2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500usb device specific routines.
24 Supported chipsets: RT2570.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
40 * Allow hardware encryption to be disabled.
42 static int modparam_nohwcrypt
;
43 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
44 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
48 * All access to the CSR registers will go through the methods
49 * rt2500usb_register_read and rt2500usb_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * If the csr_mutex is already held then the _lock variants must
61 static inline void rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
62 const unsigned int offset
,
66 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
67 USB_VENDOR_REQUEST_IN
, offset
,
68 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
69 *value
= le16_to_cpu(reg
);
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev
*rt2x00dev
,
73 const unsigned int offset
,
77 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_READ
,
78 USB_VENDOR_REQUEST_IN
, offset
,
79 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
80 *value
= le16_to_cpu(reg
);
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev
*rt2x00dev
,
84 const unsigned int offset
,
85 void *value
, const u16 length
)
87 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_READ
,
88 USB_VENDOR_REQUEST_IN
, offset
,
90 REGISTER_TIMEOUT16(length
));
93 static inline void rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
94 const unsigned int offset
,
97 __le16 reg
= cpu_to_le16(value
);
98 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
99 USB_VENDOR_REQUEST_OUT
, offset
,
100 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev
*rt2x00dev
,
104 const unsigned int offset
,
107 __le16 reg
= cpu_to_le16(value
);
108 rt2x00usb_vendor_req_buff_lock(rt2x00dev
, USB_MULTI_WRITE
,
109 USB_VENDOR_REQUEST_OUT
, offset
,
110 ®
, sizeof(reg
), REGISTER_TIMEOUT
);
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev
*rt2x00dev
,
114 const unsigned int offset
,
115 void *value
, const u16 length
)
117 rt2x00usb_vendor_request_buff(rt2x00dev
, USB_MULTI_WRITE
,
118 USB_VENDOR_REQUEST_OUT
, offset
,
120 REGISTER_TIMEOUT16(length
));
123 static int rt2500usb_regbusy_read(struct rt2x00_dev
*rt2x00dev
,
124 const unsigned int offset
,
125 struct rt2x00_field16 field
,
130 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
131 rt2500usb_register_read_lock(rt2x00dev
, offset
, reg
);
132 if (!rt2x00_get_field16(*reg
, field
))
134 udelay(REGISTER_BUSY_DELAY
);
137 ERROR(rt2x00dev
, "Indirect register access failed: "
138 "offset=0x%.08x, value=0x%.08x\n", offset
, *reg
);
144 #define WAIT_FOR_BBP(__dev, __reg) \
145 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
149 static void rt2500usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
150 const unsigned int word
, const u8 value
)
154 mutex_lock(&rt2x00dev
->csr_mutex
);
157 * Wait until the BBP becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
162 rt2x00_set_field16(®
, PHY_CSR7_DATA
, value
);
163 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
164 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 0);
166 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
169 mutex_unlock(&rt2x00dev
->csr_mutex
);
172 static void rt2500usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
173 const unsigned int word
, u8
*value
)
177 mutex_lock(&rt2x00dev
->csr_mutex
);
180 * Wait until the BBP becomes available, afterwards we
181 * can safely write the read request into the register.
182 * After the data has been written, we wait until hardware
183 * returns the correct value, if at any time the register
184 * doesn't become available in time, reg will be 0xffffffff
185 * which means we return 0xff to the caller.
187 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
189 rt2x00_set_field16(®
, PHY_CSR7_REG_ID
, word
);
190 rt2x00_set_field16(®
, PHY_CSR7_READ_CONTROL
, 1);
192 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR7
, reg
);
194 if (WAIT_FOR_BBP(rt2x00dev
, ®
))
195 rt2500usb_register_read_lock(rt2x00dev
, PHY_CSR7
, ®
);
198 *value
= rt2x00_get_field16(reg
, PHY_CSR7_DATA
);
200 mutex_unlock(&rt2x00dev
->csr_mutex
);
203 static void rt2500usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
204 const unsigned int word
, const u32 value
)
208 mutex_lock(&rt2x00dev
->csr_mutex
);
211 * Wait until the RF becomes available, afterwards we
212 * can safely write the new data into the register.
214 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
216 rt2x00_set_field16(®
, PHY_CSR9_RF_VALUE
, value
);
217 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR9
, reg
);
220 rt2x00_set_field16(®
, PHY_CSR10_RF_VALUE
, value
>> 16);
221 rt2x00_set_field16(®
, PHY_CSR10_RF_NUMBER_OF_BITS
, 20);
222 rt2x00_set_field16(®
, PHY_CSR10_RF_IF_SELECT
, 0);
223 rt2x00_set_field16(®
, PHY_CSR10_RF_BUSY
, 1);
225 rt2500usb_register_write_lock(rt2x00dev
, PHY_CSR10
, reg
);
226 rt2x00_rf_write(rt2x00dev
, word
, value
);
229 mutex_unlock(&rt2x00dev
->csr_mutex
);
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev
*rt2x00dev
,
234 const unsigned int offset
,
237 rt2500usb_register_read(rt2x00dev
, offset
, (u16
*)value
);
240 static void _rt2500usb_register_write(struct rt2x00_dev
*rt2x00dev
,
241 const unsigned int offset
,
244 rt2500usb_register_write(rt2x00dev
, offset
, value
);
247 static const struct rt2x00debug rt2500usb_rt2x00debug
= {
248 .owner
= THIS_MODULE
,
250 .read
= _rt2500usb_register_read
,
251 .write
= _rt2500usb_register_write
,
252 .flags
= RT2X00DEBUGFS_OFFSET
,
253 .word_base
= CSR_REG_BASE
,
254 .word_size
= sizeof(u16
),
255 .word_count
= CSR_REG_SIZE
/ sizeof(u16
),
258 .read
= rt2x00_eeprom_read
,
259 .write
= rt2x00_eeprom_write
,
260 .word_base
= EEPROM_BASE
,
261 .word_size
= sizeof(u16
),
262 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
265 .read
= rt2500usb_bbp_read
,
266 .write
= rt2500usb_bbp_write
,
267 .word_base
= BBP_BASE
,
268 .word_size
= sizeof(u8
),
269 .word_count
= BBP_SIZE
/ sizeof(u8
),
272 .read
= rt2x00_rf_read
,
273 .write
= rt2500usb_rf_write
,
274 .word_base
= RF_BASE
,
275 .word_size
= sizeof(u32
),
276 .word_count
= RF_SIZE
/ sizeof(u32
),
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
285 rt2500usb_register_read(rt2x00dev
, MAC_CSR19
, ®
);
286 return rt2x00_get_field32(reg
, MAC_CSR19_BIT7
);
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev
*led_cdev
,
291 enum led_brightness brightness
)
293 struct rt2x00_led
*led
=
294 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
295 unsigned int enabled
= brightness
!= LED_OFF
;
298 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR20
, ®
);
300 if (led
->type
== LED_TYPE_RADIO
|| led
->type
== LED_TYPE_ASSOC
)
301 rt2x00_set_field16(®
, MAC_CSR20_LINK
, enabled
);
302 else if (led
->type
== LED_TYPE_ACTIVITY
)
303 rt2x00_set_field16(®
, MAC_CSR20_ACTIVITY
, enabled
);
305 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR20
, reg
);
308 static int rt2500usb_blink_set(struct led_classdev
*led_cdev
,
309 unsigned long *delay_on
,
310 unsigned long *delay_off
)
312 struct rt2x00_led
*led
=
313 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
316 rt2500usb_register_read(led
->rt2x00dev
, MAC_CSR21
, ®
);
317 rt2x00_set_field16(®
, MAC_CSR21_ON_PERIOD
, *delay_on
);
318 rt2x00_set_field16(®
, MAC_CSR21_OFF_PERIOD
, *delay_off
);
319 rt2500usb_register_write(led
->rt2x00dev
, MAC_CSR21
, reg
);
324 static void rt2500usb_init_led(struct rt2x00_dev
*rt2x00dev
,
325 struct rt2x00_led
*led
,
328 led
->rt2x00dev
= rt2x00dev
;
330 led
->led_dev
.brightness_set
= rt2500usb_brightness_set
;
331 led
->led_dev
.blink_set
= rt2500usb_blink_set
;
332 led
->flags
= LED_INITIALIZED
;
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
337 * Configuration handlers.
341 * rt2500usb does not differentiate between shared and pairwise
342 * keys, so we should use the same function for both key types.
344 static int rt2500usb_config_key(struct rt2x00_dev
*rt2x00dev
,
345 struct rt2x00lib_crypto
*crypto
,
346 struct ieee80211_key_conf
*key
)
350 enum cipher curr_cipher
;
352 if (crypto
->cmd
== SET_KEY
) {
354 * Disallow to set WEP key other than with index 0,
355 * it is known that not work at least on some hardware.
356 * SW crypto will be used in that case.
358 if ((key
->cipher
== WLAN_CIPHER_SUITE_WEP40
||
359 key
->cipher
== WLAN_CIPHER_SUITE_WEP104
) &&
364 * Pairwise key will always be entry 0, but this
365 * could collide with a shared key on the same
368 mask
= TXRX_CSR0_KEY_ID
.bit_mask
;
370 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
371 curr_cipher
= rt2x00_get_field16(reg
, TXRX_CSR0_ALGORITHM
);
374 if (reg
&& reg
== mask
)
377 reg
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
379 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
381 * Hardware requires that all keys use the same cipher
382 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383 * If this is not the first key, compare the cipher with the
384 * first one and fall back to SW crypto if not the same.
386 if (key
->hw_key_idx
> 0 && crypto
->cipher
!= curr_cipher
)
389 rt2500usb_register_multiwrite(rt2x00dev
, KEY_ENTRY(key
->hw_key_idx
),
390 crypto
->key
, sizeof(crypto
->key
));
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it demands the data to be provided
395 * both separately as well as inside the frame.
396 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397 * to ensure rt2x00lib will not strip the data from the
398 * frame after the copy, now we must tell mac80211
399 * to generate the IV/EIV data.
401 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
402 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_MMIC
;
406 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407 * a particular key is valid.
409 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
410 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, crypto
->cipher
);
411 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
413 mask
= rt2x00_get_field16(reg
, TXRX_CSR0_KEY_ID
);
414 if (crypto
->cmd
== SET_KEY
)
415 mask
|= 1 << key
->hw_key_idx
;
416 else if (crypto
->cmd
== DISABLE_KEY
)
417 mask
&= ~(1 << key
->hw_key_idx
);
418 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, mask
);
419 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
424 static void rt2500usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
425 const unsigned int filter_flags
)
430 * Start configuration steps.
431 * Note that the version error will always be dropped
432 * and broadcast frames will always be accepted since
433 * there is no filter for it at this time.
435 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
436 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CRC
,
437 !(filter_flags
& FIF_FCSFAIL
));
438 rt2x00_set_field16(®
, TXRX_CSR2_DROP_PHYSICAL
,
439 !(filter_flags
& FIF_PLCPFAIL
));
440 rt2x00_set_field16(®
, TXRX_CSR2_DROP_CONTROL
,
441 !(filter_flags
& FIF_CONTROL
));
442 rt2x00_set_field16(®
, TXRX_CSR2_DROP_NOT_TO_ME
,
443 !(filter_flags
& FIF_PROMISC_IN_BSS
));
444 rt2x00_set_field16(®
, TXRX_CSR2_DROP_TODS
,
445 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
446 !rt2x00dev
->intf_ap_count
);
447 rt2x00_set_field16(®
, TXRX_CSR2_DROP_VERSION_ERROR
, 1);
448 rt2x00_set_field16(®
, TXRX_CSR2_DROP_MULTICAST
,
449 !(filter_flags
& FIF_ALLMULTI
));
450 rt2x00_set_field16(®
, TXRX_CSR2_DROP_BROADCAST
, 0);
451 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
454 static void rt2500usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
455 struct rt2x00_intf
*intf
,
456 struct rt2x00intf_conf
*conf
,
457 const unsigned int flags
)
459 unsigned int bcn_preload
;
462 if (flags
& CONFIG_UPDATE_TYPE
) {
464 * Enable beacon config
466 bcn_preload
= PREAMBLE
+ GET_DURATION(IEEE80211_HEADER
, 20);
467 rt2500usb_register_read(rt2x00dev
, TXRX_CSR20
, ®
);
468 rt2x00_set_field16(®
, TXRX_CSR20_OFFSET
, bcn_preload
>> 6);
469 rt2x00_set_field16(®
, TXRX_CSR20_BCN_EXPECT_WINDOW
,
470 2 * (conf
->type
!= NL80211_IFTYPE_STATION
));
471 rt2500usb_register_write(rt2x00dev
, TXRX_CSR20
, reg
);
474 * Enable synchronisation.
476 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
477 rt2x00_set_field16(®
, TXRX_CSR18_OFFSET
, 0);
478 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
480 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
481 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, conf
->sync
);
482 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
485 if (flags
& CONFIG_UPDATE_MAC
)
486 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR2
, conf
->mac
,
487 (3 * sizeof(__le16
)));
489 if (flags
& CONFIG_UPDATE_BSSID
)
490 rt2500usb_register_multiwrite(rt2x00dev
, MAC_CSR5
, conf
->bssid
,
491 (3 * sizeof(__le16
)));
494 static void rt2500usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
495 struct rt2x00lib_erp
*erp
,
500 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
501 rt2500usb_register_read(rt2x00dev
, TXRX_CSR10
, ®
);
502 rt2x00_set_field16(®
, TXRX_CSR10_AUTORESPOND_PREAMBLE
,
503 !!erp
->short_preamble
);
504 rt2500usb_register_write(rt2x00dev
, TXRX_CSR10
, reg
);
507 if (changed
& BSS_CHANGED_BASIC_RATES
)
508 rt2500usb_register_write(rt2x00dev
, TXRX_CSR11
,
511 if (changed
& BSS_CHANGED_BEACON_INT
) {
512 rt2500usb_register_read(rt2x00dev
, TXRX_CSR18
, ®
);
513 rt2x00_set_field16(®
, TXRX_CSR18_INTERVAL
,
514 erp
->beacon_int
* 4);
515 rt2500usb_register_write(rt2x00dev
, TXRX_CSR18
, reg
);
518 if (changed
& BSS_CHANGED_ERP_SLOT
) {
519 rt2500usb_register_write(rt2x00dev
, MAC_CSR10
, erp
->slot_time
);
520 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, erp
->sifs
);
521 rt2500usb_register_write(rt2x00dev
, MAC_CSR12
, erp
->eifs
);
525 static void rt2500usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
526 struct antenna_setup
*ant
)
534 * We should never come here because rt2x00lib is supposed
535 * to catch this and send us the correct antenna explicitely.
537 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
538 ant
->tx
== ANTENNA_SW_DIVERSITY
);
540 rt2500usb_bbp_read(rt2x00dev
, 2, &r2
);
541 rt2500usb_bbp_read(rt2x00dev
, 14, &r14
);
542 rt2500usb_register_read(rt2x00dev
, PHY_CSR5
, &csr5
);
543 rt2500usb_register_read(rt2x00dev
, PHY_CSR6
, &csr6
);
546 * Configure the TX antenna.
549 case ANTENNA_HW_DIVERSITY
:
550 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 1);
551 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 1);
552 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 1);
555 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 0);
556 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 0);
557 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 0);
561 rt2x00_set_field8(&r2
, BBP_R2_TX_ANTENNA
, 2);
562 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK
, 2);
563 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM
, 2);
568 * Configure the RX antenna.
571 case ANTENNA_HW_DIVERSITY
:
572 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 1);
575 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 0);
579 rt2x00_set_field8(&r14
, BBP_R14_RX_ANTENNA
, 2);
584 * RT2525E and RT5222 need to flip TX I/Q
586 if (rt2x00_rf(rt2x00dev
, RF2525E
) || rt2x00_rf(rt2x00dev
, RF5222
)) {
587 rt2x00_set_field8(&r2
, BBP_R2_TX_IQ_FLIP
, 1);
588 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 1);
589 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 1);
592 * RT2525E does not need RX I/Q Flip.
594 if (rt2x00_rf(rt2x00dev
, RF2525E
))
595 rt2x00_set_field8(&r14
, BBP_R14_RX_IQ_FLIP
, 0);
597 rt2x00_set_field16(&csr5
, PHY_CSR5_CCK_FLIP
, 0);
598 rt2x00_set_field16(&csr6
, PHY_CSR6_OFDM_FLIP
, 0);
601 rt2500usb_bbp_write(rt2x00dev
, 2, r2
);
602 rt2500usb_bbp_write(rt2x00dev
, 14, r14
);
603 rt2500usb_register_write(rt2x00dev
, PHY_CSR5
, csr5
);
604 rt2500usb_register_write(rt2x00dev
, PHY_CSR6
, csr6
);
607 static void rt2500usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
608 struct rf_channel
*rf
, const int txpower
)
613 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
616 * For RT2525E we should first set the channel to half band higher.
618 if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
619 static const u32 vals
[] = {
620 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
621 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
622 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
623 0x00000902, 0x00000906
626 rt2500usb_rf_write(rt2x00dev
, 2, vals
[rf
->channel
- 1]);
628 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
631 rt2500usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
632 rt2500usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
633 rt2500usb_rf_write(rt2x00dev
, 3, rf
->rf3
);
635 rt2500usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
638 static void rt2500usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
643 rt2x00_rf_read(rt2x00dev
, 3, &rf3
);
644 rt2x00_set_field32(&rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
645 rt2500usb_rf_write(rt2x00dev
, 3, rf3
);
648 static void rt2500usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
649 struct rt2x00lib_conf
*libconf
)
651 enum dev_state state
=
652 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
653 STATE_SLEEP
: STATE_AWAKE
;
656 if (state
== STATE_SLEEP
) {
657 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
658 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
,
659 rt2x00dev
->beacon_int
- 20);
660 rt2x00_set_field16(®
, MAC_CSR18_BEACONS_BEFORE_WAKEUP
,
661 libconf
->conf
->listen_interval
- 1);
663 /* We must first disable autowake before it can be enabled */
664 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
665 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
667 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 1);
668 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
670 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
671 rt2x00_set_field16(®
, MAC_CSR18_AUTO_WAKE
, 0);
672 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
675 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
678 static void rt2500usb_config(struct rt2x00_dev
*rt2x00dev
,
679 struct rt2x00lib_conf
*libconf
,
680 const unsigned int flags
)
682 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
683 rt2500usb_config_channel(rt2x00dev
, &libconf
->rf
,
684 libconf
->conf
->power_level
);
685 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
686 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
687 rt2500usb_config_txpower(rt2x00dev
,
688 libconf
->conf
->power_level
);
689 if (flags
& IEEE80211_CONF_CHANGE_PS
)
690 rt2500usb_config_ps(rt2x00dev
, libconf
);
696 static void rt2500usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
697 struct link_qual
*qual
)
702 * Update FCS error count from register.
704 rt2500usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
705 qual
->rx_failed
= rt2x00_get_field16(reg
, STA_CSR0_FCS_ERROR
);
708 * Update False CCA count from register.
710 rt2500usb_register_read(rt2x00dev
, STA_CSR3
, ®
);
711 qual
->false_cca
= rt2x00_get_field16(reg
, STA_CSR3_FALSE_CCA_ERROR
);
714 static void rt2500usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
715 struct link_qual
*qual
)
720 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &eeprom
);
721 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R24_LOW
);
722 rt2500usb_bbp_write(rt2x00dev
, 24, value
);
724 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &eeprom
);
725 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R25_LOW
);
726 rt2500usb_bbp_write(rt2x00dev
, 25, value
);
728 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &eeprom
);
729 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_R61_LOW
);
730 rt2500usb_bbp_write(rt2x00dev
, 61, value
);
732 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &eeprom
);
733 value
= rt2x00_get_field16(eeprom
, EEPROM_BBPTUNE_VGCUPPER
);
734 rt2500usb_bbp_write(rt2x00dev
, 17, value
);
736 qual
->vgc_level
= value
;
742 static void rt2500usb_start_queue(struct data_queue
*queue
)
744 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
747 switch (queue
->qid
) {
749 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
750 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 0);
751 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
754 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
755 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
756 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
757 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
758 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
765 static void rt2500usb_stop_queue(struct data_queue
*queue
)
767 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
770 switch (queue
->qid
) {
772 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
773 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
774 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
777 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
778 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
779 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
780 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
781 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
789 * Initialization functions.
791 static int rt2500usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
795 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0x0001,
796 USB_MODE_TEST
, REGISTER_TIMEOUT
);
797 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_SINGLE_WRITE
, 0x0308,
798 0x00f0, REGISTER_TIMEOUT
);
800 rt2500usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
801 rt2x00_set_field16(®
, TXRX_CSR2_DISABLE_RX
, 1);
802 rt2500usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
804 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x1111);
805 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x1e11);
807 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
808 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 1);
809 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 1);
810 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
811 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
813 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
814 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
815 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
816 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 0);
817 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
819 rt2500usb_register_read(rt2x00dev
, TXRX_CSR5
, ®
);
820 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0
, 13);
821 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID0_VALID
, 1);
822 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1
, 12);
823 rt2x00_set_field16(®
, TXRX_CSR5_BBP_ID1_VALID
, 1);
824 rt2500usb_register_write(rt2x00dev
, TXRX_CSR5
, reg
);
826 rt2500usb_register_read(rt2x00dev
, TXRX_CSR6
, ®
);
827 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0
, 10);
828 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID0_VALID
, 1);
829 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1
, 11);
830 rt2x00_set_field16(®
, TXRX_CSR6_BBP_ID1_VALID
, 1);
831 rt2500usb_register_write(rt2x00dev
, TXRX_CSR6
, reg
);
833 rt2500usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
834 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0
, 7);
835 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID0_VALID
, 1);
836 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1
, 6);
837 rt2x00_set_field16(®
, TXRX_CSR7_BBP_ID1_VALID
, 1);
838 rt2500usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
840 rt2500usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
841 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0
, 5);
842 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID0_VALID
, 1);
843 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1
, 0);
844 rt2x00_set_field16(®
, TXRX_CSR8_BBP_ID1_VALID
, 0);
845 rt2500usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
847 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
848 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 0);
849 rt2x00_set_field16(®
, TXRX_CSR19_TSF_SYNC
, 0);
850 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 0);
851 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
852 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
854 rt2500usb_register_write(rt2x00dev
, TXRX_CSR21
, 0xe78f);
855 rt2500usb_register_write(rt2x00dev
, MAC_CSR9
, 0xff1d);
857 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
860 rt2500usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
861 rt2x00_set_field16(®
, MAC_CSR1_SOFT_RESET
, 0);
862 rt2x00_set_field16(®
, MAC_CSR1_BBP_RESET
, 0);
863 rt2x00_set_field16(®
, MAC_CSR1_HOST_READY
, 1);
864 rt2500usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
866 if (rt2x00_rev(rt2x00dev
) >= RT2570_VERSION_C
) {
867 rt2500usb_register_read(rt2x00dev
, PHY_CSR2
, ®
);
868 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 0);
871 rt2x00_set_field16(®
, PHY_CSR2_LNA
, 1);
872 rt2x00_set_field16(®
, PHY_CSR2_LNA_MODE
, 3);
874 rt2500usb_register_write(rt2x00dev
, PHY_CSR2
, reg
);
876 rt2500usb_register_write(rt2x00dev
, MAC_CSR11
, 0x0002);
877 rt2500usb_register_write(rt2x00dev
, MAC_CSR22
, 0x0053);
878 rt2500usb_register_write(rt2x00dev
, MAC_CSR15
, 0x01ee);
879 rt2500usb_register_write(rt2x00dev
, MAC_CSR16
, 0x0000);
881 rt2500usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
882 rt2x00_set_field16(®
, MAC_CSR8_MAX_FRAME_UNIT
,
883 rt2x00dev
->rx
->data_size
);
884 rt2500usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
886 rt2500usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
887 rt2x00_set_field16(®
, TXRX_CSR0_ALGORITHM
, CIPHER_NONE
);
888 rt2x00_set_field16(®
, TXRX_CSR0_IV_OFFSET
, IEEE80211_HEADER
);
889 rt2x00_set_field16(®
, TXRX_CSR0_KEY_ID
, 0);
890 rt2500usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
892 rt2500usb_register_read(rt2x00dev
, MAC_CSR18
, ®
);
893 rt2x00_set_field16(®
, MAC_CSR18_DELAY_AFTER_BEACON
, 90);
894 rt2500usb_register_write(rt2x00dev
, MAC_CSR18
, reg
);
896 rt2500usb_register_read(rt2x00dev
, PHY_CSR4
, ®
);
897 rt2x00_set_field16(®
, PHY_CSR4_LOW_RF_LE
, 1);
898 rt2500usb_register_write(rt2x00dev
, PHY_CSR4
, reg
);
900 rt2500usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
901 rt2x00_set_field16(®
, TXRX_CSR1_AUTO_SEQUENCE
, 1);
902 rt2500usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
907 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
912 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
913 rt2500usb_bbp_read(rt2x00dev
, 0, &value
);
914 if ((value
!= 0xff) && (value
!= 0x00))
916 udelay(REGISTER_BUSY_DELAY
);
919 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
923 static int rt2500usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
930 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev
)))
933 rt2500usb_bbp_write(rt2x00dev
, 3, 0x02);
934 rt2500usb_bbp_write(rt2x00dev
, 4, 0x19);
935 rt2500usb_bbp_write(rt2x00dev
, 14, 0x1c);
936 rt2500usb_bbp_write(rt2x00dev
, 15, 0x30);
937 rt2500usb_bbp_write(rt2x00dev
, 16, 0xac);
938 rt2500usb_bbp_write(rt2x00dev
, 18, 0x18);
939 rt2500usb_bbp_write(rt2x00dev
, 19, 0xff);
940 rt2500usb_bbp_write(rt2x00dev
, 20, 0x1e);
941 rt2500usb_bbp_write(rt2x00dev
, 21, 0x08);
942 rt2500usb_bbp_write(rt2x00dev
, 22, 0x08);
943 rt2500usb_bbp_write(rt2x00dev
, 23, 0x08);
944 rt2500usb_bbp_write(rt2x00dev
, 24, 0x80);
945 rt2500usb_bbp_write(rt2x00dev
, 25, 0x50);
946 rt2500usb_bbp_write(rt2x00dev
, 26, 0x08);
947 rt2500usb_bbp_write(rt2x00dev
, 27, 0x23);
948 rt2500usb_bbp_write(rt2x00dev
, 30, 0x10);
949 rt2500usb_bbp_write(rt2x00dev
, 31, 0x2b);
950 rt2500usb_bbp_write(rt2x00dev
, 32, 0xb9);
951 rt2500usb_bbp_write(rt2x00dev
, 34, 0x12);
952 rt2500usb_bbp_write(rt2x00dev
, 35, 0x50);
953 rt2500usb_bbp_write(rt2x00dev
, 39, 0xc4);
954 rt2500usb_bbp_write(rt2x00dev
, 40, 0x02);
955 rt2500usb_bbp_write(rt2x00dev
, 41, 0x60);
956 rt2500usb_bbp_write(rt2x00dev
, 53, 0x10);
957 rt2500usb_bbp_write(rt2x00dev
, 54, 0x18);
958 rt2500usb_bbp_write(rt2x00dev
, 56, 0x08);
959 rt2500usb_bbp_write(rt2x00dev
, 57, 0x10);
960 rt2500usb_bbp_write(rt2x00dev
, 58, 0x08);
961 rt2500usb_bbp_write(rt2x00dev
, 61, 0x60);
962 rt2500usb_bbp_write(rt2x00dev
, 62, 0x10);
963 rt2500usb_bbp_write(rt2x00dev
, 75, 0xff);
965 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
966 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
968 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
969 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
970 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
971 rt2500usb_bbp_write(rt2x00dev
, reg_id
, value
);
979 * Device state switch handlers.
981 static int rt2500usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
984 * Initialize all registers.
986 if (unlikely(rt2500usb_init_registers(rt2x00dev
) ||
987 rt2500usb_init_bbp(rt2x00dev
)))
993 static void rt2500usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
995 rt2500usb_register_write(rt2x00dev
, MAC_CSR13
, 0x2121);
996 rt2500usb_register_write(rt2x00dev
, MAC_CSR14
, 0x2121);
999 * Disable synchronisation.
1001 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, 0);
1003 rt2x00usb_disable_radio(rt2x00dev
);
1006 static int rt2500usb_set_state(struct rt2x00_dev
*rt2x00dev
,
1007 enum dev_state state
)
1016 put_to_sleep
= (state
!= STATE_AWAKE
);
1019 rt2x00_set_field16(®
, MAC_CSR17_BBP_DESIRE_STATE
, state
);
1020 rt2x00_set_field16(®
, MAC_CSR17_RF_DESIRE_STATE
, state
);
1021 rt2x00_set_field16(®
, MAC_CSR17_PUT_TO_SLEEP
, put_to_sleep
);
1022 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1023 rt2x00_set_field16(®
, MAC_CSR17_SET_STATE
, 1);
1024 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1027 * Device is not guaranteed to be in the requested state yet.
1028 * We must wait until the register indicates that the
1029 * device has entered the correct state.
1031 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1032 rt2500usb_register_read(rt2x00dev
, MAC_CSR17
, ®2
);
1033 bbp_state
= rt2x00_get_field16(reg2
, MAC_CSR17_BBP_CURR_STATE
);
1034 rf_state
= rt2x00_get_field16(reg2
, MAC_CSR17_RF_CURR_STATE
);
1035 if (bbp_state
== state
&& rf_state
== state
)
1037 rt2500usb_register_write(rt2x00dev
, MAC_CSR17
, reg
);
1044 static int rt2500usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1045 enum dev_state state
)
1050 case STATE_RADIO_ON
:
1051 retval
= rt2500usb_enable_radio(rt2x00dev
);
1053 case STATE_RADIO_OFF
:
1054 rt2500usb_disable_radio(rt2x00dev
);
1056 case STATE_RADIO_IRQ_ON
:
1057 case STATE_RADIO_IRQ_OFF
:
1058 /* No support, but no error either */
1060 case STATE_DEEP_SLEEP
:
1064 retval
= rt2500usb_set_state(rt2x00dev
, state
);
1071 if (unlikely(retval
))
1072 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1079 * TX descriptor initialization
1081 static void rt2500usb_write_tx_desc(struct queue_entry
*entry
,
1082 struct txentry_desc
*txdesc
)
1084 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1085 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1089 * Start writing the descriptor words.
1091 rt2x00_desc_read(txd
, 0, &word
);
1092 rt2x00_set_field32(&word
, TXD_W0_RETRY_LIMIT
, txdesc
->retry_limit
);
1093 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1094 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1095 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1096 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1097 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1098 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1099 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1100 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1101 rt2x00_set_field32(&word
, TXD_W0_NEW_SEQ
,
1102 test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
));
1103 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1104 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1105 rt2x00_set_field32(&word
, TXD_W0_CIPHER
, !!txdesc
->cipher
);
1106 rt2x00_set_field32(&word
, TXD_W0_KEY_ID
, txdesc
->key_idx
);
1107 rt2x00_desc_write(txd
, 0, word
);
1109 rt2x00_desc_read(txd
, 1, &word
);
1110 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1111 rt2x00_set_field32(&word
, TXD_W1_AIFS
, entry
->queue
->aifs
);
1112 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1113 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1114 rt2x00_desc_write(txd
, 1, word
);
1116 rt2x00_desc_read(txd
, 2, &word
);
1117 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1118 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1119 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1120 txdesc
->u
.plcp
.length_low
);
1121 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1122 txdesc
->u
.plcp
.length_high
);
1123 rt2x00_desc_write(txd
, 2, word
);
1125 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1126 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1127 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1131 * Register descriptor details in skb frame descriptor.
1133 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1134 skbdesc
->desc
= txd
;
1135 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1139 * TX data initialization
1141 static void rt2500usb_beacondone(struct urb
*urb
);
1143 static void rt2500usb_write_beacon(struct queue_entry
*entry
,
1144 struct txentry_desc
*txdesc
)
1146 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1147 struct usb_device
*usb_dev
= to_usb_device_intf(rt2x00dev
->dev
);
1148 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1149 int pipe
= usb_sndbulkpipe(usb_dev
, entry
->queue
->usb_endpoint
);
1154 * Disable beaconing while we are reloading the beacon data,
1155 * otherwise we might be sending out invalid data.
1157 rt2500usb_register_read(rt2x00dev
, TXRX_CSR19
, ®
);
1158 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 0);
1159 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1162 * Add space for the descriptor in front of the skb.
1164 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1165 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1168 * Write the TX descriptor for the beacon.
1170 rt2500usb_write_tx_desc(entry
, txdesc
);
1173 * Dump beacon to userspace through debugfs.
1175 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1178 * USB devices cannot blindly pass the skb->len as the
1179 * length of the data to usb_fill_bulk_urb. Pass the skb
1180 * to the driver to determine what the length should be.
1182 length
= rt2x00dev
->ops
->lib
->get_tx_data_len(entry
);
1184 usb_fill_bulk_urb(bcn_priv
->urb
, usb_dev
, pipe
,
1185 entry
->skb
->data
, length
, rt2500usb_beacondone
,
1189 * Second we need to create the guardian byte.
1190 * We only need a single byte, so lets recycle
1191 * the 'flags' field we are not using for beacons.
1193 bcn_priv
->guardian_data
= 0;
1194 usb_fill_bulk_urb(bcn_priv
->guardian_urb
, usb_dev
, pipe
,
1195 &bcn_priv
->guardian_data
, 1, rt2500usb_beacondone
,
1199 * Send out the guardian byte.
1201 usb_submit_urb(bcn_priv
->guardian_urb
, GFP_ATOMIC
);
1204 * Enable beaconing again.
1206 rt2x00_set_field16(®
, TXRX_CSR19_TSF_COUNT
, 1);
1207 rt2x00_set_field16(®
, TXRX_CSR19_TBCN
, 1);
1209 rt2x00_set_field16(®
, TXRX_CSR19_BEACON_GEN
, 1);
1211 * Beacon generation will fail initially.
1212 * To prevent this we need to change the TXRX_CSR19
1213 * register several times (reg0 is the same as reg
1214 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1217 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1218 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1219 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1220 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg0
);
1221 rt2500usb_register_write(rt2x00dev
, TXRX_CSR19
, reg
);
1224 static int rt2500usb_get_tx_data_len(struct queue_entry
*entry
)
1229 * The length _must_ be a multiple of 2,
1230 * but it must _not_ be a multiple of the USB packet size.
1232 length
= roundup(entry
->skb
->len
, 2);
1233 length
+= (2 * !(length
% entry
->queue
->usb_maxpacket
));
1239 * RX control handlers
1241 static void rt2500usb_fill_rxdone(struct queue_entry
*entry
,
1242 struct rxdone_entry_desc
*rxdesc
)
1244 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1245 struct queue_entry_priv_usb
*entry_priv
= entry
->priv_data
;
1246 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1248 (__le32
*)(entry
->skb
->data
+
1249 (entry_priv
->urb
->actual_length
-
1250 entry
->queue
->desc_size
));
1255 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1256 * frame data in rt2x00usb.
1258 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1259 rxd
= (__le32
*)skbdesc
->desc
;
1262 * It is now safe to read the descriptor on all architectures.
1264 rt2x00_desc_read(rxd
, 0, &word0
);
1265 rt2x00_desc_read(rxd
, 1, &word1
);
1267 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1268 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1269 if (rt2x00_get_field32(word0
, RXD_W0_PHYSICAL_ERROR
))
1270 rxdesc
->flags
|= RX_FLAG_FAILED_PLCP_CRC
;
1272 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER
);
1273 if (rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
))
1274 rxdesc
->cipher_status
= RX_CRYPTO_FAIL_KEY
;
1276 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1277 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1278 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1279 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1281 /* ICV is located at the end of frame */
1283 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1284 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1285 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1286 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1287 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1291 * Obtain the status about this packet.
1292 * When frame was received with an OFDM bitrate,
1293 * the signal is the PLCP value. If it was received with
1294 * a CCK bitrate the signal is the rate in 100kbit/s.
1296 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1298 rt2x00_get_field32(word1
, RXD_W1_RSSI
) - rt2x00dev
->rssi_offset
;
1299 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1301 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1302 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1304 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1305 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1306 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1309 * Adjust the skb memory window to the frame boundaries.
1311 skb_trim(entry
->skb
, rxdesc
->size
);
1315 * Interrupt functions.
1317 static void rt2500usb_beacondone(struct urb
*urb
)
1319 struct queue_entry
*entry
= (struct queue_entry
*)urb
->context
;
1320 struct queue_entry_priv_usb_bcn
*bcn_priv
= entry
->priv_data
;
1322 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &entry
->queue
->rt2x00dev
->flags
))
1326 * Check if this was the guardian beacon,
1327 * if that was the case we need to send the real beacon now.
1328 * Otherwise we should free the sk_buffer, the device
1329 * should be doing the rest of the work now.
1331 if (bcn_priv
->guardian_urb
== urb
) {
1332 usb_submit_urb(bcn_priv
->urb
, GFP_ATOMIC
);
1333 } else if (bcn_priv
->urb
== urb
) {
1334 dev_kfree_skb(entry
->skb
);
1340 * Device probe functions.
1342 static int rt2500usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1348 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1351 * Start validation of the data that has been read.
1353 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1354 if (!is_valid_ether_addr(mac
)) {
1355 random_ether_addr(mac
);
1356 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1359 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1360 if (word
== 0xffff) {
1361 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1362 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1363 ANTENNA_SW_DIVERSITY
);
1364 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1365 ANTENNA_SW_DIVERSITY
);
1366 rt2x00_set_field16(&word
, EEPROM_ANTENNA_LED_MODE
,
1368 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1369 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1370 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF2522
);
1371 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1372 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1375 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1376 if (word
== 0xffff) {
1377 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
1378 rt2x00_set_field16(&word
, EEPROM_NIC_DYN_BBP_TUNE
, 0);
1379 rt2x00_set_field16(&word
, EEPROM_NIC_CCK_TX_POWER
, 0);
1380 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1381 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1384 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &word
);
1385 if (word
== 0xffff) {
1386 rt2x00_set_field16(&word
, EEPROM_CALIBRATE_OFFSET_RSSI
,
1387 DEFAULT_RSSI_OFFSET
);
1388 rt2x00_eeprom_write(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, word
);
1389 EEPROM(rt2x00dev
, "Calibrate offset: 0x%04x\n", word
);
1392 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE
, &word
);
1393 if (word
== 0xffff) {
1394 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_THRESHOLD
, 45);
1395 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE
, word
);
1396 EEPROM(rt2x00dev
, "BBPtune: 0x%04x\n", word
);
1400 * Switch lower vgc bound to current BBP R17 value,
1401 * lower the value a bit for better quality.
1403 rt2500usb_bbp_read(rt2x00dev
, 17, &bbp
);
1406 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_VGC
, &word
);
1407 if (word
== 0xffff) {
1408 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCUPPER
, 0x40);
1409 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1410 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1411 EEPROM(rt2x00dev
, "BBPtune vgc: 0x%04x\n", word
);
1413 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_VGCLOWER
, bbp
);
1414 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_VGC
, word
);
1417 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R17
, &word
);
1418 if (word
== 0xffff) {
1419 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_LOW
, 0x48);
1420 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R17_HIGH
, 0x41);
1421 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R17
, word
);
1422 EEPROM(rt2x00dev
, "BBPtune r17: 0x%04x\n", word
);
1425 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R24
, &word
);
1426 if (word
== 0xffff) {
1427 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_LOW
, 0x40);
1428 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R24_HIGH
, 0x80);
1429 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R24
, word
);
1430 EEPROM(rt2x00dev
, "BBPtune r24: 0x%04x\n", word
);
1433 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R25
, &word
);
1434 if (word
== 0xffff) {
1435 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_LOW
, 0x40);
1436 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R25_HIGH
, 0x50);
1437 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R25
, word
);
1438 EEPROM(rt2x00dev
, "BBPtune r25: 0x%04x\n", word
);
1441 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBPTUNE_R61
, &word
);
1442 if (word
== 0xffff) {
1443 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_LOW
, 0x60);
1444 rt2x00_set_field16(&word
, EEPROM_BBPTUNE_R61_HIGH
, 0x6d);
1445 rt2x00_eeprom_write(rt2x00dev
, EEPROM_BBPTUNE_R61
, word
);
1446 EEPROM(rt2x00dev
, "BBPtune r61: 0x%04x\n", word
);
1452 static int rt2500usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1459 * Read EEPROM word for configuration.
1461 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1464 * Identify RF chipset.
1466 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1467 rt2500usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1468 rt2x00_set_chip(rt2x00dev
, RT2570
, value
, reg
);
1470 if (((reg
& 0xfff0) != 0) || ((reg
& 0x0000000f) == 0)) {
1471 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1475 if (!rt2x00_rf(rt2x00dev
, RF2522
) &&
1476 !rt2x00_rf(rt2x00dev
, RF2523
) &&
1477 !rt2x00_rf(rt2x00dev
, RF2524
) &&
1478 !rt2x00_rf(rt2x00dev
, RF2525
) &&
1479 !rt2x00_rf(rt2x00dev
, RF2525E
) &&
1480 !rt2x00_rf(rt2x00dev
, RF5222
)) {
1481 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1486 * Identify default antenna configuration.
1488 rt2x00dev
->default_ant
.tx
=
1489 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1490 rt2x00dev
->default_ant
.rx
=
1491 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1494 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1495 * I am not 100% sure about this, but the legacy drivers do not
1496 * indicate antenna swapping in software is required when
1497 * diversity is enabled.
1499 if (rt2x00dev
->default_ant
.tx
== ANTENNA_SW_DIVERSITY
)
1500 rt2x00dev
->default_ant
.tx
= ANTENNA_HW_DIVERSITY
;
1501 if (rt2x00dev
->default_ant
.rx
== ANTENNA_SW_DIVERSITY
)
1502 rt2x00dev
->default_ant
.rx
= ANTENNA_HW_DIVERSITY
;
1505 * Store led mode, for correct led behaviour.
1507 #ifdef CONFIG_RT2X00_LIB_LEDS
1508 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_LED_MODE
);
1510 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1511 if (value
== LED_MODE_TXRX_ACTIVITY
||
1512 value
== LED_MODE_DEFAULT
||
1513 value
== LED_MODE_ASUS
)
1514 rt2500usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1516 #endif /* CONFIG_RT2X00_LIB_LEDS */
1519 * Detect if this device has an hardware controlled radio.
1521 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1522 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1525 * Read the RSSI <-> dBm offset information.
1527 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CALIBRATE_OFFSET
, &eeprom
);
1528 rt2x00dev
->rssi_offset
=
1529 rt2x00_get_field16(eeprom
, EEPROM_CALIBRATE_OFFSET_RSSI
);
1535 * RF value list for RF2522
1538 static const struct rf_channel rf_vals_bg_2522
[] = {
1539 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1540 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1541 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1542 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1543 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1544 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1545 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1546 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1547 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1548 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1549 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1550 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1551 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1552 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1556 * RF value list for RF2523
1559 static const struct rf_channel rf_vals_bg_2523
[] = {
1560 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1561 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1562 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1563 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1564 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1565 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1566 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1567 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1568 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1569 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1570 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1571 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1572 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1573 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1577 * RF value list for RF2524
1580 static const struct rf_channel rf_vals_bg_2524
[] = {
1581 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1582 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1583 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1584 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1585 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1586 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1587 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1588 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1589 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1590 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1591 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1592 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1593 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1594 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1598 * RF value list for RF2525
1601 static const struct rf_channel rf_vals_bg_2525
[] = {
1602 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1603 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1604 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1605 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1606 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1607 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1608 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1609 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1610 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1611 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1612 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1613 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1614 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1615 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1619 * RF value list for RF2525e
1622 static const struct rf_channel rf_vals_bg_2525e
[] = {
1623 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1624 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1625 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1626 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1627 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1628 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1629 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1630 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1631 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1632 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1633 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1634 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1635 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1636 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1640 * RF value list for RF5222
1641 * Supports: 2.4 GHz & 5.2 GHz
1643 static const struct rf_channel rf_vals_5222
[] = {
1644 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1645 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1646 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1647 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1648 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1649 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1650 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1651 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1652 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1653 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1654 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1655 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1656 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1657 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1659 /* 802.11 UNI / HyperLan 2 */
1660 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1661 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1662 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1663 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1664 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1665 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1666 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1667 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1669 /* 802.11 HyperLan 2 */
1670 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1671 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1672 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1673 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1674 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1675 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1676 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1677 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1678 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1679 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1682 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1683 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1684 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1685 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1686 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1689 static int rt2500usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
1691 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1692 struct channel_info
*info
;
1697 * Initialize all hw fields.
1699 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1700 * capable of sending the buffered frames out after the DTIM
1701 * transmission using rt2x00lib_beacondone. This will send out
1702 * multicast and broadcast traffic immediately instead of buffering it
1703 * infinitly and thus dropping it after some time.
1705 rt2x00dev
->hw
->flags
=
1706 IEEE80211_HW_RX_INCLUDES_FCS
|
1707 IEEE80211_HW_SIGNAL_DBM
|
1708 IEEE80211_HW_SUPPORTS_PS
|
1709 IEEE80211_HW_PS_NULLFUNC_STACK
;
1711 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
1712 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
1713 rt2x00_eeprom_addr(rt2x00dev
,
1714 EEPROM_MAC_ADDR_0
));
1717 * Initialize hw_mode information.
1719 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
1720 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
1722 if (rt2x00_rf(rt2x00dev
, RF2522
)) {
1723 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2522
);
1724 spec
->channels
= rf_vals_bg_2522
;
1725 } else if (rt2x00_rf(rt2x00dev
, RF2523
)) {
1726 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2523
);
1727 spec
->channels
= rf_vals_bg_2523
;
1728 } else if (rt2x00_rf(rt2x00dev
, RF2524
)) {
1729 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2524
);
1730 spec
->channels
= rf_vals_bg_2524
;
1731 } else if (rt2x00_rf(rt2x00dev
, RF2525
)) {
1732 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525
);
1733 spec
->channels
= rf_vals_bg_2525
;
1734 } else if (rt2x00_rf(rt2x00dev
, RF2525E
)) {
1735 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2525e
);
1736 spec
->channels
= rf_vals_bg_2525e
;
1737 } else if (rt2x00_rf(rt2x00dev
, RF5222
)) {
1738 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
1739 spec
->num_channels
= ARRAY_SIZE(rf_vals_5222
);
1740 spec
->channels
= rf_vals_5222
;
1744 * Create channel information array
1746 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
1750 spec
->channels_info
= info
;
1752 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_START
);
1753 for (i
= 0; i
< 14; i
++) {
1754 info
[i
].max_power
= MAX_TXPOWER
;
1755 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
1758 if (spec
->num_channels
> 14) {
1759 for (i
= 14; i
< spec
->num_channels
; i
++) {
1760 info
[i
].max_power
= MAX_TXPOWER
;
1761 info
[i
].default_power1
= DEFAULT_TXPOWER
;
1768 static int rt2500usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1773 * Allocate eeprom data.
1775 retval
= rt2500usb_validate_eeprom(rt2x00dev
);
1779 retval
= rt2500usb_init_eeprom(rt2x00dev
);
1784 * Initialize hw specifications.
1786 retval
= rt2500usb_probe_hw_mode(rt2x00dev
);
1791 * This device requires the atim queue
1793 __set_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1794 __set_bit(REQUIRE_BEACON_GUARD
, &rt2x00dev
->cap_flags
);
1795 if (!modparam_nohwcrypt
) {
1796 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
1797 __set_bit(REQUIRE_COPY_IV
, &rt2x00dev
->cap_flags
);
1799 __set_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
);
1800 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
1803 * Set the rssi offset.
1805 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
1810 static const struct ieee80211_ops rt2500usb_mac80211_ops
= {
1812 .start
= rt2x00mac_start
,
1813 .stop
= rt2x00mac_stop
,
1814 .add_interface
= rt2x00mac_add_interface
,
1815 .remove_interface
= rt2x00mac_remove_interface
,
1816 .config
= rt2x00mac_config
,
1817 .configure_filter
= rt2x00mac_configure_filter
,
1818 .set_tim
= rt2x00mac_set_tim
,
1819 .set_key
= rt2x00mac_set_key
,
1820 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1821 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1822 .get_stats
= rt2x00mac_get_stats
,
1823 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1824 .conf_tx
= rt2x00mac_conf_tx
,
1825 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1826 .flush
= rt2x00mac_flush
,
1827 .set_antenna
= rt2x00mac_set_antenna
,
1828 .get_antenna
= rt2x00mac_get_antenna
,
1829 .get_ringparam
= rt2x00mac_get_ringparam
,
1832 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops
= {
1833 .probe_hw
= rt2500usb_probe_hw
,
1834 .initialize
= rt2x00usb_initialize
,
1835 .uninitialize
= rt2x00usb_uninitialize
,
1836 .clear_entry
= rt2x00usb_clear_entry
,
1837 .set_device_state
= rt2500usb_set_device_state
,
1838 .rfkill_poll
= rt2500usb_rfkill_poll
,
1839 .link_stats
= rt2500usb_link_stats
,
1840 .reset_tuner
= rt2500usb_reset_tuner
,
1841 .watchdog
= rt2x00usb_watchdog
,
1842 .start_queue
= rt2500usb_start_queue
,
1843 .kick_queue
= rt2x00usb_kick_queue
,
1844 .stop_queue
= rt2500usb_stop_queue
,
1845 .flush_queue
= rt2x00usb_flush_queue
,
1846 .write_tx_desc
= rt2500usb_write_tx_desc
,
1847 .write_beacon
= rt2500usb_write_beacon
,
1848 .get_tx_data_len
= rt2500usb_get_tx_data_len
,
1849 .fill_rxdone
= rt2500usb_fill_rxdone
,
1850 .config_shared_key
= rt2500usb_config_key
,
1851 .config_pairwise_key
= rt2500usb_config_key
,
1852 .config_filter
= rt2500usb_config_filter
,
1853 .config_intf
= rt2500usb_config_intf
,
1854 .config_erp
= rt2500usb_config_erp
,
1855 .config_ant
= rt2500usb_config_ant
,
1856 .config
= rt2500usb_config
,
1859 static const struct data_queue_desc rt2500usb_queue_rx
= {
1861 .data_size
= DATA_FRAME_SIZE
,
1862 .desc_size
= RXD_DESC_SIZE
,
1863 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1866 static const struct data_queue_desc rt2500usb_queue_tx
= {
1868 .data_size
= DATA_FRAME_SIZE
,
1869 .desc_size
= TXD_DESC_SIZE
,
1870 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1873 static const struct data_queue_desc rt2500usb_queue_bcn
= {
1875 .data_size
= MGMT_FRAME_SIZE
,
1876 .desc_size
= TXD_DESC_SIZE
,
1877 .priv_size
= sizeof(struct queue_entry_priv_usb_bcn
),
1880 static const struct data_queue_desc rt2500usb_queue_atim
= {
1882 .data_size
= DATA_FRAME_SIZE
,
1883 .desc_size
= TXD_DESC_SIZE
,
1884 .priv_size
= sizeof(struct queue_entry_priv_usb
),
1887 static const struct rt2x00_ops rt2500usb_ops
= {
1888 .name
= KBUILD_MODNAME
,
1891 .eeprom_size
= EEPROM_SIZE
,
1893 .tx_queues
= NUM_TX_QUEUES
,
1894 .extra_tx_headroom
= TXD_DESC_SIZE
,
1895 .rx
= &rt2500usb_queue_rx
,
1896 .tx
= &rt2500usb_queue_tx
,
1897 .bcn
= &rt2500usb_queue_bcn
,
1898 .atim
= &rt2500usb_queue_atim
,
1899 .lib
= &rt2500usb_rt2x00_ops
,
1900 .hw
= &rt2500usb_mac80211_ops
,
1901 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1902 .debugfs
= &rt2500usb_rt2x00debug
,
1903 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1907 * rt2500usb module information.
1909 static struct usb_device_id rt2500usb_device_table
[] = {
1911 { USB_DEVICE(0x0b05, 0x1706) },
1912 { USB_DEVICE(0x0b05, 0x1707) },
1914 { USB_DEVICE(0x050d, 0x7050) },
1915 { USB_DEVICE(0x050d, 0x7051) },
1917 { USB_DEVICE(0x13b1, 0x000d) },
1918 { USB_DEVICE(0x13b1, 0x0011) },
1919 { USB_DEVICE(0x13b1, 0x001a) },
1921 { USB_DEVICE(0x14b2, 0x3c02) },
1923 { USB_DEVICE(0x2001, 0x3c00) },
1925 { USB_DEVICE(0x1044, 0x8001) },
1926 { USB_DEVICE(0x1044, 0x8007) },
1928 { USB_DEVICE(0x06f8, 0xe000) },
1930 { USB_DEVICE(0x0411, 0x005e) },
1931 { USB_DEVICE(0x0411, 0x0066) },
1932 { USB_DEVICE(0x0411, 0x0067) },
1933 { USB_DEVICE(0x0411, 0x008b) },
1934 { USB_DEVICE(0x0411, 0x0097) },
1936 { USB_DEVICE(0x0db0, 0x6861) },
1937 { USB_DEVICE(0x0db0, 0x6865) },
1938 { USB_DEVICE(0x0db0, 0x6869) },
1940 { USB_DEVICE(0x148f, 0x1706) },
1941 { USB_DEVICE(0x148f, 0x2570) },
1942 { USB_DEVICE(0x148f, 0x9020) },
1944 { USB_DEVICE(0x079b, 0x004b) },
1946 { USB_DEVICE(0x0681, 0x3c06) },
1948 { USB_DEVICE(0x0707, 0xee13) },
1950 { USB_DEVICE(0x114b, 0x0110) },
1952 { USB_DEVICE(0x0769, 0x11f3) },
1954 { USB_DEVICE(0x0eb0, 0x9020) },
1956 { USB_DEVICE(0x0f88, 0x3012) },
1958 { USB_DEVICE(0x5a57, 0x0260) },
1962 MODULE_AUTHOR(DRV_PROJECT
);
1963 MODULE_VERSION(DRV_VERSION
);
1964 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1965 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1966 MODULE_DEVICE_TABLE(usb
, rt2500usb_device_table
);
1967 MODULE_LICENSE("GPL");
1969 static int rt2500usb_probe(struct usb_interface
*usb_intf
,
1970 const struct usb_device_id
*id
)
1972 return rt2x00usb_probe(usb_intf
, &rt2500usb_ops
);
1975 static struct usb_driver rt2500usb_driver
= {
1976 .name
= KBUILD_MODNAME
,
1977 .id_table
= rt2500usb_device_table
,
1978 .probe
= rt2500usb_probe
,
1979 .disconnect
= rt2x00usb_disconnect
,
1980 .suspend
= rt2x00usb_suspend
,
1981 .resume
= rt2x00usb_resume
,
1984 static int __init
rt2500usb_init(void)
1986 return usb_register(&rt2500usb_driver
);
1989 static void __exit
rt2500usb_exit(void)
1991 usb_deregister(&rt2500usb_driver
);
1994 module_init(rt2500usb_init
);
1995 module_exit(rt2500usb_exit
);