ver_minor
= pBase
->version
& AR9287_EEP_VER_MINOR_MASK
;
196 return pModal
->noiseFloorThreshCh
[0];
198 return pBase
->macAddr
[0] << 8 | pBase
->macAddr
[1];
200 return pBase
->macAddr
[2] << 8 | pBase
->macAddr
[3];
202 return pBase
->macAddr
[4] << 8 | pBase
->macAddr
[5];
204 return pBase
->regDmn
[0];
206 return pBase
->regDmn
[1];
208 return pBase
->deviceCap
;
210 return pBase
->opCapFlags
;
212 return pBase
->rfSilent
;
216 return pBase
->txMask
;
218 return pBase
->rxMask
;
220 return pBase
->deviceType
;
222 return pBase
->openLoopPwrCntl
;
223 case EEP_TEMPSENSE_SLOPE
:
224 if (ver_minor
>= AR9287_EEP_MINOR_VER_2
)
225 return pBase
->tempSensSlope
;
228 case EEP_TEMPSENSE_SLOPE_PAL_ON
:
229 if (ver_minor
>= AR9287_EEP_MINOR_VER_3
)
230 return pBase
->tempSensSlopePalOn
;
238 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw
*ah
,
239 struct ath9k_channel
*chan
,
240 struct cal_data_op_loop_ar9287
*pRawDatasetOpLoop
,
241 u8
*pCalChans
, u16 availPiers
, int8_t *pPwr
)
243 u16 idxL
= 0, idxR
= 0, numPiers
;
245 struct chan_centers centers
;
247 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
249 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++) {
250 if (pCalChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
254 match
= ath9k_hw_get_lower_upper_index(
255 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
256 pCalChans
, numPiers
, &idxL
, &idxR
);
259 *pPwr
= (int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
261 *pPwr
= ((int8_t) pRawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
262 (int8_t) pRawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
267 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw
*ah
,
268 int32_t txPower
, u16 chain
)
273 /* Enable OLPC for chain 0 */
275 tmpVal
= REG_READ(ah
, 0xa270);
276 tmpVal
= tmpVal
& 0xFCFFFFFF;
277 tmpVal
= tmpVal
| (0x3 << 24);
278 REG_WRITE(ah
, 0xa270, tmpVal
);
280 /* Enable OLPC for chain 1 */
282 tmpVal
= REG_READ(ah
, 0xb270);
283 tmpVal
= tmpVal
& 0xFCFFFFFF;
284 tmpVal
= tmpVal
| (0x3 << 24);
285 REG_WRITE(ah
, 0xb270, tmpVal
);
287 /* Write the OLPC ref power for chain 0 */
290 tmpVal
= REG_READ(ah
, 0xa398);
291 tmpVal
= tmpVal
& 0xff00ffff;
293 tmpVal
= tmpVal
| (a
<< 16);
294 REG_WRITE(ah
, 0xa398, tmpVal
);
297 /* Write the OLPC ref power for chain 1 */
300 tmpVal
= REG_READ(ah
, 0xb398);
301 tmpVal
= tmpVal
& 0xff00ffff;
303 tmpVal
= tmpVal
| (a
<< 16);
304 REG_WRITE(ah
, 0xb398, tmpVal
);
308 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw
*ah
,
309 struct ath9k_channel
*chan
,
310 int16_t *pTxPowerIndexOffset
)
312 struct cal_data_per_freq_ar9287
*pRawDataset
;
313 struct cal_data_op_loop_ar9287
*pRawDatasetOpenLoop
;
314 u8
*pCalBChans
= NULL
;
315 u16 pdGainOverlap_t2
;
316 u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
317 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
318 u16 numPiers
= 0, i
, j
;
319 u16 numXpdGain
, xpdMask
;
320 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = {0, 0, 0, 0};
321 u32 reg32
, regOffset
, regChainOffset
, regval
;
323 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
325 xpdMask
= pEepData
->modalHeader
.xpdGain
;
327 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
328 AR9287_EEP_MINOR_VER_2
)
329 pdGainOverlap_t2
= pEepData
->modalHeader
.pdGainOverlap
;
331 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
332 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
334 if (IS_CHAN_2GHZ(chan
)) {
335 pCalBChans
= pEepData
->calFreqPier2G
;
336 numPiers
= AR9287_NUM_2G_CAL_PIERS
;
337 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
338 pRawDatasetOpenLoop
=
339 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[0];
340 ah
->initPDADC
= pRawDatasetOpenLoop
->vpdPdg
[0][0];
346 /* Calculate the value of xpdgains from the xpdGain Mask */
347 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
348 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
349 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
351 xpdGainValues
[numXpdGain
] =
352 (u16
)(AR5416_PD_GAINS_IN_MASK
-i
);
357 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
358 (numXpdGain
- 1) & 0x3);
359 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
361 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
363 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
366 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
367 regChainOffset
= i
* 0x1000;
369 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
370 pRawDatasetOpenLoop
=
371 (struct cal_data_op_loop_ar9287
*)pEepData
->calPierData2G
[i
];
373 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
375 ar9287_eeprom_get_tx_gain_index(ah
, chan
,
377 pCalBChans
, numPiers
,
379 ar9287_eeprom_olpc_set_pdadcs(ah
, txPower
, i
);
382 (struct cal_data_per_freq_ar9287
*)
383 pEepData
->calPierData2G
[i
];
385 ath9k_hw_get_gain_boundaries_pdadcs(ah
, chan
,
387 pCalBChans
, numPiers
,
394 ENABLE_REGWRITE_BUFFER(ah
);
397 if (!ath9k_hw_ar9287_get_eeprom(ah
,
400 regval
= SM(pdGainOverlap_t2
,
401 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)
402 | SM(gainBoundaries
[0],
403 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
)
404 | SM(gainBoundaries
[1],
405 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
)
406 | SM(gainBoundaries
[2],
407 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
)
408 | SM(gainBoundaries
[3],
409 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
);
412 AR_PHY_TPCRG5
+ regChainOffset
,
417 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB
!=
418 pEepData
->baseEepHeader
.pwrTableOffset
) {
419 diff
= (u16
)(pEepData
->baseEepHeader
.pwrTableOffset
-
420 (int32_t)AR9287_PWR_TABLE_OFFSET_DB
);
423 for (j
= 0; j
< ((u16
)AR5416_NUM_PDADC_VALUES
-diff
); j
++)
424 pdadcValues
[j
] = pdadcValues
[j
+diff
];
426 for (j
= (u16
)(AR5416_NUM_PDADC_VALUES
-diff
);
427 j
< AR5416_NUM_PDADC_VALUES
; j
++)
429 pdadcValues
[AR5416_NUM_PDADC_VALUES
-diff
];
432 if (!ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
433 regOffset
= AR_PHY_BASE
+
434 (672 << 2) + regChainOffset
;
436 for (j
= 0; j
< 32; j
++) {
437 reg32
= ((pdadcValues
[4*j
+ 0] & 0xFF) << 0)
438 | ((pdadcValues
[4*j
+ 1] & 0xFF) << 8)
439 | ((pdadcValues
[4*j
+ 2] & 0xFF) << 16)
440 | ((pdadcValues
[4*j
+ 3] & 0xFF) << 24);
442 REG_WRITE(ah
, regOffset
, reg32
);
446 REGWRITE_BUFFER_FLUSH(ah
);
450 *pTxPowerIndexOffset
= 0;
453 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw
*ah
,
454 struct ath9k_channel
*chan
,
457 u16 AntennaReduction
,
458 u16 twiceMaxRegulatoryPower
,
462 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
463 pEepData->ctlIndex[i])
466 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
467 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
469 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
470 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
472 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
473 u16 twiceMaxEdgePower
= MAX_RATE_POWER
;
474 static const u16 tpScaleReductionTable
[5] =
475 { 0, 3, 6, 9, MAX_RATE_POWER
};
477 int16_t twiceLargestAntenna
;
478 struct cal_ctl_data_ar9287
*rep
;
479 struct cal_target_power_leg targetPowerOfdm
= {0, {0, 0, 0, 0} },
480 targetPowerCck
= {0, {0, 0, 0, 0} };
481 struct cal_target_power_leg targetPowerOfdmExt
= {0, {0, 0, 0, 0} },
482 targetPowerCckExt
= {0, {0, 0, 0, 0} };
483 struct cal_target_power_ht targetPowerHt20
,
484 targetPowerHt40
= {0, {0, 0, 0, 0} };
485 u16 scaledPower
= 0, minCtlPower
, maxRegAllowedPower
;
486 static const u16 ctlModesFor11g
[] = {
487 CTL_11B
, CTL_11G
, CTL_2GHT20
,
488 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
491 const u16
*pCtlMode
= NULL
;
493 struct chan_centers centers
;
495 u16 twiceMinEdgePower
;
496 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
497 tx_chainmask
= ah
->txchainmask
;
499 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
501 /* Compute TxPower reduction due to Antenna Gain */
502 twiceLargestAntenna
= max(pEepData
->modalHeader
.antennaGainCh
[0],
503 pEepData
->modalHeader
.antennaGainCh
[1]);
504 twiceLargestAntenna
= (int16_t)min((AntennaReduction
) -
505 twiceLargestAntenna
, 0);
508 * scaledPower is the minimum of the user input power level
509 * and the regulatory allowed power level.
511 maxRegAllowedPower
= twiceMaxRegulatoryPower
+ twiceLargestAntenna
;
513 if (regulatory
->tp_scale
!= ATH9K_TP_SCALE_MAX
)
514 maxRegAllowedPower
-=
515 (tpScaleReductionTable
[(regulatory
->tp_scale
)] * 2);
517 scaledPower
= min(powerLimit
, maxRegAllowedPower
);
520 * Reduce scaled Power by number of chains active
521 * to get the per chain tx power level.
523 switch (ar5416_get_ntxchains(tx_chainmask
)) {
527 scaledPower
-= REDUCE_SCALED_POWER_BY_TWO_CHAIN
;
530 scaledPower
-= REDUCE_SCALED_POWER_BY_THREE_CHAIN
;
533 scaledPower
= max((u16
)0, scaledPower
);
536 * Get TX power from EEPROM.
538 if (IS_CHAN_2GHZ(chan
)) {
539 /* CTL_11B, CTL_11G, CTL_2GHT20 */
541 ARRAY_SIZE(ctlModesFor11g
) - SUB_NUM_CTL_MODES_AT_2G_40
;
543 pCtlMode
= ctlModesFor11g
;
545 ath9k_hw_get_legacy_target_powers(ah
, chan
,
546 pEepData
->calTargetPowerCck
,
547 AR9287_NUM_2G_CCK_TARGET_POWERS
,
548 &targetPowerCck
, 4, false);
549 ath9k_hw_get_legacy_target_powers(ah
, chan
,
550 pEepData
->calTargetPower2G
,
551 AR9287_NUM_2G_20_TARGET_POWERS
,
552 &targetPowerOfdm
, 4, false);
553 ath9k_hw_get_target_powers(ah
, chan
,
554 pEepData
->calTargetPower2GHT20
,
555 AR9287_NUM_2G_20_TARGET_POWERS
,
556 &targetPowerHt20
, 8, false);
558 if (IS_CHAN_HT40(chan
)) {
560 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
561 ath9k_hw_get_target_powers(ah
, chan
,
562 pEepData
->calTargetPower2GHT40
,
563 AR9287_NUM_2G_40_TARGET_POWERS
,
564 &targetPowerHt40
, 8, true);
565 ath9k_hw_get_legacy_target_powers(ah
, chan
,
566 pEepData
->calTargetPowerCck
,
567 AR9287_NUM_2G_CCK_TARGET_POWERS
,
568 &targetPowerCckExt
, 4, true);
569 ath9k_hw_get_legacy_target_powers(ah
, chan
,
570 pEepData
->calTargetPower2G
,
571 AR9287_NUM_2G_20_TARGET_POWERS
,
572 &targetPowerOfdmExt
, 4, true);
576 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
578 (pCtlMode
[ctlMode
] == CTL_2GHT40
) ? true : false;
581 freq
= centers
.synth_center
;
582 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
583 freq
= centers
.ext_center
;
585 freq
= centers
.ctl_center
;
587 /* Walk through the CTL indices stored in EEPROM */
588 for (i
= 0; (i
< AR9287_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
589 struct cal_ctl_edges
*pRdEdgesPower
;
592 * Compare test group from regulatory channel list
593 * with test mode from pCtlMode list
595 if (CMP_CTL
|| CMP_NO_CTL
) {
596 rep
= &(pEepData
->ctlData
[i
]);
598 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1];
600 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
603 AR5416_NUM_BAND_EDGES
);
605 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
606 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
609 twiceMaxEdgePower
= twiceMinEdgePower
;
615 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
617 /* Apply ctl mode to correct target power set */
618 switch (pCtlMode
[ctlMode
]) {
620 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
621 targetPowerCck
.tPow2x
[i
] =
622 (u8
)min((u16
)targetPowerCck
.tPow2x
[i
],
628 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
629 targetPowerOfdm
.tPow2x
[i
] =
630 (u8
)min((u16
)targetPowerOfdm
.tPow2x
[i
],
636 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
637 targetPowerHt20
.tPow2x
[i
] =
638 (u8
)min((u16
)targetPowerHt20
.tPow2x
[i
],
643 targetPowerCckExt
.tPow2x
[0] =
644 (u8
)min((u16
)targetPowerCckExt
.tPow2x
[0],
649 targetPowerOfdmExt
.tPow2x
[0] =
650 (u8
)min((u16
)targetPowerOfdmExt
.tPow2x
[0],
655 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
656 targetPowerHt40
.tPow2x
[i
] =
657 (u8
)min((u16
)targetPowerHt40
.tPow2x
[i
],
666 /* Now set the rates array */
668 ratesArray
[rate6mb
] =
669 ratesArray
[rate9mb
] =
670 ratesArray
[rate12mb
] =
671 ratesArray
[rate18mb
] =
672 ratesArray
[rate24mb
] = targetPowerOfdm
.tPow2x
[0];
674 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
675 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
676 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
677 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
679 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
680 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
682 if (IS_CHAN_2GHZ(chan
)) {
683 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
685 ratesArray
[rate2l
] = targetPowerCck
.tPow2x
[1];
686 ratesArray
[rate5_5s
] =
687 ratesArray
[rate5_5l
] = targetPowerCck
.tPow2x
[2];
688 ratesArray
[rate11s
] =
689 ratesArray
[rate11l
] = targetPowerCck
.tPow2x
[3];
691 if (IS_CHAN_HT40(chan
)) {
692 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++)
693 ratesArray
[rateHt40_0
+ i
] = targetPowerHt40
.tPow2x
[i
];
695 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
696 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
697 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
699 if (IS_CHAN_2GHZ(chan
))
700 ratesArray
[rateExtCck
] = targetPowerCckExt
.tPow2x
[0];
705 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
706 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
709 static void ath9k_hw_ar9287_set_txpower(struct ath_hw
*ah
,
710 struct ath9k_channel
*chan
, u16 cfgCtl
,
711 u8 twiceAntennaReduction
,
712 u8 twiceMaxRegulatoryPower
,
713 u8 powerLimit
, bool test
)
715 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
716 struct ar9287_eeprom
*pEepData
= &ah
->eeprom
.map9287
;
717 struct modal_eep_ar9287_header
*pModal
= &pEepData
->modalHeader
;
718 int16_t ratesArray
[Ar5416RateSize
];
719 int16_t txPowerIndexOffset
= 0;
720 u8 ht40PowerIncForPdadc
= 2;
723 memset(ratesArray
, 0, sizeof(ratesArray
));
725 if ((pEepData
->baseEepHeader
.version
& AR9287_EEP_VER_MINOR_MASK
) >=
726 AR9287_EEP_MINOR_VER_2
)
727 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
729 ath9k_hw_set_ar9287_power_per_rate_table(ah
, chan
,
730 &ratesArray
[0], cfgCtl
,
731 twiceAntennaReduction
,
732 twiceMaxRegulatoryPower
,
735 ath9k_hw_set_ar9287_power_cal_table(ah
, chan
, &txPowerIndexOffset
);
737 regulatory
->max_power_level
= 0;
738 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
739 ratesArray
[i
] = (int16_t)(txPowerIndexOffset
+ ratesArray
[i
]);
740 if (ratesArray
[i
] > MAX_RATE_POWER
)
741 ratesArray
[i
] = MAX_RATE_POWER
;
743 if (ratesArray
[i
] > regulatory
->max_power_level
)
744 regulatory
->max_power_level
= ratesArray
[i
];
750 if (IS_CHAN_2GHZ(chan
))
755 regulatory
->max_power_level
= ratesArray
[i
];
757 if (AR_SREV_9280_20_OR_LATER(ah
)) {
758 for (i
= 0; i
< Ar5416RateSize
; i
++)
759 ratesArray
[i
] -= AR9287_PWR_TABLE_OFFSET_DB
* 2;
762 ENABLE_REGWRITE_BUFFER(ah
);
764 /* OFDM power per rate */
765 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
766 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
767 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
768 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
769 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
771 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
772 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
773 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
774 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
775 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
777 /* CCK power per rate */
778 if (IS_CHAN_2GHZ(chan
)) {
779 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
780 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
781 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
782 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
783 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
784 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
785 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
786 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
787 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
788 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
791 /* HT20 power per rate */
792 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
793 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
794 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
795 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
796 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
798 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
799 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
800 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
801 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
802 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
804 /* HT40 power per rate */
805 if (IS_CHAN_HT40(chan
)) {
806 if (ath9k_hw_ar9287_get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
807 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
808 ATH9K_POW_SM(ratesArray
[rateHt40_3
], 24)
809 | ATH9K_POW_SM(ratesArray
[rateHt40_2
], 16)
810 | ATH9K_POW_SM(ratesArray
[rateHt40_1
], 8)
811 | ATH9K_POW_SM(ratesArray
[rateHt40_0
], 0));
813 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
814 ATH9K_POW_SM(ratesArray
[rateHt40_7
], 24)
815 | ATH9K_POW_SM(ratesArray
[rateHt40_6
], 16)
816 | ATH9K_POW_SM(ratesArray
[rateHt40_5
], 8)
817 | ATH9K_POW_SM(ratesArray
[rateHt40_4
], 0));
819 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
820 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
821 ht40PowerIncForPdadc
, 24)
822 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
823 ht40PowerIncForPdadc
, 16)
824 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
825 ht40PowerIncForPdadc
, 8)
826 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
827 ht40PowerIncForPdadc
, 0));
829 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
830 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
831 ht40PowerIncForPdadc
, 24)
832 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
833 ht40PowerIncForPdadc
, 16)
834 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
835 ht40PowerIncForPdadc
, 8)
836 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
837 ht40PowerIncForPdadc
, 0));
840 /* Dup/Ext power per rate */
841 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
842 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
843 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
844 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
845 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
847 REGWRITE_BUFFER_FLUSH(ah
);
850 static void ath9k_hw_ar9287_set_addac(struct ath_hw
*ah
,
851 struct ath9k_channel
*chan
)
855 static void ath9k_hw_ar9287_set_board_values(struct ath_hw
*ah
,
856 struct ath9k_channel
*chan
)
858 struct ar9287_eeprom
*eep
= &ah
->eeprom
.map9287
;
859 struct modal_eep_ar9287_header
*pModal
= &eep
->modalHeader
;
860 u32 regChainOffset
, regval
;
864 pModal
= &eep
->modalHeader
;
866 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
);
868 for (i
= 0; i
< AR9287_MAX_CHAINS
; i
++) {
869 regChainOffset
= i
* 0x1000;
871 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
872 pModal
->antCtrlChain
[i
]);
874 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
875 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
)
876 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
877 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
878 SM(pModal
->iqCalICh
[i
],
879 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
880 SM(pModal
->iqCalQCh
[i
],
881 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
883 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
885 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
886 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
887 pModal
->bswMargin
[i
]);
888 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
889 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
890 pModal
->bswAtten
[i
]);
891 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
892 AR9280_PHY_RXGAIN_TXRX_ATTEN
,
894 REG_RMW_FIELD(ah
, AR_PHY_RXGAIN
+ regChainOffset
,
895 AR9280_PHY_RXGAIN_TXRX_MARGIN
,
896 pModal
->rxTxMarginCh
[i
]);
900 if (IS_CHAN_HT40(chan
))
901 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
902 AR_PHY_SETTLING_SWITCH
, pModal
->swSettleHt40
);
904 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
905 AR_PHY_SETTLING_SWITCH
, pModal
->switchSettling
);
907 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
908 AR_PHY_DESIRED_SZ_ADC
, pModal
->adcDesiredSize
);
910 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
911 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
912 | SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
913 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
914 | SM(pModal
->txFrameToXpaOn
, AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
916 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
,
917 AR_PHY_TX_END_TO_A2_RX_ON
, pModal
->txEndToRxOn
);
919 REG_RMW_FIELD(ah
, AR_PHY_CCA
,
920 AR9280_PHY_CCA_THRESH62
, pModal
->thresh62
);
921 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
922 AR_PHY_EXT_CCA0_THRESH62
, pModal
->thresh62
);
924 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH0
);
925 regval
&= ~(AR9287_AN_RF2G3_DB1
|
926 AR9287_AN_RF2G3_DB2
|
927 AR9287_AN_RF2G3_OB_CCK
|
928 AR9287_AN_RF2G3_OB_PSK
|
929 AR9287_AN_RF2G3_OB_QAM
|
930 AR9287_AN_RF2G3_OB_PAL_OFF
);
931 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
932 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
933 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
934 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
935 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
936 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
938 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH0
, regval
);
940 regval
= REG_READ(ah
, AR9287_AN_RF2G3_CH1
);
941 regval
&= ~(AR9287_AN_RF2G3_DB1
|
942 AR9287_AN_RF2G3_DB2
|
943 AR9287_AN_RF2G3_OB_CCK
|
944 AR9287_AN_RF2G3_OB_PSK
|
945 AR9287_AN_RF2G3_OB_QAM
|
946 AR9287_AN_RF2G3_OB_PAL_OFF
);
947 regval
|= (SM(pModal
->db1
, AR9287_AN_RF2G3_DB1
) |
948 SM(pModal
->db2
, AR9287_AN_RF2G3_DB2
) |
949 SM(pModal
->ob_cck
, AR9287_AN_RF2G3_OB_CCK
) |
950 SM(pModal
->ob_psk
, AR9287_AN_RF2G3_OB_PSK
) |
951 SM(pModal
->ob_qam
, AR9287_AN_RF2G3_OB_QAM
) |
952 SM(pModal
->ob_pal_off
, AR9287_AN_RF2G3_OB_PAL_OFF
));
954 ath9k_hw_analog_shift_regwrite(ah
, AR9287_AN_RF2G3_CH1
, regval
);
956 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
957 AR_PHY_TX_END_DATA_START
, pModal
->txFrameToDataStart
);
958 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
959 AR_PHY_TX_END_PA_ON
, pModal
->txFrameToPaOn
);
961 ath9k_hw_analog_shift_rmw(ah
, AR9287_AN_TOP2
,
962 AR9287_AN_TOP2_XPABIAS_LVL
,
963 AR9287_AN_TOP2_XPABIAS_LVL_S
,
967 static u16
ath9k_hw_ar9287_get_spur_channel(struct ath_hw
*ah
,
970 #define EEP_MAP9287_SPURCHAN \
971 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
973 struct ath_common
*common
= ath9k_hw_common(ah
);
974 u16 spur_val
= AR_NO_SPUR
;
976 ath_dbg(common
, ATH_DBG_ANI
,
977 "Getting spur idx:%d is2Ghz:%d val:%x\n",
978 i
, is2GHz
, ah
->config
.spurchans
[i
][is2GHz
]);
980 switch (ah
->config
.spurmode
) {
983 case SPUR_ENABLE_IOCTL
:
984 spur_val
= ah
->config
.spurchans
[i
][is2GHz
];
985 ath_dbg(common
, ATH_DBG_ANI
,
986 "Getting spur val from new loc. %d\n", spur_val
);
988 case SPUR_ENABLE_EEPROM
:
989 spur_val
= EEP_MAP9287_SPURCHAN
;
995 #undef EEP_MAP9287_SPURCHAN
998 const struct eeprom_ops eep_ar9287_ops
= {
999 .check_eeprom
= ath9k_hw_ar9287_check_eeprom
,
1000 .get_eeprom
= ath9k_hw_ar9287_get_eeprom
,
1001 .fill_eeprom
= ath9k_hw_ar9287_fill_eeprom
,
1002 .get_eeprom_ver
= ath9k_hw_ar9287_get_eeprom_ver
,
1003 .get_eeprom_rev
= ath9k_hw_ar9287_get_eeprom_rev
,
1004 .set_board_values
= ath9k_hw_ar9287_set_board_values
,
1005 .set_addac
= ath9k_hw_ar9287_set_addac
,
1006 .set_txpower
= ath9k_hw_ar9287_set_txpower
,
1007 .get_spur_channel
= ath9k_hw_ar9287_get_spur_channel