sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blobc031854b569fe0a5c3c145724ec3373c802b68e2
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9002_phy.h"
20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
30 ath9k_hw_get_channel_centers(ah, chan, &centers);
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
52 *pcdacIdx = i;
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 u32 initTxGain,
57 int txPower,
58 u8 *pPDADCValues)
60 u32 i;
61 u32 offset;
63 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 offset = txPower;
72 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 if (i < offset)
74 pPDADCValues[i] = 0x0;
75 else
76 pPDADCValues[i] = 0xFF;
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
89 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 struct ath_common *common = ath9k_hw_common(ah);
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
99 eep_data)) {
100 ath_err(ath9k_hw_common(ah),
101 "Unable to read eeprom region\n");
102 return false;
104 eep_data++;
106 return true;
109 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
111 u16 *eep_data = (u16 *)&ah->eeprom.def;
113 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
114 0x100, SIZE_EEPROM_DEF);
115 return true;
118 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
120 struct ath_common *common = ath9k_hw_common(ah);
122 if (!ath9k_hw_use_flash(ah)) {
123 ath_dbg(common, ATH_DBG_EEPROM,
124 "Reading from EEPROM, not flash\n");
127 if (common->bus_ops->ath_bus_type == ATH_USB)
128 return __ath9k_hw_usb_def_fill_eeprom(ah);
129 else
130 return __ath9k_hw_def_fill_eeprom(ah);
133 #undef SIZE_EEPROM_DEF
135 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
137 struct ar5416_eeprom_def *eep =
138 (struct ar5416_eeprom_def *) &ah->eeprom.def;
139 struct ath_common *common = ath9k_hw_common(ah);
140 u16 *eepdata, temp, magic, magic2;
141 u32 sum = 0, el;
142 bool need_swap = false;
143 int i, addr, size;
145 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
146 ath_err(common, "Reading Magic # failed\n");
147 return false;
150 if (!ath9k_hw_use_flash(ah)) {
151 ath_dbg(common, ATH_DBG_EEPROM,
152 "Read Magic = 0x%04X\n", magic);
154 if (magic != AR5416_EEPROM_MAGIC) {
155 magic2 = swab16(magic);
157 if (magic2 == AR5416_EEPROM_MAGIC) {
158 size = sizeof(struct ar5416_eeprom_def);
159 need_swap = true;
160 eepdata = (u16 *) (&ah->eeprom);
162 for (addr = 0; addr < size / sizeof(u16); addr++) {
163 temp = swab16(*eepdata);
164 *eepdata = temp;
165 eepdata++;
167 } else {
168 ath_err(common,
169 "Invalid EEPROM Magic. Endianness mismatch.\n");
170 return -EINVAL;
175 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
176 need_swap ? "True" : "False");
178 if (need_swap)
179 el = swab16(ah->eeprom.def.baseEepHeader.length);
180 else
181 el = ah->eeprom.def.baseEepHeader.length;
183 if (el > sizeof(struct ar5416_eeprom_def))
184 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
185 else
186 el = el / sizeof(u16);
188 eepdata = (u16 *)(&ah->eeprom);
190 for (i = 0; i < el; i++)
191 sum ^= *eepdata++;
193 if (need_swap) {
194 u32 integer, j;
195 u16 word;
197 ath_dbg(common, ATH_DBG_EEPROM,
198 "EEPROM Endianness is not native.. Changing.\n");
200 word = swab16(eep->baseEepHeader.length);
201 eep->baseEepHeader.length = word;
203 word = swab16(eep->baseEepHeader.checksum);
204 eep->baseEepHeader.checksum = word;
206 word = swab16(eep->baseEepHeader.version);
207 eep->baseEepHeader.version = word;
209 word = swab16(eep->baseEepHeader.regDmn[0]);
210 eep->baseEepHeader.regDmn[0] = word;
212 word = swab16(eep->baseEepHeader.regDmn[1]);
213 eep->baseEepHeader.regDmn[1] = word;
215 word = swab16(eep->baseEepHeader.rfSilent);
216 eep->baseEepHeader.rfSilent = word;
218 word = swab16(eep->baseEepHeader.blueToothOptions);
219 eep->baseEepHeader.blueToothOptions = word;
221 word = swab16(eep->baseEepHeader.deviceCap);
222 eep->baseEepHeader.deviceCap = word;
224 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
225 struct modal_eep_header *pModal =
226 &eep->modalHeader[j];
227 integer = swab32(pModal->antCtrlCommon);
228 pModal->antCtrlCommon = integer;
230 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
231 integer = swab32(pModal->antCtrlChain[i]);
232 pModal->antCtrlChain[i] = integer;
234 for (i = 0; i < 3; i++) {
235 word = swab16(pModal->xpaBiasLvlFreq[i]);
236 pModal->xpaBiasLvlFreq[i] = word;
239 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
240 word = swab16(pModal->spurChans[i].spurChan);
241 pModal->spurChans[i].spurChan = word;
246 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
247 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
248 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
249 sum, ah->eep_ops->get_eeprom_ver(ah));
250 return -EINVAL;
253 /* Enable fixup for AR_AN_TOP2 if necessary */
254 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
255 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
256 (eep->baseEepHeader.pwdclkind == 0))
257 ah->need_an_top2_fixup = 1;
259 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
260 (AR_SREV_9280(ah)))
261 eep->modalHeader[0].xpaBiasLvl = 0;
263 return 0;
266 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
267 enum eeprom_param param)
269 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
270 struct modal_eep_header *pModal = eep->modalHeader;
271 struct base_eep_header *pBase = &eep->baseEepHeader;
273 switch (param) {
274 case EEP_NFTHRESH_5:
275 return pModal[0].noiseFloorThreshCh[0];
276 case EEP_NFTHRESH_2:
277 return pModal[1].noiseFloorThreshCh[0];
278 case EEP_MAC_LSW:
279 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
280 case EEP_MAC_MID:
281 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
282 case EEP_MAC_MSW:
283 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
284 case EEP_REG_0:
285 return pBase->regDmn[0];
286 case EEP_REG_1:
287 return pBase->regDmn[1];
288 case EEP_OP_CAP:
289 return pBase->deviceCap;
290 case EEP_OP_MODE:
291 return pBase->opCapFlags;
292 case EEP_RF_SILENT:
293 return pBase->rfSilent;
294 case EEP_OB_5:
295 return pModal[0].ob;
296 case EEP_DB_5:
297 return pModal[0].db;
298 case EEP_OB_2:
299 return pModal[1].ob;
300 case EEP_DB_2:
301 return pModal[1].db;
302 case EEP_MINOR_REV:
303 return AR5416_VER_MASK;
304 case EEP_TX_MASK:
305 return pBase->txMask;
306 case EEP_RX_MASK:
307 return pBase->rxMask;
308 case EEP_FSTCLK_5G:
309 return pBase->fastClk5g;
310 case EEP_RXGAIN_TYPE:
311 return pBase->rxGainType;
312 case EEP_TXGAIN_TYPE:
313 return pBase->txGainType;
314 case EEP_OL_PWRCTRL:
315 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
316 return pBase->openLoopPwrCntl ? true : false;
317 else
318 return false;
319 case EEP_RC_CHAIN_MASK:
320 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
321 return pBase->rcChainMask;
322 else
323 return 0;
324 case EEP_DAC_HPWR_5G:
325 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
326 return pBase->dacHiPwrMode_5G;
327 else
328 return 0;
329 case EEP_FRAC_N_5G:
330 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
331 return pBase->frac_n_5g;
332 else
333 return 0;
334 case EEP_PWR_TABLE_OFFSET:
335 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
336 return pBase->pwr_table_offset;
337 else
338 return AR5416_PWR_TABLE_OFFSET_DB;
339 default:
340 return 0;
344 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
345 struct modal_eep_header *pModal,
346 struct ar5416_eeprom_def *eep,
347 u8 txRxAttenLocal, int regChainOffset, int i)
349 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
350 txRxAttenLocal = pModal->txRxAttenCh[i];
352 if (AR_SREV_9280_20_OR_LATER(ah)) {
353 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
354 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
355 pModal->bswMargin[i]);
356 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
357 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
358 pModal->bswAtten[i]);
359 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
360 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
361 pModal->xatten2Margin[i]);
362 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
363 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
364 pModal->xatten2Db[i]);
365 } else {
366 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
367 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
368 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
369 | SM(pModal-> bswMargin[i],
370 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
371 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
372 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
373 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
374 | SM(pModal->bswAtten[i],
375 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
379 if (AR_SREV_9280_20_OR_LATER(ah)) {
380 REG_RMW_FIELD(ah,
381 AR_PHY_RXGAIN + regChainOffset,
382 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
383 REG_RMW_FIELD(ah,
384 AR_PHY_RXGAIN + regChainOffset,
385 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
386 } else {
387 REG_WRITE(ah,
388 AR_PHY_RXGAIN + regChainOffset,
389 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
390 ~AR_PHY_RXGAIN_TXRX_ATTEN)
391 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
392 REG_WRITE(ah,
393 AR_PHY_GAIN_2GHZ + regChainOffset,
394 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
395 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
396 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
400 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
401 struct ath9k_channel *chan)
403 struct modal_eep_header *pModal;
404 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
405 int i, regChainOffset;
406 u8 txRxAttenLocal;
408 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
409 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
411 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
413 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
414 if (AR_SREV_9280(ah)) {
415 if (i >= 2)
416 break;
419 if (AR_SREV_5416_20_OR_LATER(ah) &&
420 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
421 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
422 else
423 regChainOffset = i * 0x1000;
425 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
426 pModal->antCtrlChain[i]);
428 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
429 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
430 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
431 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
432 SM(pModal->iqCalICh[i],
433 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
434 SM(pModal->iqCalQCh[i],
435 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
437 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
438 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
439 regChainOffset, i);
442 if (AR_SREV_9280_20_OR_LATER(ah)) {
443 if (IS_CHAN_2GHZ(chan)) {
444 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
445 AR_AN_RF2G1_CH0_OB,
446 AR_AN_RF2G1_CH0_OB_S,
447 pModal->ob);
448 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
449 AR_AN_RF2G1_CH0_DB,
450 AR_AN_RF2G1_CH0_DB_S,
451 pModal->db);
452 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
453 AR_AN_RF2G1_CH1_OB,
454 AR_AN_RF2G1_CH1_OB_S,
455 pModal->ob_ch1);
456 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
457 AR_AN_RF2G1_CH1_DB,
458 AR_AN_RF2G1_CH1_DB_S,
459 pModal->db_ch1);
460 } else {
461 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
462 AR_AN_RF5G1_CH0_OB5,
463 AR_AN_RF5G1_CH0_OB5_S,
464 pModal->ob);
465 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
466 AR_AN_RF5G1_CH0_DB5,
467 AR_AN_RF5G1_CH0_DB5_S,
468 pModal->db);
469 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
470 AR_AN_RF5G1_CH1_OB5,
471 AR_AN_RF5G1_CH1_OB5_S,
472 pModal->ob_ch1);
473 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
474 AR_AN_RF5G1_CH1_DB5,
475 AR_AN_RF5G1_CH1_DB5_S,
476 pModal->db_ch1);
478 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
479 AR_AN_TOP2_XPABIAS_LVL,
480 AR_AN_TOP2_XPABIAS_LVL_S,
481 pModal->xpaBiasLvl);
482 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
483 AR_AN_TOP2_LOCALBIAS,
484 AR_AN_TOP2_LOCALBIAS_S,
485 !!(pModal->lna_ctl &
486 LNA_CTL_LOCAL_BIAS));
487 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
488 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
491 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
492 pModal->switchSettling);
493 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
494 pModal->adcDesiredSize);
496 if (!AR_SREV_9280_20_OR_LATER(ah))
497 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
498 AR_PHY_DESIRED_SZ_PGA,
499 pModal->pgaDesiredSize);
501 REG_WRITE(ah, AR_PHY_RF_CTL4,
502 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
503 | SM(pModal->txEndToXpaOff,
504 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
505 | SM(pModal->txFrameToXpaOn,
506 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
507 | SM(pModal->txFrameToXpaOn,
508 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
510 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
511 pModal->txEndToRxOn);
513 if (AR_SREV_9280_20_OR_LATER(ah)) {
514 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
515 pModal->thresh62);
516 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
517 AR_PHY_EXT_CCA0_THRESH62,
518 pModal->thresh62);
519 } else {
520 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
521 pModal->thresh62);
522 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
523 AR_PHY_EXT_CCA_THRESH62,
524 pModal->thresh62);
527 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
528 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
529 AR_PHY_TX_END_DATA_START,
530 pModal->txFrameToDataStart);
531 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
532 pModal->txFrameToPaOn);
535 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
536 if (IS_CHAN_HT40(chan))
537 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
538 AR_PHY_SETTLING_SWITCH,
539 pModal->swSettleHt40);
542 if (AR_SREV_9280_20_OR_LATER(ah) &&
543 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
544 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
545 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
546 pModal->miscBits);
549 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
550 if (IS_CHAN_2GHZ(chan))
551 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
552 eep->baseEepHeader.dacLpMode);
553 else if (eep->baseEepHeader.dacHiPwrMode_5G)
554 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
555 else
556 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
557 eep->baseEepHeader.dacLpMode);
559 udelay(100);
561 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
562 pModal->miscBits >> 2);
564 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
565 AR_PHY_TX_DESIRED_SCALE_CCK,
566 eep->baseEepHeader.desiredScaleCCK);
570 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
571 struct ath9k_channel *chan)
573 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
574 struct modal_eep_header *pModal;
575 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
576 u8 biaslevel;
578 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
579 return;
581 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
582 return;
584 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
586 if (pModal->xpaBiasLvl != 0xff) {
587 biaslevel = pModal->xpaBiasLvl;
588 } else {
589 u16 resetFreqBin, freqBin, freqCount = 0;
590 struct chan_centers centers;
592 ath9k_hw_get_channel_centers(ah, chan, &centers);
594 resetFreqBin = FREQ2FBIN(centers.synth_center,
595 IS_CHAN_2GHZ(chan));
596 freqBin = XPA_LVL_FREQ(0) & 0xff;
597 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
599 freqCount++;
601 while (freqCount < 3) {
602 if (XPA_LVL_FREQ(freqCount) == 0x0)
603 break;
605 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
606 if (resetFreqBin >= freqBin)
607 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
608 else
609 break;
610 freqCount++;
614 if (IS_CHAN_2GHZ(chan)) {
615 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
616 7, 1) & (~0x18)) | biaslevel << 3;
617 } else {
618 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
619 6, 1) & (~0xc0)) | biaslevel << 6;
621 #undef XPA_LVL_FREQ
624 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
625 u16 *gb,
626 u16 numXpdGain,
627 u16 pdGainOverlap_t2,
628 int8_t pwr_table_offset,
629 int16_t *diff)
632 u16 k;
634 /* Prior to writing the boundaries or the pdadc vs. power table
635 * into the chip registers the default starting point on the pdadc
636 * vs. power table needs to be checked and the curve boundaries
637 * adjusted accordingly
639 if (AR_SREV_9280_20_OR_LATER(ah)) {
640 u16 gb_limit;
642 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
643 /* get the difference in dB */
644 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
645 /* get the number of half dB steps */
646 *diff *= 2;
647 /* change the original gain boundary settings
648 * by the number of half dB steps
650 for (k = 0; k < numXpdGain; k++)
651 gb[k] = (u16)(gb[k] - *diff);
653 /* Because of a hardware limitation, ensure the gain boundary
654 * is not larger than (63 - overlap)
656 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
658 for (k = 0; k < numXpdGain; k++)
659 gb[k] = (u16)min(gb_limit, gb[k]);
662 return *diff;
665 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
666 int8_t pwr_table_offset,
667 int16_t diff,
668 u8 *pdadcValues)
670 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
671 u16 k;
673 /* If this is a board that has a pwrTableOffset that differs from
674 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
675 * pdadc vs pwr table needs to be adjusted prior to writing to the
676 * chip.
678 if (AR_SREV_9280_20_OR_LATER(ah)) {
679 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
680 /* shift the table to start at the new offset */
681 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
682 pdadcValues[k] = pdadcValues[k + diff];
685 /* fill the back of the table */
686 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
687 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
691 #undef NUM_PDADC
694 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
695 struct ath9k_channel *chan,
696 int16_t *pTxPowerIndexOffset)
698 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
699 #define SM_PDGAIN_B(x, y) \
700 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
701 struct ath_common *common = ath9k_hw_common(ah);
702 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
703 struct cal_data_per_freq *pRawDataset;
704 u8 *pCalBChans = NULL;
705 u16 pdGainOverlap_t2;
706 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
707 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
708 u16 numPiers, i, j;
709 int16_t diff = 0;
710 u16 numXpdGain, xpdMask;
711 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
712 u32 reg32, regOffset, regChainOffset;
713 int16_t modalIdx;
714 int8_t pwr_table_offset;
716 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
717 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
719 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
721 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
722 AR5416_EEP_MINOR_VER_2) {
723 pdGainOverlap_t2 =
724 pEepData->modalHeader[modalIdx].pdGainOverlap;
725 } else {
726 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
727 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
730 if (IS_CHAN_2GHZ(chan)) {
731 pCalBChans = pEepData->calFreqPier2G;
732 numPiers = AR5416_NUM_2G_CAL_PIERS;
733 } else {
734 pCalBChans = pEepData->calFreqPier5G;
735 numPiers = AR5416_NUM_5G_CAL_PIERS;
738 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
739 pRawDataset = pEepData->calPierData2G[0];
740 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
741 pRawDataset)->vpdPdg[0][0];
744 numXpdGain = 0;
746 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
747 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
748 if (numXpdGain >= AR5416_NUM_PD_GAINS)
749 break;
750 xpdGainValues[numXpdGain] =
751 (u16)(AR5416_PD_GAINS_IN_MASK - i);
752 numXpdGain++;
756 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
757 (numXpdGain - 1) & 0x3);
758 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
759 xpdGainValues[0]);
760 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
761 xpdGainValues[1]);
762 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
763 xpdGainValues[2]);
765 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
766 if (AR_SREV_5416_20_OR_LATER(ah) &&
767 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
768 (i != 0)) {
769 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
770 } else
771 regChainOffset = i * 0x1000;
773 if (pEepData->baseEepHeader.txMask & (1 << i)) {
774 if (IS_CHAN_2GHZ(chan))
775 pRawDataset = pEepData->calPierData2G[i];
776 else
777 pRawDataset = pEepData->calPierData5G[i];
780 if (OLC_FOR_AR9280_20_LATER) {
781 u8 pcdacIdx;
782 u8 txPower;
784 ath9k_get_txgain_index(ah, chan,
785 (struct calDataPerFreqOpLoop *)pRawDataset,
786 pCalBChans, numPiers, &txPower, &pcdacIdx);
787 ath9k_olc_get_pdadcs(ah, pcdacIdx,
788 txPower/2, pdadcValues);
789 } else {
790 ath9k_hw_get_gain_boundaries_pdadcs(ah,
791 chan, pRawDataset,
792 pCalBChans, numPiers,
793 pdGainOverlap_t2,
794 gainBoundaries,
795 pdadcValues,
796 numXpdGain);
799 diff = ath9k_change_gain_boundary_setting(ah,
800 gainBoundaries,
801 numXpdGain,
802 pdGainOverlap_t2,
803 pwr_table_offset,
804 &diff);
806 ENABLE_REGWRITE_BUFFER(ah);
808 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
809 if (OLC_FOR_AR9280_20_LATER) {
810 REG_WRITE(ah,
811 AR_PHY_TPCRG5 + regChainOffset,
812 SM(0x6,
813 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
814 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
815 SM_PD_GAIN(3) | SM_PD_GAIN(4));
816 } else {
817 REG_WRITE(ah,
818 AR_PHY_TPCRG5 + regChainOffset,
819 SM(pdGainOverlap_t2,
820 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
821 SM_PDGAIN_B(0, 1) |
822 SM_PDGAIN_B(1, 2) |
823 SM_PDGAIN_B(2, 3) |
824 SM_PDGAIN_B(3, 4));
829 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
830 diff, pdadcValues);
832 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
833 for (j = 0; j < 32; j++) {
834 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
835 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
836 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
837 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
838 REG_WRITE(ah, regOffset, reg32);
840 ath_dbg(common, ATH_DBG_EEPROM,
841 "PDADC (%d,%4x): %4.4x %8.8x\n",
842 i, regChainOffset, regOffset,
843 reg32);
844 ath_dbg(common, ATH_DBG_EEPROM,
845 "PDADC: Chain %d | PDADC %3d "
846 "Value %3d | PDADC %3d Value %3d | "
847 "PDADC %3d Value %3d | PDADC %3d "
848 "Value %3d |\n",
849 i, 4 * j, pdadcValues[4 * j],
850 4 * j + 1, pdadcValues[4 * j + 1],
851 4 * j + 2, pdadcValues[4 * j + 2],
852 4 * j + 3, pdadcValues[4 * j + 3]);
854 regOffset += 4;
856 REGWRITE_BUFFER_FLUSH(ah);
860 *pTxPowerIndexOffset = 0;
861 #undef SM_PD_GAIN
862 #undef SM_PDGAIN_B
865 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
866 struct ath9k_channel *chan,
867 int16_t *ratesArray,
868 u16 cfgCtl,
869 u16 AntennaReduction,
870 u16 twiceMaxRegulatoryPower,
871 u16 powerLimit)
873 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
874 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
876 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
877 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
878 u16 twiceMaxEdgePower = MAX_RATE_POWER;
879 static const u16 tpScaleReductionTable[5] =
880 { 0, 3, 6, 9, MAX_RATE_POWER };
882 int i;
883 int16_t twiceLargestAntenna;
884 struct cal_ctl_data *rep;
885 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
886 0, { 0, 0, 0, 0}
888 struct cal_target_power_leg targetPowerOfdmExt = {
889 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
890 0, { 0, 0, 0, 0 }
892 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
893 0, {0, 0, 0, 0}
895 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
896 static const u16 ctlModesFor11a[] = {
897 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
899 static const u16 ctlModesFor11g[] = {
900 CTL_11B, CTL_11G, CTL_2GHT20,
901 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
903 u16 numCtlModes;
904 const u16 *pCtlMode;
905 u16 ctlMode, freq;
906 struct chan_centers centers;
907 int tx_chainmask;
908 u16 twiceMinEdgePower;
910 tx_chainmask = ah->txchainmask;
912 ath9k_hw_get_channel_centers(ah, chan, &centers);
914 twiceLargestAntenna = max(
915 pEepData->modalHeader
916 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
917 pEepData->modalHeader
918 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
920 twiceLargestAntenna = max((u8)twiceLargestAntenna,
921 pEepData->modalHeader
922 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
924 twiceLargestAntenna = (int16_t)min(AntennaReduction -
925 twiceLargestAntenna, 0);
927 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
929 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
930 maxRegAllowedPower -=
931 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
934 scaledPower = min(powerLimit, maxRegAllowedPower);
936 switch (ar5416_get_ntxchains(tx_chainmask)) {
937 case 1:
938 break;
939 case 2:
940 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
941 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
942 else
943 scaledPower = 0;
944 break;
945 case 3:
946 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
947 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
948 else
949 scaledPower = 0;
950 break;
953 if (IS_CHAN_2GHZ(chan)) {
954 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
955 SUB_NUM_CTL_MODES_AT_2G_40;
956 pCtlMode = ctlModesFor11g;
958 ath9k_hw_get_legacy_target_powers(ah, chan,
959 pEepData->calTargetPowerCck,
960 AR5416_NUM_2G_CCK_TARGET_POWERS,
961 &targetPowerCck, 4, false);
962 ath9k_hw_get_legacy_target_powers(ah, chan,
963 pEepData->calTargetPower2G,
964 AR5416_NUM_2G_20_TARGET_POWERS,
965 &targetPowerOfdm, 4, false);
966 ath9k_hw_get_target_powers(ah, chan,
967 pEepData->calTargetPower2GHT20,
968 AR5416_NUM_2G_20_TARGET_POWERS,
969 &targetPowerHt20, 8, false);
971 if (IS_CHAN_HT40(chan)) {
972 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
973 ath9k_hw_get_target_powers(ah, chan,
974 pEepData->calTargetPower2GHT40,
975 AR5416_NUM_2G_40_TARGET_POWERS,
976 &targetPowerHt40, 8, true);
977 ath9k_hw_get_legacy_target_powers(ah, chan,
978 pEepData->calTargetPowerCck,
979 AR5416_NUM_2G_CCK_TARGET_POWERS,
980 &targetPowerCckExt, 4, true);
981 ath9k_hw_get_legacy_target_powers(ah, chan,
982 pEepData->calTargetPower2G,
983 AR5416_NUM_2G_20_TARGET_POWERS,
984 &targetPowerOfdmExt, 4, true);
986 } else {
987 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
988 SUB_NUM_CTL_MODES_AT_5G_40;
989 pCtlMode = ctlModesFor11a;
991 ath9k_hw_get_legacy_target_powers(ah, chan,
992 pEepData->calTargetPower5G,
993 AR5416_NUM_5G_20_TARGET_POWERS,
994 &targetPowerOfdm, 4, false);
995 ath9k_hw_get_target_powers(ah, chan,
996 pEepData->calTargetPower5GHT20,
997 AR5416_NUM_5G_20_TARGET_POWERS,
998 &targetPowerHt20, 8, false);
1000 if (IS_CHAN_HT40(chan)) {
1001 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1002 ath9k_hw_get_target_powers(ah, chan,
1003 pEepData->calTargetPower5GHT40,
1004 AR5416_NUM_5G_40_TARGET_POWERS,
1005 &targetPowerHt40, 8, true);
1006 ath9k_hw_get_legacy_target_powers(ah, chan,
1007 pEepData->calTargetPower5G,
1008 AR5416_NUM_5G_20_TARGET_POWERS,
1009 &targetPowerOfdmExt, 4, true);
1013 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1014 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1015 (pCtlMode[ctlMode] == CTL_2GHT40);
1016 if (isHt40CtlMode)
1017 freq = centers.synth_center;
1018 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1019 freq = centers.ext_center;
1020 else
1021 freq = centers.ctl_center;
1023 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1024 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1025 twiceMaxEdgePower = MAX_RATE_POWER;
1027 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1028 if ((((cfgCtl & ~CTL_MODE_M) |
1029 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1030 pEepData->ctlIndex[i]) ||
1031 (((cfgCtl & ~CTL_MODE_M) |
1032 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1033 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1034 rep = &(pEepData->ctlData[i]);
1036 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1037 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1038 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1040 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1041 twiceMaxEdgePower = min(twiceMaxEdgePower,
1042 twiceMinEdgePower);
1043 } else {
1044 twiceMaxEdgePower = twiceMinEdgePower;
1045 break;
1050 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1052 switch (pCtlMode[ctlMode]) {
1053 case CTL_11B:
1054 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1055 targetPowerCck.tPow2x[i] =
1056 min((u16)targetPowerCck.tPow2x[i],
1057 minCtlPower);
1059 break;
1060 case CTL_11A:
1061 case CTL_11G:
1062 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1063 targetPowerOfdm.tPow2x[i] =
1064 min((u16)targetPowerOfdm.tPow2x[i],
1065 minCtlPower);
1067 break;
1068 case CTL_5GHT20:
1069 case CTL_2GHT20:
1070 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1071 targetPowerHt20.tPow2x[i] =
1072 min((u16)targetPowerHt20.tPow2x[i],
1073 minCtlPower);
1075 break;
1076 case CTL_11B_EXT:
1077 targetPowerCckExt.tPow2x[0] = min((u16)
1078 targetPowerCckExt.tPow2x[0],
1079 minCtlPower);
1080 break;
1081 case CTL_11A_EXT:
1082 case CTL_11G_EXT:
1083 targetPowerOfdmExt.tPow2x[0] = min((u16)
1084 targetPowerOfdmExt.tPow2x[0],
1085 minCtlPower);
1086 break;
1087 case CTL_5GHT40:
1088 case CTL_2GHT40:
1089 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1090 targetPowerHt40.tPow2x[i] =
1091 min((u16)targetPowerHt40.tPow2x[i],
1092 minCtlPower);
1094 break;
1095 default:
1096 break;
1100 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1101 ratesArray[rate18mb] = ratesArray[rate24mb] =
1102 targetPowerOfdm.tPow2x[0];
1103 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1104 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1105 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1106 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1108 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1109 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1111 if (IS_CHAN_2GHZ(chan)) {
1112 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1113 ratesArray[rate2s] = ratesArray[rate2l] =
1114 targetPowerCck.tPow2x[1];
1115 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1116 targetPowerCck.tPow2x[2];
1117 ratesArray[rate11s] = ratesArray[rate11l] =
1118 targetPowerCck.tPow2x[3];
1120 if (IS_CHAN_HT40(chan)) {
1121 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1122 ratesArray[rateHt40_0 + i] =
1123 targetPowerHt40.tPow2x[i];
1125 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1126 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1127 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1128 if (IS_CHAN_2GHZ(chan)) {
1129 ratesArray[rateExtCck] =
1130 targetPowerCckExt.tPow2x[0];
1135 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1136 struct ath9k_channel *chan,
1137 u16 cfgCtl,
1138 u8 twiceAntennaReduction,
1139 u8 twiceMaxRegulatoryPower,
1140 u8 powerLimit, bool test)
1142 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1143 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1144 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1145 struct modal_eep_header *pModal =
1146 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1147 int16_t ratesArray[Ar5416RateSize];
1148 int16_t txPowerIndexOffset = 0;
1149 u8 ht40PowerIncForPdadc = 2;
1150 int i, cck_ofdm_delta = 0;
1152 memset(ratesArray, 0, sizeof(ratesArray));
1154 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1155 AR5416_EEP_MINOR_VER_2) {
1156 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1159 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1160 &ratesArray[0], cfgCtl,
1161 twiceAntennaReduction,
1162 twiceMaxRegulatoryPower,
1163 powerLimit);
1165 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1167 regulatory->max_power_level = 0;
1168 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1169 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1170 if (ratesArray[i] > MAX_RATE_POWER)
1171 ratesArray[i] = MAX_RATE_POWER;
1172 if (ratesArray[i] > regulatory->max_power_level)
1173 regulatory->max_power_level = ratesArray[i];
1176 if (!test) {
1177 i = rate6mb;
1179 if (IS_CHAN_HT40(chan))
1180 i = rateHt40_0;
1181 else if (IS_CHAN_HT20(chan))
1182 i = rateHt20_0;
1184 regulatory->max_power_level = ratesArray[i];
1187 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1188 case 1:
1189 break;
1190 case 2:
1191 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1192 break;
1193 case 3:
1194 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1195 break;
1196 default:
1197 ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1198 "Invalid chainmask configuration\n");
1199 break;
1202 if (test)
1203 return;
1205 if (AR_SREV_9280_20_OR_LATER(ah)) {
1206 for (i = 0; i < Ar5416RateSize; i++) {
1207 int8_t pwr_table_offset;
1209 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1210 EEP_PWR_TABLE_OFFSET);
1211 ratesArray[i] -= pwr_table_offset * 2;
1215 ENABLE_REGWRITE_BUFFER(ah);
1217 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1218 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1219 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1220 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1221 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1222 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1223 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1224 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1225 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1226 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1228 if (IS_CHAN_2GHZ(chan)) {
1229 if (OLC_FOR_AR9280_20_LATER) {
1230 cck_ofdm_delta = 2;
1231 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1232 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1233 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1234 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1235 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1236 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1237 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1238 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1239 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1240 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1241 } else {
1242 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1243 ATH9K_POW_SM(ratesArray[rate2s], 24)
1244 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1245 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1246 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1247 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1248 ATH9K_POW_SM(ratesArray[rate11s], 24)
1249 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1250 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1251 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1255 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1256 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1257 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1258 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1259 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1260 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1261 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1262 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1263 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1264 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1266 if (IS_CHAN_HT40(chan)) {
1267 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1268 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1269 ht40PowerIncForPdadc, 24)
1270 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1271 ht40PowerIncForPdadc, 16)
1272 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1273 ht40PowerIncForPdadc, 8)
1274 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1275 ht40PowerIncForPdadc, 0));
1276 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1277 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1278 ht40PowerIncForPdadc, 24)
1279 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1280 ht40PowerIncForPdadc, 16)
1281 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1282 ht40PowerIncForPdadc, 8)
1283 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1284 ht40PowerIncForPdadc, 0));
1285 if (OLC_FOR_AR9280_20_LATER) {
1286 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1287 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1288 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1289 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1290 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1291 } else {
1292 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1293 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1294 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1295 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1296 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1300 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1301 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1302 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1304 REGWRITE_BUFFER_FLUSH(ah);
1307 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1309 #define EEP_DEF_SPURCHAN \
1310 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1311 struct ath_common *common = ath9k_hw_common(ah);
1313 u16 spur_val = AR_NO_SPUR;
1315 ath_dbg(common, ATH_DBG_ANI,
1316 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1317 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1319 switch (ah->config.spurmode) {
1320 case SPUR_DISABLE:
1321 break;
1322 case SPUR_ENABLE_IOCTL:
1323 spur_val = ah->config.spurchans[i][is2GHz];
1324 ath_dbg(common, ATH_DBG_ANI,
1325 "Getting spur val from new loc. %d\n", spur_val);
1326 break;
1327 case SPUR_ENABLE_EEPROM:
1328 spur_val = EEP_DEF_SPURCHAN;
1329 break;
1332 return spur_val;
1334 #undef EEP_DEF_SPURCHAN
1337 const struct eeprom_ops eep_def_ops = {
1338 .check_eeprom = ath9k_hw_def_check_eeprom,
1339 .get_eeprom = ath9k_hw_def_get_eeprom,
1340 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1341 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1342 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1343 .set_board_values = ath9k_hw_def_set_board_values,
1344 .set_addac = ath9k_hw_def_set_addac,
1345 .set_txpower = ath9k_hw_def_set_txpower,
1346 .get_spur_channel = ath9k_hw_def_get_spur_channel