sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom_9287.c
blobb87db4763098bad950f78824102d2626b598aa38
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9002_phy.h"
20 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
27 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29 return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
32 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
35 struct ath_common *common = ath9k_hw_common(ah);
36 u16 *eep_data;
37 int addr, eep_start_loc = AR9287_EEP_START_LOC;
38 eep_data = (u16 *)eep;
40 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
41 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
42 eep_data)) {
43 ath_dbg(common, ATH_DBG_EEPROM,
44 "Unable to read eeprom region\n");
45 return false;
47 eep_data++;
50 return true;
53 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55 u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
58 AR9287_HTC_EEP_START_LOC,
59 SIZE_EEPROM_AR9287);
60 return true;
63 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65 struct ath_common *common = ath9k_hw_common(ah);
67 if (!ath9k_hw_use_flash(ah)) {
68 ath_dbg(common, ATH_DBG_EEPROM,
69 "Reading from EEPROM, not flash\n");
72 if (common->bus_ops->ath_bus_type == ATH_USB)
73 return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 else
75 return __ath9k_hw_ar9287_fill_eeprom(ah);
78 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
80 u32 sum = 0, el, integer;
81 u16 temp, word, magic, magic2, *eepdata;
82 int i, addr;
83 bool need_swap = false;
84 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
85 struct ath_common *common = ath9k_hw_common(ah);
87 if (!ath9k_hw_use_flash(ah)) {
88 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
89 &magic)) {
90 ath_err(common, "Reading Magic # failed\n");
91 return false;
94 ath_dbg(common, ATH_DBG_EEPROM,
95 "Read Magic = 0x%04X\n", magic);
97 if (magic != AR5416_EEPROM_MAGIC) {
98 magic2 = swab16(magic);
100 if (magic2 == AR5416_EEPROM_MAGIC) {
101 need_swap = true;
102 eepdata = (u16 *)(&ah->eeprom);
104 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
105 temp = swab16(*eepdata);
106 *eepdata = temp;
107 eepdata++;
109 } else {
110 ath_err(common,
111 "Invalid EEPROM Magic. Endianness mismatch.\n");
112 return -EINVAL;
117 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
118 need_swap ? "True" : "False");
120 if (need_swap)
121 el = swab16(ah->eeprom.map9287.baseEepHeader.length);
122 else
123 el = ah->eeprom.map9287.baseEepHeader.length;
125 if (el > sizeof(struct ar9287_eeprom))
126 el = sizeof(struct ar9287_eeprom) / sizeof(u16);
127 else
128 el = el / sizeof(u16);
130 eepdata = (u16 *)(&ah->eeprom);
132 for (i = 0; i < el; i++)
133 sum ^= *eepdata++;
135 if (need_swap) {
136 word = swab16(eep->baseEepHeader.length);
137 eep->baseEepHeader.length = word;
139 word = swab16(eep->baseEepHeader.checksum);
140 eep->baseEepHeader.checksum = word;
142 word = swab16(eep->baseEepHeader.version);
143 eep->baseEepHeader.version = word;
145 word = swab16(eep->baseEepHeader.regDmn[0]);
146 eep->baseEepHeader.regDmn[0] = word;
148 word = swab16(eep->baseEepHeader.regDmn[1]);
149 eep->baseEepHeader.regDmn[1] = word;
151 word = swab16(eep->baseEepHeader.rfSilent);
152 eep->baseEepHeader.rfSilent = word;
154 word = swab16(eep->baseEepHeader.blueToothOptions);
155 eep->baseEepHeader.blueToothOptions = word;
157 word = swab16(eep->baseEepHeader.deviceCap);
158 eep->baseEepHeader.deviceCap = word;
160 integer = swab32(eep->modalHeader.antCtrlCommon);
161 eep->modalHeader.antCtrlCommon = integer;
163 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
164 integer = swab32(eep->modalHeader.antCtrlChain[i]);
165 eep->modalHeader.antCtrlChain[i] = integer;
168 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
169 word = swab16(eep->modalHeader.spurChans[i].spurChan);
170 eep->modalHeader.spurChans[i].spurChan = word;
174 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
175 || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
176 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
177 sum, ah->eep_ops->get_eeprom_ver(ah));
178 return -EINVAL;
181 return 0;
184 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
185 enum eeprom_param param)
187 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
188 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
189 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
190 u16 ver_minor;
192 ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
194 switch (param) {
195 case EEP_NFTHRESH_2:
196 return pModal->noiseFloorThreshCh[0];
197 case EEP_MAC_LSW:
198 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
199 case EEP_MAC_MID:
200 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
201 case EEP_MAC_MSW:
202 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
203 case EEP_REG_0:
204 return pBase->regDmn[0];
205 case EEP_REG_1:
206 return pBase->regDmn[1];
207 case EEP_OP_CAP:
208 return pBase->deviceCap;
209 case EEP_OP_MODE:
210 return pBase->opCapFlags;
211 case EEP_RF_SILENT:
212 return pBase->rfSilent;
213 case EEP_MINOR_REV:
214 return ver_minor;
215 case EEP_TX_MASK:
216 return pBase->txMask;
217 case EEP_RX_MASK:
218 return pBase->rxMask;
219 case EEP_DEV_TYPE:
220 return pBase->deviceType;
221 case EEP_OL_PWRCTRL:
222 return pBase->openLoopPwrCntl;
223 case EEP_TEMPSENSE_SLOPE:
224 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
225 return pBase->tempSensSlope;
226 else
227 return 0;
228 case EEP_TEMPSENSE_SLOPE_PAL_ON:
229 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
230 return pBase->tempSensSlopePalOn;
231 else
232 return 0;
233 default:
234 return 0;
238 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
239 struct ath9k_channel *chan,
240 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
241 u8 *pCalChans, u16 availPiers, int8_t *pPwr)
243 u16 idxL = 0, idxR = 0, numPiers;
244 bool match;
245 struct chan_centers centers;
247 ath9k_hw_get_channel_centers(ah, chan, &centers);
249 for (numPiers = 0; numPiers < availPiers; numPiers++) {
250 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
251 break;
254 match = ath9k_hw_get_lower_upper_index(
255 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
256 pCalChans, numPiers, &idxL, &idxR);
258 if (match) {
259 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
260 } else {
261 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
262 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
267 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
268 int32_t txPower, u16 chain)
270 u32 tmpVal;
271 u32 a;
273 /* Enable OLPC for chain 0 */
275 tmpVal = REG_READ(ah, 0xa270);
276 tmpVal = tmpVal & 0xFCFFFFFF;
277 tmpVal = tmpVal | (0x3 << 24);
278 REG_WRITE(ah, 0xa270, tmpVal);
280 /* Enable OLPC for chain 1 */
282 tmpVal = REG_READ(ah, 0xb270);
283 tmpVal = tmpVal & 0xFCFFFFFF;
284 tmpVal = tmpVal | (0x3 << 24);
285 REG_WRITE(ah, 0xb270, tmpVal);
287 /* Write the OLPC ref power for chain 0 */
289 if (chain == 0) {
290 tmpVal = REG_READ(ah, 0xa398);
291 tmpVal = tmpVal & 0xff00ffff;
292 a = (txPower)&0xff;
293 tmpVal = tmpVal | (a << 16);
294 REG_WRITE(ah, 0xa398, tmpVal);
297 /* Write the OLPC ref power for chain 1 */
299 if (chain == 1) {
300 tmpVal = REG_READ(ah, 0xb398);
301 tmpVal = tmpVal & 0xff00ffff;
302 a = (txPower)&0xff;
303 tmpVal = tmpVal | (a << 16);
304 REG_WRITE(ah, 0xb398, tmpVal);
308 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
309 struct ath9k_channel *chan,
310 int16_t *pTxPowerIndexOffset)
312 struct cal_data_per_freq_ar9287 *pRawDataset;
313 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
314 u8 *pCalBChans = NULL;
315 u16 pdGainOverlap_t2;
316 u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
317 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
318 u16 numPiers = 0, i, j;
319 u16 numXpdGain, xpdMask;
320 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
321 u32 reg32, regOffset, regChainOffset, regval;
322 int16_t diff = 0;
323 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
325 xpdMask = pEepData->modalHeader.xpdGain;
327 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
328 AR9287_EEP_MINOR_VER_2)
329 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
330 else
331 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
332 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
334 if (IS_CHAN_2GHZ(chan)) {
335 pCalBChans = pEepData->calFreqPier2G;
336 numPiers = AR9287_NUM_2G_CAL_PIERS;
337 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
338 pRawDatasetOpenLoop =
339 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
340 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
344 numXpdGain = 0;
346 /* Calculate the value of xpdgains from the xpdGain Mask */
347 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
348 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
349 if (numXpdGain >= AR5416_NUM_PD_GAINS)
350 break;
351 xpdGainValues[numXpdGain] =
352 (u16)(AR5416_PD_GAINS_IN_MASK-i);
353 numXpdGain++;
357 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
358 (numXpdGain - 1) & 0x3);
359 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
360 xpdGainValues[0]);
361 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
362 xpdGainValues[1]);
363 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
364 xpdGainValues[2]);
366 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
367 regChainOffset = i * 0x1000;
369 if (pEepData->baseEepHeader.txMask & (1 << i)) {
370 pRawDatasetOpenLoop =
371 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
373 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
374 int8_t txPower;
375 ar9287_eeprom_get_tx_gain_index(ah, chan,
376 pRawDatasetOpenLoop,
377 pCalBChans, numPiers,
378 &txPower);
379 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
380 } else {
381 pRawDataset =
382 (struct cal_data_per_freq_ar9287 *)
383 pEepData->calPierData2G[i];
385 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
386 pRawDataset,
387 pCalBChans, numPiers,
388 pdGainOverlap_t2,
389 gainBoundaries,
390 pdadcValues,
391 numXpdGain);
394 ENABLE_REGWRITE_BUFFER(ah);
396 if (i == 0) {
397 if (!ath9k_hw_ar9287_get_eeprom(ah,
398 EEP_OL_PWRCTRL)) {
400 regval = SM(pdGainOverlap_t2,
401 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
402 | SM(gainBoundaries[0],
403 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
404 | SM(gainBoundaries[1],
405 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
406 | SM(gainBoundaries[2],
407 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
408 | SM(gainBoundaries[3],
409 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
411 REG_WRITE(ah,
412 AR_PHY_TPCRG5 + regChainOffset,
413 regval);
417 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
418 pEepData->baseEepHeader.pwrTableOffset) {
419 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
420 (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
421 diff *= 2;
423 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
424 pdadcValues[j] = pdadcValues[j+diff];
426 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
427 j < AR5416_NUM_PDADC_VALUES; j++)
428 pdadcValues[j] =
429 pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
432 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
433 regOffset = AR_PHY_BASE +
434 (672 << 2) + regChainOffset;
436 for (j = 0; j < 32; j++) {
437 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
438 | ((pdadcValues[4*j + 1] & 0xFF) << 8)
439 | ((pdadcValues[4*j + 2] & 0xFF) << 16)
440 | ((pdadcValues[4*j + 3] & 0xFF) << 24);
442 REG_WRITE(ah, regOffset, reg32);
443 regOffset += 4;
446 REGWRITE_BUFFER_FLUSH(ah);
450 *pTxPowerIndexOffset = 0;
453 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
454 struct ath9k_channel *chan,
455 int16_t *ratesArray,
456 u16 cfgCtl,
457 u16 AntennaReduction,
458 u16 twiceMaxRegulatoryPower,
459 u16 powerLimit)
461 #define CMP_CTL \
462 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
463 pEepData->ctlIndex[i])
465 #define CMP_NO_CTL \
466 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
467 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
469 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
470 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
472 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
473 u16 twiceMaxEdgePower = MAX_RATE_POWER;
474 static const u16 tpScaleReductionTable[5] =
475 { 0, 3, 6, 9, MAX_RATE_POWER };
476 int i;
477 int16_t twiceLargestAntenna;
478 struct cal_ctl_data_ar9287 *rep;
479 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
480 targetPowerCck = {0, {0, 0, 0, 0} };
481 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
482 targetPowerCckExt = {0, {0, 0, 0, 0} };
483 struct cal_target_power_ht targetPowerHt20,
484 targetPowerHt40 = {0, {0, 0, 0, 0} };
485 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
486 static const u16 ctlModesFor11g[] = {
487 CTL_11B, CTL_11G, CTL_2GHT20,
488 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
490 u16 numCtlModes = 0;
491 const u16 *pCtlMode = NULL;
492 u16 ctlMode, freq;
493 struct chan_centers centers;
494 int tx_chainmask;
495 u16 twiceMinEdgePower;
496 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
497 tx_chainmask = ah->txchainmask;
499 ath9k_hw_get_channel_centers(ah, chan, &centers);
501 /* Compute TxPower reduction due to Antenna Gain */
502 twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
503 pEepData->modalHeader.antennaGainCh[1]);
504 twiceLargestAntenna = (int16_t)min((AntennaReduction) -
505 twiceLargestAntenna, 0);
508 * scaledPower is the minimum of the user input power level
509 * and the regulatory allowed power level.
511 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
513 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
514 maxRegAllowedPower -=
515 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
517 scaledPower = min(powerLimit, maxRegAllowedPower);
520 * Reduce scaled Power by number of chains active
521 * to get the per chain tx power level.
523 switch (ar5416_get_ntxchains(tx_chainmask)) {
524 case 1:
525 break;
526 case 2:
527 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
528 break;
529 case 3:
530 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
531 break;
533 scaledPower = max((u16)0, scaledPower);
536 * Get TX power from EEPROM.
538 if (IS_CHAN_2GHZ(chan)) {
539 /* CTL_11B, CTL_11G, CTL_2GHT20 */
540 numCtlModes =
541 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
543 pCtlMode = ctlModesFor11g;
545 ath9k_hw_get_legacy_target_powers(ah, chan,
546 pEepData->calTargetPowerCck,
547 AR9287_NUM_2G_CCK_TARGET_POWERS,
548 &targetPowerCck, 4, false);
549 ath9k_hw_get_legacy_target_powers(ah, chan,
550 pEepData->calTargetPower2G,
551 AR9287_NUM_2G_20_TARGET_POWERS,
552 &targetPowerOfdm, 4, false);
553 ath9k_hw_get_target_powers(ah, chan,
554 pEepData->calTargetPower2GHT20,
555 AR9287_NUM_2G_20_TARGET_POWERS,
556 &targetPowerHt20, 8, false);
558 if (IS_CHAN_HT40(chan)) {
559 /* All 2G CTLs */
560 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
561 ath9k_hw_get_target_powers(ah, chan,
562 pEepData->calTargetPower2GHT40,
563 AR9287_NUM_2G_40_TARGET_POWERS,
564 &targetPowerHt40, 8, true);
565 ath9k_hw_get_legacy_target_powers(ah, chan,
566 pEepData->calTargetPowerCck,
567 AR9287_NUM_2G_CCK_TARGET_POWERS,
568 &targetPowerCckExt, 4, true);
569 ath9k_hw_get_legacy_target_powers(ah, chan,
570 pEepData->calTargetPower2G,
571 AR9287_NUM_2G_20_TARGET_POWERS,
572 &targetPowerOfdmExt, 4, true);
576 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
577 bool isHt40CtlMode =
578 (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
580 if (isHt40CtlMode)
581 freq = centers.synth_center;
582 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
583 freq = centers.ext_center;
584 else
585 freq = centers.ctl_center;
587 /* Walk through the CTL indices stored in EEPROM */
588 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
589 struct cal_ctl_edges *pRdEdgesPower;
592 * Compare test group from regulatory channel list
593 * with test mode from pCtlMode list
595 if (CMP_CTL || CMP_NO_CTL) {
596 rep = &(pEepData->ctlData[i]);
597 pRdEdgesPower =
598 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
600 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
601 pRdEdgesPower,
602 IS_CHAN_2GHZ(chan),
603 AR5416_NUM_BAND_EDGES);
605 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
606 twiceMaxEdgePower = min(twiceMaxEdgePower,
607 twiceMinEdgePower);
608 } else {
609 twiceMaxEdgePower = twiceMinEdgePower;
610 break;
615 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
617 /* Apply ctl mode to correct target power set */
618 switch (pCtlMode[ctlMode]) {
619 case CTL_11B:
620 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
621 targetPowerCck.tPow2x[i] =
622 (u8)min((u16)targetPowerCck.tPow2x[i],
623 minCtlPower);
625 break;
626 case CTL_11A:
627 case CTL_11G:
628 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
629 targetPowerOfdm.tPow2x[i] =
630 (u8)min((u16)targetPowerOfdm.tPow2x[i],
631 minCtlPower);
633 break;
634 case CTL_5GHT20:
635 case CTL_2GHT20:
636 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
637 targetPowerHt20.tPow2x[i] =
638 (u8)min((u16)targetPowerHt20.tPow2x[i],
639 minCtlPower);
641 break;
642 case CTL_11B_EXT:
643 targetPowerCckExt.tPow2x[0] =
644 (u8)min((u16)targetPowerCckExt.tPow2x[0],
645 minCtlPower);
646 break;
647 case CTL_11A_EXT:
648 case CTL_11G_EXT:
649 targetPowerOfdmExt.tPow2x[0] =
650 (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
651 minCtlPower);
652 break;
653 case CTL_5GHT40:
654 case CTL_2GHT40:
655 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
656 targetPowerHt40.tPow2x[i] =
657 (u8)min((u16)targetPowerHt40.tPow2x[i],
658 minCtlPower);
660 break;
661 default:
662 break;
666 /* Now set the rates array */
668 ratesArray[rate6mb] =
669 ratesArray[rate9mb] =
670 ratesArray[rate12mb] =
671 ratesArray[rate18mb] =
672 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
674 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
675 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
676 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
677 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
679 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
680 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
682 if (IS_CHAN_2GHZ(chan)) {
683 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
684 ratesArray[rate2s] =
685 ratesArray[rate2l] = targetPowerCck.tPow2x[1];
686 ratesArray[rate5_5s] =
687 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
688 ratesArray[rate11s] =
689 ratesArray[rate11l] = targetPowerCck.tPow2x[3];
691 if (IS_CHAN_HT40(chan)) {
692 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
693 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
695 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
696 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
697 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
699 if (IS_CHAN_2GHZ(chan))
700 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
703 #undef CMP_CTL
704 #undef CMP_NO_CTL
705 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
706 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
709 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
710 struct ath9k_channel *chan, u16 cfgCtl,
711 u8 twiceAntennaReduction,
712 u8 twiceMaxRegulatoryPower,
713 u8 powerLimit, bool test)
715 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
716 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
717 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
718 int16_t ratesArray[Ar5416RateSize];
719 int16_t txPowerIndexOffset = 0;
720 u8 ht40PowerIncForPdadc = 2;
721 int i;
723 memset(ratesArray, 0, sizeof(ratesArray));
725 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
726 AR9287_EEP_MINOR_VER_2)
727 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
729 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
730 &ratesArray[0], cfgCtl,
731 twiceAntennaReduction,
732 twiceMaxRegulatoryPower,
733 powerLimit);
735 ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
737 regulatory->max_power_level = 0;
738 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
739 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
740 if (ratesArray[i] > MAX_RATE_POWER)
741 ratesArray[i] = MAX_RATE_POWER;
743 if (ratesArray[i] > regulatory->max_power_level)
744 regulatory->max_power_level = ratesArray[i];
747 if (test)
748 return;
750 if (IS_CHAN_2GHZ(chan))
751 i = rate1l;
752 else
753 i = rate6mb;
755 regulatory->max_power_level = ratesArray[i];
757 if (AR_SREV_9280_20_OR_LATER(ah)) {
758 for (i = 0; i < Ar5416RateSize; i++)
759 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
762 ENABLE_REGWRITE_BUFFER(ah);
764 /* OFDM power per rate */
765 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
766 ATH9K_POW_SM(ratesArray[rate18mb], 24)
767 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
768 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
769 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
771 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
772 ATH9K_POW_SM(ratesArray[rate54mb], 24)
773 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
774 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
775 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
777 /* CCK power per rate */
778 if (IS_CHAN_2GHZ(chan)) {
779 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
780 ATH9K_POW_SM(ratesArray[rate2s], 24)
781 | ATH9K_POW_SM(ratesArray[rate2l], 16)
782 | ATH9K_POW_SM(ratesArray[rateXr], 8)
783 | ATH9K_POW_SM(ratesArray[rate1l], 0));
784 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
785 ATH9K_POW_SM(ratesArray[rate11s], 24)
786 | ATH9K_POW_SM(ratesArray[rate11l], 16)
787 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
788 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
791 /* HT20 power per rate */
792 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
793 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
794 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
795 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
796 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
798 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
799 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
800 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
801 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
802 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
804 /* HT40 power per rate */
805 if (IS_CHAN_HT40(chan)) {
806 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
807 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
808 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
809 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
810 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
811 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
813 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
814 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
815 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
816 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
817 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
818 } else {
819 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
820 ATH9K_POW_SM(ratesArray[rateHt40_3] +
821 ht40PowerIncForPdadc, 24)
822 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
823 ht40PowerIncForPdadc, 16)
824 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
825 ht40PowerIncForPdadc, 8)
826 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
827 ht40PowerIncForPdadc, 0));
829 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
830 ATH9K_POW_SM(ratesArray[rateHt40_7] +
831 ht40PowerIncForPdadc, 24)
832 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
833 ht40PowerIncForPdadc, 16)
834 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
835 ht40PowerIncForPdadc, 8)
836 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
837 ht40PowerIncForPdadc, 0));
840 /* Dup/Ext power per rate */
841 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
842 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
843 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
844 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
845 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
847 REGWRITE_BUFFER_FLUSH(ah);
850 static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
851 struct ath9k_channel *chan)
855 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
856 struct ath9k_channel *chan)
858 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
859 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
860 u32 regChainOffset, regval;
861 u8 txRxAttenLocal;
862 int i;
864 pModal = &eep->modalHeader;
866 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
868 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
869 regChainOffset = i * 0x1000;
871 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
872 pModal->antCtrlChain[i]);
874 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
875 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
876 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
877 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
878 SM(pModal->iqCalICh[i],
879 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
880 SM(pModal->iqCalQCh[i],
881 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
883 txRxAttenLocal = pModal->txRxAttenCh[i];
885 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
886 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
887 pModal->bswMargin[i]);
888 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
889 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
890 pModal->bswAtten[i]);
891 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
892 AR9280_PHY_RXGAIN_TXRX_ATTEN,
893 txRxAttenLocal);
894 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
895 AR9280_PHY_RXGAIN_TXRX_MARGIN,
896 pModal->rxTxMarginCh[i]);
900 if (IS_CHAN_HT40(chan))
901 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
902 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
903 else
904 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
905 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
907 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
908 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
910 REG_WRITE(ah, AR_PHY_RF_CTL4,
911 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
912 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
913 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
914 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
916 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
917 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
919 REG_RMW_FIELD(ah, AR_PHY_CCA,
920 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
921 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
922 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
924 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
925 regval &= ~(AR9287_AN_RF2G3_DB1 |
926 AR9287_AN_RF2G3_DB2 |
927 AR9287_AN_RF2G3_OB_CCK |
928 AR9287_AN_RF2G3_OB_PSK |
929 AR9287_AN_RF2G3_OB_QAM |
930 AR9287_AN_RF2G3_OB_PAL_OFF);
931 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
932 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
933 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
934 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
935 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
936 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
938 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
940 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
941 regval &= ~(AR9287_AN_RF2G3_DB1 |
942 AR9287_AN_RF2G3_DB2 |
943 AR9287_AN_RF2G3_OB_CCK |
944 AR9287_AN_RF2G3_OB_PSK |
945 AR9287_AN_RF2G3_OB_QAM |
946 AR9287_AN_RF2G3_OB_PAL_OFF);
947 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
948 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
949 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
950 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
951 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
952 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
954 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
956 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
957 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
958 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
959 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
961 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
962 AR9287_AN_TOP2_XPABIAS_LVL,
963 AR9287_AN_TOP2_XPABIAS_LVL_S,
964 pModal->xpaBiasLvl);
967 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
968 u16 i, bool is2GHz)
970 #define EEP_MAP9287_SPURCHAN \
971 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
973 struct ath_common *common = ath9k_hw_common(ah);
974 u16 spur_val = AR_NO_SPUR;
976 ath_dbg(common, ATH_DBG_ANI,
977 "Getting spur idx:%d is2Ghz:%d val:%x\n",
978 i, is2GHz, ah->config.spurchans[i][is2GHz]);
980 switch (ah->config.spurmode) {
981 case SPUR_DISABLE:
982 break;
983 case SPUR_ENABLE_IOCTL:
984 spur_val = ah->config.spurchans[i][is2GHz];
985 ath_dbg(common, ATH_DBG_ANI,
986 "Getting spur val from new loc. %d\n", spur_val);
987 break;
988 case SPUR_ENABLE_EEPROM:
989 spur_val = EEP_MAP9287_SPURCHAN;
990 break;
993 return spur_val;
995 #undef EEP_MAP9287_SPURCHAN
998 const struct eeprom_ops eep_ar9287_ops = {
999 .check_eeprom = ath9k_hw_ar9287_check_eeprom,
1000 .get_eeprom = ath9k_hw_ar9287_get_eeprom,
1001 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
1002 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
1003 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
1004 .set_board_values = ath9k_hw_ar9287_set_board_values,
1005 .set_addac = ath9k_hw_ar9287_set_addac,
1006 .set_txpower = ath9k_hw_ar9287_set_txpower,
1007 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel