1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
68 #include "iwl-4965-calib.h"
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
74 struct statistics_general_data
{
75 u32 beacon_silence_rssi_a
;
76 u32 beacon_silence_rssi_b
;
77 u32 beacon_silence_rssi_c
;
83 void iwl4965_calib_free_results(struct iwl_priv
*priv
)
87 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
88 kfree(priv
->calib_results
[i
].buf
);
89 priv
->calib_results
[i
].buf
= NULL
;
90 priv
->calib_results
[i
].buf_len
= 0;
94 /*****************************************************************************
95 * RUNTIME calibrations framework
96 *****************************************************************************/
98 /* "false alarms" are signals that our DSP tries to lock onto,
99 * but then determines that they are either noise, or transmissions
100 * from a distant wireless network (also "noise", really) that get
101 * "stepped on" by stronger transmissions within our own network.
102 * This algorithm attempts to set a sensitivity level that is high
103 * enough to receive all of our own network traffic, but not so
104 * high that our DSP gets too busy trying to lock onto non-network
106 static int iwl4965_sens_energy_cck(struct iwl_priv
*priv
,
109 struct statistics_general_data
*rx_info
)
113 u8 max_silence_rssi
= 0;
115 u8 silence_rssi_a
= 0;
116 u8 silence_rssi_b
= 0;
117 u8 silence_rssi_c
= 0;
120 /* "false_alarms" values below are cross-multiplications to assess the
121 * numbers of false alarms within the measured period of actual Rx
122 * (Rx is off when we're txing), vs the min/max expected false alarms
123 * (some should be expected if rx is sensitive enough) in a
124 * hypothetical listening period of 200 time units (TU), 204.8 msec:
126 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
129 u32 false_alarms
= norm_fa
* 200 * 1024;
130 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
131 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
132 struct iwl_sensitivity_data
*data
= NULL
;
133 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
135 data
= &(priv
->sensitivity_data
);
137 data
->nrg_auto_corr_silence_diff
= 0;
139 /* Find max silence rssi among all 3 receivers.
140 * This is background noise, which may include transmissions from other
141 * networks, measured during silence before our network's beacon */
142 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
143 ALL_BAND_FILTER
) >> 8);
144 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
145 ALL_BAND_FILTER
) >> 8);
146 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
147 ALL_BAND_FILTER
) >> 8);
149 val
= max(silence_rssi_b
, silence_rssi_c
);
150 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
152 /* Store silence rssi in 20-beacon history table */
153 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
154 data
->nrg_silence_idx
++;
155 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
156 data
->nrg_silence_idx
= 0;
158 /* Find max silence rssi across 20 beacon history */
159 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
160 val
= data
->nrg_silence_rssi
[i
];
161 silence_ref
= max(silence_ref
, val
);
163 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
164 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
167 /* Find max rx energy (min value!) among all 3 receivers,
168 * measured during beacon frame.
169 * Save it in 10-beacon history table. */
170 i
= data
->nrg_energy_idx
;
171 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
172 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
174 data
->nrg_energy_idx
++;
175 if (data
->nrg_energy_idx
>= 10)
176 data
->nrg_energy_idx
= 0;
178 /* Find min rx energy (max value) across 10 beacon history.
179 * This is the minimum signal level that we want to receive well.
180 * Add backoff (margin so we don't miss slightly lower energy frames).
181 * This establishes an upper bound (min value) for energy threshold. */
182 max_nrg_cck
= data
->nrg_value
[0];
183 for (i
= 1; i
< 10; i
++)
184 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
187 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
188 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
189 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
191 /* Count number of consecutive beacons with fewer-than-desired
193 if (false_alarms
< min_false_alarms
)
194 data
->num_in_cck_no_fa
++;
196 data
->num_in_cck_no_fa
= 0;
197 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
198 data
->num_in_cck_no_fa
);
200 /* If we got too many false alarms this time, reduce sensitivity */
201 if ((false_alarms
> max_false_alarms
) &&
202 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
203 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
204 false_alarms
, max_false_alarms
);
205 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
206 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
207 /* Store for "fewer than desired" on later beacon */
208 data
->nrg_silence_ref
= silence_ref
;
210 /* increase energy threshold (reduce nrg value)
211 * to decrease sensitivity */
212 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
213 /* Else if we got fewer than desired, increase sensitivity */
214 } else if (false_alarms
< min_false_alarms
) {
215 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
217 /* Compare silence level with silence level for most recent
218 * healthy number or too many false alarms */
219 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
222 IWL_DEBUG_CALIB(priv
,
223 "norm FA %u < min FA %u, silence diff %d\n",
224 false_alarms
, min_false_alarms
,
225 data
->nrg_auto_corr_silence_diff
);
227 /* Increase value to increase sensitivity, but only if:
228 * 1a) previous beacon did *not* have *too many* false alarms
229 * 1b) AND there's a significant difference in Rx levels
230 * from a previous beacon with too many, or healthy # FAs
231 * OR 2) We've seen a lot of beacons (100) with too few
233 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
234 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
235 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
237 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
238 /* Increase nrg value to increase sensitivity */
239 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
240 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
242 IWL_DEBUG_CALIB(priv
,
243 "... but not changing sensitivity\n");
246 /* Else we got a healthy number of false alarms, keep status quo */
248 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
249 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
251 /* Store for use in "fewer than desired" with later beacon */
252 data
->nrg_silence_ref
= silence_ref
;
254 /* If previous beacon had too many false alarms,
255 * give it some extra margin by reducing sensitivity again
256 * (but don't go below measured energy of desired Rx) */
257 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
258 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
259 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
260 data
->nrg_th_cck
-= NRG_MARGIN
;
262 data
->nrg_th_cck
= max_nrg_cck
;
266 /* Make sure the energy threshold does not go above the measured
267 * energy of the desired Rx signals (reduced by backoff margin),
268 * or else we might start missing Rx frames.
269 * Lower value is higher energy, so we use max()!
271 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
272 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
274 data
->nrg_prev_state
= data
->nrg_curr_state
;
276 /* Auto-correlation CCK algorithm */
277 if (false_alarms
> min_false_alarms
) {
279 /* increase auto_corr values to decrease sensitivity
280 * so the DSP won't be disturbed by the noise
282 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
283 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
285 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
286 data
->auto_corr_cck
=
287 min((u32
)ranges
->auto_corr_max_cck
, val
);
289 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
290 data
->auto_corr_cck_mrc
=
291 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
292 } else if ((false_alarms
< min_false_alarms
) &&
293 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
294 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
296 /* Decrease auto_corr values to increase sensitivity */
297 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
298 data
->auto_corr_cck
=
299 max((u32
)ranges
->auto_corr_min_cck
, val
);
300 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
301 data
->auto_corr_cck_mrc
=
302 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
309 static int iwl4965_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
314 u32 false_alarms
= norm_fa
* 200 * 1024;
315 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
316 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
317 struct iwl_sensitivity_data
*data
= NULL
;
318 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
320 data
= &(priv
->sensitivity_data
);
322 /* If we got too many false alarms this time, reduce sensitivity */
323 if (false_alarms
> max_false_alarms
) {
325 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
326 false_alarms
, max_false_alarms
);
328 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
329 data
->auto_corr_ofdm
=
330 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
332 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
333 data
->auto_corr_ofdm_mrc
=
334 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
336 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
337 data
->auto_corr_ofdm_x1
=
338 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
340 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
341 data
->auto_corr_ofdm_mrc_x1
=
342 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
345 /* Else if we got fewer than desired, increase sensitivity */
346 else if (false_alarms
< min_false_alarms
) {
348 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
349 false_alarms
, min_false_alarms
);
351 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
352 data
->auto_corr_ofdm
=
353 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
355 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
356 data
->auto_corr_ofdm_mrc
=
357 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
359 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
360 data
->auto_corr_ofdm_x1
=
361 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
363 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
364 data
->auto_corr_ofdm_mrc_x1
=
365 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
367 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
368 min_false_alarms
, false_alarms
, max_false_alarms
);
373 static void iwl4965_prepare_legacy_sensitivity_tbl(struct iwl_priv
*priv
,
374 struct iwl_sensitivity_data
*data
,
377 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
378 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
379 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
380 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
381 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
382 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
383 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
384 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
386 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
387 cpu_to_le16((u16
)data
->auto_corr_cck
);
388 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
389 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
391 tbl
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
392 cpu_to_le16((u16
)data
->nrg_th_cck
);
393 tbl
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
394 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
396 tbl
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
397 cpu_to_le16(data
->barker_corr_th_min
);
398 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
399 cpu_to_le16(data
->barker_corr_th_min_mrc
);
400 tbl
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
401 cpu_to_le16(data
->nrg_th_cca
);
403 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
404 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
405 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
408 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
409 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
413 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
414 static int iwl4965_sensitivity_write(struct iwl_priv
*priv
)
416 struct iwl_sensitivity_cmd cmd
;
417 struct iwl_sensitivity_data
*data
= NULL
;
418 struct iwl_host_cmd cmd_out
= {
419 .id
= SENSITIVITY_CMD
,
420 .len
= sizeof(struct iwl_sensitivity_cmd
),
425 data
= &(priv
->sensitivity_data
);
427 memset(&cmd
, 0, sizeof(cmd
));
429 iwl4965_prepare_legacy_sensitivity_tbl(priv
, data
, &cmd
.table
[0]);
431 /* Update uCode's "work" table, and copy it to DSP */
432 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
434 /* Don't send command to uCode if nothing has changed */
435 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
436 sizeof(u16
)*HD_TABLE_SIZE
)) {
437 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
441 /* Copy table for comparison next time */
442 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
443 sizeof(u16
)*HD_TABLE_SIZE
);
445 return iwl_legacy_send_cmd(priv
, &cmd_out
);
448 void iwl4965_init_sensitivity(struct iwl_priv
*priv
)
452 struct iwl_sensitivity_data
*data
= NULL
;
453 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
455 if (priv
->disable_sens_cal
)
458 IWL_DEBUG_CALIB(priv
, "Start iwl4965_init_sensitivity\n");
460 /* Clear driver's sensitivity algo data */
461 data
= &(priv
->sensitivity_data
);
466 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
468 data
->num_in_cck_no_fa
= 0;
469 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
470 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
471 data
->nrg_silence_ref
= 0;
472 data
->nrg_silence_idx
= 0;
473 data
->nrg_energy_idx
= 0;
475 for (i
= 0; i
< 10; i
++)
476 data
->nrg_value
[i
] = 0;
478 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
479 data
->nrg_silence_rssi
[i
] = 0;
481 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
482 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
483 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
484 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
485 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
486 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
487 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
488 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
489 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
490 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
491 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
493 data
->last_bad_plcp_cnt_ofdm
= 0;
494 data
->last_fa_cnt_ofdm
= 0;
495 data
->last_bad_plcp_cnt_cck
= 0;
496 data
->last_fa_cnt_cck
= 0;
498 ret
|= iwl4965_sensitivity_write(priv
);
499 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
502 void iwl4965_sensitivity_calibration(struct iwl_priv
*priv
, void *resp
)
511 struct iwl_sensitivity_data
*data
= NULL
;
512 struct statistics_rx_non_phy
*rx_info
;
513 struct statistics_rx_phy
*ofdm
, *cck
;
515 struct statistics_general_data statis
;
517 if (priv
->disable_sens_cal
)
520 data
= &(priv
->sensitivity_data
);
522 if (!iwl_legacy_is_any_associated(priv
)) {
523 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
527 spin_lock_irqsave(&priv
->lock
, flags
);
529 rx_info
= &(((struct iwl_notif_statistics
*)resp
)->rx
.general
);
530 ofdm
= &(((struct iwl_notif_statistics
*)resp
)->rx
.ofdm
);
531 cck
= &(((struct iwl_notif_statistics
*)resp
)->rx
.cck
);
533 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
534 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
535 spin_unlock_irqrestore(&priv
->lock
, flags
);
539 /* Extract Statistics: */
540 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
541 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
542 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
543 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
544 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
546 statis
.beacon_silence_rssi_a
=
547 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
548 statis
.beacon_silence_rssi_b
=
549 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
550 statis
.beacon_silence_rssi_c
=
551 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
552 statis
.beacon_energy_a
=
553 le32_to_cpu(rx_info
->beacon_energy_a
);
554 statis
.beacon_energy_b
=
555 le32_to_cpu(rx_info
->beacon_energy_b
);
556 statis
.beacon_energy_c
=
557 le32_to_cpu(rx_info
->beacon_energy_c
);
559 spin_unlock_irqrestore(&priv
->lock
, flags
);
561 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
563 if (!rx_enable_time
) {
564 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0!\n");
568 /* These statistics increase monotonically, and do not reset
569 * at each beacon. Calculate difference from last value, or just
570 * use the new statistics value if it has reset or wrapped around. */
571 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
572 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
574 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
575 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
578 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
579 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
581 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
582 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
585 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
586 data
->last_fa_cnt_ofdm
= fa_ofdm
;
588 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
589 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
592 if (data
->last_fa_cnt_cck
> fa_cck
)
593 data
->last_fa_cnt_cck
= fa_cck
;
595 fa_cck
-= data
->last_fa_cnt_cck
;
596 data
->last_fa_cnt_cck
+= fa_cck
;
599 /* Total aborted signal locks */
600 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
601 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
603 IWL_DEBUG_CALIB(priv
,
604 "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
605 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
607 iwl4965_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
608 iwl4965_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
610 iwl4965_sensitivity_write(priv
);
613 static inline u8
iwl4965_find_first_chain(u8 mask
)
623 * Run disconnected antenna algorithm to find out which antennas are
627 iwl4965_find_disconn_antenna(struct iwl_priv
*priv
, u32
* average_sig
,
628 struct iwl_chain_noise_data
*data
)
630 u32 active_chains
= 0;
632 u16 max_average_sig_antenna_i
;
637 average_sig
[0] = data
->chain_signal_a
/
638 priv
->cfg
->base_params
->chain_noise_num_beacons
;
639 average_sig
[1] = data
->chain_signal_b
/
640 priv
->cfg
->base_params
->chain_noise_num_beacons
;
641 average_sig
[2] = data
->chain_signal_c
/
642 priv
->cfg
->base_params
->chain_noise_num_beacons
;
644 if (average_sig
[0] >= average_sig
[1]) {
645 max_average_sig
= average_sig
[0];
646 max_average_sig_antenna_i
= 0;
647 active_chains
= (1 << max_average_sig_antenna_i
);
649 max_average_sig
= average_sig
[1];
650 max_average_sig_antenna_i
= 1;
651 active_chains
= (1 << max_average_sig_antenna_i
);
654 if (average_sig
[2] >= max_average_sig
) {
655 max_average_sig
= average_sig
[2];
656 max_average_sig_antenna_i
= 2;
657 active_chains
= (1 << max_average_sig_antenna_i
);
660 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
661 average_sig
[0], average_sig
[1], average_sig
[2]);
662 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
663 max_average_sig
, max_average_sig_antenna_i
);
665 /* Compare signal strengths for all 3 receivers. */
666 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
667 if (i
!= max_average_sig_antenna_i
) {
668 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
670 /* If signal is very weak, compared with
671 * strongest, mark it as disconnected. */
672 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
673 data
->disconn_array
[i
] = 1;
675 active_chains
|= (1 << i
);
676 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
677 "disconn_array[i] = %d\n",
678 i
, rssi_delta
, data
->disconn_array
[i
]);
683 * The above algorithm sometimes fails when the ucode
684 * reports 0 for all chains. It's not clear why that
685 * happens to start with, but it is then causing trouble
686 * because this can make us enable more chains than the
687 * hardware really has.
689 * To be safe, simply mask out any chains that we know
690 * are not on the device.
692 active_chains
&= priv
->hw_params
.valid_rx_ant
;
695 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
696 /* loops on all the bits of
697 * priv->hw_setting.valid_tx_ant */
698 u8 ant_msk
= (1 << i
);
699 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
703 if (data
->disconn_array
[i
] == 0)
704 /* there is a Tx antenna connected */
706 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
707 data
->disconn_array
[i
]) {
709 * If all chains are disconnected
710 * connect the first valid tx chain
713 iwl4965_find_first_chain(priv
->cfg
->valid_tx_ant
);
714 data
->disconn_array
[first_chain
] = 0;
715 active_chains
|= BIT(first_chain
);
716 IWL_DEBUG_CALIB(priv
, "All Tx chains are disconnected \
717 W/A - declare %d as connected\n",
723 if (active_chains
!= priv
->hw_params
.valid_rx_ant
&&
724 active_chains
!= priv
->chain_noise_data
.active_chains
)
725 IWL_DEBUG_CALIB(priv
,
726 "Detected that not all antennas are connected! "
727 "Connected: %#x, valid: %#x.\n",
728 active_chains
, priv
->hw_params
.valid_rx_ant
);
730 /* Save for use within RXON, TX, SCAN commands, etc. */
731 data
->active_chains
= active_chains
;
732 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
736 static void iwl4965_gain_computation(struct iwl_priv
*priv
,
738 u16 min_average_noise_antenna_i
,
739 u32 min_average_noise
,
743 struct iwl_chain_noise_data
*data
= &priv
->chain_noise_data
;
745 data
->delta_gain_code
[min_average_noise_antenna_i
] = 0;
747 for (i
= default_chain
; i
< NUM_RX_CHAINS
; i
++) {
750 if (!(data
->disconn_array
[i
]) &&
751 (data
->delta_gain_code
[i
] ==
752 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
)) {
753 delta_g
= average_noise
[i
] - min_average_noise
;
754 data
->delta_gain_code
[i
] = (u8
)((delta_g
* 10) / 15);
755 data
->delta_gain_code
[i
] =
756 min(data
->delta_gain_code
[i
],
757 (u8
) CHAIN_NOISE_MAX_DELTA_GAIN_CODE
);
759 data
->delta_gain_code
[i
] =
760 (data
->delta_gain_code
[i
] | (1 << 2));
762 data
->delta_gain_code
[i
] = 0;
765 IWL_DEBUG_CALIB(priv
, "delta_gain_codes: a %d b %d c %d\n",
766 data
->delta_gain_code
[0],
767 data
->delta_gain_code
[1],
768 data
->delta_gain_code
[2]);
770 /* Differential gain gets sent to uCode only once */
771 if (!data
->radio_write
) {
772 struct iwl_calib_diff_gain_cmd cmd
;
773 data
->radio_write
= 1;
775 memset(&cmd
, 0, sizeof(cmd
));
776 cmd
.hdr
.op_code
= IWL_PHY_CALIBRATE_DIFF_GAIN_CMD
;
777 cmd
.diff_gain_a
= data
->delta_gain_code
[0];
778 cmd
.diff_gain_b
= data
->delta_gain_code
[1];
779 cmd
.diff_gain_c
= data
->delta_gain_code
[2];
780 ret
= iwl_legacy_send_cmd_pdu(priv
, REPLY_PHY_CALIBRATION_CMD
,
783 IWL_DEBUG_CALIB(priv
, "fail sending cmd "
784 "REPLY_PHY_CALIBRATION_CMD\n");
786 /* TODO we might want recalculate
787 * rx_chain in rxon cmd */
789 /* Mark so we run this algo only once! */
790 data
->state
= IWL_CHAIN_NOISE_CALIBRATED
;
797 * Accumulate 16 beacons of signal and noise statistics for each of
798 * 3 receivers/antennas/rx-chains, then figure out:
799 * 1) Which antennas are connected.
800 * 2) Differential rx gain settings to balance the 3 receivers.
802 void iwl4965_chain_noise_calibration(struct iwl_priv
*priv
, void *stat_resp
)
804 struct iwl_chain_noise_data
*data
= NULL
;
812 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
813 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
814 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
815 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
817 u16 rxon_chnum
= INITIALIZATION_VALUE
;
818 u16 stat_chnum
= INITIALIZATION_VALUE
;
822 struct statistics_rx_non_phy
*rx_info
;
824 struct iwl_rxon_context
*ctx
= &priv
->contexts
[IWL_RXON_CTX_BSS
];
826 if (priv
->disable_chain_noise_cal
)
829 data
= &(priv
->chain_noise_data
);
832 * Accumulate just the first "chain_noise_num_beacons" after
833 * the first association, then we're done forever.
835 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
836 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
837 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
841 spin_lock_irqsave(&priv
->lock
, flags
);
843 rx_info
= &(((struct iwl_notif_statistics
*)stat_resp
)->
846 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
847 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
848 spin_unlock_irqrestore(&priv
->lock
, flags
);
852 rxon_band24
= !!(ctx
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
853 rxon_chnum
= le16_to_cpu(ctx
->staging
.channel
);
855 stat_band24
= !!(((struct iwl_notif_statistics
*)
857 STATISTICS_REPLY_FLG_BAND_24G_MSK
);
858 stat_chnum
= le32_to_cpu(((struct iwl_notif_statistics
*)
859 stat_resp
)->flag
) >> 16;
861 /* Make sure we accumulate data for just the associated channel
862 * (even if scanning). */
863 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
864 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
865 rxon_chnum
, rxon_band24
);
866 spin_unlock_irqrestore(&priv
->lock
, flags
);
871 * Accumulate beacon statistics values across
872 * "chain_noise_num_beacons"
874 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
876 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
878 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
881 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
882 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
883 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
885 spin_unlock_irqrestore(&priv
->lock
, flags
);
887 data
->beacon_count
++;
889 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
890 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
891 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
893 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
894 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
895 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
897 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
898 rxon_chnum
, rxon_band24
, data
->beacon_count
);
899 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
900 chain_sig_a
, chain_sig_b
, chain_sig_c
);
901 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
902 chain_noise_a
, chain_noise_b
, chain_noise_c
);
904 /* If this is the "chain_noise_num_beacons", determine:
905 * 1) Disconnected antennas (using signal strengths)
906 * 2) Differential gain (using silence noise) to balance receivers */
907 if (data
->beacon_count
!=
908 priv
->cfg
->base_params
->chain_noise_num_beacons
)
911 /* Analyze signal for disconnected antenna */
912 iwl4965_find_disconn_antenna(priv
, average_sig
, data
);
914 /* Analyze noise for rx balance */
915 average_noise
[0] = data
->chain_noise_a
/
916 priv
->cfg
->base_params
->chain_noise_num_beacons
;
917 average_noise
[1] = data
->chain_noise_b
/
918 priv
->cfg
->base_params
->chain_noise_num_beacons
;
919 average_noise
[2] = data
->chain_noise_c
/
920 priv
->cfg
->base_params
->chain_noise_num_beacons
;
922 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
923 if (!(data
->disconn_array
[i
]) &&
924 (average_noise
[i
] <= min_average_noise
)) {
925 /* This means that chain i is active and has
926 * lower noise values so far: */
927 min_average_noise
= average_noise
[i
];
928 min_average_noise_antenna_i
= i
;
932 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
933 average_noise
[0], average_noise
[1],
936 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
937 min_average_noise
, min_average_noise_antenna_i
);
939 iwl4965_gain_computation(priv
, average_noise
,
940 min_average_noise_antenna_i
, min_average_noise
,
941 iwl4965_find_first_chain(priv
->cfg
->valid_rx_ant
));
943 /* Some power changes may have been made during the calibration.
944 * Update and commit the RXON
946 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
947 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
949 data
->state
= IWL_CHAIN_NOISE_DONE
;
950 iwl_legacy_power_update_mode(priv
, false);
953 void iwl4965_reset_run_time_calib(struct iwl_priv
*priv
)
956 memset(&(priv
->sensitivity_data
), 0,
957 sizeof(struct iwl_sensitivity_data
));
958 memset(&(priv
->chain_noise_data
), 0,
959 sizeof(struct iwl_chain_noise_data
));
960 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
961 priv
->chain_noise_data
.delta_gain_code
[i
] =
962 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
964 /* Ask for statistics now, the uCode will send notification
965 * periodically after association */
966 iwl_legacy_send_statistics_request(priv
, CMD_ASYNC
, true);