2 * Copyright (c) 2008-2010 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
24 #include "ar9003_mac.h"
26 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
33 static int __init
ath9k_init(void)
37 module_init(ath9k_init
);
39 static void __exit
ath9k_exit(void)
43 module_exit(ath9k_exit
);
45 /* Private hardware callbacks */
47 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
49 ath9k_hw_private_ops(ah
)->init_cal_settings(ah
);
52 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
54 ath9k_hw_private_ops(ah
)->init_mode_regs(ah
);
57 static u32
ath9k_hw_compute_pll_control(struct ath_hw
*ah
,
58 struct ath9k_channel
*chan
)
60 return ath9k_hw_private_ops(ah
)->compute_pll_control(ah
, chan
);
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
65 if (!ath9k_hw_private_ops(ah
)->init_mode_gain_regs
)
68 ath9k_hw_private_ops(ah
)->init_mode_gain_regs(ah
);
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw
*ah
)
73 /* You will not have this callback if using the old ANI */
74 if (!ath9k_hw_private_ops(ah
)->ani_cache_ini_regs
)
77 ath9k_hw_private_ops(ah
)->ani_cache_ini_regs(ah
);
80 /********************/
81 /* Helper Functions */
82 /********************/
84 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
86 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
87 struct ath_common
*common
= ath9k_hw_common(ah
);
88 unsigned int clockrate
;
90 if (!ah
->curchan
) /* should really check for CCK instead */
91 clockrate
= ATH9K_CLOCK_RATE_CCK
;
92 else if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
93 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
94 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
95 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
97 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
99 if (conf_is_ht40(conf
))
102 common
->clockrate
= clockrate
;
105 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
107 struct ath_common
*common
= ath9k_hw_common(ah
);
109 return usecs
* common
->clockrate
;
112 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
116 BUG_ON(timeout
< AH_TIME_QUANTUM
);
118 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
119 if ((REG_READ(ah
, reg
) & mask
) == val
)
122 udelay(AH_TIME_QUANTUM
);
125 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_ANY
,
126 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
131 EXPORT_SYMBOL(ath9k_hw_wait
);
133 void ath9k_hw_write_array(struct ath_hw
*ah
, struct ar5416IniArray
*array
,
134 int column
, unsigned int *writecnt
)
138 ENABLE_REGWRITE_BUFFER(ah
);
139 for (r
= 0; r
< array
->ia_rows
; r
++) {
140 REG_WRITE(ah
, INI_RA(array
, r
, 0),
141 INI_RA(array
, r
, column
));
144 REGWRITE_BUFFER_FLUSH(ah
);
147 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
152 for (i
= 0, retval
= 0; i
< n
; i
++) {
153 retval
= (retval
<< 1) | (val
& 1);
159 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
161 u32 frameLen
, u16 rateix
,
164 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
170 case WLAN_RC_PHY_CCK
:
171 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
174 numBits
= frameLen
<< 3;
175 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
177 case WLAN_RC_PHY_OFDM
:
178 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
179 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
180 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
181 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
182 txTime
= OFDM_SIFS_TIME_QUARTER
183 + OFDM_PREAMBLE_TIME_QUARTER
184 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
185 } else if (ah
->curchan
&&
186 IS_CHAN_HALF_RATE(ah
->curchan
)) {
187 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
188 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
189 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
190 txTime
= OFDM_SIFS_TIME_HALF
+
191 OFDM_PREAMBLE_TIME_HALF
192 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
194 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
195 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
196 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
197 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
198 + (numSymbols
* OFDM_SYMBOL_TIME
);
202 ath_err(ath9k_hw_common(ah
),
203 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
210 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
212 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
213 struct ath9k_channel
*chan
,
214 struct chan_centers
*centers
)
218 if (!IS_CHAN_HT40(chan
)) {
219 centers
->ctl_center
= centers
->ext_center
=
220 centers
->synth_center
= chan
->channel
;
224 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
225 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
226 centers
->synth_center
=
227 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
230 centers
->synth_center
=
231 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
235 centers
->ctl_center
=
236 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
237 /* 25 MHz spacing is supported by hw but not on upper layers */
238 centers
->ext_center
=
239 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
246 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
250 switch (ah
->hw_version
.devid
) {
251 case AR5416_AR9100_DEVID
:
252 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
254 case AR9300_DEVID_AR9340
:
255 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
256 val
= REG_READ(ah
, AR_SREV
);
257 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
261 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
264 val
= REG_READ(ah
, AR_SREV
);
265 ah
->hw_version
.macVersion
=
266 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
267 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
268 ah
->is_pciexpress
= (val
& AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
270 if (!AR_SREV_9100(ah
))
271 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
273 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
275 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
276 ah
->is_pciexpress
= true;
280 /************************************/
281 /* HW Attach, Detach, Init Routines */
282 /************************************/
284 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
286 if (!AR_SREV_5416(ah
))
289 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
290 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
291 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
292 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
293 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
294 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
295 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
296 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
297 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
299 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
302 /* This should work for all families including legacy */
303 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
305 struct ath_common
*common
= ath9k_hw_common(ah
);
306 u32 regAddr
[2] = { AR_STA_ID0
};
308 static const u32 patternData
[4] = {
309 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
313 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
315 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
319 for (i
= 0; i
< loop_max
; i
++) {
320 u32 addr
= regAddr
[i
];
323 regHold
[i
] = REG_READ(ah
, addr
);
324 for (j
= 0; j
< 0x100; j
++) {
325 wrData
= (j
<< 16) | j
;
326 REG_WRITE(ah
, addr
, wrData
);
327 rdData
= REG_READ(ah
, addr
);
328 if (rdData
!= wrData
) {
330 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
331 addr
, wrData
, rdData
);
335 for (j
= 0; j
< 4; j
++) {
336 wrData
= patternData
[j
];
337 REG_WRITE(ah
, addr
, wrData
);
338 rdData
= REG_READ(ah
, addr
);
339 if (wrData
!= rdData
) {
341 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
342 addr
, wrData
, rdData
);
346 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
353 static void ath9k_hw_init_config(struct ath_hw
*ah
)
357 ah
->config
.dma_beacon_response_time
= 2;
358 ah
->config
.sw_beacon_response_time
= 10;
359 ah
->config
.additional_swba_backoff
= 0;
360 ah
->config
.ack_6mb
= 0x0;
361 ah
->config
.cwm_ignore_extcca
= 0;
362 ah
->config
.pcie_powersave_enable
= 0;
363 ah
->config
.pcie_clock_req
= 0;
364 ah
->config
.pcie_waen
= 0;
365 ah
->config
.analog_shiftreg
= 1;
366 ah
->config
.enable_ani
= true;
368 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
369 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
370 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
373 /* PAPRD needs some more work to be enabled */
374 ah
->config
.paprd_disable
= 1;
376 ah
->config
.rx_intr_mitigation
= true;
377 ah
->config
.pcieSerDesWrite
= true;
380 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
381 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
382 * This means we use it for all AR5416 devices, and the few
383 * minor PCI AR9280 devices out there.
385 * Serialization is required because these devices do not handle
386 * well the case of two concurrent reads/writes due to the latency
387 * involved. During one read/write another read/write can be issued
388 * on another CPU while the previous read/write may still be working
389 * on our hardware, if we hit this case the hardware poops in a loop.
390 * We prevent this by serializing reads and writes.
392 * This issue is not present on PCI-Express devices or pre-AR5416
393 * devices (legacy, 802.11abg).
395 if (num_possible_cpus() > 1)
396 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
399 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
401 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
403 regulatory
->country_code
= CTRY_DEFAULT
;
404 regulatory
->power_limit
= MAX_RATE_POWER
;
405 regulatory
->tp_scale
= ATH9K_TP_SCALE_MAX
;
407 ah
->hw_version
.magic
= AR5416_MAGIC
;
408 ah
->hw_version
.subvendorid
= 0;
411 ah
->sta_id1_defaults
=
412 AR_STA_ID1_CRPT_MIC_ENABLE
|
413 AR_STA_ID1_MCAST_KSRCH
;
414 if (AR_SREV_9100(ah
))
415 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
416 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
418 ah
->globaltxtimeout
= (u32
) -1;
419 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
422 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
424 struct ath_common
*common
= ath9k_hw_common(ah
);
428 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
431 for (i
= 0; i
< 3; i
++) {
432 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
434 common
->macaddr
[2 * i
] = eeval
>> 8;
435 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
437 if (sum
== 0 || sum
== 0xffff * 3)
438 return -EADDRNOTAVAIL
;
443 static int ath9k_hw_post_init(struct ath_hw
*ah
)
445 struct ath_common
*common
= ath9k_hw_common(ah
);
448 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
449 if (!ath9k_hw_chip_test(ah
))
453 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
454 ecode
= ar9002_hw_rf_claim(ah
);
459 ecode
= ath9k_hw_eeprom_init(ah
);
463 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_CONFIG
,
464 "Eeprom VER: %d, REV: %d\n",
465 ah
->eep_ops
->get_eeprom_ver(ah
),
466 ah
->eep_ops
->get_eeprom_rev(ah
));
468 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
470 ath_err(ath9k_hw_common(ah
),
471 "Failed allocating banks for external radio\n");
472 ath9k_hw_rf_free_ext_banks(ah
);
476 if (!AR_SREV_9100(ah
) && !AR_SREV_9340(ah
)) {
477 ath9k_hw_ani_setup(ah
);
478 ath9k_hw_ani_init(ah
);
484 static void ath9k_hw_attach_ops(struct ath_hw
*ah
)
486 if (AR_SREV_9300_20_OR_LATER(ah
))
487 ar9003_hw_attach_ops(ah
);
489 ar9002_hw_attach_ops(ah
);
492 /* Called for all hardware families */
493 static int __ath9k_hw_init(struct ath_hw
*ah
)
495 struct ath_common
*common
= ath9k_hw_common(ah
);
498 ath9k_hw_read_revisions(ah
);
501 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502 * We need to do this to avoid RMW of this register. We cannot
503 * read the reg when chip is asleep.
505 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
506 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
507 AR_WA_ASPM_TIMER_BASED_DISABLE
);
509 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
510 ath_err(common
, "Couldn't reset chip\n");
514 ath9k_hw_init_defaults(ah
);
515 ath9k_hw_init_config(ah
);
517 ath9k_hw_attach_ops(ah
);
519 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
520 ath_err(common
, "Couldn't wakeup chip\n");
524 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
525 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
526 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
527 !ah
->is_pciexpress
)) {
528 ah
->config
.serialize_regmode
=
531 ah
->config
.serialize_regmode
=
536 ath_dbg(common
, ATH_DBG_RESET
, "serialize_regmode is %d\n",
537 ah
->config
.serialize_regmode
);
539 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
540 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
542 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
544 switch (ah
->hw_version
.macVersion
) {
545 case AR_SREV_VERSION_5416_PCI
:
546 case AR_SREV_VERSION_5416_PCIE
:
547 case AR_SREV_VERSION_9160
:
548 case AR_SREV_VERSION_9100
:
549 case AR_SREV_VERSION_9280
:
550 case AR_SREV_VERSION_9285
:
551 case AR_SREV_VERSION_9287
:
552 case AR_SREV_VERSION_9271
:
553 case AR_SREV_VERSION_9300
:
554 case AR_SREV_VERSION_9485
:
555 case AR_SREV_VERSION_9340
:
559 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
560 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
564 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
))
565 ah
->is_pciexpress
= false;
567 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
568 ath9k_hw_init_cal_settings(ah
);
570 ah
->ani_function
= ATH9K_ANI_ALL
;
571 if (AR_SREV_9280_20_OR_LATER(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
572 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
573 if (!AR_SREV_9300_20_OR_LATER(ah
))
574 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
576 ath9k_hw_init_mode_regs(ah
);
579 if (ah
->is_pciexpress
)
580 ath9k_hw_configpcipowersave(ah
, 0, 0);
582 ath9k_hw_disablepcie(ah
);
584 if (!AR_SREV_9300_20_OR_LATER(ah
))
585 ar9002_hw_cck_chan14_spread(ah
);
587 r
= ath9k_hw_post_init(ah
);
591 ath9k_hw_init_mode_gain_regs(ah
);
592 r
= ath9k_hw_fill_cap_info(ah
);
596 r
= ath9k_hw_init_macaddr(ah
);
598 ath_err(common
, "Failed to initialize MAC address\n");
602 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
603 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
605 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
607 ah
->bb_watchdog_timeout_ms
= 25;
609 common
->state
= ATH_HW_INITIALIZED
;
614 int ath9k_hw_init(struct ath_hw
*ah
)
617 struct ath_common
*common
= ath9k_hw_common(ah
);
619 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
620 switch (ah
->hw_version
.devid
) {
621 case AR5416_DEVID_PCI
:
622 case AR5416_DEVID_PCIE
:
623 case AR5416_AR9100_DEVID
:
624 case AR9160_DEVID_PCI
:
625 case AR9280_DEVID_PCI
:
626 case AR9280_DEVID_PCIE
:
627 case AR9285_DEVID_PCIE
:
628 case AR9287_DEVID_PCI
:
629 case AR9287_DEVID_PCIE
:
630 case AR2427_DEVID_PCIE
:
631 case AR9300_DEVID_PCIE
:
632 case AR9300_DEVID_AR9485_PCIE
:
633 case AR9300_DEVID_AR9340
:
636 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
638 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
639 ah
->hw_version
.devid
);
643 ret
= __ath9k_hw_init(ah
);
646 "Unable to initialize hardware; initialization status: %d\n",
653 EXPORT_SYMBOL(ath9k_hw_init
);
655 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
657 ENABLE_REGWRITE_BUFFER(ah
);
659 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
660 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
662 REG_WRITE(ah
, AR_QOS_NO_ACK
,
663 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
664 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
665 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
667 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
668 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
669 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
670 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
671 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
673 REGWRITE_BUFFER_FLUSH(ah
);
676 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
678 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
680 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
682 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0)
685 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
687 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
689 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
690 struct ath9k_channel
*chan
)
694 if (AR_SREV_9485(ah
)) {
696 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
697 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
698 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
699 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
700 AR_CH0_DPLL2_KD
, 0x40);
701 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
702 AR_CH0_DPLL2_KI
, 0x4);
704 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
705 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
706 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
707 AR_CH0_BB_DPLL1_NINI
, 0x58);
708 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
709 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
711 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
712 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
713 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
714 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
715 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
716 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
718 /* program BB PLL phase_shift to 0x6 */
719 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
720 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
722 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
723 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
725 } else if (AR_SREV_9340(ah
)) {
726 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
728 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
731 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
734 if (ah
->is_clk_25mhz
) {
736 pll2_divfrac
= 0x1eb85;
744 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
745 regval
|= (0x1 << 16);
746 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
749 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
750 (pll2_divint
<< 18) | pll2_divfrac
);
753 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
754 regval
= (regval
& 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
755 (0x4 << 26) | (0x18 << 19);
756 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
757 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
758 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
762 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
764 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
766 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
))
769 /* Switch the core clock for ar9271 to 117Mhz */
770 if (AR_SREV_9271(ah
)) {
772 REG_WRITE(ah
, 0x50040, 0x304);
775 udelay(RTC_PLL_SETTLE_DELAY
);
777 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
779 if (AR_SREV_9340(ah
)) {
780 if (ah
->is_clk_25mhz
) {
781 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x17c << 1);
782 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f3d7);
783 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e7ae);
785 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x261 << 1);
786 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f400);
787 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e800);
793 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
794 enum nl80211_iftype opmode
)
796 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
797 u32 imr_reg
= AR_IMR_TXERR
|
803 if (AR_SREV_9340(ah
))
804 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
806 if (AR_SREV_9300_20_OR_LATER(ah
)) {
807 imr_reg
|= AR_IMR_RXOK_HP
;
808 if (ah
->config
.rx_intr_mitigation
)
809 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
811 imr_reg
|= AR_IMR_RXOK_LP
;
814 if (ah
->config
.rx_intr_mitigation
)
815 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
817 imr_reg
|= AR_IMR_RXOK
;
820 if (ah
->config
.tx_intr_mitigation
)
821 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
823 imr_reg
|= AR_IMR_TXOK
;
825 if (opmode
== NL80211_IFTYPE_AP
)
826 imr_reg
|= AR_IMR_MIB
;
828 ENABLE_REGWRITE_BUFFER(ah
);
830 REG_WRITE(ah
, AR_IMR
, imr_reg
);
831 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
832 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
834 if (!AR_SREV_9100(ah
)) {
835 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
836 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
837 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
840 REGWRITE_BUFFER_FLUSH(ah
);
842 if (AR_SREV_9300_20_OR_LATER(ah
)) {
843 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
844 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
845 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
846 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
850 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
852 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
853 val
= min(val
, (u32
) 0xFFFF);
854 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
857 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
859 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
860 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
861 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
864 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
866 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
867 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
868 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
871 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
874 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_XMIT
,
875 "bad global tx timeout %u\n", tu
);
876 ah
->globaltxtimeout
= (u32
) -1;
879 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
880 ah
->globaltxtimeout
= tu
;
885 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
887 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
892 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
, "ah->misc_mode 0x%x\n",
895 if (ah
->misc_mode
!= 0)
896 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
898 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_5GHZ
)
903 /* As defined by IEEE 802.11-2007 17.3.8.6 */
904 slottime
= ah
->slottime
+ 3 * ah
->coverage_class
;
905 acktimeout
= slottime
+ sifstime
;
908 * Workaround for early ACK timeouts, add an offset to match the
909 * initval's 64us ack timeout value.
910 * This was initially only meant to work around an issue with delayed
911 * BA frames in some implementations, but it has been found to fix ACK
912 * timeout issues in other cases as well.
914 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
915 acktimeout
+= 64 - sifstime
- ah
->slottime
;
917 ath9k_hw_setslottime(ah
, ah
->slottime
);
918 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
919 ath9k_hw_set_cts_timeout(ah
, acktimeout
);
920 if (ah
->globaltxtimeout
!= (u32
) -1)
921 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
923 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
925 void ath9k_hw_deinit(struct ath_hw
*ah
)
927 struct ath_common
*common
= ath9k_hw_common(ah
);
929 if (common
->state
< ATH_HW_INITIALIZED
)
932 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
935 ath9k_hw_rf_free_ext_banks(ah
);
937 EXPORT_SYMBOL(ath9k_hw_deinit
);
943 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
945 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
949 else if (IS_CHAN_G(chan
))
957 /****************************************/
958 /* Reset and Channel Switching Routines */
959 /****************************************/
961 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
963 struct ath_common
*common
= ath9k_hw_common(ah
);
965 ENABLE_REGWRITE_BUFFER(ah
);
968 * set AHB_MODE not to do cacheline prefetches
970 if (!AR_SREV_9300_20_OR_LATER(ah
))
971 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
974 * let mac dma reads be in 128 byte chunks
976 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
978 REGWRITE_BUFFER_FLUSH(ah
);
981 * Restore TX Trigger Level to its pre-reset value.
982 * The initial value depends on whether aggregation is enabled, and is
983 * adjusted whenever underruns are detected.
985 if (!AR_SREV_9300_20_OR_LATER(ah
))
986 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
988 ENABLE_REGWRITE_BUFFER(ah
);
991 * let mac dma writes be in 128 byte chunks
993 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
996 * Setup receive FIFO threshold to hold off TX activities
998 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1000 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1001 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1002 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1004 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1005 ah
->caps
.rx_status_len
);
1009 * reduce the number of usable entries in PCU TXBUF to avoid
1010 * wrap around issues.
1012 if (AR_SREV_9285(ah
)) {
1013 /* For AR9285 the number of Fifos are reduced to half.
1014 * So set the usable tx buf size also to half to
1015 * avoid data/delimiter underruns
1017 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1018 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1019 } else if (!AR_SREV_9271(ah
)) {
1020 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1021 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1024 REGWRITE_BUFFER_FLUSH(ah
);
1026 if (AR_SREV_9300_20_OR_LATER(ah
))
1027 ath9k_hw_reset_txstatus_ring(ah
);
1030 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1032 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1033 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1036 case NL80211_IFTYPE_ADHOC
:
1037 case NL80211_IFTYPE_MESH_POINT
:
1038 set
|= AR_STA_ID1_ADHOC
;
1039 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1041 case NL80211_IFTYPE_AP
:
1042 set
|= AR_STA_ID1_STA_AP
;
1044 case NL80211_IFTYPE_STATION
:
1045 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1048 if (!ah
->is_monitoring
)
1052 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1055 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1056 u32
*coef_mantissa
, u32
*coef_exponent
)
1058 u32 coef_exp
, coef_man
;
1060 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1061 if ((coef_scaled
>> coef_exp
) & 0x1)
1064 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1066 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1068 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1069 *coef_exponent
= coef_exp
- 16;
1072 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1077 if (AR_SREV_9100(ah
)) {
1078 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1079 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1080 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1083 ENABLE_REGWRITE_BUFFER(ah
);
1085 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1086 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1090 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1091 AR_RTC_FORCE_WAKE_ON_INT
);
1093 if (AR_SREV_9100(ah
)) {
1094 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1095 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1097 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1099 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1100 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1102 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1105 if (!AR_SREV_9300_20_OR_LATER(ah
))
1107 REG_WRITE(ah
, AR_RC
, val
);
1109 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1110 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1112 rst_flags
= AR_RTC_RC_MAC_WARM
;
1113 if (type
== ATH9K_RESET_COLD
)
1114 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1117 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1119 REGWRITE_BUFFER_FLUSH(ah
);
1123 REG_WRITE(ah
, AR_RTC_RC
, 0);
1124 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1125 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1126 "RTC stuck in MAC reset\n");
1130 if (!AR_SREV_9100(ah
))
1131 REG_WRITE(ah
, AR_RC
, 0);
1133 if (AR_SREV_9100(ah
))
1139 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1141 ENABLE_REGWRITE_BUFFER(ah
);
1143 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1144 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1148 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1149 AR_RTC_FORCE_WAKE_ON_INT
);
1151 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1152 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1154 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1156 REGWRITE_BUFFER_FLUSH(ah
);
1158 if (!AR_SREV_9300_20_OR_LATER(ah
))
1161 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1162 REG_WRITE(ah
, AR_RC
, 0);
1164 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1166 if (!ath9k_hw_wait(ah
,
1171 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
1172 "RTC not waking up\n");
1176 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1179 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1181 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1182 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1186 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1187 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1190 case ATH9K_RESET_POWER_ON
:
1191 return ath9k_hw_set_reset_power_on(ah
);
1192 case ATH9K_RESET_WARM
:
1193 case ATH9K_RESET_COLD
:
1194 return ath9k_hw_set_reset(ah
, type
);
1200 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1201 struct ath9k_channel
*chan
)
1203 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1204 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1206 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1209 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1212 ah
->chip_fullsleep
= false;
1213 ath9k_hw_init_pll(ah
, chan
);
1214 ath9k_hw_set_rfmode(ah
, chan
);
1219 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1220 struct ath9k_channel
*chan
)
1222 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1223 struct ath_common
*common
= ath9k_hw_common(ah
);
1224 struct ieee80211_channel
*channel
= chan
->chan
;
1228 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1229 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1230 ath_dbg(common
, ATH_DBG_QUEUE
,
1231 "Transmit frames pending on queue %d\n", qnum
);
1236 if (!ath9k_hw_rfbus_req(ah
)) {
1237 ath_err(common
, "Could not kill baseband RX\n");
1241 ath9k_hw_set_channel_regs(ah
, chan
);
1243 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1245 ath_err(common
, "Failed to set channel\n");
1248 ath9k_hw_set_clockrate(ah
);
1250 ah
->eep_ops
->set_txpower(ah
, chan
,
1251 ath9k_regd_get_ctl(regulatory
, chan
),
1252 channel
->max_antenna_gain
* 2,
1253 channel
->max_power
* 2,
1254 min((u32
) MAX_RATE_POWER
,
1255 (u32
) regulatory
->power_limit
), false);
1257 ath9k_hw_rfbus_done(ah
);
1259 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1260 ath9k_hw_set_delta_slope(ah
, chan
);
1262 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1267 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1269 u32 gpio_mask
= ah
->gpio_mask
;
1272 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1273 if (!(gpio_mask
& 1))
1276 ath9k_hw_cfg_output(ah
, i
, AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1277 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1281 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1286 if (AR_SREV_9285_12_OR_LATER(ah
))
1290 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1292 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1295 switch (reg
& 0x7E000B00) {
1303 } while (count
-- > 0);
1307 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1309 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1310 struct ath9k_hw_cal_data
*caldata
, bool bChannelChange
)
1312 struct ath_common
*common
= ath9k_hw_common(ah
);
1314 struct ath9k_channel
*curchan
= ah
->curchan
;
1320 ah
->txchainmask
= common
->tx_chainmask
;
1321 ah
->rxchainmask
= common
->rx_chainmask
;
1323 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1326 if (curchan
&& !ah
->chip_fullsleep
)
1327 ath9k_hw_getnf(ah
, curchan
);
1329 ah
->caldata
= caldata
;
1331 (chan
->channel
!= caldata
->channel
||
1332 (chan
->channelFlags
& ~CHANNEL_CW_INT
) !=
1333 (caldata
->channelFlags
& ~CHANNEL_CW_INT
))) {
1334 /* Operating channel changed, reset channel calibration data */
1335 memset(caldata
, 0, sizeof(*caldata
));
1336 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1339 if (bChannelChange
&&
1340 (ah
->chip_fullsleep
!= true) &&
1341 (ah
->curchan
!= NULL
) &&
1342 (chan
->channel
!= ah
->curchan
->channel
) &&
1343 ((chan
->channelFlags
& CHANNEL_ALL
) ==
1344 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)) &&
1345 (!AR_SREV_9280(ah
) || AR_DEVID_7010(ah
))) {
1347 if (ath9k_hw_channel_change(ah
, chan
)) {
1348 ath9k_hw_loadnf(ah
, ah
->curchan
);
1349 ath9k_hw_start_nfcal(ah
, true);
1350 if (AR_SREV_9271(ah
))
1351 ar9002_hw_load_ani_reg(ah
, chan
);
1356 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1357 if (saveDefAntenna
== 0)
1360 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1362 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1363 if (AR_SREV_9100(ah
) ||
1364 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
1365 tsf
= ath9k_hw_gettsf64(ah
);
1367 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1368 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1369 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1371 ath9k_hw_mark_phy_inactive(ah
);
1373 ah
->paprd_table_write_done
= false;
1375 /* Only required on the first reset */
1376 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1378 AR9271_RESET_POWER_DOWN_CONTROL
,
1379 AR9271_RADIO_RF_RST
);
1383 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1384 ath_err(common
, "Chip reset failed\n");
1388 /* Only required on the first reset */
1389 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1390 ah
->htc_reset_init
= false;
1392 AR9271_RESET_POWER_DOWN_CONTROL
,
1393 AR9271_GATE_MAC_CTL
);
1399 ath9k_hw_settsf64(ah
, tsf
);
1401 if (AR_SREV_9280_20_OR_LATER(ah
))
1402 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1404 if (!AR_SREV_9300_20_OR_LATER(ah
))
1405 ar9002_hw_enable_async_fifo(ah
);
1407 r
= ath9k_hw_process_ini(ah
, chan
);
1412 * Some AR91xx SoC devices frequently fail to accept TSF writes
1413 * right after the chip reset. When that happens, write a new
1414 * value after the initvals have been applied, with an offset
1415 * based on measured time difference
1417 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1419 ath9k_hw_settsf64(ah
, tsf
);
1422 /* Setup MFP options for CCMP */
1423 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1424 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1425 * frames when constructing CCMP AAD. */
1426 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1428 ah
->sw_mgmt_crypto
= false;
1429 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1430 /* Disable hardware crypto for management frames */
1431 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1432 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1433 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1434 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1435 ah
->sw_mgmt_crypto
= true;
1437 ah
->sw_mgmt_crypto
= true;
1439 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1440 ath9k_hw_set_delta_slope(ah
, chan
);
1442 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1443 ah
->eep_ops
->set_board_values(ah
, chan
);
1445 ENABLE_REGWRITE_BUFFER(ah
);
1447 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
1448 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
1450 | AR_STA_ID1_RTS_USE_DEF
1452 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
1453 | ah
->sta_id1_defaults
);
1454 ath_hw_setbssidmask(common
);
1455 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1456 ath9k_hw_write_associd(ah
);
1457 REG_WRITE(ah
, AR_ISR
, ~0);
1458 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1460 REGWRITE_BUFFER_FLUSH(ah
);
1462 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1464 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1468 ath9k_hw_set_clockrate(ah
);
1470 ENABLE_REGWRITE_BUFFER(ah
);
1472 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1473 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1475 REGWRITE_BUFFER_FLUSH(ah
);
1478 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1479 ath9k_hw_resettxqueue(ah
, i
);
1481 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1482 ath9k_hw_ani_cache_ini_regs(ah
);
1483 ath9k_hw_init_qos(ah
);
1485 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1486 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1488 ath9k_hw_init_global_settings(ah
);
1490 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
1491 ar9002_hw_update_async_fifo(ah
);
1492 ar9002_hw_enable_wep_aggregation(ah
);
1495 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1497 ath9k_hw_set_dma(ah
);
1499 REG_WRITE(ah
, AR_OBS
, 8);
1501 if (ah
->config
.rx_intr_mitigation
) {
1502 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
1503 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
1506 if (ah
->config
.tx_intr_mitigation
) {
1507 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1508 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1511 ath9k_hw_init_bb(ah
, chan
);
1513 if (!ath9k_hw_init_cal(ah
, chan
))
1516 ENABLE_REGWRITE_BUFFER(ah
);
1518 ath9k_hw_restore_chainmask(ah
);
1519 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1521 REGWRITE_BUFFER_FLUSH(ah
);
1524 * For big endian systems turn on swapping for descriptors
1526 if (AR_SREV_9100(ah
)) {
1528 mask
= REG_READ(ah
, AR_CFG
);
1529 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1530 ath_dbg(common
, ATH_DBG_RESET
,
1531 "CFG Byte Swap Set 0x%x\n", mask
);
1534 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1535 REG_WRITE(ah
, AR_CFG
, mask
);
1536 ath_dbg(common
, ATH_DBG_RESET
,
1537 "Setting CFG 0x%x\n", REG_READ(ah
, AR_CFG
));
1540 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1541 /* Configure AR9271 target WLAN */
1542 if (AR_SREV_9271(ah
))
1543 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1545 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1548 else if (AR_SREV_9340(ah
))
1549 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1551 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1555 if (ah
->btcoex_hw
.enabled
)
1556 ath9k_hw_btcoex_enable(ah
);
1558 if (AR_SREV_9300_20_OR_LATER(ah
))
1559 ar9003_hw_bb_watchdog_config(ah
);
1561 ath9k_hw_apply_gpio_override(ah
);
1565 EXPORT_SYMBOL(ath9k_hw_reset
);
1567 /******************************/
1568 /* Power Management (Chipset) */
1569 /******************************/
1572 * Notify Power Mgt is disabled in self-generated frames.
1573 * If requested, force chip to sleep.
1575 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
1577 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1580 * Clear the RTC force wake bit to allow the
1581 * mac to go to sleep.
1583 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1584 AR_RTC_FORCE_WAKE_EN
);
1585 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1586 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1588 /* Shutdown chip. Active low */
1589 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
))
1590 REG_CLR_BIT(ah
, (AR_RTC_RESET
),
1594 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1595 if (AR_SREV_9300_20_OR_LATER(ah
))
1596 REG_WRITE(ah
, AR_WA
,
1597 ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1601 * Notify Power Management is enabled in self-generating
1602 * frames. If request, set power mode of chip to
1603 * auto/normal. Duration in units of 128us (1/8 TU).
1605 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
1607 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1609 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1611 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1612 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1613 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1614 AR_RTC_FORCE_WAKE_ON_INT
);
1617 * Clear the RTC force wake bit to allow the
1618 * mac to go to sleep.
1620 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
1621 AR_RTC_FORCE_WAKE_EN
);
1625 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1626 if (AR_SREV_9300_20_OR_LATER(ah
))
1627 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1630 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
1635 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1636 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1637 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1642 if ((REG_READ(ah
, AR_RTC_STATUS
) &
1643 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
1644 if (ath9k_hw_set_reset_reg(ah
,
1645 ATH9K_RESET_POWER_ON
) != true) {
1648 if (!AR_SREV_9300_20_OR_LATER(ah
))
1649 ath9k_hw_init_pll(ah
, NULL
);
1651 if (AR_SREV_9100(ah
))
1652 REG_SET_BIT(ah
, AR_RTC_RESET
,
1655 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1656 AR_RTC_FORCE_WAKE_EN
);
1659 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
1660 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
1661 if (val
== AR_RTC_STATUS_ON
)
1664 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
1665 AR_RTC_FORCE_WAKE_EN
);
1668 ath_err(ath9k_hw_common(ah
),
1669 "Failed to wakeup in %uus\n",
1670 POWER_UP_TIME
/ 20);
1675 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1680 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
1682 struct ath_common
*common
= ath9k_hw_common(ah
);
1683 int status
= true, setChip
= true;
1684 static const char *modes
[] = {
1691 if (ah
->power_mode
== mode
)
1694 ath_dbg(common
, ATH_DBG_RESET
, "%s -> %s\n",
1695 modes
[ah
->power_mode
], modes
[mode
]);
1698 case ATH9K_PM_AWAKE
:
1699 status
= ath9k_hw_set_power_awake(ah
, setChip
);
1701 case ATH9K_PM_FULL_SLEEP
:
1702 ath9k_set_power_sleep(ah
, setChip
);
1703 ah
->chip_fullsleep
= true;
1705 case ATH9K_PM_NETWORK_SLEEP
:
1706 ath9k_set_power_network_sleep(ah
, setChip
);
1709 ath_err(common
, "Unknown power mode %u\n", mode
);
1712 ah
->power_mode
= mode
;
1715 * XXX: If this warning never comes up after a while then
1716 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1717 * ath9k_hw_setpower() return type void.
1720 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
1721 ATH_DBG_WARN_ON_ONCE(!status
);
1725 EXPORT_SYMBOL(ath9k_hw_setpower
);
1727 /*******************/
1728 /* Beacon Handling */
1729 /*******************/
1731 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
1735 ENABLE_REGWRITE_BUFFER(ah
);
1737 switch (ah
->opmode
) {
1738 case NL80211_IFTYPE_ADHOC
:
1739 case NL80211_IFTYPE_MESH_POINT
:
1740 REG_SET_BIT(ah
, AR_TXCFG
,
1741 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
1742 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
, next_beacon
+
1743 TU_TO_USEC(ah
->atim_window
? ah
->atim_window
: 1));
1744 flags
|= AR_NDP_TIMER_EN
;
1745 case NL80211_IFTYPE_AP
:
1746 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
1747 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
1748 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
1749 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
1750 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
1752 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
1755 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_BEACON
,
1756 "%s: unsupported opmode: %d\n",
1757 __func__
, ah
->opmode
);
1762 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
1763 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
1764 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
1765 REG_WRITE(ah
, AR_NDP_PERIOD
, beacon_period
);
1767 REGWRITE_BUFFER_FLUSH(ah
);
1769 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
1771 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
1773 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
1774 const struct ath9k_beacon_state
*bs
)
1776 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
1777 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1778 struct ath_common
*common
= ath9k_hw_common(ah
);
1780 ENABLE_REGWRITE_BUFFER(ah
);
1782 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
1784 REG_WRITE(ah
, AR_BEACON_PERIOD
,
1785 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1786 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
1787 TU_TO_USEC(bs
->bs_intval
& ATH9K_BEACON_PERIOD
));
1789 REGWRITE_BUFFER_FLUSH(ah
);
1791 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
1792 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
1794 beaconintval
= bs
->bs_intval
& ATH9K_BEACON_PERIOD
;
1796 if (bs
->bs_sleepduration
> beaconintval
)
1797 beaconintval
= bs
->bs_sleepduration
;
1799 dtimperiod
= bs
->bs_dtimperiod
;
1800 if (bs
->bs_sleepduration
> dtimperiod
)
1801 dtimperiod
= bs
->bs_sleepduration
;
1803 if (beaconintval
== dtimperiod
)
1804 nextTbtt
= bs
->bs_nextdtim
;
1806 nextTbtt
= bs
->bs_nexttbtt
;
1808 ath_dbg(common
, ATH_DBG_BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
1809 ath_dbg(common
, ATH_DBG_BEACON
, "next beacon %d\n", nextTbtt
);
1810 ath_dbg(common
, ATH_DBG_BEACON
, "beacon period %d\n", beaconintval
);
1811 ath_dbg(common
, ATH_DBG_BEACON
, "DTIM period %d\n", dtimperiod
);
1813 ENABLE_REGWRITE_BUFFER(ah
);
1815 REG_WRITE(ah
, AR_NEXT_DTIM
,
1816 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
1817 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
1819 REG_WRITE(ah
, AR_SLEEP1
,
1820 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
1821 | AR_SLEEP1_ASSUME_DTIM
);
1823 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
1824 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
1826 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
1828 REG_WRITE(ah
, AR_SLEEP2
,
1829 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
1831 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
1832 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
1834 REGWRITE_BUFFER_FLUSH(ah
);
1836 REG_SET_BIT(ah
, AR_TIMER_MODE
,
1837 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
1840 /* TSF Out of Range Threshold */
1841 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
1843 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
1845 /*******************/
1846 /* HW Capabilities */
1847 /*******************/
1849 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
1851 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1852 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1853 struct ath_common
*common
= ath9k_hw_common(ah
);
1854 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
1857 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
1859 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
1860 regulatory
->current_rd
= eeval
;
1862 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_1
);
1863 if (AR_SREV_9285_12_OR_LATER(ah
))
1864 eeval
|= AR9285_RDEXT_DEFAULT
;
1865 regulatory
->current_rd_ext
= eeval
;
1867 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
1868 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
1869 if (regulatory
->current_rd
== 0x64 ||
1870 regulatory
->current_rd
== 0x65)
1871 regulatory
->current_rd
+= 5;
1872 else if (regulatory
->current_rd
== 0x41)
1873 regulatory
->current_rd
= 0x43;
1874 ath_dbg(common
, ATH_DBG_REGULATORY
,
1875 "regdomain mapped to 0x%x\n", regulatory
->current_rd
);
1878 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
1879 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
1881 "no band has been marked as supported in EEPROM\n");
1885 if (eeval
& AR5416_OPFLAGS_11A
)
1886 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
1888 if (eeval
& AR5416_OPFLAGS_11G
)
1889 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
1891 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
1893 * For AR9271 we will temporarilly uses the rx chainmax as read from
1896 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
1897 !(eeval
& AR5416_OPFLAGS_11A
) &&
1898 !(AR_SREV_9271(ah
)))
1899 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1900 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
1901 else if (AR_SREV_9100(ah
))
1902 pCap
->rx_chainmask
= 0x7;
1904 /* Use rx_chainmask from EEPROM. */
1905 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
1907 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
1909 /* enable key search for every frame in an aggregate */
1910 if (AR_SREV_9300_20_OR_LATER(ah
))
1911 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
1913 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
1915 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
1916 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
1918 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
1920 if (AR_SREV_9271(ah
))
1921 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
1922 else if (AR_DEVID_7010(ah
))
1923 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
1924 else if (AR_SREV_9285_12_OR_LATER(ah
))
1925 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
1926 else if (AR_SREV_9280_20_OR_LATER(ah
))
1927 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
1929 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
1931 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
)) {
1932 pCap
->hw_caps
|= ATH9K_HW_CAP_CST
;
1933 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
1935 pCap
->rts_aggr_limit
= (8 * 1024);
1938 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1939 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
1940 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
1942 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
1943 ah
->rfkill_polarity
=
1944 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
1946 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
1949 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
1950 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
1952 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
1954 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
1955 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
1957 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
1959 if (common
->btcoex_enabled
) {
1960 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1961 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
1962 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9300
;
1963 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9300
;
1964 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO_9300
;
1965 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
1966 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9280
;
1967 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9280
;
1969 if (AR_SREV_9285(ah
)) {
1970 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
1971 btcoex_hw
->btpriority_gpio
=
1972 ATH_BTPRIORITY_GPIO_9285
;
1974 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
1978 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
1981 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1982 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
1983 if (!AR_SREV_9485(ah
))
1984 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
1986 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
1987 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
1988 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
1989 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
1990 pCap
->txs_len
= sizeof(struct ar9003_txs
);
1991 if (!ah
->config
.paprd_disable
&&
1992 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
1993 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
1995 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
1996 if (AR_SREV_9280_20(ah
) &&
1997 ((ah
->eep_ops
->get_eeprom(ah
, EEP_MINOR_REV
) <=
1998 AR5416_EEP_MINOR_VER_16
) ||
1999 ah
->eep_ops
->get_eeprom(ah
, EEP_FSTCLK_5G
)))
2000 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2003 if (AR_SREV_9300_20_OR_LATER(ah
))
2004 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2006 if (AR_SREV_9300_20_OR_LATER(ah
))
2007 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2009 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2010 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2012 if (AR_SREV_9285(ah
))
2013 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2015 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2016 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1))
2017 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2019 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2020 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2021 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2025 if (AR_SREV_9485(ah
)) {
2026 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2028 * enable the diversity-combining algorithm only when
2029 * both enable_lna_div and enable_fast_div are set
2030 * Table for Diversity
2031 * ant_div_alt_lnaconf bit 0-1
2032 * ant_div_main_lnaconf bit 2-3
2033 * ant_div_alt_gaintb bit 4
2034 * ant_div_main_gaintb bit 5
2035 * enable_ant_div_lnadiv bit 6
2036 * enable_ant_fast_div bit 7
2038 if ((ant_div_ctl1
>> 0x6) == 0x3)
2039 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2042 if (AR_SREV_9485_10(ah
)) {
2043 pCap
->pcie_lcr_extsync_en
= true;
2044 pCap
->pcie_lcr_offset
= 0x80;
2047 tx_chainmask
= pCap
->tx_chainmask
;
2048 rx_chainmask
= pCap
->rx_chainmask
;
2049 while (tx_chainmask
|| rx_chainmask
) {
2050 if (tx_chainmask
& BIT(0))
2051 pCap
->max_txchains
++;
2052 if (rx_chainmask
& BIT(0))
2053 pCap
->max_rxchains
++;
2062 /****************************/
2063 /* GPIO / RFKILL / Antennae */
2064 /****************************/
2066 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2070 u32 gpio_shift
, tmp
;
2073 addr
= AR_GPIO_OUTPUT_MUX3
;
2075 addr
= AR_GPIO_OUTPUT_MUX2
;
2077 addr
= AR_GPIO_OUTPUT_MUX1
;
2079 gpio_shift
= (gpio
% 6) * 5;
2081 if (AR_SREV_9280_20_OR_LATER(ah
)
2082 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2083 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2084 (0x1f << gpio_shift
));
2086 tmp
= REG_READ(ah
, addr
);
2087 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2088 tmp
&= ~(0x1f << gpio_shift
);
2089 tmp
|= (type
<< gpio_shift
);
2090 REG_WRITE(ah
, addr
, tmp
);
2094 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2098 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2100 if (AR_DEVID_7010(ah
)) {
2102 REG_RMW(ah
, AR7010_GPIO_OE
,
2103 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2104 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2108 gpio_shift
= gpio
<< 1;
2111 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2112 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2114 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2116 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2118 #define MS_REG_READ(x, y) \
2119 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2121 if (gpio
>= ah
->caps
.num_gpio_pins
)
2124 if (AR_DEVID_7010(ah
)) {
2126 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2127 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2128 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2129 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2130 AR_GPIO_BIT(gpio
)) != 0;
2131 else if (AR_SREV_9271(ah
))
2132 return MS_REG_READ(AR9271
, gpio
) != 0;
2133 else if (AR_SREV_9287_11_OR_LATER(ah
))
2134 return MS_REG_READ(AR9287
, gpio
) != 0;
2135 else if (AR_SREV_9285_12_OR_LATER(ah
))
2136 return MS_REG_READ(AR9285
, gpio
) != 0;
2137 else if (AR_SREV_9280_20_OR_LATER(ah
))
2138 return MS_REG_READ(AR928X
, gpio
) != 0;
2140 return MS_REG_READ(AR
, gpio
) != 0;
2142 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2144 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2149 if (AR_DEVID_7010(ah
)) {
2151 REG_RMW(ah
, AR7010_GPIO_OE
,
2152 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2153 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2157 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2158 gpio_shift
= 2 * gpio
;
2161 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2162 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2164 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2166 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2168 if (AR_DEVID_7010(ah
)) {
2170 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2175 if (AR_SREV_9271(ah
))
2178 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2181 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2183 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
2185 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
2187 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
2189 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2191 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2193 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2195 /*********************/
2196 /* General Operation */
2197 /*********************/
2199 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2201 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2202 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2204 if (phybits
& AR_PHY_ERR_RADAR
)
2205 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2206 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2207 bits
|= ATH9K_RX_FILTER_PHYERR
;
2211 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2213 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2217 ENABLE_REGWRITE_BUFFER(ah
);
2219 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2222 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2223 phybits
|= AR_PHY_ERR_RADAR
;
2224 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2225 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2226 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2229 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2231 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2233 REGWRITE_BUFFER_FLUSH(ah
);
2235 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2237 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2239 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2242 ath9k_hw_init_pll(ah
, NULL
);
2245 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2247 bool ath9k_hw_disable(struct ath_hw
*ah
)
2249 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2252 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2255 ath9k_hw_init_pll(ah
, NULL
);
2258 EXPORT_SYMBOL(ath9k_hw_disable
);
2260 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2262 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2263 struct ath9k_channel
*chan
= ah
->curchan
;
2264 struct ieee80211_channel
*channel
= chan
->chan
;
2266 regulatory
->power_limit
= min(limit
, (u32
) MAX_RATE_POWER
);
2268 ah
->eep_ops
->set_txpower(ah
, chan
,
2269 ath9k_regd_get_ctl(regulatory
, chan
),
2270 channel
->max_antenna_gain
* 2,
2271 channel
->max_power
* 2,
2272 min((u32
) MAX_RATE_POWER
,
2273 (u32
) regulatory
->power_limit
), test
);
2275 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2277 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2279 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2281 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2283 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2285 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2286 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2288 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2290 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2292 struct ath_common
*common
= ath9k_hw_common(ah
);
2294 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2295 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2296 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2298 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2300 #define ATH9K_MAX_TSF_READ 10
2302 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2304 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2307 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2308 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2309 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2310 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2311 if (tsf_upper2
== tsf_upper1
)
2313 tsf_upper1
= tsf_upper2
;
2316 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2318 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2320 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2322 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2324 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2325 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2327 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2329 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2331 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2332 AH_TSF_WRITE_TIMEOUT
))
2333 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_RESET
,
2334 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2336 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2338 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2340 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
2343 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2345 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2347 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2349 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
2351 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
2354 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
2355 macmode
= AR_2040_JOINED_RX_CLEAR
;
2359 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2362 /* HW Generic timers configuration */
2364 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2366 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2367 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2368 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2369 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2370 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2371 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2372 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2373 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2374 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2375 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2376 AR_NDP2_TIMER_MODE
, 0x0002},
2377 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2378 AR_NDP2_TIMER_MODE
, 0x0004},
2379 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2380 AR_NDP2_TIMER_MODE
, 0x0008},
2381 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2382 AR_NDP2_TIMER_MODE
, 0x0010},
2383 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2384 AR_NDP2_TIMER_MODE
, 0x0020},
2385 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2386 AR_NDP2_TIMER_MODE
, 0x0040},
2387 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2388 AR_NDP2_TIMER_MODE
, 0x0080}
2391 /* HW generic timer primitives */
2393 /* compute and clear index of rightmost 1 */
2394 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
2404 return timer_table
->gen_timer_index
[b
];
2407 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2409 return REG_READ(ah
, AR_TSF_L32
);
2411 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
2413 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2414 void (*trigger
)(void *),
2415 void (*overflow
)(void *),
2419 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2420 struct ath_gen_timer
*timer
;
2422 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2424 if (timer
== NULL
) {
2425 ath_err(ath9k_hw_common(ah
),
2426 "Failed to allocate memory for hw timer[%d]\n",
2431 /* allocate a hardware generic timer slot */
2432 timer_table
->timers
[timer_index
] = timer
;
2433 timer
->index
= timer_index
;
2434 timer
->trigger
= trigger
;
2435 timer
->overflow
= overflow
;
2440 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2442 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2443 struct ath_gen_timer
*timer
,
2447 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2448 u32 tsf
, timer_next
;
2450 BUG_ON(!timer_period
);
2452 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2454 tsf
= ath9k_hw_gettsf32(ah
);
2456 timer_next
= tsf
+ trig_timeout
;
2458 ath_dbg(ath9k_hw_common(ah
), ATH_DBG_HWTIMER
,
2459 "current tsf %x period %x timer_next %x\n",
2460 tsf
, timer_period
, timer_next
);
2463 * Program generic timer registers
2465 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2467 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2469 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2470 gen_tmr_configuration
[timer
->index
].mode_mask
);
2472 /* Enable both trigger and thresh interrupt masks */
2473 REG_SET_BIT(ah
, AR_IMR_S5
,
2474 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2475 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2477 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
2479 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2481 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2483 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
2484 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
2488 /* Clear generic timer enable bits. */
2489 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2490 gen_tmr_configuration
[timer
->index
].mode_mask
);
2492 /* Disable both trigger and thresh interrupt masks */
2493 REG_CLR_BIT(ah
, AR_IMR_S5
,
2494 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2495 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2497 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2499 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
2501 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2503 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2505 /* free the hardware generic timer slot */
2506 timer_table
->timers
[timer
->index
] = NULL
;
2509 EXPORT_SYMBOL(ath_gen_timer_free
);
2512 * Generic Timer Interrupts handling
2514 void ath_gen_timer_isr(struct ath_hw
*ah
)
2516 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2517 struct ath_gen_timer
*timer
;
2518 struct ath_common
*common
= ath9k_hw_common(ah
);
2519 u32 trigger_mask
, thresh_mask
, index
;
2521 /* get hardware generic timer interrupt status */
2522 trigger_mask
= ah
->intr_gen_timer_trigger
;
2523 thresh_mask
= ah
->intr_gen_timer_thresh
;
2524 trigger_mask
&= timer_table
->timer_mask
.val
;
2525 thresh_mask
&= timer_table
->timer_mask
.val
;
2527 trigger_mask
&= ~thresh_mask
;
2529 while (thresh_mask
) {
2530 index
= rightmost_index(timer_table
, &thresh_mask
);
2531 timer
= timer_table
->timers
[index
];
2533 ath_dbg(common
, ATH_DBG_HWTIMER
,
2534 "TSF overflow for Gen timer %d\n", index
);
2535 timer
->overflow(timer
->arg
);
2538 while (trigger_mask
) {
2539 index
= rightmost_index(timer_table
, &trigger_mask
);
2540 timer
= timer_table
->timers
[index
];
2542 ath_dbg(common
, ATH_DBG_HWTIMER
,
2543 "Gen timer[%d] trigger\n", index
);
2544 timer
->trigger(timer
->arg
);
2547 EXPORT_SYMBOL(ath_gen_timer_isr
);
2553 void ath9k_hw_htc_resetinit(struct ath_hw
*ah
)
2555 ah
->htc_reset_init
= true;
2557 EXPORT_SYMBOL(ath9k_hw_htc_resetinit
);
2562 } ath_mac_bb_names
[] = {
2563 /* Devices with external radios */
2564 { AR_SREV_VERSION_5416_PCI
, "5416" },
2565 { AR_SREV_VERSION_5416_PCIE
, "5418" },
2566 { AR_SREV_VERSION_9100
, "9100" },
2567 { AR_SREV_VERSION_9160
, "9160" },
2568 /* Single-chip solutions */
2569 { AR_SREV_VERSION_9280
, "9280" },
2570 { AR_SREV_VERSION_9285
, "9285" },
2571 { AR_SREV_VERSION_9287
, "9287" },
2572 { AR_SREV_VERSION_9271
, "9271" },
2573 { AR_SREV_VERSION_9300
, "9300" },
2574 { AR_SREV_VERSION_9485
, "9485" },
2577 /* For devices with external radios */
2581 } ath_rf_names
[] = {
2583 { AR_RAD5133_SREV_MAJOR
, "5133" },
2584 { AR_RAD5122_SREV_MAJOR
, "5122" },
2585 { AR_RAD2133_SREV_MAJOR
, "2133" },
2586 { AR_RAD2122_SREV_MAJOR
, "2122" }
2590 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2592 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
2596 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
2597 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
2598 return ath_mac_bb_names
[i
].name
;
2606 * Return the RF name. "????" is returned if the RF is unknown.
2607 * Used for devices with external radios.
2609 static const char *ath9k_hw_rf_name(u16 rf_version
)
2613 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
2614 if (ath_rf_names
[i
].version
== rf_version
) {
2615 return ath_rf_names
[i
].name
;
2622 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
2626 /* chipsets >= AR9280 are single-chip */
2627 if (AR_SREV_9280_20_OR_LATER(ah
)) {
2628 used
= snprintf(hw_name
, len
,
2629 "Atheros AR%s Rev:%x",
2630 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2631 ah
->hw_version
.macRev
);
2634 used
= snprintf(hw_name
, len
,
2635 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2636 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
2637 ah
->hw_version
.macRev
,
2638 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
2639 AR_RADIO_SREV_MAJOR
)),
2640 ah
->hw_version
.phyRev
);
2643 hw_name
[used
] = '\0';
2645 EXPORT_SYMBOL(ath9k_hw_name
);