2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
34 Abstract: rt2800 generic device routines.
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
43 #include "rt2800lib.h"
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev
*rt2x00dev
)
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev
) ||
74 !rt2x00_rt(rt2x00dev
, RT2872
))
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev
, RF3020
) ||
79 rt2x00_rf(rt2x00dev
, RF3021
) ||
80 rt2x00_rf(rt2x00dev
, RF3022
))
83 NOTICE(rt2x00dev
, "Unknown RF chipset on rt305x\n");
87 static void rt2800_bbp_write(struct rt2x00_dev
*rt2x00dev
,
88 const unsigned int word
, const u8 value
)
92 mutex_lock(&rt2x00dev
->csr_mutex
);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
98 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
100 rt2x00_set_field32(®
, BBP_CSR_CFG_VALUE
, value
);
101 rt2x00_set_field32(®
, BBP_CSR_CFG_REGNUM
, word
);
102 rt2x00_set_field32(®
, BBP_CSR_CFG_BUSY
, 1);
103 rt2x00_set_field32(®
, BBP_CSR_CFG_READ_CONTROL
, 0);
104 rt2x00_set_field32(®
, BBP_CSR_CFG_BBP_RW_MODE
, 1);
106 rt2800_register_write_lock(rt2x00dev
, BBP_CSR_CFG
, reg
);
109 mutex_unlock(&rt2x00dev
->csr_mutex
);
112 static void rt2800_bbp_read(struct rt2x00_dev
*rt2x00dev
,
113 const unsigned int word
, u8
*value
)
117 mutex_lock(&rt2x00dev
->csr_mutex
);
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
127 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
129 rt2x00_set_field32(®
, BBP_CSR_CFG_REGNUM
, word
);
130 rt2x00_set_field32(®
, BBP_CSR_CFG_BUSY
, 1);
131 rt2x00_set_field32(®
, BBP_CSR_CFG_READ_CONTROL
, 1);
132 rt2x00_set_field32(®
, BBP_CSR_CFG_BBP_RW_MODE
, 1);
134 rt2800_register_write_lock(rt2x00dev
, BBP_CSR_CFG
, reg
);
136 WAIT_FOR_BBP(rt2x00dev
, ®
);
139 *value
= rt2x00_get_field32(reg
, BBP_CSR_CFG_VALUE
);
141 mutex_unlock(&rt2x00dev
->csr_mutex
);
144 static void rt2800_rfcsr_write(struct rt2x00_dev
*rt2x00dev
,
145 const unsigned int word
, const u8 value
)
149 mutex_lock(&rt2x00dev
->csr_mutex
);
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
155 if (WAIT_FOR_RFCSR(rt2x00dev
, ®
)) {
157 rt2x00_set_field32(®
, RF_CSR_CFG_DATA
, value
);
158 rt2x00_set_field32(®
, RF_CSR_CFG_REGNUM
, word
);
159 rt2x00_set_field32(®
, RF_CSR_CFG_WRITE
, 1);
160 rt2x00_set_field32(®
, RF_CSR_CFG_BUSY
, 1);
162 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG
, reg
);
165 mutex_unlock(&rt2x00dev
->csr_mutex
);
168 static void rt2800_rfcsr_read(struct rt2x00_dev
*rt2x00dev
,
169 const unsigned int word
, u8
*value
)
173 mutex_lock(&rt2x00dev
->csr_mutex
);
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
183 if (WAIT_FOR_RFCSR(rt2x00dev
, ®
)) {
185 rt2x00_set_field32(®
, RF_CSR_CFG_REGNUM
, word
);
186 rt2x00_set_field32(®
, RF_CSR_CFG_WRITE
, 0);
187 rt2x00_set_field32(®
, RF_CSR_CFG_BUSY
, 1);
189 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG
, reg
);
191 WAIT_FOR_RFCSR(rt2x00dev
, ®
);
194 *value
= rt2x00_get_field32(reg
, RF_CSR_CFG_DATA
);
196 mutex_unlock(&rt2x00dev
->csr_mutex
);
199 static void rt2800_rf_write(struct rt2x00_dev
*rt2x00dev
,
200 const unsigned int word
, const u32 value
)
204 mutex_lock(&rt2x00dev
->csr_mutex
);
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
210 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
212 rt2x00_set_field32(®
, RF_CSR_CFG0_REG_VALUE_BW
, value
);
213 rt2x00_set_field32(®
, RF_CSR_CFG0_STANDBYMODE
, 0);
214 rt2x00_set_field32(®
, RF_CSR_CFG0_SEL
, 0);
215 rt2x00_set_field32(®
, RF_CSR_CFG0_BUSY
, 1);
217 rt2800_register_write_lock(rt2x00dev
, RF_CSR_CFG0
, reg
);
218 rt2x00_rf_write(rt2x00dev
, word
, value
);
221 mutex_unlock(&rt2x00dev
->csr_mutex
);
224 void rt2800_mcu_request(struct rt2x00_dev
*rt2x00dev
,
225 const u8 command
, const u8 token
,
226 const u8 arg0
, const u8 arg1
)
231 * SOC devices don't support MCU requests.
233 if (rt2x00_is_soc(rt2x00dev
))
236 mutex_lock(&rt2x00dev
->csr_mutex
);
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
242 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
243 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
244 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
245 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
246 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
247 rt2800_register_write_lock(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
250 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
251 rt2800_register_write_lock(rt2x00dev
, HOST_CMD_CSR
, reg
);
254 mutex_unlock(&rt2x00dev
->csr_mutex
);
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request
);
258 int rt2800_wait_csr_ready(struct rt2x00_dev
*rt2x00dev
)
263 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
264 rt2800_register_read(rt2x00dev
, MAC_CSR0
, ®
);
265 if (reg
&& reg
!= ~0)
270 ERROR(rt2x00dev
, "Unstable hardware.\n");
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready
);
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev
*rt2x00dev
)
281 * Some devices are really slow to respond here. Wait a whole second
284 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
285 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
286 if (!rt2x00_get_field32(reg
, WPDMA_GLO_CFG_TX_DMA_BUSY
) &&
287 !rt2x00_get_field32(reg
, WPDMA_GLO_CFG_RX_DMA_BUSY
))
293 ERROR(rt2x00dev
, "WPDMA TX/RX busy, aborting.\n");
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready
);
298 static bool rt2800_check_firmware_crc(const u8
*data
, const size_t len
)
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
308 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
317 crc
= crc_ccitt(~0, data
, len
- 2);
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
327 return fw_crc
== crc
;
330 int rt2800_check_firmware(struct rt2x00_dev
*rt2x00dev
,
331 const u8
*data
, const size_t len
)
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
345 if (rt2x00_is_usb(rt2x00dev
)) {
354 * Validate the firmware length
356 if (len
!= fw_len
&& (!multiple
|| (len
% fw_len
) != 0))
357 return FW_BAD_LENGTH
;
360 * Check if the chipset requires one of the upper parts
363 if (rt2x00_is_usb(rt2x00dev
) &&
364 !rt2x00_rt(rt2x00dev
, RT2860
) &&
365 !rt2x00_rt(rt2x00dev
, RT2872
) &&
366 !rt2x00_rt(rt2x00dev
, RT3070
) &&
367 ((len
/ fw_len
) == 1))
368 return FW_BAD_VERSION
;
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
374 while (offset
< len
) {
375 if (!rt2800_check_firmware_crc(data
+ offset
, fw_len
))
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware
);
385 int rt2800_load_firmware(struct rt2x00_dev
*rt2x00dev
,
386 const u8
*data
, const size_t len
)
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
395 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, 0x00000000);
398 * Wait for stable hardware.
400 if (rt2800_wait_csr_ready(rt2x00dev
))
403 if (rt2x00_is_pci(rt2x00dev
)) {
404 if (rt2x00_rt(rt2x00dev
, RT5390
)) {
405 rt2800_register_read(rt2x00dev
, AUX_CTRL
, ®
);
406 rt2x00_set_field32(®
, AUX_CTRL_FORCE_PCIE_CLK
, 1);
407 rt2x00_set_field32(®
, AUX_CTRL_WAKE_PCIE_EN
, 1);
408 rt2800_register_write(rt2x00dev
, AUX_CTRL
, reg
);
410 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000002);
414 * Disable DMA, will be reenabled later when enabling
417 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
418 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
419 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
420 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
421 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
422 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
423 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
426 * Write firmware to the device.
428 rt2800_drv_write_firmware(rt2x00dev
, data
, len
);
431 * Wait for device to stabilize.
433 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
434 rt2800_register_read(rt2x00dev
, PBF_SYS_CTRL
, ®
);
435 if (rt2x00_get_field32(reg
, PBF_SYS_CTRL_READY
))
440 if (i
== REGISTER_BUSY_COUNT
) {
441 ERROR(rt2x00dev
, "PBF system register not ready.\n");
446 * Initialize firmware.
448 rt2800_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
449 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
454 EXPORT_SYMBOL_GPL(rt2800_load_firmware
);
456 void rt2800_write_tx_data(struct queue_entry
*entry
,
457 struct txentry_desc
*txdesc
)
459 __le32
*txwi
= rt2800_drv_get_txwi(entry
);
463 * Initialize TX Info descriptor
465 rt2x00_desc_read(txwi
, 0, &word
);
466 rt2x00_set_field32(&word
, TXWI_W0_FRAG
,
467 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
468 rt2x00_set_field32(&word
, TXWI_W0_MIMO_PS
,
469 test_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
));
470 rt2x00_set_field32(&word
, TXWI_W0_CF_ACK
, 0);
471 rt2x00_set_field32(&word
, TXWI_W0_TS
,
472 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
473 rt2x00_set_field32(&word
, TXWI_W0_AMPDU
,
474 test_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
));
475 rt2x00_set_field32(&word
, TXWI_W0_MPDU_DENSITY
,
476 txdesc
->u
.ht
.mpdu_density
);
477 rt2x00_set_field32(&word
, TXWI_W0_TX_OP
, txdesc
->u
.ht
.txop
);
478 rt2x00_set_field32(&word
, TXWI_W0_MCS
, txdesc
->u
.ht
.mcs
);
479 rt2x00_set_field32(&word
, TXWI_W0_BW
,
480 test_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
));
481 rt2x00_set_field32(&word
, TXWI_W0_SHORT_GI
,
482 test_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
));
483 rt2x00_set_field32(&word
, TXWI_W0_STBC
, txdesc
->u
.ht
.stbc
);
484 rt2x00_set_field32(&word
, TXWI_W0_PHYMODE
, txdesc
->rate_mode
);
485 rt2x00_desc_write(txwi
, 0, word
);
487 rt2x00_desc_read(txwi
, 1, &word
);
488 rt2x00_set_field32(&word
, TXWI_W1_ACK
,
489 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
490 rt2x00_set_field32(&word
, TXWI_W1_NSEQ
,
491 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
492 rt2x00_set_field32(&word
, TXWI_W1_BW_WIN_SIZE
, txdesc
->u
.ht
.ba_size
);
493 rt2x00_set_field32(&word
, TXWI_W1_WIRELESS_CLI_ID
,
494 test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
) ?
495 txdesc
->key_idx
: 0xff);
496 rt2x00_set_field32(&word
, TXWI_W1_MPDU_TOTAL_BYTE_COUNT
,
498 rt2x00_set_field32(&word
, TXWI_W1_PACKETID_QUEUE
, entry
->queue
->qid
);
499 rt2x00_set_field32(&word
, TXWI_W1_PACKETID_ENTRY
, (entry
->entry_idx
% 3) + 1);
500 rt2x00_desc_write(txwi
, 1, word
);
503 * Always write 0 to IV/EIV fields, hardware will insert the IV
504 * from the IVEIV register when TXD_W3_WIV is set to 0.
505 * When TXD_W3_WIV is set to 1 it will use the IV data
506 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
507 * crypto entry in the registers should be used to encrypt the frame.
509 _rt2x00_desc_write(txwi
, 2, 0 /* skbdesc->iv[0] */);
510 _rt2x00_desc_write(txwi
, 3, 0 /* skbdesc->iv[1] */);
512 EXPORT_SYMBOL_GPL(rt2800_write_tx_data
);
514 static int rt2800_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, u32 rxwi_w2
)
516 int rssi0
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI0
);
517 int rssi1
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI1
);
518 int rssi2
= rt2x00_get_field32(rxwi_w2
, RXWI_W2_RSSI2
);
524 if (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
) {
525 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG
, &eeprom
);
526 offset0
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG_OFFSET0
);
527 offset1
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG_OFFSET1
);
528 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &eeprom
);
529 offset2
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG2_OFFSET2
);
531 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A
, &eeprom
);
532 offset0
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A_OFFSET0
);
533 offset1
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A_OFFSET1
);
534 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &eeprom
);
535 offset2
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A2_OFFSET2
);
539 * Convert the value from the descriptor into the RSSI value
540 * If the value in the descriptor is 0, it is considered invalid
541 * and the default (extremely low) rssi value is assumed
543 rssi0
= (rssi0
) ? (-12 - offset0
- rt2x00dev
->lna_gain
- rssi0
) : -128;
544 rssi1
= (rssi1
) ? (-12 - offset1
- rt2x00dev
->lna_gain
- rssi1
) : -128;
545 rssi2
= (rssi2
) ? (-12 - offset2
- rt2x00dev
->lna_gain
- rssi2
) : -128;
548 * mac80211 only accepts a single RSSI value. Calculating the
549 * average doesn't deliver a fair answer either since -60:-60 would
550 * be considered equally good as -50:-70 while the second is the one
551 * which gives less energy...
553 rssi0
= max(rssi0
, rssi1
);
554 return max(rssi0
, rssi2
);
557 void rt2800_process_rxwi(struct queue_entry
*entry
,
558 struct rxdone_entry_desc
*rxdesc
)
560 __le32
*rxwi
= (__le32
*) entry
->skb
->data
;
563 rt2x00_desc_read(rxwi
, 0, &word
);
565 rxdesc
->cipher
= rt2x00_get_field32(word
, RXWI_W0_UDF
);
566 rxdesc
->size
= rt2x00_get_field32(word
, RXWI_W0_MPDU_TOTAL_BYTE_COUNT
);
568 rt2x00_desc_read(rxwi
, 1, &word
);
570 if (rt2x00_get_field32(word
, RXWI_W1_SHORT_GI
))
571 rxdesc
->flags
|= RX_FLAG_SHORT_GI
;
573 if (rt2x00_get_field32(word
, RXWI_W1_BW
))
574 rxdesc
->flags
|= RX_FLAG_40MHZ
;
577 * Detect RX rate, always use MCS as signal type.
579 rxdesc
->dev_flags
|= RXDONE_SIGNAL_MCS
;
580 rxdesc
->signal
= rt2x00_get_field32(word
, RXWI_W1_MCS
);
581 rxdesc
->rate_mode
= rt2x00_get_field32(word
, RXWI_W1_PHYMODE
);
584 * Mask of 0x8 bit to remove the short preamble flag.
586 if (rxdesc
->rate_mode
== RATE_MODE_CCK
)
587 rxdesc
->signal
&= ~0x8;
589 rt2x00_desc_read(rxwi
, 2, &word
);
592 * Convert descriptor AGC value to RSSI value.
594 rxdesc
->rssi
= rt2800_agc_to_rssi(entry
->queue
->rt2x00dev
, word
);
597 * Remove RXWI descriptor from start of buffer.
599 skb_pull(entry
->skb
, RXWI_DESC_SIZE
);
601 EXPORT_SYMBOL_GPL(rt2800_process_rxwi
);
603 static bool rt2800_txdone_entry_check(struct queue_entry
*entry
, u32 reg
)
608 int tx_wcid
, tx_ack
, tx_pid
;
610 wcid
= rt2x00_get_field32(reg
, TX_STA_FIFO_WCID
);
611 ack
= rt2x00_get_field32(reg
, TX_STA_FIFO_TX_ACK_REQUIRED
);
612 pid
= rt2x00_get_field32(reg
, TX_STA_FIFO_PID_TYPE
);
615 * This frames has returned with an IO error,
616 * so the status report is not intended for this
619 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
)) {
620 rt2x00lib_txdone_noinfo(entry
, TXDONE_FAILURE
);
625 * Validate if this TX status report is intended for
626 * this entry by comparing the WCID/ACK/PID fields.
628 txwi
= rt2800_drv_get_txwi(entry
);
630 rt2x00_desc_read(txwi
, 1, &word
);
631 tx_wcid
= rt2x00_get_field32(word
, TXWI_W1_WIRELESS_CLI_ID
);
632 tx_ack
= rt2x00_get_field32(word
, TXWI_W1_ACK
);
633 tx_pid
= rt2x00_get_field32(word
, TXWI_W1_PACKETID
);
635 if ((wcid
!= tx_wcid
) || (ack
!= tx_ack
) || (pid
!= tx_pid
)) {
636 WARNING(entry
->queue
->rt2x00dev
,
637 "TX status report missed for queue %d entry %d\n",
638 entry
->queue
->qid
, entry
->entry_idx
);
639 rt2x00lib_txdone_noinfo(entry
, TXDONE_UNKNOWN
);
646 void rt2800_txdone_entry(struct queue_entry
*entry
, u32 status
)
648 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
649 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
650 struct txdone_entry_desc txdesc
;
657 * Obtain the status about this packet.
660 txwi
= rt2800_drv_get_txwi(entry
);
661 rt2x00_desc_read(txwi
, 0, &word
);
663 mcs
= rt2x00_get_field32(word
, TXWI_W0_MCS
);
664 ampdu
= rt2x00_get_field32(word
, TXWI_W0_AMPDU
);
666 real_mcs
= rt2x00_get_field32(status
, TX_STA_FIFO_MCS
);
667 aggr
= rt2x00_get_field32(status
, TX_STA_FIFO_TX_AGGRE
);
670 * If a frame was meant to be sent as a single non-aggregated MPDU
671 * but ended up in an aggregate the used tx rate doesn't correlate
672 * with the one specified in the TXWI as the whole aggregate is sent
673 * with the same rate.
675 * For example: two frames are sent to rt2x00, the first one sets
676 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
677 * and requests MCS15. If the hw aggregates both frames into one
678 * AMDPU the tx status for both frames will contain MCS7 although
679 * the frame was sent successfully.
681 * Hence, replace the requested rate with the real tx rate to not
682 * confuse the rate control algortihm by providing clearly wrong
685 if (unlikely(aggr
== 1 && ampdu
== 0 && real_mcs
!= mcs
)) {
686 skbdesc
->tx_rate_idx
= real_mcs
;
690 if (aggr
== 1 || ampdu
== 1)
691 __set_bit(TXDONE_AMPDU
, &txdesc
.flags
);
694 * Ralink has a retry mechanism using a global fallback
695 * table. We setup this fallback table to try the immediate
696 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
697 * always contains the MCS used for the last transmission, be
698 * it successful or not.
700 if (rt2x00_get_field32(status
, TX_STA_FIFO_TX_SUCCESS
)) {
702 * Transmission succeeded. The number of retries is
705 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
706 txdesc
.retry
= ((mcs
> real_mcs
) ? mcs
- real_mcs
: 0);
709 * Transmission failed. The number of retries is
710 * always 7 in this case (for a total number of 8
713 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
714 txdesc
.retry
= rt2x00dev
->long_retry
;
718 * the frame was retried at least once
719 * -> hw used fallback rates
722 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
724 rt2x00lib_txdone(entry
, &txdesc
);
726 EXPORT_SYMBOL_GPL(rt2800_txdone_entry
);
728 void rt2800_txdone(struct rt2x00_dev
*rt2x00dev
)
730 struct data_queue
*queue
;
731 struct queue_entry
*entry
;
735 while (kfifo_get(&rt2x00dev
->txstatus_fifo
, ®
)) {
737 /* TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus
738 * qid is guaranteed to be one of the TX QIDs
740 qid
= rt2x00_get_field32(reg
, TX_STA_FIFO_PID_QUEUE
);
741 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, qid
);
742 if (unlikely(!queue
)) {
743 WARNING(rt2x00dev
, "Got TX status for an unavailable "
744 "queue %u, dropping\n", qid
);
749 * Inside each queue, we process each entry in a chronological
750 * order. We first check that the queue is not empty.
753 while (!rt2x00queue_empty(queue
)) {
754 entry
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
755 if (rt2800_txdone_entry_check(entry
, reg
))
759 if (!entry
|| rt2x00queue_empty(queue
))
762 rt2800_txdone_entry(entry
, reg
);
765 EXPORT_SYMBOL_GPL(rt2800_txdone
);
767 void rt2800_write_beacon(struct queue_entry
*entry
, struct txentry_desc
*txdesc
)
769 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
770 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
771 unsigned int beacon_base
;
772 unsigned int padding_len
;
776 * Disable beaconing while we are reloading the beacon data,
777 * otherwise we might be sending out invalid data.
779 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
781 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
782 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
785 * Add space for the TXWI in front of the skb.
787 skb_push(entry
->skb
, TXWI_DESC_SIZE
);
788 memset(entry
->skb
, 0, TXWI_DESC_SIZE
);
791 * Register descriptor details in skb frame descriptor.
793 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
794 skbdesc
->desc
= entry
->skb
->data
;
795 skbdesc
->desc_len
= TXWI_DESC_SIZE
;
798 * Add the TXWI for the beacon to the skb.
800 rt2800_write_tx_data(entry
, txdesc
);
803 * Dump beacon to userspace through debugfs.
805 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
808 * Write entire beacon with TXWI and padding to register.
810 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
811 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
812 ERROR(rt2x00dev
, "Failure padding beacon, aborting\n");
813 /* skb freed by skb_pad() on failure */
815 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, orig_reg
);
819 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
820 rt2800_register_multiwrite(rt2x00dev
, beacon_base
, entry
->skb
->data
,
821 entry
->skb
->len
+ padding_len
);
824 * Enable beaconing again.
826 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
827 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
830 * Clean up beacon skb.
832 dev_kfree_skb_any(entry
->skb
);
835 EXPORT_SYMBOL_GPL(rt2800_write_beacon
);
837 static inline void rt2800_clear_beacon_register(struct rt2x00_dev
*rt2x00dev
,
838 unsigned int beacon_base
)
843 * For the Beacon base registers we only need to clear
844 * the whole TXWI which (when set to 0) will invalidate
847 for (i
= 0; i
< TXWI_DESC_SIZE
; i
+= sizeof(__le32
))
848 rt2800_register_write(rt2x00dev
, beacon_base
+ i
, 0);
851 void rt2800_clear_beacon(struct queue_entry
*entry
)
853 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
857 * Disable beaconing while we are reloading the beacon data,
858 * otherwise we might be sending out invalid data.
860 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
861 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
862 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
867 rt2800_clear_beacon_register(rt2x00dev
,
868 HW_BEACON_OFFSET(entry
->entry_idx
));
871 * Enabled beaconing again.
873 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
874 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
876 EXPORT_SYMBOL_GPL(rt2800_clear_beacon
);
878 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
879 const struct rt2x00debug rt2800_rt2x00debug
= {
880 .owner
= THIS_MODULE
,
882 .read
= rt2800_register_read
,
883 .write
= rt2800_register_write
,
884 .flags
= RT2X00DEBUGFS_OFFSET
,
885 .word_base
= CSR_REG_BASE
,
886 .word_size
= sizeof(u32
),
887 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
890 .read
= rt2x00_eeprom_read
,
891 .write
= rt2x00_eeprom_write
,
892 .word_base
= EEPROM_BASE
,
893 .word_size
= sizeof(u16
),
894 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
897 .read
= rt2800_bbp_read
,
898 .write
= rt2800_bbp_write
,
899 .word_base
= BBP_BASE
,
900 .word_size
= sizeof(u8
),
901 .word_count
= BBP_SIZE
/ sizeof(u8
),
904 .read
= rt2x00_rf_read
,
905 .write
= rt2800_rf_write
,
906 .word_base
= RF_BASE
,
907 .word_size
= sizeof(u32
),
908 .word_count
= RF_SIZE
/ sizeof(u32
),
911 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug
);
912 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
914 int rt2800_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
918 rt2800_register_read(rt2x00dev
, GPIO_CTRL_CFG
, ®
);
919 return rt2x00_get_field32(reg
, GPIO_CTRL_CFG_BIT2
);
921 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll
);
923 #ifdef CONFIG_RT2X00_LIB_LEDS
924 static void rt2800_brightness_set(struct led_classdev
*led_cdev
,
925 enum led_brightness brightness
)
927 struct rt2x00_led
*led
=
928 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
929 unsigned int enabled
= brightness
!= LED_OFF
;
930 unsigned int bg_mode
=
931 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
932 unsigned int polarity
=
933 rt2x00_get_field16(led
->rt2x00dev
->led_mcu_reg
,
934 EEPROM_FREQ_LED_POLARITY
);
935 unsigned int ledmode
=
936 rt2x00_get_field16(led
->rt2x00dev
->led_mcu_reg
,
937 EEPROM_FREQ_LED_MODE
);
940 /* Check for SoC (SOC devices don't support MCU requests) */
941 if (rt2x00_is_soc(led
->rt2x00dev
)) {
942 rt2800_register_read(led
->rt2x00dev
, LED_CFG
, ®
);
944 /* Set LED Polarity */
945 rt2x00_set_field32(®
, LED_CFG_LED_POLAR
, polarity
);
948 if (led
->type
== LED_TYPE_RADIO
) {
949 rt2x00_set_field32(®
, LED_CFG_G_LED_MODE
,
951 } else if (led
->type
== LED_TYPE_ASSOC
) {
952 rt2x00_set_field32(®
, LED_CFG_Y_LED_MODE
,
954 } else if (led
->type
== LED_TYPE_QUALITY
) {
955 rt2x00_set_field32(®
, LED_CFG_R_LED_MODE
,
959 rt2800_register_write(led
->rt2x00dev
, LED_CFG
, reg
);
962 if (led
->type
== LED_TYPE_RADIO
) {
963 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff, ledmode
,
965 } else if (led
->type
== LED_TYPE_ASSOC
) {
966 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff, ledmode
,
967 enabled
? (bg_mode
? 0x60 : 0xa0) : 0x20);
968 } else if (led
->type
== LED_TYPE_QUALITY
) {
970 * The brightness is divided into 6 levels (0 - 5),
971 * The specs tell us the following levels:
973 * to determine the level in a simple way we can simply
974 * work with bitshifting:
977 rt2800_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
978 (1 << brightness
/ (LED_FULL
/ 6)) - 1,
984 static int rt2800_blink_set(struct led_classdev
*led_cdev
,
985 unsigned long *delay_on
, unsigned long *delay_off
)
987 struct rt2x00_led
*led
=
988 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
991 rt2800_register_read(led
->rt2x00dev
, LED_CFG
, ®
);
992 rt2x00_set_field32(®
, LED_CFG_ON_PERIOD
, *delay_on
);
993 rt2x00_set_field32(®
, LED_CFG_OFF_PERIOD
, *delay_off
);
994 rt2800_register_write(led
->rt2x00dev
, LED_CFG
, reg
);
999 static void rt2800_init_led(struct rt2x00_dev
*rt2x00dev
,
1000 struct rt2x00_led
*led
, enum led_type type
)
1002 led
->rt2x00dev
= rt2x00dev
;
1004 led
->led_dev
.brightness_set
= rt2800_brightness_set
;
1005 led
->led_dev
.blink_set
= rt2800_blink_set
;
1006 led
->flags
= LED_INITIALIZED
;
1008 #endif /* CONFIG_RT2X00_LIB_LEDS */
1011 * Configuration handlers.
1013 static void rt2800_config_wcid_attr(struct rt2x00_dev
*rt2x00dev
,
1014 struct rt2x00lib_crypto
*crypto
,
1015 struct ieee80211_key_conf
*key
)
1017 struct mac_wcid_entry wcid_entry
;
1018 struct mac_iveiv_entry iveiv_entry
;
1022 offset
= MAC_WCID_ATTR_ENTRY(key
->hw_key_idx
);
1024 if (crypto
->cmd
== SET_KEY
) {
1025 rt2800_register_read(rt2x00dev
, offset
, ®
);
1026 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_KEYTAB
,
1027 !!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
));
1029 * Both the cipher as the BSS Idx numbers are split in a main
1030 * value of 3 bits, and a extended field for adding one additional
1033 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_CIPHER
,
1034 (crypto
->cipher
& 0x7));
1035 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_CIPHER_EXT
,
1036 (crypto
->cipher
& 0x8) >> 3);
1037 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_BSS_IDX
,
1038 (crypto
->bssidx
& 0x7));
1039 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT
,
1040 (crypto
->bssidx
& 0x8) >> 3);
1041 rt2x00_set_field32(®
, MAC_WCID_ATTRIBUTE_RX_WIUDF
, crypto
->cipher
);
1042 rt2800_register_write(rt2x00dev
, offset
, reg
);
1044 rt2800_register_write(rt2x00dev
, offset
, 0);
1047 offset
= MAC_IVEIV_ENTRY(key
->hw_key_idx
);
1049 memset(&iveiv_entry
, 0, sizeof(iveiv_entry
));
1050 if ((crypto
->cipher
== CIPHER_TKIP
) ||
1051 (crypto
->cipher
== CIPHER_TKIP_NO_MIC
) ||
1052 (crypto
->cipher
== CIPHER_AES
))
1053 iveiv_entry
.iv
[3] |= 0x20;
1054 iveiv_entry
.iv
[3] |= key
->keyidx
<< 6;
1055 rt2800_register_multiwrite(rt2x00dev
, offset
,
1056 &iveiv_entry
, sizeof(iveiv_entry
));
1058 offset
= MAC_WCID_ENTRY(key
->hw_key_idx
);
1060 memset(&wcid_entry
, 0, sizeof(wcid_entry
));
1061 if (crypto
->cmd
== SET_KEY
)
1062 memcpy(wcid_entry
.mac
, crypto
->address
, ETH_ALEN
);
1063 rt2800_register_multiwrite(rt2x00dev
, offset
,
1064 &wcid_entry
, sizeof(wcid_entry
));
1067 int rt2800_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
1068 struct rt2x00lib_crypto
*crypto
,
1069 struct ieee80211_key_conf
*key
)
1071 struct hw_key_entry key_entry
;
1072 struct rt2x00_field32 field
;
1076 if (crypto
->cmd
== SET_KEY
) {
1077 key
->hw_key_idx
= (4 * crypto
->bssidx
) + key
->keyidx
;
1079 memcpy(key_entry
.key
, crypto
->key
,
1080 sizeof(key_entry
.key
));
1081 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
1082 sizeof(key_entry
.tx_mic
));
1083 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
1084 sizeof(key_entry
.rx_mic
));
1086 offset
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
1087 rt2800_register_multiwrite(rt2x00dev
, offset
,
1088 &key_entry
, sizeof(key_entry
));
1092 * The cipher types are stored over multiple registers
1093 * starting with SHARED_KEY_MODE_BASE each word will have
1094 * 32 bits and contains the cipher types for 2 bssidx each.
1095 * Using the correct defines correctly will cause overhead,
1096 * so just calculate the correct offset.
1098 field
.bit_offset
= 4 * (key
->hw_key_idx
% 8);
1099 field
.bit_mask
= 0x7 << field
.bit_offset
;
1101 offset
= SHARED_KEY_MODE_ENTRY(key
->hw_key_idx
/ 8);
1103 rt2800_register_read(rt2x00dev
, offset
, ®
);
1104 rt2x00_set_field32(®
, field
,
1105 (crypto
->cmd
== SET_KEY
) * crypto
->cipher
);
1106 rt2800_register_write(rt2x00dev
, offset
, reg
);
1109 * Update WCID information
1111 rt2800_config_wcid_attr(rt2x00dev
, crypto
, key
);
1115 EXPORT_SYMBOL_GPL(rt2800_config_shared_key
);
1117 static inline int rt2800_find_pairwise_keyslot(struct rt2x00_dev
*rt2x00dev
)
1123 * Search for the first free pairwise key entry and return the
1124 * corresponding index.
1126 * Make sure the WCID starts _after_ the last possible shared key
1129 * Since parts of the pairwise key table might be shared with
1130 * the beacon frame buffers 6 & 7 we should only write into the
1131 * first 222 entries.
1133 for (idx
= 33; idx
<= 222; idx
++) {
1134 offset
= MAC_WCID_ATTR_ENTRY(idx
);
1135 rt2800_register_read(rt2x00dev
, offset
, ®
);
1142 int rt2800_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
1143 struct rt2x00lib_crypto
*crypto
,
1144 struct ieee80211_key_conf
*key
)
1146 struct hw_key_entry key_entry
;
1150 if (crypto
->cmd
== SET_KEY
) {
1151 idx
= rt2800_find_pairwise_keyslot(rt2x00dev
);
1154 key
->hw_key_idx
= idx
;
1156 memcpy(key_entry
.key
, crypto
->key
,
1157 sizeof(key_entry
.key
));
1158 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
1159 sizeof(key_entry
.tx_mic
));
1160 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
1161 sizeof(key_entry
.rx_mic
));
1163 offset
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
1164 rt2800_register_multiwrite(rt2x00dev
, offset
,
1165 &key_entry
, sizeof(key_entry
));
1169 * Update WCID information
1171 rt2800_config_wcid_attr(rt2x00dev
, crypto
, key
);
1175 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key
);
1177 void rt2800_config_filter(struct rt2x00_dev
*rt2x00dev
,
1178 const unsigned int filter_flags
)
1183 * Start configuration steps.
1184 * Note that the version error will always be dropped
1185 * and broadcast frames will always be accepted since
1186 * there is no filter for it at this time.
1188 rt2800_register_read(rt2x00dev
, RX_FILTER_CFG
, ®
);
1189 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CRC_ERROR
,
1190 !(filter_flags
& FIF_FCSFAIL
));
1191 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_PHY_ERROR
,
1192 !(filter_flags
& FIF_PLCPFAIL
));
1193 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_NOT_TO_ME
,
1194 !(filter_flags
& FIF_PROMISC_IN_BSS
));
1195 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_NOT_MY_BSSD
, 0);
1196 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_VER_ERROR
, 1);
1197 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_MULTICAST
,
1198 !(filter_flags
& FIF_ALLMULTI
));
1199 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BROADCAST
, 0);
1200 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_DUPLICATE
, 1);
1201 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CF_END_ACK
,
1202 !(filter_flags
& FIF_CONTROL
));
1203 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CF_END
,
1204 !(filter_flags
& FIF_CONTROL
));
1205 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_ACK
,
1206 !(filter_flags
& FIF_CONTROL
));
1207 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CTS
,
1208 !(filter_flags
& FIF_CONTROL
));
1209 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_RTS
,
1210 !(filter_flags
& FIF_CONTROL
));
1211 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_PSPOLL
,
1212 !(filter_flags
& FIF_PSPOLL
));
1213 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BA
, 1);
1214 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_BAR
, 0);
1215 rt2x00_set_field32(®
, RX_FILTER_CFG_DROP_CNTL
,
1216 !(filter_flags
& FIF_CONTROL
));
1217 rt2800_register_write(rt2x00dev
, RX_FILTER_CFG
, reg
);
1219 EXPORT_SYMBOL_GPL(rt2800_config_filter
);
1221 void rt2800_config_intf(struct rt2x00_dev
*rt2x00dev
, struct rt2x00_intf
*intf
,
1222 struct rt2x00intf_conf
*conf
, const unsigned int flags
)
1225 bool update_bssid
= false;
1227 if (flags
& CONFIG_UPDATE_TYPE
) {
1229 * Enable synchronisation.
1231 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
1232 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_SYNC
, conf
->sync
);
1233 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
1235 if (conf
->sync
== TSF_SYNC_AP_NONE
) {
1237 * Tune beacon queue transmit parameters for AP mode
1239 rt2800_register_read(rt2x00dev
, TBTT_SYNC_CFG
, ®
);
1240 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_CWMIN
, 0);
1241 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_AIFSN
, 1);
1242 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_EXP_WIN
, 32);
1243 rt2x00_set_field32(®
, TBTT_SYNC_CFG_TBTT_ADJUST
, 0);
1244 rt2800_register_write(rt2x00dev
, TBTT_SYNC_CFG
, reg
);
1246 rt2800_register_read(rt2x00dev
, TBTT_SYNC_CFG
, ®
);
1247 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_CWMIN
, 4);
1248 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_AIFSN
, 2);
1249 rt2x00_set_field32(®
, TBTT_SYNC_CFG_BCN_EXP_WIN
, 32);
1250 rt2x00_set_field32(®
, TBTT_SYNC_CFG_TBTT_ADJUST
, 16);
1251 rt2800_register_write(rt2x00dev
, TBTT_SYNC_CFG
, reg
);
1255 if (flags
& CONFIG_UPDATE_MAC
) {
1256 if (flags
& CONFIG_UPDATE_TYPE
&&
1257 conf
->sync
== TSF_SYNC_AP_NONE
) {
1259 * The BSSID register has to be set to our own mac
1260 * address in AP mode.
1262 memcpy(conf
->bssid
, conf
->mac
, sizeof(conf
->mac
));
1263 update_bssid
= true;
1266 if (!is_zero_ether_addr((const u8
*)conf
->mac
)) {
1267 reg
= le32_to_cpu(conf
->mac
[1]);
1268 rt2x00_set_field32(®
, MAC_ADDR_DW1_UNICAST_TO_ME_MASK
, 0xff);
1269 conf
->mac
[1] = cpu_to_le32(reg
);
1272 rt2800_register_multiwrite(rt2x00dev
, MAC_ADDR_DW0
,
1273 conf
->mac
, sizeof(conf
->mac
));
1276 if ((flags
& CONFIG_UPDATE_BSSID
) || update_bssid
) {
1277 if (!is_zero_ether_addr((const u8
*)conf
->bssid
)) {
1278 reg
= le32_to_cpu(conf
->bssid
[1]);
1279 rt2x00_set_field32(®
, MAC_BSSID_DW1_BSS_ID_MASK
, 3);
1280 rt2x00_set_field32(®
, MAC_BSSID_DW1_BSS_BCN_NUM
, 7);
1281 conf
->bssid
[1] = cpu_to_le32(reg
);
1284 rt2800_register_multiwrite(rt2x00dev
, MAC_BSSID_DW0
,
1285 conf
->bssid
, sizeof(conf
->bssid
));
1288 EXPORT_SYMBOL_GPL(rt2800_config_intf
);
1290 static void rt2800_config_ht_opmode(struct rt2x00_dev
*rt2x00dev
,
1291 struct rt2x00lib_erp
*erp
)
1293 bool any_sta_nongf
= !!(erp
->ht_opmode
&
1294 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT
);
1295 u8 protection
= erp
->ht_opmode
& IEEE80211_HT_OP_MODE_PROTECTION
;
1296 u8 mm20_mode
, mm40_mode
, gf20_mode
, gf40_mode
;
1297 u16 mm20_rate
, mm40_rate
, gf20_rate
, gf40_rate
;
1300 /* default protection rate for HT20: OFDM 24M */
1301 mm20_rate
= gf20_rate
= 0x4004;
1303 /* default protection rate for HT40: duplicate OFDM 24M */
1304 mm40_rate
= gf40_rate
= 0x4084;
1306 switch (protection
) {
1307 case IEEE80211_HT_OP_MODE_PROTECTION_NONE
:
1309 * All STAs in this BSS are HT20/40 but there might be
1310 * STAs not supporting greenfield mode.
1311 * => Disable protection for HT transmissions.
1313 mm20_mode
= mm40_mode
= gf20_mode
= gf40_mode
= 0;
1316 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ
:
1318 * All STAs in this BSS are HT20 or HT20/40 but there
1319 * might be STAs not supporting greenfield mode.
1320 * => Protect all HT40 transmissions.
1322 mm20_mode
= gf20_mode
= 0;
1323 mm40_mode
= gf40_mode
= 2;
1326 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER
:
1328 * Nonmember protection:
1329 * According to 802.11n we _should_ protect all
1330 * HT transmissions (but we don't have to).
1332 * But if cts_protection is enabled we _shall_ protect
1333 * all HT transmissions using a CCK rate.
1335 * And if any station is non GF we _shall_ protect
1338 * We decide to protect everything
1339 * -> fall through to mixed mode.
1341 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED
:
1343 * Legacy STAs are present
1344 * => Protect all HT transmissions.
1346 mm20_mode
= mm40_mode
= gf20_mode
= gf40_mode
= 2;
1349 * If erp protection is needed we have to protect HT
1350 * transmissions with CCK 11M long preamble.
1352 if (erp
->cts_protection
) {
1353 /* don't duplicate RTS/CTS in CCK mode */
1354 mm20_rate
= mm40_rate
= 0x0003;
1355 gf20_rate
= gf40_rate
= 0x0003;
1360 /* check for STAs not supporting greenfield mode */
1362 gf20_mode
= gf40_mode
= 2;
1364 /* Update HT protection config */
1365 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
1366 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_RATE
, mm20_rate
);
1367 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_CTRL
, mm20_mode
);
1368 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
1370 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
1371 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_RATE
, mm40_rate
);
1372 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_CTRL
, mm40_mode
);
1373 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
1375 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
1376 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_RATE
, gf20_rate
);
1377 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_CTRL
, gf20_mode
);
1378 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
1380 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
1381 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_RATE
, gf40_rate
);
1382 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_CTRL
, gf40_mode
);
1383 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
1386 void rt2800_config_erp(struct rt2x00_dev
*rt2x00dev
, struct rt2x00lib_erp
*erp
,
1391 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
1392 rt2800_register_read(rt2x00dev
, AUTO_RSP_CFG
, ®
);
1393 rt2x00_set_field32(®
, AUTO_RSP_CFG_BAC_ACK_POLICY
,
1394 !!erp
->short_preamble
);
1395 rt2x00_set_field32(®
, AUTO_RSP_CFG_AR_PREAMBLE
,
1396 !!erp
->short_preamble
);
1397 rt2800_register_write(rt2x00dev
, AUTO_RSP_CFG
, reg
);
1400 if (changed
& BSS_CHANGED_ERP_CTS_PROT
) {
1401 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
1402 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_CTRL
,
1403 erp
->cts_protection
? 2 : 0);
1404 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
1407 if (changed
& BSS_CHANGED_BASIC_RATES
) {
1408 rt2800_register_write(rt2x00dev
, LEGACY_BASIC_RATE
,
1410 rt2800_register_write(rt2x00dev
, HT_BASIC_RATE
, 0x00008003);
1413 if (changed
& BSS_CHANGED_ERP_SLOT
) {
1414 rt2800_register_read(rt2x00dev
, BKOFF_SLOT_CFG
, ®
);
1415 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_SLOT_TIME
,
1417 rt2800_register_write(rt2x00dev
, BKOFF_SLOT_CFG
, reg
);
1419 rt2800_register_read(rt2x00dev
, XIFS_TIME_CFG
, ®
);
1420 rt2x00_set_field32(®
, XIFS_TIME_CFG_EIFS
, erp
->eifs
);
1421 rt2800_register_write(rt2x00dev
, XIFS_TIME_CFG
, reg
);
1424 if (changed
& BSS_CHANGED_BEACON_INT
) {
1425 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
1426 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
1427 erp
->beacon_int
* 16);
1428 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
1431 if (changed
& BSS_CHANGED_HT
)
1432 rt2800_config_ht_opmode(rt2x00dev
, erp
);
1434 EXPORT_SYMBOL_GPL(rt2800_config_erp
);
1436 static void rt2800_set_ant_diversity(struct rt2x00_dev
*rt2x00dev
,
1440 u8 eesk_pin
= (ant
== ANTENNA_A
) ? 1 : 0;
1441 u8 gpio_bit3
= (ant
== ANTENNA_A
) ? 0 : 1;
1443 if (rt2x00_is_pci(rt2x00dev
)) {
1444 rt2800_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
1445 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
, eesk_pin
);
1446 rt2800_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
1447 } else if (rt2x00_is_usb(rt2x00dev
))
1448 rt2800_mcu_request(rt2x00dev
, MCU_ANT_SELECT
, 0xff,
1451 rt2800_register_read(rt2x00dev
, GPIO_CTRL_CFG
, ®
);
1452 rt2x00_set_field32(®
, GPIO_CTRL_CFG_GPIOD_BIT3
, 0);
1453 rt2x00_set_field32(®
, GPIO_CTRL_CFG_BIT3
, gpio_bit3
);
1454 rt2800_register_write(rt2x00dev
, GPIO_CTRL_CFG
, reg
);
1457 void rt2800_config_ant(struct rt2x00_dev
*rt2x00dev
, struct antenna_setup
*ant
)
1463 rt2800_bbp_read(rt2x00dev
, 1, &r1
);
1464 rt2800_bbp_read(rt2x00dev
, 3, &r3
);
1467 * Configure the TX antenna.
1469 switch (ant
->tx_chain_num
) {
1471 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 0);
1474 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 2);
1477 rt2x00_set_field8(&r1
, BBP1_TX_ANTENNA
, 0);
1482 * Configure the RX antenna.
1484 switch (ant
->rx_chain_num
) {
1486 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
1487 rt2x00_rt(rt2x00dev
, RT3090
) ||
1488 rt2x00_rt(rt2x00dev
, RT3390
)) {
1489 rt2x00_eeprom_read(rt2x00dev
,
1490 EEPROM_NIC_CONF1
, &eeprom
);
1491 if (rt2x00_get_field16(eeprom
,
1492 EEPROM_NIC_CONF1_ANT_DIVERSITY
))
1493 rt2800_set_ant_diversity(rt2x00dev
,
1494 rt2x00dev
->default_ant
.rx
);
1496 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 0);
1499 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 1);
1502 rt2x00_set_field8(&r3
, BBP3_RX_ANTENNA
, 2);
1506 rt2800_bbp_write(rt2x00dev
, 3, r3
);
1507 rt2800_bbp_write(rt2x00dev
, 1, r1
);
1509 EXPORT_SYMBOL_GPL(rt2800_config_ant
);
1511 static void rt2800_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
1512 struct rt2x00lib_conf
*libconf
)
1517 if (libconf
->rf
.channel
<= 14) {
1518 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &eeprom
);
1519 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_LNA_BG
);
1520 } else if (libconf
->rf
.channel
<= 64) {
1521 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &eeprom
);
1522 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_LNA_A0
);
1523 } else if (libconf
->rf
.channel
<= 128) {
1524 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &eeprom
);
1525 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_BG2_LNA_A1
);
1527 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &eeprom
);
1528 lna_gain
= rt2x00_get_field16(eeprom
, EEPROM_RSSI_A2_LNA_A2
);
1531 rt2x00dev
->lna_gain
= lna_gain
;
1534 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev
*rt2x00dev
,
1535 struct ieee80211_conf
*conf
,
1536 struct rf_channel
*rf
,
1537 struct channel_info
*info
)
1539 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
1541 if (rt2x00dev
->default_ant
.tx_chain_num
== 1)
1542 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_TX1
, 1);
1544 if (rt2x00dev
->default_ant
.rx_chain_num
== 1) {
1545 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX1
, 1);
1546 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX2
, 1);
1547 } else if (rt2x00dev
->default_ant
.rx_chain_num
== 2)
1548 rt2x00_set_field32(&rf
->rf2
, RF2_ANTENNA_RX2
, 1);
1550 if (rf
->channel
> 14) {
1552 * When TX power is below 0, we should increase it by 7 to
1553 * make it a positive value (Minimum value is -7).
1554 * However this means that values between 0 and 7 have
1555 * double meaning, and we should set a 7DBm boost flag.
1557 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_A_7DBM_BOOST
,
1558 (info
->default_power1
>= 0));
1560 if (info
->default_power1
< 0)
1561 info
->default_power1
+= 7;
1563 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_A
, info
->default_power1
);
1565 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_A_7DBM_BOOST
,
1566 (info
->default_power2
>= 0));
1568 if (info
->default_power2
< 0)
1569 info
->default_power2
+= 7;
1571 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_A
, info
->default_power2
);
1573 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER_G
, info
->default_power1
);
1574 rt2x00_set_field32(&rf
->rf4
, RF4_TXPOWER_G
, info
->default_power2
);
1577 rt2x00_set_field32(&rf
->rf4
, RF4_HT40
, conf_is_ht40(conf
));
1579 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1580 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1581 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
1582 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1586 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1587 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1588 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
1589 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1593 rt2800_rf_write(rt2x00dev
, 1, rf
->rf1
);
1594 rt2800_rf_write(rt2x00dev
, 2, rf
->rf2
);
1595 rt2800_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
1596 rt2800_rf_write(rt2x00dev
, 4, rf
->rf4
);
1599 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev
*rt2x00dev
,
1600 struct ieee80211_conf
*conf
,
1601 struct rf_channel
*rf
,
1602 struct channel_info
*info
)
1606 rt2800_rfcsr_write(rt2x00dev
, 2, rf
->rf1
);
1607 rt2800_rfcsr_write(rt2x00dev
, 3, rf
->rf3
);
1609 rt2800_rfcsr_read(rt2x00dev
, 6, &rfcsr
);
1610 rt2x00_set_field8(&rfcsr
, RFCSR6_R1
, rf
->rf2
);
1611 rt2800_rfcsr_write(rt2x00dev
, 6, rfcsr
);
1613 rt2800_rfcsr_read(rt2x00dev
, 12, &rfcsr
);
1614 rt2x00_set_field8(&rfcsr
, RFCSR12_TX_POWER
, info
->default_power1
);
1615 rt2800_rfcsr_write(rt2x00dev
, 12, rfcsr
);
1617 rt2800_rfcsr_read(rt2x00dev
, 13, &rfcsr
);
1618 rt2x00_set_field8(&rfcsr
, RFCSR13_TX_POWER
, info
->default_power2
);
1619 rt2800_rfcsr_write(rt2x00dev
, 13, rfcsr
);
1621 rt2800_rfcsr_read(rt2x00dev
, 23, &rfcsr
);
1622 rt2x00_set_field8(&rfcsr
, RFCSR23_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
1623 rt2800_rfcsr_write(rt2x00dev
, 23, rfcsr
);
1625 rt2800_rfcsr_write(rt2x00dev
, 24,
1626 rt2x00dev
->calibration
[conf_is_ht40(conf
)]);
1628 rt2800_rfcsr_read(rt2x00dev
, 7, &rfcsr
);
1629 rt2x00_set_field8(&rfcsr
, RFCSR7_RF_TUNING
, 1);
1630 rt2800_rfcsr_write(rt2x00dev
, 7, rfcsr
);
1634 #define RT5390_POWER_BOUND 0x27
1635 #define RT5390_FREQ_OFFSET_BOUND 0x5f
1637 static void rt2800_config_channel_rf53xx(struct rt2x00_dev
*rt2x00dev
,
1638 struct ieee80211_conf
*conf
,
1639 struct rf_channel
*rf
,
1640 struct channel_info
*info
)
1644 rt2800_rfcsr_write(rt2x00dev
, 8, rf
->rf1
);
1645 rt2800_rfcsr_write(rt2x00dev
, 9, rf
->rf3
);
1646 rt2800_rfcsr_read(rt2x00dev
, 11, &rfcsr
);
1647 rt2x00_set_field8(&rfcsr
, RFCSR11_R
, rf
->rf2
);
1648 rt2800_rfcsr_write(rt2x00dev
, 11, rfcsr
);
1650 rt2800_rfcsr_read(rt2x00dev
, 49, &rfcsr
);
1651 if (info
->default_power1
> RT5390_POWER_BOUND
)
1652 rt2x00_set_field8(&rfcsr
, RFCSR49_TX
, RT5390_POWER_BOUND
);
1654 rt2x00_set_field8(&rfcsr
, RFCSR49_TX
, info
->default_power1
);
1655 rt2800_rfcsr_write(rt2x00dev
, 49, rfcsr
);
1657 rt2800_rfcsr_read(rt2x00dev
, 1, &rfcsr
);
1658 rt2x00_set_field8(&rfcsr
, RFCSR1_RF_BLOCK_EN
, 1);
1659 rt2x00_set_field8(&rfcsr
, RFCSR1_PLL_PD
, 1);
1660 rt2x00_set_field8(&rfcsr
, RFCSR1_RX0_PD
, 1);
1661 rt2x00_set_field8(&rfcsr
, RFCSR1_TX0_PD
, 1);
1662 rt2800_rfcsr_write(rt2x00dev
, 1, rfcsr
);
1664 rt2800_rfcsr_read(rt2x00dev
, 17, &rfcsr
);
1665 if (rt2x00dev
->freq_offset
> RT5390_FREQ_OFFSET_BOUND
)
1666 rt2x00_set_field8(&rfcsr
, RFCSR17_CODE
,
1667 RT5390_FREQ_OFFSET_BOUND
);
1669 rt2x00_set_field8(&rfcsr
, RFCSR17_CODE
, rt2x00dev
->freq_offset
);
1670 rt2800_rfcsr_write(rt2x00dev
, 17, rfcsr
);
1672 if (rf
->channel
<= 14) {
1673 int idx
= rf
->channel
-1;
1675 if (test_bit(CAPABILITY_BT_COEXIST
, &rt2x00dev
->cap_flags
)) {
1676 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
)) {
1677 /* r55/r59 value array of channel 1~14 */
1678 static const char r55_bt_rev
[] = {0x83, 0x83,
1679 0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
1680 0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
1681 static const char r59_bt_rev
[] = {0x0e, 0x0e,
1682 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
1683 0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
1685 rt2800_rfcsr_write(rt2x00dev
, 55,
1687 rt2800_rfcsr_write(rt2x00dev
, 59,
1690 static const char r59_bt
[] = {0x8b, 0x8b, 0x8b,
1691 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
1692 0x88, 0x88, 0x86, 0x85, 0x84};
1694 rt2800_rfcsr_write(rt2x00dev
, 59, r59_bt
[idx
]);
1697 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
)) {
1698 static const char r55_nonbt_rev
[] = {0x23, 0x23,
1699 0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
1700 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
1701 static const char r59_nonbt_rev
[] = {0x07, 0x07,
1702 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
1703 0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
1705 rt2800_rfcsr_write(rt2x00dev
, 55,
1706 r55_nonbt_rev
[idx
]);
1707 rt2800_rfcsr_write(rt2x00dev
, 59,
1708 r59_nonbt_rev
[idx
]);
1709 } else if (rt2x00_rt(rt2x00dev
, RT5390
)) {
1710 static const char r59_non_bt
[] = {0x8f, 0x8f,
1711 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
1712 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
1714 rt2800_rfcsr_write(rt2x00dev
, 59,
1720 rt2800_rfcsr_read(rt2x00dev
, 30, &rfcsr
);
1721 rt2x00_set_field8(&rfcsr
, RFCSR30_TX_H20M
, 0);
1722 rt2x00_set_field8(&rfcsr
, RFCSR30_RX_H20M
, 0);
1723 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
1725 rt2800_rfcsr_read(rt2x00dev
, 3, &rfcsr
);
1726 rt2x00_set_field8(&rfcsr
, RFCSR30_RF_CALIBRATION
, 1);
1727 rt2800_rfcsr_write(rt2x00dev
, 3, rfcsr
);
1730 static void rt2800_config_channel(struct rt2x00_dev
*rt2x00dev
,
1731 struct ieee80211_conf
*conf
,
1732 struct rf_channel
*rf
,
1733 struct channel_info
*info
)
1736 unsigned int tx_pin
;
1739 if (rf
->channel
<= 14) {
1740 info
->default_power1
= TXPOWER_G_TO_DEV(info
->default_power1
);
1741 info
->default_power2
= TXPOWER_G_TO_DEV(info
->default_power2
);
1743 info
->default_power1
= TXPOWER_A_TO_DEV(info
->default_power1
);
1744 info
->default_power2
= TXPOWER_A_TO_DEV(info
->default_power2
);
1747 if (rt2x00_rf(rt2x00dev
, RF2020
) ||
1748 rt2x00_rf(rt2x00dev
, RF3020
) ||
1749 rt2x00_rf(rt2x00dev
, RF3021
) ||
1750 rt2x00_rf(rt2x00dev
, RF3022
) ||
1751 rt2x00_rf(rt2x00dev
, RF3052
) ||
1752 rt2x00_rf(rt2x00dev
, RF3320
))
1753 rt2800_config_channel_rf3xxx(rt2x00dev
, conf
, rf
, info
);
1754 else if (rt2x00_rf(rt2x00dev
, RF5370
) ||
1755 rt2x00_rf(rt2x00dev
, RF5390
))
1756 rt2800_config_channel_rf53xx(rt2x00dev
, conf
, rf
, info
);
1758 rt2800_config_channel_rf2xxx(rt2x00dev
, conf
, rf
, info
);
1761 * Change BBP settings
1763 rt2800_bbp_write(rt2x00dev
, 62, 0x37 - rt2x00dev
->lna_gain
);
1764 rt2800_bbp_write(rt2x00dev
, 63, 0x37 - rt2x00dev
->lna_gain
);
1765 rt2800_bbp_write(rt2x00dev
, 64, 0x37 - rt2x00dev
->lna_gain
);
1766 rt2800_bbp_write(rt2x00dev
, 86, 0);
1768 if (rf
->channel
<= 14) {
1769 if (!rt2x00_rt(rt2x00dev
, RT5390
)) {
1770 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG
,
1771 &rt2x00dev
->cap_flags
)) {
1772 rt2800_bbp_write(rt2x00dev
, 82, 0x62);
1773 rt2800_bbp_write(rt2x00dev
, 75, 0x46);
1775 rt2800_bbp_write(rt2x00dev
, 82, 0x84);
1776 rt2800_bbp_write(rt2x00dev
, 75, 0x50);
1780 rt2800_bbp_write(rt2x00dev
, 82, 0xf2);
1782 if (test_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
))
1783 rt2800_bbp_write(rt2x00dev
, 75, 0x46);
1785 rt2800_bbp_write(rt2x00dev
, 75, 0x50);
1788 rt2800_register_read(rt2x00dev
, TX_BAND_CFG
, ®
);
1789 rt2x00_set_field32(®
, TX_BAND_CFG_HT40_MINUS
, conf_is_ht40_minus(conf
));
1790 rt2x00_set_field32(®
, TX_BAND_CFG_A
, rf
->channel
> 14);
1791 rt2x00_set_field32(®
, TX_BAND_CFG_BG
, rf
->channel
<= 14);
1792 rt2800_register_write(rt2x00dev
, TX_BAND_CFG
, reg
);
1796 /* Turn on unused PA or LNA when not using 1T or 1R */
1797 if (rt2x00dev
->default_ant
.tx_chain_num
== 2) {
1798 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_A1_EN
, 1);
1799 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_G1_EN
, 1);
1802 /* Turn on unused PA or LNA when not using 1T or 1R */
1803 if (rt2x00dev
->default_ant
.rx_chain_num
== 2) {
1804 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_A1_EN
, 1);
1805 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_G1_EN
, 1);
1808 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_A0_EN
, 1);
1809 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_LNA_PE_G0_EN
, 1);
1810 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_RFTR_EN
, 1);
1811 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_TRSW_EN
, 1);
1812 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_G0_EN
, rf
->channel
<= 14);
1813 rt2x00_set_field32(&tx_pin
, TX_PIN_CFG_PA_PE_A0_EN
, rf
->channel
> 14);
1815 rt2800_register_write(rt2x00dev
, TX_PIN_CFG
, tx_pin
);
1817 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
1818 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 2 * conf_is_ht40(conf
));
1819 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
1821 rt2800_bbp_read(rt2x00dev
, 3, &bbp
);
1822 rt2x00_set_field8(&bbp
, BBP3_HT40_MINUS
, conf_is_ht40_minus(conf
));
1823 rt2800_bbp_write(rt2x00dev
, 3, bbp
);
1825 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
)) {
1826 if (conf_is_ht40(conf
)) {
1827 rt2800_bbp_write(rt2x00dev
, 69, 0x1a);
1828 rt2800_bbp_write(rt2x00dev
, 70, 0x0a);
1829 rt2800_bbp_write(rt2x00dev
, 73, 0x16);
1831 rt2800_bbp_write(rt2x00dev
, 69, 0x16);
1832 rt2800_bbp_write(rt2x00dev
, 70, 0x08);
1833 rt2800_bbp_write(rt2x00dev
, 73, 0x11);
1840 * Clear channel statistic counters
1842 rt2800_register_read(rt2x00dev
, CH_IDLE_STA
, ®
);
1843 rt2800_register_read(rt2x00dev
, CH_BUSY_STA
, ®
);
1844 rt2800_register_read(rt2x00dev
, CH_BUSY_STA_SEC
, ®
);
1847 static int rt2800_get_gain_calibration_delta(struct rt2x00_dev
*rt2x00dev
)
1856 * Read TSSI boundaries for temperature compensation from
1859 * Array idx 0 1 2 3 4 5 6 7 8
1860 * Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
1861 * Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
1863 if (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
) {
1864 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_BG1
, &eeprom
);
1865 tssi_bounds
[0] = rt2x00_get_field16(eeprom
,
1866 EEPROM_TSSI_BOUND_BG1_MINUS4
);
1867 tssi_bounds
[1] = rt2x00_get_field16(eeprom
,
1868 EEPROM_TSSI_BOUND_BG1_MINUS3
);
1870 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_BG2
, &eeprom
);
1871 tssi_bounds
[2] = rt2x00_get_field16(eeprom
,
1872 EEPROM_TSSI_BOUND_BG2_MINUS2
);
1873 tssi_bounds
[3] = rt2x00_get_field16(eeprom
,
1874 EEPROM_TSSI_BOUND_BG2_MINUS1
);
1876 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_BG3
, &eeprom
);
1877 tssi_bounds
[4] = rt2x00_get_field16(eeprom
,
1878 EEPROM_TSSI_BOUND_BG3_REF
);
1879 tssi_bounds
[5] = rt2x00_get_field16(eeprom
,
1880 EEPROM_TSSI_BOUND_BG3_PLUS1
);
1882 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_BG4
, &eeprom
);
1883 tssi_bounds
[6] = rt2x00_get_field16(eeprom
,
1884 EEPROM_TSSI_BOUND_BG4_PLUS2
);
1885 tssi_bounds
[7] = rt2x00_get_field16(eeprom
,
1886 EEPROM_TSSI_BOUND_BG4_PLUS3
);
1888 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_BG5
, &eeprom
);
1889 tssi_bounds
[8] = rt2x00_get_field16(eeprom
,
1890 EEPROM_TSSI_BOUND_BG5_PLUS4
);
1892 step
= rt2x00_get_field16(eeprom
,
1893 EEPROM_TSSI_BOUND_BG5_AGC_STEP
);
1895 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_A1
, &eeprom
);
1896 tssi_bounds
[0] = rt2x00_get_field16(eeprom
,
1897 EEPROM_TSSI_BOUND_A1_MINUS4
);
1898 tssi_bounds
[1] = rt2x00_get_field16(eeprom
,
1899 EEPROM_TSSI_BOUND_A1_MINUS3
);
1901 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_A2
, &eeprom
);
1902 tssi_bounds
[2] = rt2x00_get_field16(eeprom
,
1903 EEPROM_TSSI_BOUND_A2_MINUS2
);
1904 tssi_bounds
[3] = rt2x00_get_field16(eeprom
,
1905 EEPROM_TSSI_BOUND_A2_MINUS1
);
1907 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_A3
, &eeprom
);
1908 tssi_bounds
[4] = rt2x00_get_field16(eeprom
,
1909 EEPROM_TSSI_BOUND_A3_REF
);
1910 tssi_bounds
[5] = rt2x00_get_field16(eeprom
,
1911 EEPROM_TSSI_BOUND_A3_PLUS1
);
1913 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_A4
, &eeprom
);
1914 tssi_bounds
[6] = rt2x00_get_field16(eeprom
,
1915 EEPROM_TSSI_BOUND_A4_PLUS2
);
1916 tssi_bounds
[7] = rt2x00_get_field16(eeprom
,
1917 EEPROM_TSSI_BOUND_A4_PLUS3
);
1919 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TSSI_BOUND_A5
, &eeprom
);
1920 tssi_bounds
[8] = rt2x00_get_field16(eeprom
,
1921 EEPROM_TSSI_BOUND_A5_PLUS4
);
1923 step
= rt2x00_get_field16(eeprom
,
1924 EEPROM_TSSI_BOUND_A5_AGC_STEP
);
1928 * Check if temperature compensation is supported.
1930 if (tssi_bounds
[4] == 0xff)
1934 * Read current TSSI (BBP 49).
1936 rt2800_bbp_read(rt2x00dev
, 49, ¤t_tssi
);
1939 * Compare TSSI value (BBP49) with the compensation boundaries
1940 * from the EEPROM and increase or decrease tx power.
1942 for (i
= 0; i
<= 3; i
++) {
1943 if (current_tssi
> tssi_bounds
[i
])
1948 for (i
= 8; i
>= 5; i
--) {
1949 if (current_tssi
< tssi_bounds
[i
])
1954 return (i
- 4) * step
;
1957 static int rt2800_get_txpower_bw_comp(struct rt2x00_dev
*rt2x00dev
,
1958 enum ieee80211_band band
)
1965 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXPOWER_DELTA
, &eeprom
);
1968 * HT40 compensation not required.
1970 if (eeprom
== 0xffff ||
1971 !test_bit(CONFIG_CHANNEL_HT40
, &rt2x00dev
->flags
))
1974 if (band
== IEEE80211_BAND_2GHZ
) {
1975 comp_en
= rt2x00_get_field16(eeprom
,
1976 EEPROM_TXPOWER_DELTA_ENABLE_2G
);
1978 comp_type
= rt2x00_get_field16(eeprom
,
1979 EEPROM_TXPOWER_DELTA_TYPE_2G
);
1980 comp_value
= rt2x00_get_field16(eeprom
,
1981 EEPROM_TXPOWER_DELTA_VALUE_2G
);
1983 comp_value
= -comp_value
;
1986 comp_en
= rt2x00_get_field16(eeprom
,
1987 EEPROM_TXPOWER_DELTA_ENABLE_5G
);
1989 comp_type
= rt2x00_get_field16(eeprom
,
1990 EEPROM_TXPOWER_DELTA_TYPE_5G
);
1991 comp_value
= rt2x00_get_field16(eeprom
,
1992 EEPROM_TXPOWER_DELTA_VALUE_5G
);
1994 comp_value
= -comp_value
;
2001 static u8
rt2800_compensate_txpower(struct rt2x00_dev
*rt2x00dev
, int is_rate_b
,
2002 enum ieee80211_band band
, int power_level
,
2003 u8 txpower
, int delta
)
2009 u8 eirp_txpower_criterion
;
2012 if (!((band
== IEEE80211_BAND_5GHZ
) && is_rate_b
))
2015 if (test_bit(CAPABILITY_POWER_LIMIT
, &rt2x00dev
->cap_flags
)) {
2017 * Check if eirp txpower exceed txpower_limit.
2018 * We use OFDM 6M as criterion and its eirp txpower
2019 * is stored at EEPROM_EIRP_MAX_TX_POWER.
2020 * .11b data rate need add additional 4dbm
2021 * when calculating eirp txpower.
2023 rt2800_register_read(rt2x00dev
, TX_PWR_CFG_0
, ®
);
2024 criterion
= rt2x00_get_field32(reg
, TX_PWR_CFG_0_6MBS
);
2026 rt2x00_eeprom_read(rt2x00dev
,
2027 EEPROM_EIRP_MAX_TX_POWER
, &eeprom
);
2029 if (band
== IEEE80211_BAND_2GHZ
)
2030 eirp_txpower_criterion
= rt2x00_get_field16(eeprom
,
2031 EEPROM_EIRP_MAX_TX_POWER_2GHZ
);
2033 eirp_txpower_criterion
= rt2x00_get_field16(eeprom
,
2034 EEPROM_EIRP_MAX_TX_POWER_5GHZ
);
2036 eirp_txpower
= eirp_txpower_criterion
+ (txpower
- criterion
) +
2037 (is_rate_b
? 4 : 0) + delta
;
2039 reg_limit
= (eirp_txpower
> power_level
) ?
2040 (eirp_txpower
- power_level
) : 0;
2044 return txpower
+ delta
- reg_limit
;
2047 static void rt2800_config_txpower(struct rt2x00_dev
*rt2x00dev
,
2048 enum ieee80211_band band
,
2060 * Calculate HT40 compensation delta
2062 delta
= rt2800_get_txpower_bw_comp(rt2x00dev
, band
);
2065 * calculate temperature compensation delta
2067 delta
+= rt2800_get_gain_calibration_delta(rt2x00dev
);
2070 * set to normal bbp tx power control mode: +/- 0dBm
2072 rt2800_bbp_read(rt2x00dev
, 1, &r1
);
2073 rt2x00_set_field8(&r1
, BBP1_TX_POWER_CTRL
, 0);
2074 rt2800_bbp_write(rt2x00dev
, 1, r1
);
2075 offset
= TX_PWR_CFG_0
;
2077 for (i
= 0; i
< EEPROM_TXPOWER_BYRATE_SIZE
; i
+= 2) {
2078 /* just to be safe */
2079 if (offset
> TX_PWR_CFG_4
)
2082 rt2800_register_read(rt2x00dev
, offset
, ®
);
2084 /* read the next four txpower values */
2085 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXPOWER_BYRATE
+ i
,
2088 is_rate_b
= i
? 0 : 1;
2090 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
2091 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
2092 * TX_PWR_CFG_4: unknown
2094 txpower
= rt2x00_get_field16(eeprom
,
2095 EEPROM_TXPOWER_BYRATE_RATE0
);
2096 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2097 power_level
, txpower
, delta
);
2098 rt2x00_set_field32(®
, TX_PWR_CFG_RATE0
, txpower
);
2101 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
2102 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
2103 * TX_PWR_CFG_4: unknown
2105 txpower
= rt2x00_get_field16(eeprom
,
2106 EEPROM_TXPOWER_BYRATE_RATE1
);
2107 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2108 power_level
, txpower
, delta
);
2109 rt2x00_set_field32(®
, TX_PWR_CFG_RATE1
, txpower
);
2112 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
2113 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
2114 * TX_PWR_CFG_4: unknown
2116 txpower
= rt2x00_get_field16(eeprom
,
2117 EEPROM_TXPOWER_BYRATE_RATE2
);
2118 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2119 power_level
, txpower
, delta
);
2120 rt2x00_set_field32(®
, TX_PWR_CFG_RATE2
, txpower
);
2123 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
2124 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
2125 * TX_PWR_CFG_4: unknown
2127 txpower
= rt2x00_get_field16(eeprom
,
2128 EEPROM_TXPOWER_BYRATE_RATE3
);
2129 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2130 power_level
, txpower
, delta
);
2131 rt2x00_set_field32(®
, TX_PWR_CFG_RATE3
, txpower
);
2133 /* read the next four txpower values */
2134 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXPOWER_BYRATE
+ i
+ 1,
2139 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
2140 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
2141 * TX_PWR_CFG_4: unknown
2143 txpower
= rt2x00_get_field16(eeprom
,
2144 EEPROM_TXPOWER_BYRATE_RATE0
);
2145 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2146 power_level
, txpower
, delta
);
2147 rt2x00_set_field32(®
, TX_PWR_CFG_RATE4
, txpower
);
2150 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
2151 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
2152 * TX_PWR_CFG_4: unknown
2154 txpower
= rt2x00_get_field16(eeprom
,
2155 EEPROM_TXPOWER_BYRATE_RATE1
);
2156 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2157 power_level
, txpower
, delta
);
2158 rt2x00_set_field32(®
, TX_PWR_CFG_RATE5
, txpower
);
2161 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
2162 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
2163 * TX_PWR_CFG_4: unknown
2165 txpower
= rt2x00_get_field16(eeprom
,
2166 EEPROM_TXPOWER_BYRATE_RATE2
);
2167 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2168 power_level
, txpower
, delta
);
2169 rt2x00_set_field32(®
, TX_PWR_CFG_RATE6
, txpower
);
2172 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
2173 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
2174 * TX_PWR_CFG_4: unknown
2176 txpower
= rt2x00_get_field16(eeprom
,
2177 EEPROM_TXPOWER_BYRATE_RATE3
);
2178 txpower
= rt2800_compensate_txpower(rt2x00dev
, is_rate_b
, band
,
2179 power_level
, txpower
, delta
);
2180 rt2x00_set_field32(®
, TX_PWR_CFG_RATE7
, txpower
);
2182 rt2800_register_write(rt2x00dev
, offset
, reg
);
2184 /* next TX_PWR_CFG register */
2189 void rt2800_gain_calibration(struct rt2x00_dev
*rt2x00dev
)
2191 rt2800_config_txpower(rt2x00dev
, rt2x00dev
->curr_band
,
2192 rt2x00dev
->tx_power
);
2194 EXPORT_SYMBOL_GPL(rt2800_gain_calibration
);
2196 static void rt2800_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
2197 struct rt2x00lib_conf
*libconf
)
2201 rt2800_register_read(rt2x00dev
, TX_RTY_CFG
, ®
);
2202 rt2x00_set_field32(®
, TX_RTY_CFG_SHORT_RTY_LIMIT
,
2203 libconf
->conf
->short_frame_max_tx_count
);
2204 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_LIMIT
,
2205 libconf
->conf
->long_frame_max_tx_count
);
2206 rt2800_register_write(rt2x00dev
, TX_RTY_CFG
, reg
);
2209 static void rt2800_config_ps(struct rt2x00_dev
*rt2x00dev
,
2210 struct rt2x00lib_conf
*libconf
)
2212 enum dev_state state
=
2213 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
2214 STATE_SLEEP
: STATE_AWAKE
;
2217 if (state
== STATE_SLEEP
) {
2218 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, 0);
2220 rt2800_register_read(rt2x00dev
, AUTOWAKEUP_CFG
, ®
);
2221 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTO_LEAD_TIME
, 5);
2222 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE
,
2223 libconf
->conf
->listen_interval
- 1);
2224 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTOWAKE
, 1);
2225 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, reg
);
2227 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
2229 rt2800_register_read(rt2x00dev
, AUTOWAKEUP_CFG
, ®
);
2230 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTO_LEAD_TIME
, 0);
2231 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE
, 0);
2232 rt2x00_set_field32(®
, AUTOWAKEUP_CFG_AUTOWAKE
, 0);
2233 rt2800_register_write(rt2x00dev
, AUTOWAKEUP_CFG
, reg
);
2235 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, state
);
2239 void rt2800_config(struct rt2x00_dev
*rt2x00dev
,
2240 struct rt2x00lib_conf
*libconf
,
2241 const unsigned int flags
)
2243 /* Always recalculate LNA gain before changing configuration */
2244 rt2800_config_lna_gain(rt2x00dev
, libconf
);
2246 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
) {
2247 rt2800_config_channel(rt2x00dev
, libconf
->conf
,
2248 &libconf
->rf
, &libconf
->channel
);
2249 rt2800_config_txpower(rt2x00dev
, libconf
->conf
->channel
->band
,
2250 libconf
->conf
->power_level
);
2252 if (flags
& IEEE80211_CONF_CHANGE_POWER
)
2253 rt2800_config_txpower(rt2x00dev
, libconf
->conf
->channel
->band
,
2254 libconf
->conf
->power_level
);
2255 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
2256 rt2800_config_retry_limit(rt2x00dev
, libconf
);
2257 if (flags
& IEEE80211_CONF_CHANGE_PS
)
2258 rt2800_config_ps(rt2x00dev
, libconf
);
2260 EXPORT_SYMBOL_GPL(rt2800_config
);
2265 void rt2800_link_stats(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
)
2270 * Update FCS error count from register.
2272 rt2800_register_read(rt2x00dev
, RX_STA_CNT0
, ®
);
2273 qual
->rx_failed
= rt2x00_get_field32(reg
, RX_STA_CNT0_CRC_ERR
);
2275 EXPORT_SYMBOL_GPL(rt2800_link_stats
);
2277 static u8
rt2800_get_default_vgc(struct rt2x00_dev
*rt2x00dev
)
2279 if (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
) {
2280 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
2281 rt2x00_rt(rt2x00dev
, RT3071
) ||
2282 rt2x00_rt(rt2x00dev
, RT3090
) ||
2283 rt2x00_rt(rt2x00dev
, RT3390
) ||
2284 rt2x00_rt(rt2x00dev
, RT5390
))
2285 return 0x1c + (2 * rt2x00dev
->lna_gain
);
2287 return 0x2e + rt2x00dev
->lna_gain
;
2290 if (!test_bit(CONFIG_CHANNEL_HT40
, &rt2x00dev
->flags
))
2291 return 0x32 + (rt2x00dev
->lna_gain
* 5) / 3;
2293 return 0x3a + (rt2x00dev
->lna_gain
* 5) / 3;
2296 static inline void rt2800_set_vgc(struct rt2x00_dev
*rt2x00dev
,
2297 struct link_qual
*qual
, u8 vgc_level
)
2299 if (qual
->vgc_level
!= vgc_level
) {
2300 rt2800_bbp_write(rt2x00dev
, 66, vgc_level
);
2301 qual
->vgc_level
= vgc_level
;
2302 qual
->vgc_level_reg
= vgc_level
;
2306 void rt2800_reset_tuner(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
)
2308 rt2800_set_vgc(rt2x00dev
, qual
, rt2800_get_default_vgc(rt2x00dev
));
2310 EXPORT_SYMBOL_GPL(rt2800_reset_tuner
);
2312 void rt2800_link_tuner(struct rt2x00_dev
*rt2x00dev
, struct link_qual
*qual
,
2315 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
))
2319 * When RSSI is better then -80 increase VGC level with 0x10
2321 rt2800_set_vgc(rt2x00dev
, qual
,
2322 rt2800_get_default_vgc(rt2x00dev
) +
2323 ((qual
->rssi
> -80) * 0x10));
2325 EXPORT_SYMBOL_GPL(rt2800_link_tuner
);
2328 * Initialization functions.
2330 static int rt2800_init_registers(struct rt2x00_dev
*rt2x00dev
)
2337 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
2338 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
2339 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
2340 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
2341 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
2342 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
2343 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
2345 ret
= rt2800_drv_init_registers(rt2x00dev
);
2349 rt2800_register_read(rt2x00dev
, BCN_OFFSET0
, ®
);
2350 rt2x00_set_field32(®
, BCN_OFFSET0_BCN0
, 0xe0); /* 0x3800 */
2351 rt2x00_set_field32(®
, BCN_OFFSET0_BCN1
, 0xe8); /* 0x3a00 */
2352 rt2x00_set_field32(®
, BCN_OFFSET0_BCN2
, 0xf0); /* 0x3c00 */
2353 rt2x00_set_field32(®
, BCN_OFFSET0_BCN3
, 0xf8); /* 0x3e00 */
2354 rt2800_register_write(rt2x00dev
, BCN_OFFSET0
, reg
);
2356 rt2800_register_read(rt2x00dev
, BCN_OFFSET1
, ®
);
2357 rt2x00_set_field32(®
, BCN_OFFSET1_BCN4
, 0xc8); /* 0x3200 */
2358 rt2x00_set_field32(®
, BCN_OFFSET1_BCN5
, 0xd0); /* 0x3400 */
2359 rt2x00_set_field32(®
, BCN_OFFSET1_BCN6
, 0x77); /* 0x1dc0 */
2360 rt2x00_set_field32(®
, BCN_OFFSET1_BCN7
, 0x6f); /* 0x1bc0 */
2361 rt2800_register_write(rt2x00dev
, BCN_OFFSET1
, reg
);
2363 rt2800_register_write(rt2x00dev
, LEGACY_BASIC_RATE
, 0x0000013f);
2364 rt2800_register_write(rt2x00dev
, HT_BASIC_RATE
, 0x00008003);
2366 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
2368 rt2800_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
2369 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
, 1600);
2370 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
2371 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_SYNC
, 0);
2372 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
2373 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
2374 rt2x00_set_field32(®
, BCN_TIME_CFG_TX_TIME_COMPENSATE
, 0);
2375 rt2800_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
2377 rt2800_config_filter(rt2x00dev
, FIF_ALLMULTI
);
2379 rt2800_register_read(rt2x00dev
, BKOFF_SLOT_CFG
, ®
);
2380 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_SLOT_TIME
, 9);
2381 rt2x00_set_field32(®
, BKOFF_SLOT_CFG_CC_DELAY_TIME
, 2);
2382 rt2800_register_write(rt2x00dev
, BKOFF_SLOT_CFG
, reg
);
2384 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2385 rt2x00_rt(rt2x00dev
, RT3090
) ||
2386 rt2x00_rt(rt2x00dev
, RT3390
)) {
2387 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
2388 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
2389 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2390 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
2391 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
)) {
2392 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
2393 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_DAC_TEST
))
2394 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
,
2397 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
,
2400 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000000);
2402 } else if (rt2x00_rt(rt2x00dev
, RT3070
)) {
2403 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
2405 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
)) {
2406 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
2407 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x0000002c);
2409 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00080606);
2410 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000000);
2412 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
2413 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000400);
2414 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00000000);
2415 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000030);
2416 } else if (rt2x00_rt(rt2x00dev
, RT5390
)) {
2417 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000404);
2418 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00080606);
2419 rt2800_register_write(rt2x00dev
, TX_SW_CFG2
, 0x00000000);
2421 rt2800_register_write(rt2x00dev
, TX_SW_CFG0
, 0x00000000);
2422 rt2800_register_write(rt2x00dev
, TX_SW_CFG1
, 0x00080606);
2425 rt2800_register_read(rt2x00dev
, TX_LINK_CFG
, ®
);
2426 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFB_LIFETIME
, 32);
2427 rt2x00_set_field32(®
, TX_LINK_CFG_MFB_ENABLE
, 0);
2428 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_UMFS_ENABLE
, 0);
2429 rt2x00_set_field32(®
, TX_LINK_CFG_TX_MRQ_EN
, 0);
2430 rt2x00_set_field32(®
, TX_LINK_CFG_TX_RDG_EN
, 0);
2431 rt2x00_set_field32(®
, TX_LINK_CFG_TX_CF_ACK_EN
, 1);
2432 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFB
, 0);
2433 rt2x00_set_field32(®
, TX_LINK_CFG_REMOTE_MFS
, 0);
2434 rt2800_register_write(rt2x00dev
, TX_LINK_CFG
, reg
);
2436 rt2800_register_read(rt2x00dev
, TX_TIMEOUT_CFG
, ®
);
2437 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_MPDU_LIFETIME
, 9);
2438 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT
, 32);
2439 rt2x00_set_field32(®
, TX_TIMEOUT_CFG_TX_OP_TIMEOUT
, 10);
2440 rt2800_register_write(rt2x00dev
, TX_TIMEOUT_CFG
, reg
);
2442 rt2800_register_read(rt2x00dev
, MAX_LEN_CFG
, ®
);
2443 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_MPDU
, AGGREGATION_SIZE
);
2444 if (rt2x00_rt_rev_gte(rt2x00dev
, RT2872
, REV_RT2872E
) ||
2445 rt2x00_rt(rt2x00dev
, RT2883
) ||
2446 rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070E
))
2447 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_PSDU
, 2);
2449 rt2x00_set_field32(®
, MAX_LEN_CFG_MAX_PSDU
, 1);
2450 rt2x00_set_field32(®
, MAX_LEN_CFG_MIN_PSDU
, 0);
2451 rt2x00_set_field32(®
, MAX_LEN_CFG_MIN_MPDU
, 0);
2452 rt2800_register_write(rt2x00dev
, MAX_LEN_CFG
, reg
);
2454 rt2800_register_read(rt2x00dev
, LED_CFG
, ®
);
2455 rt2x00_set_field32(®
, LED_CFG_ON_PERIOD
, 70);
2456 rt2x00_set_field32(®
, LED_CFG_OFF_PERIOD
, 30);
2457 rt2x00_set_field32(®
, LED_CFG_SLOW_BLINK_PERIOD
, 3);
2458 rt2x00_set_field32(®
, LED_CFG_R_LED_MODE
, 3);
2459 rt2x00_set_field32(®
, LED_CFG_G_LED_MODE
, 3);
2460 rt2x00_set_field32(®
, LED_CFG_Y_LED_MODE
, 3);
2461 rt2x00_set_field32(®
, LED_CFG_LED_POLAR
, 1);
2462 rt2800_register_write(rt2x00dev
, LED_CFG
, reg
);
2464 rt2800_register_write(rt2x00dev
, PBF_MAX_PCNT
, 0x1f3fbf9f);
2466 rt2800_register_read(rt2x00dev
, TX_RTY_CFG
, ®
);
2467 rt2x00_set_field32(®
, TX_RTY_CFG_SHORT_RTY_LIMIT
, 15);
2468 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_LIMIT
, 31);
2469 rt2x00_set_field32(®
, TX_RTY_CFG_LONG_RTY_THRE
, 2000);
2470 rt2x00_set_field32(®
, TX_RTY_CFG_NON_AGG_RTY_MODE
, 0);
2471 rt2x00_set_field32(®
, TX_RTY_CFG_AGG_RTY_MODE
, 0);
2472 rt2x00_set_field32(®
, TX_RTY_CFG_TX_AUTO_FB_ENABLE
, 1);
2473 rt2800_register_write(rt2x00dev
, TX_RTY_CFG
, reg
);
2475 rt2800_register_read(rt2x00dev
, AUTO_RSP_CFG
, ®
);
2476 rt2x00_set_field32(®
, AUTO_RSP_CFG_AUTORESPONDER
, 1);
2477 rt2x00_set_field32(®
, AUTO_RSP_CFG_BAC_ACK_POLICY
, 1);
2478 rt2x00_set_field32(®
, AUTO_RSP_CFG_CTS_40_MMODE
, 0);
2479 rt2x00_set_field32(®
, AUTO_RSP_CFG_CTS_40_MREF
, 0);
2480 rt2x00_set_field32(®
, AUTO_RSP_CFG_AR_PREAMBLE
, 1);
2481 rt2x00_set_field32(®
, AUTO_RSP_CFG_DUAL_CTS_EN
, 0);
2482 rt2x00_set_field32(®
, AUTO_RSP_CFG_ACK_CTS_PSM_BIT
, 0);
2483 rt2800_register_write(rt2x00dev
, AUTO_RSP_CFG
, reg
);
2485 rt2800_register_read(rt2x00dev
, CCK_PROT_CFG
, ®
);
2486 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_RATE
, 3);
2487 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_CTRL
, 0);
2488 rt2x00_set_field32(®
, CCK_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2489 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2490 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2491 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2492 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2493 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2494 rt2x00_set_field32(®
, CCK_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2495 rt2x00_set_field32(®
, CCK_PROT_CFG_RTS_TH_EN
, 1);
2496 rt2800_register_write(rt2x00dev
, CCK_PROT_CFG
, reg
);
2498 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
2499 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_RATE
, 3);
2500 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_CTRL
, 0);
2501 rt2x00_set_field32(®
, OFDM_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2502 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2503 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2504 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2505 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2506 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2507 rt2x00_set_field32(®
, OFDM_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2508 rt2x00_set_field32(®
, OFDM_PROT_CFG_RTS_TH_EN
, 1);
2509 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
2511 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
2512 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_RATE
, 0x4004);
2513 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_CTRL
, 0);
2514 rt2x00_set_field32(®
, MM20_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2515 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2516 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2517 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2518 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2519 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2520 rt2x00_set_field32(®
, MM20_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2521 rt2x00_set_field32(®
, MM20_PROT_CFG_RTS_TH_EN
, 0);
2522 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
2524 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
2525 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_RATE
, 0x4084);
2526 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_CTRL
, 0);
2527 rt2x00_set_field32(®
, MM40_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2528 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2529 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2530 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2531 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_MM40
, 1);
2532 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2533 rt2x00_set_field32(®
, MM40_PROT_CFG_TX_OP_ALLOW_GF40
, 1);
2534 rt2x00_set_field32(®
, MM40_PROT_CFG_RTS_TH_EN
, 0);
2535 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
2537 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
2538 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_RATE
, 0x4004);
2539 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_CTRL
, 0);
2540 rt2x00_set_field32(®
, GF20_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2541 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2542 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2543 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2544 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_MM40
, 0);
2545 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2546 rt2x00_set_field32(®
, GF20_PROT_CFG_TX_OP_ALLOW_GF40
, 0);
2547 rt2x00_set_field32(®
, GF20_PROT_CFG_RTS_TH_EN
, 0);
2548 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
2550 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
2551 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_RATE
, 0x4084);
2552 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_CTRL
, 0);
2553 rt2x00_set_field32(®
, GF40_PROT_CFG_PROTECT_NAV_SHORT
, 1);
2554 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_CCK
, 1);
2555 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_OFDM
, 1);
2556 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_MM20
, 1);
2557 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_MM40
, 1);
2558 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_GF20
, 1);
2559 rt2x00_set_field32(®
, GF40_PROT_CFG_TX_OP_ALLOW_GF40
, 1);
2560 rt2x00_set_field32(®
, GF40_PROT_CFG_RTS_TH_EN
, 0);
2561 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
2563 if (rt2x00_is_usb(rt2x00dev
)) {
2564 rt2800_register_write(rt2x00dev
, PBF_CFG
, 0xf40006);
2566 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
2567 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
2568 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_DMA_BUSY
, 0);
2569 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
2570 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_DMA_BUSY
, 0);
2571 rt2x00_set_field32(®
, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE
, 3);
2572 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 0);
2573 rt2x00_set_field32(®
, WPDMA_GLO_CFG_BIG_ENDIAN
, 0);
2574 rt2x00_set_field32(®
, WPDMA_GLO_CFG_RX_HDR_SCATTER
, 0);
2575 rt2x00_set_field32(®
, WPDMA_GLO_CFG_HDR_SEG_LEN
, 0);
2576 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
2580 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2581 * although it is reserved.
2583 rt2800_register_read(rt2x00dev
, TXOP_CTRL_CFG
, ®
);
2584 rt2x00_set_field32(®
, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN
, 1);
2585 rt2x00_set_field32(®
, TXOP_CTRL_CFG_AC_TRUN_EN
, 1);
2586 rt2x00_set_field32(®
, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN
, 1);
2587 rt2x00_set_field32(®
, TXOP_CTRL_CFG_USER_MODE_TRUN_EN
, 1);
2588 rt2x00_set_field32(®
, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN
, 1);
2589 rt2x00_set_field32(®
, TXOP_CTRL_CFG_RESERVED_TRUN_EN
, 1);
2590 rt2x00_set_field32(®
, TXOP_CTRL_CFG_LSIG_TXOP_EN
, 0);
2591 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CCA_EN
, 0);
2592 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CCA_DLY
, 88);
2593 rt2x00_set_field32(®
, TXOP_CTRL_CFG_EXT_CWMIN
, 0);
2594 rt2800_register_write(rt2x00dev
, TXOP_CTRL_CFG
, reg
);
2596 rt2800_register_write(rt2x00dev
, TXOP_HLDR_ET
, 0x00000002);
2598 rt2800_register_read(rt2x00dev
, TX_RTS_CFG
, ®
);
2599 rt2x00_set_field32(®
, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT
, 32);
2600 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_THRES
,
2601 IEEE80211_MAX_RTS_THRESHOLD
);
2602 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_FBK_EN
, 0);
2603 rt2800_register_write(rt2x00dev
, TX_RTS_CFG
, reg
);
2605 rt2800_register_write(rt2x00dev
, EXP_ACK_TIME
, 0x002400ca);
2608 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2609 * time should be set to 16. However, the original Ralink driver uses
2610 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2611 * connection problems with 11g + CTS protection. Hence, use the same
2612 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2614 rt2800_register_read(rt2x00dev
, XIFS_TIME_CFG
, ®
);
2615 rt2x00_set_field32(®
, XIFS_TIME_CFG_CCKM_SIFS_TIME
, 16);
2616 rt2x00_set_field32(®
, XIFS_TIME_CFG_OFDM_SIFS_TIME
, 16);
2617 rt2x00_set_field32(®
, XIFS_TIME_CFG_OFDM_XIFS_TIME
, 4);
2618 rt2x00_set_field32(®
, XIFS_TIME_CFG_EIFS
, 314);
2619 rt2x00_set_field32(®
, XIFS_TIME_CFG_BB_RXEND_ENABLE
, 1);
2620 rt2800_register_write(rt2x00dev
, XIFS_TIME_CFG
, reg
);
2622 rt2800_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
2625 * ASIC will keep garbage value after boot, clear encryption keys.
2627 for (i
= 0; i
< 4; i
++)
2628 rt2800_register_write(rt2x00dev
,
2629 SHARED_KEY_MODE_ENTRY(i
), 0);
2631 for (i
= 0; i
< 256; i
++) {
2632 static const u32 wcid
[2] = { 0xffffffff, 0x00ffffff };
2633 rt2800_register_multiwrite(rt2x00dev
, MAC_WCID_ENTRY(i
),
2634 wcid
, sizeof(wcid
));
2636 rt2800_register_write(rt2x00dev
, MAC_WCID_ATTR_ENTRY(i
), 0);
2637 rt2800_register_write(rt2x00dev
, MAC_IVEIV_ENTRY(i
), 0);
2643 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE0
);
2644 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE1
);
2645 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE2
);
2646 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE3
);
2647 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE4
);
2648 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE5
);
2649 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE6
);
2650 rt2800_clear_beacon_register(rt2x00dev
, HW_BEACON_BASE7
);
2652 if (rt2x00_is_usb(rt2x00dev
)) {
2653 rt2800_register_read(rt2x00dev
, US_CYC_CNT
, ®
);
2654 rt2x00_set_field32(®
, US_CYC_CNT_CLOCK_CYCLE
, 30);
2655 rt2800_register_write(rt2x00dev
, US_CYC_CNT
, reg
);
2656 } else if (rt2x00_is_pcie(rt2x00dev
)) {
2657 rt2800_register_read(rt2x00dev
, US_CYC_CNT
, ®
);
2658 rt2x00_set_field32(®
, US_CYC_CNT_CLOCK_CYCLE
, 125);
2659 rt2800_register_write(rt2x00dev
, US_CYC_CNT
, reg
);
2662 rt2800_register_read(rt2x00dev
, HT_FBK_CFG0
, ®
);
2663 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS0FBK
, 0);
2664 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS1FBK
, 0);
2665 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS2FBK
, 1);
2666 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS3FBK
, 2);
2667 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS4FBK
, 3);
2668 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS5FBK
, 4);
2669 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS6FBK
, 5);
2670 rt2x00_set_field32(®
, HT_FBK_CFG0_HTMCS7FBK
, 6);
2671 rt2800_register_write(rt2x00dev
, HT_FBK_CFG0
, reg
);
2673 rt2800_register_read(rt2x00dev
, HT_FBK_CFG1
, ®
);
2674 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS8FBK
, 8);
2675 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS9FBK
, 8);
2676 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS10FBK
, 9);
2677 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS11FBK
, 10);
2678 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS12FBK
, 11);
2679 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS13FBK
, 12);
2680 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS14FBK
, 13);
2681 rt2x00_set_field32(®
, HT_FBK_CFG1_HTMCS15FBK
, 14);
2682 rt2800_register_write(rt2x00dev
, HT_FBK_CFG1
, reg
);
2684 rt2800_register_read(rt2x00dev
, LG_FBK_CFG0
, ®
);
2685 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS0FBK
, 8);
2686 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS1FBK
, 8);
2687 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS2FBK
, 9);
2688 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS3FBK
, 10);
2689 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS4FBK
, 11);
2690 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS5FBK
, 12);
2691 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS6FBK
, 13);
2692 rt2x00_set_field32(®
, LG_FBK_CFG0_OFDMMCS7FBK
, 14);
2693 rt2800_register_write(rt2x00dev
, LG_FBK_CFG0
, reg
);
2695 rt2800_register_read(rt2x00dev
, LG_FBK_CFG1
, ®
);
2696 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS0FBK
, 0);
2697 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS1FBK
, 0);
2698 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS2FBK
, 1);
2699 rt2x00_set_field32(®
, LG_FBK_CFG0_CCKMCS3FBK
, 2);
2700 rt2800_register_write(rt2x00dev
, LG_FBK_CFG1
, reg
);
2703 * Do not force the BA window size, we use the TXWI to set it
2705 rt2800_register_read(rt2x00dev
, AMPDU_BA_WINSIZE
, ®
);
2706 rt2x00_set_field32(®
, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE
, 0);
2707 rt2x00_set_field32(®
, AMPDU_BA_WINSIZE_FORCE_WINSIZE
, 0);
2708 rt2800_register_write(rt2x00dev
, AMPDU_BA_WINSIZE
, reg
);
2711 * We must clear the error counters.
2712 * These registers are cleared on read,
2713 * so we may pass a useless variable to store the value.
2715 rt2800_register_read(rt2x00dev
, RX_STA_CNT0
, ®
);
2716 rt2800_register_read(rt2x00dev
, RX_STA_CNT1
, ®
);
2717 rt2800_register_read(rt2x00dev
, RX_STA_CNT2
, ®
);
2718 rt2800_register_read(rt2x00dev
, TX_STA_CNT0
, ®
);
2719 rt2800_register_read(rt2x00dev
, TX_STA_CNT1
, ®
);
2720 rt2800_register_read(rt2x00dev
, TX_STA_CNT2
, ®
);
2723 * Setup leadtime for pre tbtt interrupt to 6ms
2725 rt2800_register_read(rt2x00dev
, INT_TIMER_CFG
, ®
);
2726 rt2x00_set_field32(®
, INT_TIMER_CFG_PRE_TBTT_TIMER
, 6 << 4);
2727 rt2800_register_write(rt2x00dev
, INT_TIMER_CFG
, reg
);
2730 * Set up channel statistics timer
2732 rt2800_register_read(rt2x00dev
, CH_TIME_CFG
, ®
);
2733 rt2x00_set_field32(®
, CH_TIME_CFG_EIFS_BUSY
, 1);
2734 rt2x00_set_field32(®
, CH_TIME_CFG_NAV_BUSY
, 1);
2735 rt2x00_set_field32(®
, CH_TIME_CFG_RX_BUSY
, 1);
2736 rt2x00_set_field32(®
, CH_TIME_CFG_TX_BUSY
, 1);
2737 rt2x00_set_field32(®
, CH_TIME_CFG_TMR_EN
, 1);
2738 rt2800_register_write(rt2x00dev
, CH_TIME_CFG
, reg
);
2743 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev
*rt2x00dev
)
2748 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
2749 rt2800_register_read(rt2x00dev
, MAC_STATUS_CFG
, ®
);
2750 if (!rt2x00_get_field32(reg
, MAC_STATUS_CFG_BBP_RF_BUSY
))
2753 udelay(REGISTER_BUSY_DELAY
);
2756 ERROR(rt2x00dev
, "BBP/RF register access failed, aborting.\n");
2760 static int rt2800_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
2766 * BBP was enabled after firmware was loaded,
2767 * but we need to reactivate it now.
2769 rt2800_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
2770 rt2800_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
2773 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
2774 rt2800_bbp_read(rt2x00dev
, 0, &value
);
2775 if ((value
!= 0xff) && (value
!= 0x00))
2777 udelay(REGISTER_BUSY_DELAY
);
2780 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
2784 static int rt2800_init_bbp(struct rt2x00_dev
*rt2x00dev
)
2791 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev
) ||
2792 rt2800_wait_bbp_ready(rt2x00dev
)))
2795 if (rt2x00_rt(rt2x00dev
, RT5390
)) {
2796 rt2800_bbp_read(rt2x00dev
, 4, &value
);
2797 rt2x00_set_field8(&value
, BBP4_MAC_IF_CTRL
, 1);
2798 rt2800_bbp_write(rt2x00dev
, 4, value
);
2801 if (rt2800_is_305x_soc(rt2x00dev
) ||
2802 rt2x00_rt(rt2x00dev
, RT5390
))
2803 rt2800_bbp_write(rt2x00dev
, 31, 0x08);
2805 rt2800_bbp_write(rt2x00dev
, 65, 0x2c);
2806 rt2800_bbp_write(rt2x00dev
, 66, 0x38);
2808 if (rt2x00_rt(rt2x00dev
, RT5390
))
2809 rt2800_bbp_write(rt2x00dev
, 68, 0x0b);
2811 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860C
)) {
2812 rt2800_bbp_write(rt2x00dev
, 69, 0x16);
2813 rt2800_bbp_write(rt2x00dev
, 73, 0x12);
2814 } else if (rt2x00_rt(rt2x00dev
, RT5390
)) {
2815 rt2800_bbp_write(rt2x00dev
, 69, 0x12);
2816 rt2800_bbp_write(rt2x00dev
, 73, 0x13);
2817 rt2800_bbp_write(rt2x00dev
, 75, 0x46);
2818 rt2800_bbp_write(rt2x00dev
, 76, 0x28);
2819 rt2800_bbp_write(rt2x00dev
, 77, 0x59);
2821 rt2800_bbp_write(rt2x00dev
, 69, 0x12);
2822 rt2800_bbp_write(rt2x00dev
, 73, 0x10);
2825 rt2800_bbp_write(rt2x00dev
, 70, 0x0a);
2827 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
2828 rt2x00_rt(rt2x00dev
, RT3071
) ||
2829 rt2x00_rt(rt2x00dev
, RT3090
) ||
2830 rt2x00_rt(rt2x00dev
, RT3390
) ||
2831 rt2x00_rt(rt2x00dev
, RT5390
)) {
2832 rt2800_bbp_write(rt2x00dev
, 79, 0x13);
2833 rt2800_bbp_write(rt2x00dev
, 80, 0x05);
2834 rt2800_bbp_write(rt2x00dev
, 81, 0x33);
2835 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
2836 rt2800_bbp_write(rt2x00dev
, 78, 0x0e);
2837 rt2800_bbp_write(rt2x00dev
, 80, 0x08);
2839 rt2800_bbp_write(rt2x00dev
, 81, 0x37);
2842 rt2800_bbp_write(rt2x00dev
, 82, 0x62);
2843 if (rt2x00_rt(rt2x00dev
, RT5390
))
2844 rt2800_bbp_write(rt2x00dev
, 83, 0x7a);
2846 rt2800_bbp_write(rt2x00dev
, 83, 0x6a);
2848 if (rt2x00_rt_rev(rt2x00dev
, RT2860
, REV_RT2860D
))
2849 rt2800_bbp_write(rt2x00dev
, 84, 0x19);
2850 else if (rt2x00_rt(rt2x00dev
, RT5390
))
2851 rt2800_bbp_write(rt2x00dev
, 84, 0x9a);
2853 rt2800_bbp_write(rt2x00dev
, 84, 0x99);
2855 if (rt2x00_rt(rt2x00dev
, RT5390
))
2856 rt2800_bbp_write(rt2x00dev
, 86, 0x38);
2858 rt2800_bbp_write(rt2x00dev
, 86, 0x00);
2860 rt2800_bbp_write(rt2x00dev
, 91, 0x04);
2862 if (rt2x00_rt(rt2x00dev
, RT5390
))
2863 rt2800_bbp_write(rt2x00dev
, 92, 0x02);
2865 rt2800_bbp_write(rt2x00dev
, 92, 0x00);
2867 if (rt2x00_rt_rev_gte(rt2x00dev
, RT3070
, REV_RT3070F
) ||
2868 rt2x00_rt_rev_gte(rt2x00dev
, RT3071
, REV_RT3071E
) ||
2869 rt2x00_rt_rev_gte(rt2x00dev
, RT3090
, REV_RT3090E
) ||
2870 rt2x00_rt_rev_gte(rt2x00dev
, RT3390
, REV_RT3390E
) ||
2871 rt2x00_rt(rt2x00dev
, RT5390
) ||
2872 rt2800_is_305x_soc(rt2x00dev
))
2873 rt2800_bbp_write(rt2x00dev
, 103, 0xc0);
2875 rt2800_bbp_write(rt2x00dev
, 103, 0x00);
2877 if (rt2x00_rt(rt2x00dev
, RT5390
))
2878 rt2800_bbp_write(rt2x00dev
, 104, 0x92);
2880 if (rt2800_is_305x_soc(rt2x00dev
))
2881 rt2800_bbp_write(rt2x00dev
, 105, 0x01);
2882 else if (rt2x00_rt(rt2x00dev
, RT5390
))
2883 rt2800_bbp_write(rt2x00dev
, 105, 0x3c);
2885 rt2800_bbp_write(rt2x00dev
, 105, 0x05);
2887 if (rt2x00_rt(rt2x00dev
, RT5390
))
2888 rt2800_bbp_write(rt2x00dev
, 106, 0x03);
2890 rt2800_bbp_write(rt2x00dev
, 106, 0x35);
2892 if (rt2x00_rt(rt2x00dev
, RT5390
))
2893 rt2800_bbp_write(rt2x00dev
, 128, 0x12);
2895 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
2896 rt2x00_rt(rt2x00dev
, RT3090
) ||
2897 rt2x00_rt(rt2x00dev
, RT3390
) ||
2898 rt2x00_rt(rt2x00dev
, RT5390
)) {
2899 rt2800_bbp_read(rt2x00dev
, 138, &value
);
2901 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
2902 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) == 1)
2904 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) == 1)
2907 rt2800_bbp_write(rt2x00dev
, 138, value
);
2910 if (rt2x00_rt(rt2x00dev
, RT5390
)) {
2913 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
2914 div_mode
= rt2x00_get_field16(eeprom
,
2915 EEPROM_NIC_CONF1_ANT_DIVERSITY
);
2916 ant
= (div_mode
== 3) ? 1 : 0;
2918 /* check if this is a Bluetooth combo card */
2919 if (test_bit(CAPABILITY_BT_COEXIST
, &rt2x00dev
->cap_flags
)) {
2922 rt2800_register_read(rt2x00dev
, GPIO_CTRL_CFG
, ®
);
2923 rt2x00_set_field32(®
, GPIO_CTRL_CFG_GPIOD_BIT3
, 0);
2924 rt2x00_set_field32(®
, GPIO_CTRL_CFG_GPIOD_BIT6
, 0);
2925 rt2x00_set_field32(®
, GPIO_CTRL_CFG_BIT3
, 0);
2926 rt2x00_set_field32(®
, GPIO_CTRL_CFG_BIT6
, 0);
2928 rt2x00_set_field32(®
, GPIO_CTRL_CFG_BIT3
, 1);
2930 rt2x00_set_field32(®
, GPIO_CTRL_CFG_BIT6
, 1);
2931 rt2800_register_write(rt2x00dev
, GPIO_CTRL_CFG
, reg
);
2934 rt2800_bbp_read(rt2x00dev
, 152, &value
);
2936 rt2x00_set_field8(&value
, BBP152_RX_DEFAULT_ANT
, 1);
2938 rt2x00_set_field8(&value
, BBP152_RX_DEFAULT_ANT
, 0);
2939 rt2800_bbp_write(rt2x00dev
, 152, value
);
2941 /* Init frequency calibration */
2942 rt2800_bbp_write(rt2x00dev
, 142, 1);
2943 rt2800_bbp_write(rt2x00dev
, 143, 57);
2946 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
2947 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
2949 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
2950 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
2951 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
2952 rt2800_bbp_write(rt2x00dev
, reg_id
, value
);
2959 static u8
rt2800_init_rx_filter(struct rt2x00_dev
*rt2x00dev
,
2960 bool bw40
, u8 rfcsr24
, u8 filter_target
)
2969 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
2971 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
2972 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 2 * bw40
);
2973 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
2975 rt2800_rfcsr_read(rt2x00dev
, 31, &rfcsr
);
2976 rt2x00_set_field8(&rfcsr
, RFCSR31_RX_H20M
, bw40
);
2977 rt2800_rfcsr_write(rt2x00dev
, 31, rfcsr
);
2979 rt2800_rfcsr_read(rt2x00dev
, 22, &rfcsr
);
2980 rt2x00_set_field8(&rfcsr
, RFCSR22_BASEBAND_LOOPBACK
, 1);
2981 rt2800_rfcsr_write(rt2x00dev
, 22, rfcsr
);
2984 * Set power & frequency of passband test tone
2986 rt2800_bbp_write(rt2x00dev
, 24, 0);
2988 for (i
= 0; i
< 100; i
++) {
2989 rt2800_bbp_write(rt2x00dev
, 25, 0x90);
2992 rt2800_bbp_read(rt2x00dev
, 55, &passband
);
2998 * Set power & frequency of stopband test tone
3000 rt2800_bbp_write(rt2x00dev
, 24, 0x06);
3002 for (i
= 0; i
< 100; i
++) {
3003 rt2800_bbp_write(rt2x00dev
, 25, 0x90);
3006 rt2800_bbp_read(rt2x00dev
, 55, &stopband
);
3008 if ((passband
- stopband
) <= filter_target
) {
3010 overtuned
+= ((passband
- stopband
) == filter_target
);
3014 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
3017 rfcsr24
-= !!overtuned
;
3019 rt2800_rfcsr_write(rt2x00dev
, 24, rfcsr24
);
3023 static int rt2800_init_rfcsr(struct rt2x00_dev
*rt2x00dev
)
3030 if (!rt2x00_rt(rt2x00dev
, RT3070
) &&
3031 !rt2x00_rt(rt2x00dev
, RT3071
) &&
3032 !rt2x00_rt(rt2x00dev
, RT3090
) &&
3033 !rt2x00_rt(rt2x00dev
, RT3390
) &&
3034 !rt2x00_rt(rt2x00dev
, RT5390
) &&
3035 !rt2800_is_305x_soc(rt2x00dev
))
3039 * Init RF calibration.
3041 if (rt2x00_rt(rt2x00dev
, RT5390
)) {
3042 rt2800_rfcsr_read(rt2x00dev
, 2, &rfcsr
);
3043 rt2x00_set_field8(&rfcsr
, RFCSR2_RESCAL_EN
, 1);
3044 rt2800_rfcsr_write(rt2x00dev
, 2, rfcsr
);
3046 rt2x00_set_field8(&rfcsr
, RFCSR2_RESCAL_EN
, 0);
3047 rt2800_rfcsr_write(rt2x00dev
, 2, rfcsr
);
3049 rt2800_rfcsr_read(rt2x00dev
, 30, &rfcsr
);
3050 rt2x00_set_field8(&rfcsr
, RFCSR30_RF_CALIBRATION
, 1);
3051 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
3053 rt2x00_set_field8(&rfcsr
, RFCSR30_RF_CALIBRATION
, 0);
3054 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
3057 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
3058 rt2x00_rt(rt2x00dev
, RT3071
) ||
3059 rt2x00_rt(rt2x00dev
, RT3090
)) {
3060 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
3061 rt2800_rfcsr_write(rt2x00dev
, 5, 0x03);
3062 rt2800_rfcsr_write(rt2x00dev
, 6, 0x02);
3063 rt2800_rfcsr_write(rt2x00dev
, 7, 0x60);
3064 rt2800_rfcsr_write(rt2x00dev
, 9, 0x0f);
3065 rt2800_rfcsr_write(rt2x00dev
, 10, 0x41);
3066 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
3067 rt2800_rfcsr_write(rt2x00dev
, 12, 0x7b);
3068 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
3069 rt2800_rfcsr_write(rt2x00dev
, 15, 0x58);
3070 rt2800_rfcsr_write(rt2x00dev
, 16, 0xb3);
3071 rt2800_rfcsr_write(rt2x00dev
, 17, 0x92);
3072 rt2800_rfcsr_write(rt2x00dev
, 18, 0x2c);
3073 rt2800_rfcsr_write(rt2x00dev
, 19, 0x02);
3074 rt2800_rfcsr_write(rt2x00dev
, 20, 0xba);
3075 rt2800_rfcsr_write(rt2x00dev
, 21, 0xdb);
3076 rt2800_rfcsr_write(rt2x00dev
, 24, 0x16);
3077 rt2800_rfcsr_write(rt2x00dev
, 25, 0x01);
3078 rt2800_rfcsr_write(rt2x00dev
, 29, 0x1f);
3079 } else if (rt2x00_rt(rt2x00dev
, RT3390
)) {
3080 rt2800_rfcsr_write(rt2x00dev
, 0, 0xa0);
3081 rt2800_rfcsr_write(rt2x00dev
, 1, 0xe1);
3082 rt2800_rfcsr_write(rt2x00dev
, 2, 0xf1);
3083 rt2800_rfcsr_write(rt2x00dev
, 3, 0x62);
3084 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
3085 rt2800_rfcsr_write(rt2x00dev
, 5, 0x8b);
3086 rt2800_rfcsr_write(rt2x00dev
, 6, 0x42);
3087 rt2800_rfcsr_write(rt2x00dev
, 7, 0x34);
3088 rt2800_rfcsr_write(rt2x00dev
, 8, 0x00);
3089 rt2800_rfcsr_write(rt2x00dev
, 9, 0xc0);
3090 rt2800_rfcsr_write(rt2x00dev
, 10, 0x61);
3091 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
3092 rt2800_rfcsr_write(rt2x00dev
, 12, 0x3b);
3093 rt2800_rfcsr_write(rt2x00dev
, 13, 0xe0);
3094 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
3095 rt2800_rfcsr_write(rt2x00dev
, 15, 0x53);
3096 rt2800_rfcsr_write(rt2x00dev
, 16, 0xe0);
3097 rt2800_rfcsr_write(rt2x00dev
, 17, 0x94);
3098 rt2800_rfcsr_write(rt2x00dev
, 18, 0x5c);
3099 rt2800_rfcsr_write(rt2x00dev
, 19, 0x4a);
3100 rt2800_rfcsr_write(rt2x00dev
, 20, 0xb2);
3101 rt2800_rfcsr_write(rt2x00dev
, 21, 0xf6);
3102 rt2800_rfcsr_write(rt2x00dev
, 22, 0x00);
3103 rt2800_rfcsr_write(rt2x00dev
, 23, 0x14);
3104 rt2800_rfcsr_write(rt2x00dev
, 24, 0x08);
3105 rt2800_rfcsr_write(rt2x00dev
, 25, 0x3d);
3106 rt2800_rfcsr_write(rt2x00dev
, 26, 0x85);
3107 rt2800_rfcsr_write(rt2x00dev
, 27, 0x00);
3108 rt2800_rfcsr_write(rt2x00dev
, 28, 0x41);
3109 rt2800_rfcsr_write(rt2x00dev
, 29, 0x8f);
3110 rt2800_rfcsr_write(rt2x00dev
, 30, 0x20);
3111 rt2800_rfcsr_write(rt2x00dev
, 31, 0x0f);
3112 } else if (rt2800_is_305x_soc(rt2x00dev
)) {
3113 rt2800_rfcsr_write(rt2x00dev
, 0, 0x50);
3114 rt2800_rfcsr_write(rt2x00dev
, 1, 0x01);
3115 rt2800_rfcsr_write(rt2x00dev
, 2, 0xf7);
3116 rt2800_rfcsr_write(rt2x00dev
, 3, 0x75);
3117 rt2800_rfcsr_write(rt2x00dev
, 4, 0x40);
3118 rt2800_rfcsr_write(rt2x00dev
, 5, 0x03);
3119 rt2800_rfcsr_write(rt2x00dev
, 6, 0x02);
3120 rt2800_rfcsr_write(rt2x00dev
, 7, 0x50);
3121 rt2800_rfcsr_write(rt2x00dev
, 8, 0x39);
3122 rt2800_rfcsr_write(rt2x00dev
, 9, 0x0f);
3123 rt2800_rfcsr_write(rt2x00dev
, 10, 0x60);
3124 rt2800_rfcsr_write(rt2x00dev
, 11, 0x21);
3125 rt2800_rfcsr_write(rt2x00dev
, 12, 0x75);
3126 rt2800_rfcsr_write(rt2x00dev
, 13, 0x75);
3127 rt2800_rfcsr_write(rt2x00dev
, 14, 0x90);
3128 rt2800_rfcsr_write(rt2x00dev
, 15, 0x58);
3129 rt2800_rfcsr_write(rt2x00dev
, 16, 0xb3);
3130 rt2800_rfcsr_write(rt2x00dev
, 17, 0x92);
3131 rt2800_rfcsr_write(rt2x00dev
, 18, 0x2c);
3132 rt2800_rfcsr_write(rt2x00dev
, 19, 0x02);
3133 rt2800_rfcsr_write(rt2x00dev
, 20, 0xba);
3134 rt2800_rfcsr_write(rt2x00dev
, 21, 0xdb);
3135 rt2800_rfcsr_write(rt2x00dev
, 22, 0x00);
3136 rt2800_rfcsr_write(rt2x00dev
, 23, 0x31);
3137 rt2800_rfcsr_write(rt2x00dev
, 24, 0x08);
3138 rt2800_rfcsr_write(rt2x00dev
, 25, 0x01);
3139 rt2800_rfcsr_write(rt2x00dev
, 26, 0x25);
3140 rt2800_rfcsr_write(rt2x00dev
, 27, 0x23);
3141 rt2800_rfcsr_write(rt2x00dev
, 28, 0x13);
3142 rt2800_rfcsr_write(rt2x00dev
, 29, 0x83);
3143 rt2800_rfcsr_write(rt2x00dev
, 30, 0x00);
3144 rt2800_rfcsr_write(rt2x00dev
, 31, 0x00);
3146 } else if (rt2x00_rt(rt2x00dev
, RT5390
)) {
3147 rt2800_rfcsr_write(rt2x00dev
, 1, 0x0f);
3148 rt2800_rfcsr_write(rt2x00dev
, 2, 0x80);
3149 rt2800_rfcsr_write(rt2x00dev
, 3, 0x88);
3150 rt2800_rfcsr_write(rt2x00dev
, 5, 0x10);
3151 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3152 rt2800_rfcsr_write(rt2x00dev
, 6, 0xe0);
3154 rt2800_rfcsr_write(rt2x00dev
, 6, 0xa0);
3155 rt2800_rfcsr_write(rt2x00dev
, 7, 0x00);
3156 rt2800_rfcsr_write(rt2x00dev
, 10, 0x53);
3157 rt2800_rfcsr_write(rt2x00dev
, 11, 0x4a);
3158 rt2800_rfcsr_write(rt2x00dev
, 12, 0xc6);
3159 rt2800_rfcsr_write(rt2x00dev
, 13, 0x9f);
3160 rt2800_rfcsr_write(rt2x00dev
, 14, 0x00);
3161 rt2800_rfcsr_write(rt2x00dev
, 15, 0x00);
3162 rt2800_rfcsr_write(rt2x00dev
, 16, 0x00);
3163 rt2800_rfcsr_write(rt2x00dev
, 18, 0x03);
3164 rt2800_rfcsr_write(rt2x00dev
, 19, 0x00);
3166 rt2800_rfcsr_write(rt2x00dev
, 20, 0x00);
3167 rt2800_rfcsr_write(rt2x00dev
, 21, 0x00);
3168 rt2800_rfcsr_write(rt2x00dev
, 22, 0x20);
3169 rt2800_rfcsr_write(rt2x00dev
, 23, 0x00);
3170 rt2800_rfcsr_write(rt2x00dev
, 24, 0x00);
3171 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3172 rt2800_rfcsr_write(rt2x00dev
, 25, 0x80);
3174 rt2800_rfcsr_write(rt2x00dev
, 25, 0xc0);
3175 rt2800_rfcsr_write(rt2x00dev
, 26, 0x00);
3176 rt2800_rfcsr_write(rt2x00dev
, 27, 0x09);
3177 rt2800_rfcsr_write(rt2x00dev
, 28, 0x00);
3178 rt2800_rfcsr_write(rt2x00dev
, 29, 0x10);
3180 rt2800_rfcsr_write(rt2x00dev
, 30, 0x00);
3181 rt2800_rfcsr_write(rt2x00dev
, 31, 0x80);
3182 rt2800_rfcsr_write(rt2x00dev
, 32, 0x80);
3183 rt2800_rfcsr_write(rt2x00dev
, 33, 0x00);
3184 rt2800_rfcsr_write(rt2x00dev
, 34, 0x07);
3185 rt2800_rfcsr_write(rt2x00dev
, 35, 0x12);
3186 rt2800_rfcsr_write(rt2x00dev
, 36, 0x00);
3187 rt2800_rfcsr_write(rt2x00dev
, 37, 0x08);
3188 rt2800_rfcsr_write(rt2x00dev
, 38, 0x85);
3189 rt2800_rfcsr_write(rt2x00dev
, 39, 0x1b);
3191 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3192 rt2800_rfcsr_write(rt2x00dev
, 40, 0x0b);
3194 rt2800_rfcsr_write(rt2x00dev
, 40, 0x4b);
3195 rt2800_rfcsr_write(rt2x00dev
, 41, 0xbb);
3196 rt2800_rfcsr_write(rt2x00dev
, 42, 0xd2);
3197 rt2800_rfcsr_write(rt2x00dev
, 43, 0x9a);
3198 rt2800_rfcsr_write(rt2x00dev
, 44, 0x0e);
3199 rt2800_rfcsr_write(rt2x00dev
, 45, 0xa2);
3200 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3201 rt2800_rfcsr_write(rt2x00dev
, 46, 0x73);
3203 rt2800_rfcsr_write(rt2x00dev
, 46, 0x7b);
3204 rt2800_rfcsr_write(rt2x00dev
, 47, 0x00);
3205 rt2800_rfcsr_write(rt2x00dev
, 48, 0x10);
3206 rt2800_rfcsr_write(rt2x00dev
, 49, 0x94);
3208 rt2800_rfcsr_write(rt2x00dev
, 52, 0x38);
3209 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3210 rt2800_rfcsr_write(rt2x00dev
, 53, 0x00);
3212 rt2800_rfcsr_write(rt2x00dev
, 53, 0x84);
3213 rt2800_rfcsr_write(rt2x00dev
, 54, 0x78);
3214 rt2800_rfcsr_write(rt2x00dev
, 55, 0x44);
3215 rt2800_rfcsr_write(rt2x00dev
, 56, 0x22);
3216 rt2800_rfcsr_write(rt2x00dev
, 57, 0x80);
3217 rt2800_rfcsr_write(rt2x00dev
, 58, 0x7f);
3218 rt2800_rfcsr_write(rt2x00dev
, 59, 0x63);
3220 rt2800_rfcsr_write(rt2x00dev
, 60, 0x45);
3221 if (rt2x00_rt_rev_gte(rt2x00dev
, RT5390
, REV_RT5390F
))
3222 rt2800_rfcsr_write(rt2x00dev
, 61, 0xd1);
3224 rt2800_rfcsr_write(rt2x00dev
, 61, 0xdd);
3225 rt2800_rfcsr_write(rt2x00dev
, 62, 0x00);
3226 rt2800_rfcsr_write(rt2x00dev
, 63, 0x00);
3229 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
)) {
3230 rt2800_register_read(rt2x00dev
, LDO_CFG0
, ®
);
3231 rt2x00_set_field32(®
, LDO_CFG0_BGSEL
, 1);
3232 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 3);
3233 rt2800_register_write(rt2x00dev
, LDO_CFG0
, reg
);
3234 } else if (rt2x00_rt(rt2x00dev
, RT3071
) ||
3235 rt2x00_rt(rt2x00dev
, RT3090
)) {
3236 rt2800_rfcsr_write(rt2x00dev
, 31, 0x14);
3238 rt2800_rfcsr_read(rt2x00dev
, 6, &rfcsr
);
3239 rt2x00_set_field8(&rfcsr
, RFCSR6_R2
, 1);
3240 rt2800_rfcsr_write(rt2x00dev
, 6, rfcsr
);
3242 rt2800_register_read(rt2x00dev
, LDO_CFG0
, ®
);
3243 rt2x00_set_field32(®
, LDO_CFG0_BGSEL
, 1);
3244 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
3245 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
)) {
3246 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
3247 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_DAC_TEST
))
3248 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 3);
3250 rt2x00_set_field32(®
, LDO_CFG0_LDO_CORE_VLEVEL
, 0);
3252 rt2800_register_write(rt2x00dev
, LDO_CFG0
, reg
);
3254 rt2800_register_read(rt2x00dev
, GPIO_SWITCH
, ®
);
3255 rt2x00_set_field32(®
, GPIO_SWITCH_5
, 0);
3256 rt2800_register_write(rt2x00dev
, GPIO_SWITCH
, reg
);
3257 } else if (rt2x00_rt(rt2x00dev
, RT3390
)) {
3258 rt2800_register_read(rt2x00dev
, GPIO_SWITCH
, ®
);
3259 rt2x00_set_field32(®
, GPIO_SWITCH_5
, 0);
3260 rt2800_register_write(rt2x00dev
, GPIO_SWITCH
, reg
);
3264 * Set RX Filter calibration for 20MHz and 40MHz
3266 if (rt2x00_rt(rt2x00dev
, RT3070
)) {
3267 rt2x00dev
->calibration
[0] =
3268 rt2800_init_rx_filter(rt2x00dev
, false, 0x07, 0x16);
3269 rt2x00dev
->calibration
[1] =
3270 rt2800_init_rx_filter(rt2x00dev
, true, 0x27, 0x19);
3271 } else if (rt2x00_rt(rt2x00dev
, RT3071
) ||
3272 rt2x00_rt(rt2x00dev
, RT3090
) ||
3273 rt2x00_rt(rt2x00dev
, RT3390
)) {
3274 rt2x00dev
->calibration
[0] =
3275 rt2800_init_rx_filter(rt2x00dev
, false, 0x07, 0x13);
3276 rt2x00dev
->calibration
[1] =
3277 rt2800_init_rx_filter(rt2x00dev
, true, 0x27, 0x15);
3280 if (!rt2x00_rt(rt2x00dev
, RT5390
)) {
3282 * Set back to initial state
3284 rt2800_bbp_write(rt2x00dev
, 24, 0);
3286 rt2800_rfcsr_read(rt2x00dev
, 22, &rfcsr
);
3287 rt2x00_set_field8(&rfcsr
, RFCSR22_BASEBAND_LOOPBACK
, 0);
3288 rt2800_rfcsr_write(rt2x00dev
, 22, rfcsr
);
3291 * Set BBP back to BW20
3293 rt2800_bbp_read(rt2x00dev
, 4, &bbp
);
3294 rt2x00_set_field8(&bbp
, BBP4_BANDWIDTH
, 0);
3295 rt2800_bbp_write(rt2x00dev
, 4, bbp
);
3298 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
) ||
3299 rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
3300 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
3301 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
))
3302 rt2800_rfcsr_write(rt2x00dev
, 27, 0x03);
3304 rt2800_register_read(rt2x00dev
, OPT_14_CSR
, ®
);
3305 rt2x00_set_field32(®
, OPT_14_CSR_BIT0
, 1);
3306 rt2800_register_write(rt2x00dev
, OPT_14_CSR
, reg
);
3308 if (!rt2x00_rt(rt2x00dev
, RT5390
)) {
3309 rt2800_rfcsr_read(rt2x00dev
, 17, &rfcsr
);
3310 rt2x00_set_field8(&rfcsr
, RFCSR17_TX_LO1_EN
, 0);
3311 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
3312 rt2x00_rt_rev_lt(rt2x00dev
, RT3071
, REV_RT3071E
) ||
3313 rt2x00_rt_rev_lt(rt2x00dev
, RT3090
, REV_RT3090E
) ||
3314 rt2x00_rt_rev_lt(rt2x00dev
, RT3390
, REV_RT3390E
)) {
3315 if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG
,
3316 &rt2x00dev
->cap_flags
))
3317 rt2x00_set_field8(&rfcsr
, RFCSR17_R
, 1);
3319 rt2x00_eeprom_read(rt2x00dev
, EEPROM_TXMIXER_GAIN_BG
, &eeprom
);
3320 if (rt2x00_get_field16(eeprom
, EEPROM_TXMIXER_GAIN_BG_VAL
) >= 1)
3321 rt2x00_set_field8(&rfcsr
, RFCSR17_TXMIXER_GAIN
,
3322 rt2x00_get_field16(eeprom
,
3323 EEPROM_TXMIXER_GAIN_BG_VAL
));
3324 rt2800_rfcsr_write(rt2x00dev
, 17, rfcsr
);
3327 if (rt2x00_rt(rt2x00dev
, RT3090
)) {
3328 rt2800_bbp_read(rt2x00dev
, 138, &bbp
);
3330 /* Turn off unused DAC1 and ADC1 to reduce power consumption */
3331 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
3332 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) == 1)
3333 rt2x00_set_field8(&bbp
, BBP138_RX_ADC1
, 0);
3334 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) == 1)
3335 rt2x00_set_field8(&bbp
, BBP138_TX_DAC1
, 1);
3337 rt2800_bbp_write(rt2x00dev
, 138, bbp
);
3340 if (rt2x00_rt(rt2x00dev
, RT3071
) ||
3341 rt2x00_rt(rt2x00dev
, RT3090
) ||
3342 rt2x00_rt(rt2x00dev
, RT3390
)) {
3343 rt2800_rfcsr_read(rt2x00dev
, 1, &rfcsr
);
3344 rt2x00_set_field8(&rfcsr
, RFCSR1_RF_BLOCK_EN
, 1);
3345 rt2x00_set_field8(&rfcsr
, RFCSR1_RX0_PD
, 0);
3346 rt2x00_set_field8(&rfcsr
, RFCSR1_TX0_PD
, 0);
3347 rt2x00_set_field8(&rfcsr
, RFCSR1_RX1_PD
, 1);
3348 rt2x00_set_field8(&rfcsr
, RFCSR1_TX1_PD
, 1);
3349 rt2800_rfcsr_write(rt2x00dev
, 1, rfcsr
);
3351 rt2800_rfcsr_read(rt2x00dev
, 15, &rfcsr
);
3352 rt2x00_set_field8(&rfcsr
, RFCSR15_TX_LO2_EN
, 0);
3353 rt2800_rfcsr_write(rt2x00dev
, 15, rfcsr
);
3355 rt2800_rfcsr_read(rt2x00dev
, 20, &rfcsr
);
3356 rt2x00_set_field8(&rfcsr
, RFCSR20_RX_LO1_EN
, 0);
3357 rt2800_rfcsr_write(rt2x00dev
, 20, rfcsr
);
3359 rt2800_rfcsr_read(rt2x00dev
, 21, &rfcsr
);
3360 rt2x00_set_field8(&rfcsr
, RFCSR21_RX_LO2_EN
, 0);
3361 rt2800_rfcsr_write(rt2x00dev
, 21, rfcsr
);
3364 if (rt2x00_rt(rt2x00dev
, RT3070
)) {
3365 rt2800_rfcsr_read(rt2x00dev
, 27, &rfcsr
);
3366 if (rt2x00_rt_rev_lt(rt2x00dev
, RT3070
, REV_RT3070F
))
3367 rt2x00_set_field8(&rfcsr
, RFCSR27_R1
, 3);
3369 rt2x00_set_field8(&rfcsr
, RFCSR27_R1
, 0);
3370 rt2x00_set_field8(&rfcsr
, RFCSR27_R2
, 0);
3371 rt2x00_set_field8(&rfcsr
, RFCSR27_R3
, 0);
3372 rt2x00_set_field8(&rfcsr
, RFCSR27_R4
, 0);
3373 rt2800_rfcsr_write(rt2x00dev
, 27, rfcsr
);
3376 if (rt2x00_rt(rt2x00dev
, RT5390
)) {
3377 rt2800_rfcsr_read(rt2x00dev
, 38, &rfcsr
);
3378 rt2x00_set_field8(&rfcsr
, RFCSR38_RX_LO1_EN
, 0);
3379 rt2800_rfcsr_write(rt2x00dev
, 38, rfcsr
);
3381 rt2800_rfcsr_read(rt2x00dev
, 39, &rfcsr
);
3382 rt2x00_set_field8(&rfcsr
, RFCSR39_RX_LO2_EN
, 0);
3383 rt2800_rfcsr_write(rt2x00dev
, 39, rfcsr
);
3385 rt2800_rfcsr_read(rt2x00dev
, 30, &rfcsr
);
3386 rt2x00_set_field8(&rfcsr
, RFCSR30_RX_VCM
, 2);
3387 rt2800_rfcsr_write(rt2x00dev
, 30, rfcsr
);
3393 int rt2800_enable_radio(struct rt2x00_dev
*rt2x00dev
)
3399 * Initialize all registers.
3401 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev
) ||
3402 rt2800_init_registers(rt2x00dev
) ||
3403 rt2800_init_bbp(rt2x00dev
) ||
3404 rt2800_init_rfcsr(rt2x00dev
)))
3408 * Send signal to firmware during boot time.
3410 rt2800_mcu_request(rt2x00dev
, MCU_BOOT_SIGNAL
, 0, 0, 0);
3412 if (rt2x00_is_usb(rt2x00dev
) &&
3413 (rt2x00_rt(rt2x00dev
, RT3070
) ||
3414 rt2x00_rt(rt2x00dev
, RT3071
) ||
3415 rt2x00_rt(rt2x00dev
, RT3572
))) {
3417 rt2800_mcu_request(rt2x00dev
, MCU_CURRENT
, 0, 0, 0);
3424 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
3425 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 1);
3426 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
3427 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
3431 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
3432 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 1);
3433 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 1);
3434 rt2x00_set_field32(®
, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE
, 2);
3435 rt2x00_set_field32(®
, WPDMA_GLO_CFG_TX_WRITEBACK_DONE
, 1);
3436 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
3438 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
3439 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 1);
3440 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
3441 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
3444 * Initialize LED control
3446 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_AG_CONF
, &word
);
3447 rt2800_mcu_request(rt2x00dev
, MCU_LED_AG_CONF
, 0xff,
3448 word
& 0xff, (word
>> 8) & 0xff);
3450 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_ACT_CONF
, &word
);
3451 rt2800_mcu_request(rt2x00dev
, MCU_LED_ACT_CONF
, 0xff,
3452 word
& 0xff, (word
>> 8) & 0xff);
3454 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED_POLARITY
, &word
);
3455 rt2800_mcu_request(rt2x00dev
, MCU_LED_LED_POLARITY
, 0xff,
3456 word
& 0xff, (word
>> 8) & 0xff);
3460 EXPORT_SYMBOL_GPL(rt2800_enable_radio
);
3462 void rt2800_disable_radio(struct rt2x00_dev
*rt2x00dev
)
3466 rt2800_register_read(rt2x00dev
, WPDMA_GLO_CFG
, ®
);
3467 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_TX_DMA
, 0);
3468 rt2x00_set_field32(®
, WPDMA_GLO_CFG_ENABLE_RX_DMA
, 0);
3469 rt2800_register_write(rt2x00dev
, WPDMA_GLO_CFG
, reg
);
3471 /* Wait for DMA, ignore error */
3472 rt2800_wait_wpdma_ready(rt2x00dev
);
3474 rt2800_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
3475 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_TX
, 0);
3476 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
3477 rt2800_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
3479 EXPORT_SYMBOL_GPL(rt2800_disable_radio
);
3481 int rt2800_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
3485 rt2800_register_read(rt2x00dev
, EFUSE_CTRL
, ®
);
3487 return rt2x00_get_field32(reg
, EFUSE_CTRL_PRESENT
);
3489 EXPORT_SYMBOL_GPL(rt2800_efuse_detect
);
3491 static void rt2800_efuse_read(struct rt2x00_dev
*rt2x00dev
, unsigned int i
)
3495 mutex_lock(&rt2x00dev
->csr_mutex
);
3497 rt2800_register_read_lock(rt2x00dev
, EFUSE_CTRL
, ®
);
3498 rt2x00_set_field32(®
, EFUSE_CTRL_ADDRESS_IN
, i
);
3499 rt2x00_set_field32(®
, EFUSE_CTRL_MODE
, 0);
3500 rt2x00_set_field32(®
, EFUSE_CTRL_KICK
, 1);
3501 rt2800_register_write_lock(rt2x00dev
, EFUSE_CTRL
, reg
);
3503 /* Wait until the EEPROM has been loaded */
3504 rt2800_regbusy_read(rt2x00dev
, EFUSE_CTRL
, EFUSE_CTRL_KICK
, ®
);
3506 /* Apparently the data is read from end to start */
3507 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA3
,
3508 (u32
*)&rt2x00dev
->eeprom
[i
]);
3509 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA2
,
3510 (u32
*)&rt2x00dev
->eeprom
[i
+ 2]);
3511 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA1
,
3512 (u32
*)&rt2x00dev
->eeprom
[i
+ 4]);
3513 rt2800_register_read_lock(rt2x00dev
, EFUSE_DATA0
,
3514 (u32
*)&rt2x00dev
->eeprom
[i
+ 6]);
3516 mutex_unlock(&rt2x00dev
->csr_mutex
);
3519 void rt2800_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
3523 for (i
= 0; i
< EEPROM_SIZE
/ sizeof(u16
); i
+= 8)
3524 rt2800_efuse_read(rt2x00dev
, i
);
3526 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse
);
3528 int rt2800_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
3532 u8 default_lna_gain
;
3535 * Start validation of the data that has been read.
3537 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
3538 if (!is_valid_ether_addr(mac
)) {
3539 random_ether_addr(mac
);
3540 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
3543 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &word
);
3544 if (word
== 0xffff) {
3545 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RXPATH
, 2);
3546 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_TXPATH
, 1);
3547 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RF_TYPE
, RF2820
);
3548 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF0
, word
);
3549 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
3550 } else if (rt2x00_rt(rt2x00dev
, RT2860
) ||
3551 rt2x00_rt(rt2x00dev
, RT2872
)) {
3553 * There is a max of 2 RX streams for RT28x0 series
3555 if (rt2x00_get_field16(word
, EEPROM_NIC_CONF0_RXPATH
) > 2)
3556 rt2x00_set_field16(&word
, EEPROM_NIC_CONF0_RXPATH
, 2);
3557 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF0
, word
);
3560 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &word
);
3561 if (word
== 0xffff) {
3562 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_HW_RADIO
, 0);
3563 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC
, 0);
3564 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G
, 0);
3565 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G
, 0);
3566 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_CARDBUS_ACCEL
, 0);
3567 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_SB_2G
, 0);
3568 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_SB_5G
, 0);
3569 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_WPS_PBC
, 0);
3570 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_2G
, 0);
3571 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BW40M_5G
, 0);
3572 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA
, 0);
3573 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_ANT_DIVERSITY
, 0);
3574 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_INTERNAL_TX_ALC
, 0);
3575 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_BT_COEXIST
, 0);
3576 rt2x00_set_field16(&word
, EEPROM_NIC_CONF1_DAC_TEST
, 0);
3577 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC_CONF1
, word
);
3578 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
3581 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
3582 if ((word
& 0x00ff) == 0x00ff) {
3583 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
3584 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
3585 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
3587 if ((word
& 0xff00) == 0xff00) {
3588 rt2x00_set_field16(&word
, EEPROM_FREQ_LED_MODE
,
3589 LED_MODE_TXRX_ACTIVITY
);
3590 rt2x00_set_field16(&word
, EEPROM_FREQ_LED_POLARITY
, 0);
3591 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
3592 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_AG_CONF
, 0x5555);
3593 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_ACT_CONF
, 0x2221);
3594 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED_POLARITY
, 0xa9f8);
3595 EEPROM(rt2x00dev
, "Led Mode: 0x%04x\n", word
);
3599 * During the LNA validation we are going to use
3600 * lna0 as correct value. Note that EEPROM_LNA
3601 * is never validated.
3603 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LNA
, &word
);
3604 default_lna_gain
= rt2x00_get_field16(word
, EEPROM_LNA_A0
);
3606 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG
, &word
);
3607 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG_OFFSET0
)) > 10)
3608 rt2x00_set_field16(&word
, EEPROM_RSSI_BG_OFFSET0
, 0);
3609 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG_OFFSET1
)) > 10)
3610 rt2x00_set_field16(&word
, EEPROM_RSSI_BG_OFFSET1
, 0);
3611 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_BG
, word
);
3613 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_BG2
, &word
);
3614 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_BG2_OFFSET2
)) > 10)
3615 rt2x00_set_field16(&word
, EEPROM_RSSI_BG2_OFFSET2
, 0);
3616 if (rt2x00_get_field16(word
, EEPROM_RSSI_BG2_LNA_A1
) == 0x00 ||
3617 rt2x00_get_field16(word
, EEPROM_RSSI_BG2_LNA_A1
) == 0xff)
3618 rt2x00_set_field16(&word
, EEPROM_RSSI_BG2_LNA_A1
,
3620 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_BG2
, word
);
3622 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A
, &word
);
3623 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A_OFFSET0
)) > 10)
3624 rt2x00_set_field16(&word
, EEPROM_RSSI_A_OFFSET0
, 0);
3625 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A_OFFSET1
)) > 10)
3626 rt2x00_set_field16(&word
, EEPROM_RSSI_A_OFFSET1
, 0);
3627 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_A
, word
);
3629 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_A2
, &word
);
3630 if (abs(rt2x00_get_field16(word
, EEPROM_RSSI_A2_OFFSET2
)) > 10)
3631 rt2x00_set_field16(&word
, EEPROM_RSSI_A2_OFFSET2
, 0);
3632 if (rt2x00_get_field16(word
, EEPROM_RSSI_A2_LNA_A2
) == 0x00 ||
3633 rt2x00_get_field16(word
, EEPROM_RSSI_A2_LNA_A2
) == 0xff)
3634 rt2x00_set_field16(&word
, EEPROM_RSSI_A2_LNA_A2
,
3636 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_A2
, word
);
3640 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom
);
3642 int rt2800_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
3649 * Read EEPROM word for configuration.
3651 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
3654 * Identify RF chipset by EEPROM value
3655 * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
3656 * RT53xx: defined in "EEPROM_CHIP_ID" field
3658 rt2800_register_read(rt2x00dev
, MAC_CSR0
, ®
);
3659 if (rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
) == RT5390
)
3660 rt2x00_eeprom_read(rt2x00dev
, EEPROM_CHIP_ID
, &value
);
3662 value
= rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RF_TYPE
);
3664 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
3665 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
3667 if (!rt2x00_rt(rt2x00dev
, RT2860
) &&
3668 !rt2x00_rt(rt2x00dev
, RT2872
) &&
3669 !rt2x00_rt(rt2x00dev
, RT2883
) &&
3670 !rt2x00_rt(rt2x00dev
, RT3070
) &&
3671 !rt2x00_rt(rt2x00dev
, RT3071
) &&
3672 !rt2x00_rt(rt2x00dev
, RT3090
) &&
3673 !rt2x00_rt(rt2x00dev
, RT3390
) &&
3674 !rt2x00_rt(rt2x00dev
, RT3572
) &&
3675 !rt2x00_rt(rt2x00dev
, RT5390
)) {
3676 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
3680 if (!rt2x00_rf(rt2x00dev
, RF2820
) &&
3681 !rt2x00_rf(rt2x00dev
, RF2850
) &&
3682 !rt2x00_rf(rt2x00dev
, RF2720
) &&
3683 !rt2x00_rf(rt2x00dev
, RF2750
) &&
3684 !rt2x00_rf(rt2x00dev
, RF3020
) &&
3685 !rt2x00_rf(rt2x00dev
, RF2020
) &&
3686 !rt2x00_rf(rt2x00dev
, RF3021
) &&
3687 !rt2x00_rf(rt2x00dev
, RF3022
) &&
3688 !rt2x00_rf(rt2x00dev
, RF3052
) &&
3689 !rt2x00_rf(rt2x00dev
, RF3320
) &&
3690 !rt2x00_rf(rt2x00dev
, RF5370
) &&
3691 !rt2x00_rf(rt2x00dev
, RF5390
)) {
3692 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
3697 * Identify default antenna configuration.
3699 rt2x00dev
->default_ant
.tx_chain_num
=
3700 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
);
3701 rt2x00dev
->default_ant
.rx_chain_num
=
3702 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
);
3704 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF1
, &eeprom
);
3706 if (rt2x00_rt(rt2x00dev
, RT3070
) ||
3707 rt2x00_rt(rt2x00dev
, RT3090
) ||
3708 rt2x00_rt(rt2x00dev
, RT3390
)) {
3709 value
= rt2x00_get_field16(eeprom
,
3710 EEPROM_NIC_CONF1_ANT_DIVERSITY
);
3715 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
3716 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
3719 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
3720 rt2x00dev
->default_ant
.rx
= ANTENNA_B
;
3724 rt2x00dev
->default_ant
.tx
= ANTENNA_A
;
3725 rt2x00dev
->default_ant
.rx
= ANTENNA_A
;
3729 * Determine external LNA informations.
3731 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G
))
3732 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
3733 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G
))
3734 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
3737 * Detect if this device has an hardware controlled radio.
3739 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_HW_RADIO
))
3740 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
3743 * Detect if this device has Bluetooth co-existence.
3745 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF1_BT_COEXIST
))
3746 __set_bit(CAPABILITY_BT_COEXIST
, &rt2x00dev
->cap_flags
);
3749 * Read frequency offset and RF programming sequence.
3751 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
3752 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
3755 * Store led settings, for correct led behaviour.
3757 #ifdef CONFIG_RT2X00_LIB_LEDS
3758 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
3759 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
3760 rt2800_init_led(rt2x00dev
, &rt2x00dev
->led_qual
, LED_TYPE_QUALITY
);
3762 rt2x00dev
->led_mcu_reg
= eeprom
;
3763 #endif /* CONFIG_RT2X00_LIB_LEDS */
3766 * Check if support EIRP tx power limit feature.
3768 rt2x00_eeprom_read(rt2x00dev
, EEPROM_EIRP_MAX_TX_POWER
, &eeprom
);
3770 if (rt2x00_get_field16(eeprom
, EEPROM_EIRP_MAX_TX_POWER_2GHZ
) <
3771 EIRP_MAX_TX_POWER_LIMIT
)
3772 __set_bit(CAPABILITY_POWER_LIMIT
, &rt2x00dev
->cap_flags
);
3776 EXPORT_SYMBOL_GPL(rt2800_init_eeprom
);
3779 * RF value list for rt28xx
3780 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
3782 static const struct rf_channel rf_vals
[] = {
3783 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
3784 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
3785 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
3786 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
3787 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
3788 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
3789 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
3790 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
3791 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
3792 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
3793 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
3794 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
3795 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
3796 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
3798 /* 802.11 UNI / HyperLan 2 */
3799 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
3800 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
3801 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
3802 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
3803 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
3804 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
3805 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
3806 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
3807 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
3808 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
3809 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
3810 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
3812 /* 802.11 HyperLan 2 */
3813 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
3814 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
3815 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
3816 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
3817 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
3818 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
3819 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
3820 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
3821 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
3822 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
3823 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
3824 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
3825 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
3826 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
3827 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
3828 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
3831 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
3832 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
3833 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
3834 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
3835 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
3836 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
3837 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
3838 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
3839 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
3840 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
3841 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
3844 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
3845 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
3846 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
3847 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
3848 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
3849 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
3850 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
3854 * RF value list for rt3xxx
3855 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
3857 static const struct rf_channel rf_vals_3x
[] = {
3873 /* 802.11 UNI / HyperLan 2 */
3887 /* 802.11 HyperLan 2 */
3919 int rt2800_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
3921 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
3922 struct channel_info
*info
;
3923 char *default_power1
;
3924 char *default_power2
;
3929 * Disable powersaving as default on PCI devices.
3931 if (rt2x00_is_pci(rt2x00dev
) || rt2x00_is_soc(rt2x00dev
))
3932 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
3935 * Initialize all hw fields.
3937 rt2x00dev
->hw
->flags
=
3938 IEEE80211_HW_SIGNAL_DBM
|
3939 IEEE80211_HW_SUPPORTS_PS
|
3940 IEEE80211_HW_PS_NULLFUNC_STACK
|
3941 IEEE80211_HW_AMPDU_AGGREGATION
;
3943 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
3944 * unless we are capable of sending the buffered frames out after the
3945 * DTIM transmission using rt2x00lib_beacondone. This will send out
3946 * multicast and broadcast traffic immediately instead of buffering it
3947 * infinitly and thus dropping it after some time.
3949 if (!rt2x00_is_usb(rt2x00dev
))
3950 rt2x00dev
->hw
->flags
|=
3951 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
3953 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
3954 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
3955 rt2x00_eeprom_addr(rt2x00dev
,
3956 EEPROM_MAC_ADDR_0
));
3959 * As rt2800 has a global fallback table we cannot specify
3960 * more then one tx rate per frame but since the hw will
3961 * try several rates (based on the fallback table) we should
3962 * initialize max_report_rates to the maximum number of rates
3963 * we are going to try. Otherwise mac80211 will truncate our
3964 * reported tx rates and the rc algortihm will end up with
3967 rt2x00dev
->hw
->max_rates
= 1;
3968 rt2x00dev
->hw
->max_report_rates
= 7;
3969 rt2x00dev
->hw
->max_rate_tries
= 1;
3971 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC_CONF0
, &eeprom
);
3974 * Initialize hw_mode information.
3976 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
3977 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
3979 if (rt2x00_rf(rt2x00dev
, RF2820
) ||
3980 rt2x00_rf(rt2x00dev
, RF2720
)) {
3981 spec
->num_channels
= 14;
3982 spec
->channels
= rf_vals
;
3983 } else if (rt2x00_rf(rt2x00dev
, RF2850
) ||
3984 rt2x00_rf(rt2x00dev
, RF2750
)) {
3985 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
3986 spec
->num_channels
= ARRAY_SIZE(rf_vals
);
3987 spec
->channels
= rf_vals
;
3988 } else if (rt2x00_rf(rt2x00dev
, RF3020
) ||
3989 rt2x00_rf(rt2x00dev
, RF2020
) ||
3990 rt2x00_rf(rt2x00dev
, RF3021
) ||
3991 rt2x00_rf(rt2x00dev
, RF3022
) ||
3992 rt2x00_rf(rt2x00dev
, RF3320
) ||
3993 rt2x00_rf(rt2x00dev
, RF5370
) ||
3994 rt2x00_rf(rt2x00dev
, RF5390
)) {
3995 spec
->num_channels
= 14;
3996 spec
->channels
= rf_vals_3x
;
3997 } else if (rt2x00_rf(rt2x00dev
, RF3052
)) {
3998 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
3999 spec
->num_channels
= ARRAY_SIZE(rf_vals_3x
);
4000 spec
->channels
= rf_vals_3x
;
4004 * Initialize HT information.
4006 if (!rt2x00_rf(rt2x00dev
, RF2020
))
4007 spec
->ht
.ht_supported
= true;
4009 spec
->ht
.ht_supported
= false;
4012 IEEE80211_HT_CAP_SUP_WIDTH_20_40
|
4013 IEEE80211_HT_CAP_GRN_FLD
|
4014 IEEE80211_HT_CAP_SGI_20
|
4015 IEEE80211_HT_CAP_SGI_40
;
4017 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) >= 2)
4018 spec
->ht
.cap
|= IEEE80211_HT_CAP_TX_STBC
;
4021 rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
) <<
4022 IEEE80211_HT_CAP_RX_STBC_SHIFT
;
4024 spec
->ht
.ampdu_factor
= 3;
4025 spec
->ht
.ampdu_density
= 4;
4026 spec
->ht
.mcs
.tx_params
=
4027 IEEE80211_HT_MCS_TX_DEFINED
|
4028 IEEE80211_HT_MCS_TX_RX_DIFF
|
4029 ((rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_TXPATH
) - 1) <<
4030 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT
);
4032 switch (rt2x00_get_field16(eeprom
, EEPROM_NIC_CONF0_RXPATH
)) {
4034 spec
->ht
.mcs
.rx_mask
[2] = 0xff;
4036 spec
->ht
.mcs
.rx_mask
[1] = 0xff;
4038 spec
->ht
.mcs
.rx_mask
[0] = 0xff;
4039 spec
->ht
.mcs
.rx_mask
[4] = 0x1; /* MCS32 */
4044 * Create channel information array
4046 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
4050 spec
->channels_info
= info
;
4052 default_power1
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_BG1
);
4053 default_power2
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_BG2
);
4055 for (i
= 0; i
< 14; i
++) {
4056 info
[i
].default_power1
= default_power1
[i
];
4057 info
[i
].default_power2
= default_power2
[i
];
4060 if (spec
->num_channels
> 14) {
4061 default_power1
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A1
);
4062 default_power2
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A2
);
4064 for (i
= 14; i
< spec
->num_channels
; i
++) {
4065 info
[i
].default_power1
= default_power1
[i
];
4066 info
[i
].default_power2
= default_power2
[i
];
4072 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode
);
4075 * IEEE80211 stack callback functions.
4077 void rt2800_get_tkip_seq(struct ieee80211_hw
*hw
, u8 hw_key_idx
, u32
*iv32
,
4080 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
4081 struct mac_iveiv_entry iveiv_entry
;
4084 offset
= MAC_IVEIV_ENTRY(hw_key_idx
);
4085 rt2800_register_multiread(rt2x00dev
, offset
,
4086 &iveiv_entry
, sizeof(iveiv_entry
));
4088 memcpy(iv16
, &iveiv_entry
.iv
[0], sizeof(*iv16
));
4089 memcpy(iv32
, &iveiv_entry
.iv
[4], sizeof(*iv32
));
4091 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq
);
4093 int rt2800_set_rts_threshold(struct ieee80211_hw
*hw
, u32 value
)
4095 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
4097 bool enabled
= (value
< IEEE80211_MAX_RTS_THRESHOLD
);
4099 rt2800_register_read(rt2x00dev
, TX_RTS_CFG
, ®
);
4100 rt2x00_set_field32(®
, TX_RTS_CFG_RTS_THRES
, value
);
4101 rt2800_register_write(rt2x00dev
, TX_RTS_CFG
, reg
);
4103 rt2800_register_read(rt2x00dev
, CCK_PROT_CFG
, ®
);
4104 rt2x00_set_field32(®
, CCK_PROT_CFG_RTS_TH_EN
, enabled
);
4105 rt2800_register_write(rt2x00dev
, CCK_PROT_CFG
, reg
);
4107 rt2800_register_read(rt2x00dev
, OFDM_PROT_CFG
, ®
);
4108 rt2x00_set_field32(®
, OFDM_PROT_CFG_RTS_TH_EN
, enabled
);
4109 rt2800_register_write(rt2x00dev
, OFDM_PROT_CFG
, reg
);
4111 rt2800_register_read(rt2x00dev
, MM20_PROT_CFG
, ®
);
4112 rt2x00_set_field32(®
, MM20_PROT_CFG_RTS_TH_EN
, enabled
);
4113 rt2800_register_write(rt2x00dev
, MM20_PROT_CFG
, reg
);
4115 rt2800_register_read(rt2x00dev
, MM40_PROT_CFG
, ®
);
4116 rt2x00_set_field32(®
, MM40_PROT_CFG_RTS_TH_EN
, enabled
);
4117 rt2800_register_write(rt2x00dev
, MM40_PROT_CFG
, reg
);
4119 rt2800_register_read(rt2x00dev
, GF20_PROT_CFG
, ®
);
4120 rt2x00_set_field32(®
, GF20_PROT_CFG_RTS_TH_EN
, enabled
);
4121 rt2800_register_write(rt2x00dev
, GF20_PROT_CFG
, reg
);
4123 rt2800_register_read(rt2x00dev
, GF40_PROT_CFG
, ®
);
4124 rt2x00_set_field32(®
, GF40_PROT_CFG_RTS_TH_EN
, enabled
);
4125 rt2800_register_write(rt2x00dev
, GF40_PROT_CFG
, reg
);
4129 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold
);
4131 int rt2800_conf_tx(struct ieee80211_hw
*hw
, u16 queue_idx
,
4132 const struct ieee80211_tx_queue_params
*params
)
4134 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
4135 struct data_queue
*queue
;
4136 struct rt2x00_field32 field
;
4142 * First pass the configuration through rt2x00lib, that will
4143 * update the queue settings and validate the input. After that
4144 * we are free to update the registers based on the value
4145 * in the queue parameter.
4147 retval
= rt2x00mac_conf_tx(hw
, queue_idx
, params
);
4152 * We only need to perform additional register initialization
4158 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
4160 /* Update WMM TXOP register */
4161 offset
= WMM_TXOP0_CFG
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
4162 field
.bit_offset
= (queue_idx
& 1) * 16;
4163 field
.bit_mask
= 0xffff << field
.bit_offset
;
4165 rt2800_register_read(rt2x00dev
, offset
, ®
);
4166 rt2x00_set_field32(®
, field
, queue
->txop
);
4167 rt2800_register_write(rt2x00dev
, offset
, reg
);
4169 /* Update WMM registers */
4170 field
.bit_offset
= queue_idx
* 4;
4171 field
.bit_mask
= 0xf << field
.bit_offset
;
4173 rt2800_register_read(rt2x00dev
, WMM_AIFSN_CFG
, ®
);
4174 rt2x00_set_field32(®
, field
, queue
->aifs
);
4175 rt2800_register_write(rt2x00dev
, WMM_AIFSN_CFG
, reg
);
4177 rt2800_register_read(rt2x00dev
, WMM_CWMIN_CFG
, ®
);
4178 rt2x00_set_field32(®
, field
, queue
->cw_min
);
4179 rt2800_register_write(rt2x00dev
, WMM_CWMIN_CFG
, reg
);
4181 rt2800_register_read(rt2x00dev
, WMM_CWMAX_CFG
, ®
);
4182 rt2x00_set_field32(®
, field
, queue
->cw_max
);
4183 rt2800_register_write(rt2x00dev
, WMM_CWMAX_CFG
, reg
);
4185 /* Update EDCA registers */
4186 offset
= EDCA_AC0_CFG
+ (sizeof(u32
) * queue_idx
);
4188 rt2800_register_read(rt2x00dev
, offset
, ®
);
4189 rt2x00_set_field32(®
, EDCA_AC0_CFG_TX_OP
, queue
->txop
);
4190 rt2x00_set_field32(®
, EDCA_AC0_CFG_AIFSN
, queue
->aifs
);
4191 rt2x00_set_field32(®
, EDCA_AC0_CFG_CWMIN
, queue
->cw_min
);
4192 rt2x00_set_field32(®
, EDCA_AC0_CFG_CWMAX
, queue
->cw_max
);
4193 rt2800_register_write(rt2x00dev
, offset
, reg
);
4197 EXPORT_SYMBOL_GPL(rt2800_conf_tx
);
4199 u64
rt2800_get_tsf(struct ieee80211_hw
*hw
)
4201 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
4205 rt2800_register_read(rt2x00dev
, TSF_TIMER_DW1
, ®
);
4206 tsf
= (u64
) rt2x00_get_field32(reg
, TSF_TIMER_DW1_HIGH_WORD
) << 32;
4207 rt2800_register_read(rt2x00dev
, TSF_TIMER_DW0
, ®
);
4208 tsf
|= rt2x00_get_field32(reg
, TSF_TIMER_DW0_LOW_WORD
);
4212 EXPORT_SYMBOL_GPL(rt2800_get_tsf
);
4214 int rt2800_ampdu_action(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
,
4215 enum ieee80211_ampdu_mlme_action action
,
4216 struct ieee80211_sta
*sta
, u16 tid
, u16
*ssn
,
4222 case IEEE80211_AMPDU_RX_START
:
4223 case IEEE80211_AMPDU_RX_STOP
:
4225 * The hw itself takes care of setting up BlockAck mechanisms.
4226 * So, we only have to allow mac80211 to nagotiate a BlockAck
4227 * agreement. Once that is done, the hw will BlockAck incoming
4228 * AMPDUs without further setup.
4231 case IEEE80211_AMPDU_TX_START
:
4232 ieee80211_start_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
4234 case IEEE80211_AMPDU_TX_STOP
:
4235 ieee80211_stop_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
4237 case IEEE80211_AMPDU_TX_OPERATIONAL
:
4240 WARNING((struct rt2x00_dev
*)hw
->priv
, "Unknown AMPDU action\n");
4245 EXPORT_SYMBOL_GPL(rt2800_ampdu_action
);
4247 int rt2800_get_survey(struct ieee80211_hw
*hw
, int idx
,
4248 struct survey_info
*survey
)
4250 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
4251 struct ieee80211_conf
*conf
= &hw
->conf
;
4252 u32 idle
, busy
, busy_ext
;
4257 survey
->channel
= conf
->channel
;
4259 rt2800_register_read(rt2x00dev
, CH_IDLE_STA
, &idle
);
4260 rt2800_register_read(rt2x00dev
, CH_BUSY_STA
, &busy
);
4261 rt2800_register_read(rt2x00dev
, CH_BUSY_STA_SEC
, &busy_ext
);
4264 survey
->filled
= SURVEY_INFO_CHANNEL_TIME
|
4265 SURVEY_INFO_CHANNEL_TIME_BUSY
|
4266 SURVEY_INFO_CHANNEL_TIME_EXT_BUSY
;
4268 survey
->channel_time
= (idle
+ busy
) / 1000;
4269 survey
->channel_time_busy
= busy
/ 1000;
4270 survey
->channel_time_ext_busy
= busy_ext
/ 1000;
4276 EXPORT_SYMBOL_GPL(rt2800_get_survey
);
4278 MODULE_AUTHOR(DRV_PROJECT
", Bartlomiej Zolnierkiewicz");
4279 MODULE_VERSION(DRV_VERSION
);
4280 MODULE_DESCRIPTION("Ralink RT2800 library");
4281 MODULE_LICENSE("GPL");