2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
33 #include "rt2x00lib.h"
36 * Radio control handlers.
38 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
43 * Don't enable the radio twice.
44 * And check if the hardware button has been disabled.
46 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
50 * Initialize all data queues.
52 rt2x00queue_init_queues(rt2x00dev
);
58 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
62 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
64 rt2x00leds_led_radio(rt2x00dev
, true);
65 rt2x00led_led_activity(rt2x00dev
, true);
67 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
72 rt2x00queue_start_queues(rt2x00dev
);
73 rt2x00link_start_tuner(rt2x00dev
);
74 rt2x00link_start_agc(rt2x00dev
);
77 * Start watchdog monitoring.
79 rt2x00link_start_watchdog(rt2x00dev
);
84 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
86 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
90 * Stop watchdog monitoring.
92 rt2x00link_stop_watchdog(rt2x00dev
);
97 rt2x00link_stop_agc(rt2x00dev
);
98 rt2x00link_stop_tuner(rt2x00dev
);
99 rt2x00queue_stop_queues(rt2x00dev
);
100 rt2x00queue_flush_queues(rt2x00dev
, true);
105 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
106 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
107 rt2x00led_led_activity(rt2x00dev
, false);
108 rt2x00leds_led_radio(rt2x00dev
, false);
111 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
112 struct ieee80211_vif
*vif
)
114 struct rt2x00_dev
*rt2x00dev
= data
;
115 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
118 * It is possible the radio was disabled while the work had been
119 * scheduled. If that happens we should return here immediately,
120 * note that in the spinlock protected area above the delayed_flags
121 * have been cleared correctly.
123 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
126 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
))
127 rt2x00queue_update_beacon(rt2x00dev
, vif
);
130 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
132 struct rt2x00_dev
*rt2x00dev
=
133 container_of(work
, struct rt2x00_dev
, intf_work
);
136 * Iterate over each interface and perform the
137 * requested configurations.
139 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
140 rt2x00lib_intf_scheduled_iter
,
144 static void rt2x00lib_autowakeup(struct work_struct
*work
)
146 struct rt2x00_dev
*rt2x00dev
=
147 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
149 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
150 ERROR(rt2x00dev
, "Device failed to wakeup.\n");
151 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
155 * Interrupt context handlers.
157 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
158 struct ieee80211_vif
*vif
)
160 struct rt2x00_dev
*rt2x00dev
= data
;
164 * Only AP mode interfaces do broad- and multicast buffering
166 if (vif
->type
!= NL80211_IFTYPE_AP
)
170 * Send out buffered broad- and multicast frames
172 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
174 rt2x00mac_tx(rt2x00dev
->hw
, skb
);
175 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
179 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
180 struct ieee80211_vif
*vif
)
182 struct rt2x00_dev
*rt2x00dev
= data
;
184 if (vif
->type
!= NL80211_IFTYPE_AP
&&
185 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
186 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
187 vif
->type
!= NL80211_IFTYPE_WDS
)
191 * Update the beacon without locking. This is safe on PCI devices
192 * as they only update the beacon periodically here. This should
193 * never be called for USB devices.
195 WARN_ON(rt2x00_is_usb(rt2x00dev
));
196 rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
199 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
201 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
204 /* send buffered bc/mc frames out for every bssid */
205 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
206 rt2x00lib_bc_buffer_iter
,
209 * Devices with pre tbtt interrupt don't need to update the beacon
210 * here as they will fetch the next beacon directly prior to
213 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT
, &rt2x00dev
->cap_flags
))
216 /* fetch next beacon */
217 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
218 rt2x00lib_beaconupdate_iter
,
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
223 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
228 /* fetch next beacon */
229 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
230 rt2x00lib_beaconupdate_iter
,
233 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
235 void rt2x00lib_dmastart(struct queue_entry
*entry
)
237 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
238 rt2x00queue_index_inc(entry
, Q_INDEX
);
240 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
242 void rt2x00lib_dmadone(struct queue_entry
*entry
)
244 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
245 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
246 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
248 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
250 void rt2x00lib_txdone(struct queue_entry
*entry
,
251 struct txdone_entry_desc
*txdesc
)
253 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
254 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
255 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
256 unsigned int header_length
, i
;
257 u8 rate_idx
, rate_flags
, retry_rates
;
258 u8 skbdesc_flags
= skbdesc
->flags
;
264 rt2x00queue_unmap_skb(entry
);
267 * Remove the extra tx headroom from the skb.
269 skb_pull(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
272 * Signal that the TX descriptor is no longer in the skb.
274 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
277 * Determine the length of 802.11 header.
279 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
282 * Remove L2 padding which was added during
284 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
285 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
288 * If the IV/EIV data was stripped from the frame before it was
289 * passed to the hardware, we should now reinsert it again because
290 * mac80211 will expect the same data to be present it the
291 * frame as it was passed to us.
293 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
))
294 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
297 * Send frame to debugfs immediately, after this call is completed
298 * we are going to overwrite the skb->cb array.
300 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
->skb
);
303 * Determine if the frame has been successfully transmitted.
306 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
307 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
310 * Update TX statistics.
312 rt2x00dev
->link
.qual
.tx_success
+= success
;
313 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
315 rate_idx
= skbdesc
->tx_rate_idx
;
316 rate_flags
= skbdesc
->tx_rate_flags
;
317 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
318 (txdesc
->retry
+ 1) : 1;
321 * Initialize TX status
323 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
324 tx_info
->status
.ack_signal
= 0;
327 * Frame was send with retries, hardware tried
328 * different rates to send out the frame, at each
329 * retry it lowered the rate 1 step except when the
330 * lowest rate was used.
332 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
333 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
334 tx_info
->status
.rates
[i
].flags
= rate_flags
;
336 if (rate_idx
- i
== 0) {
338 * The lowest rate (index 0) was used until the
339 * number of max retries was reached.
341 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
345 tx_info
->status
.rates
[i
].count
= 1;
347 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
348 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
350 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
352 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
354 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
358 * Every single frame has it's own tx status, hence report
359 * every frame as ampdu of size 1.
361 * TODO: if we can find out how many frames were aggregated
362 * by the hw we could provide the real ampdu_len to mac80211
363 * which would allow the rc algorithm to better decide on
364 * which rates are suitable.
366 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
367 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
368 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
369 tx_info
->status
.ampdu_len
= 1;
370 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
373 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU_NO_BACK
;
376 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
378 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
380 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
384 * Only send the status report to mac80211 when it's a frame
385 * that originated in mac80211. If this was a extra frame coming
386 * through a mac80211 library call (RTS/CTS) then we should not
387 * send the status report back.
389 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
390 if (test_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
))
391 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
393 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
395 dev_kfree_skb_any(entry
->skb
);
398 * Make this entry available for reuse.
403 rt2x00dev
->ops
->lib
->clear_entry(entry
);
405 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
408 * If the data queue was below the threshold before the txdone
409 * handler we must make sure the packet queue in the mac80211 stack
410 * is reenabled when the txdone handler has finished.
412 if (!rt2x00queue_threshold(entry
->queue
))
413 rt2x00queue_unpause_queue(entry
->queue
);
415 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
417 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
419 struct txdone_entry_desc txdesc
;
422 __set_bit(status
, &txdesc
.flags
);
425 rt2x00lib_txdone(entry
, &txdesc
);
427 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
429 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
431 struct ieee80211_mgmt
*mgmt
= (void *)data
;
434 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
437 if (pos
+ 2 + pos
[1] > end
)
449 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
451 struct rxdone_entry_desc
*rxdesc
)
453 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
454 struct ieee80211_tim_ie
*tim_ie
;
459 /* If this is not a beacon, or if mac80211 has no powersaving
460 * configured, or if the device is already in powersaving mode
461 * we can exit now. */
462 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
463 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
466 /* min. beacon length + FCS_LEN */
467 if (skb
->len
<= 40 + FCS_LEN
)
470 /* and only beacons from the associated BSSID, please */
471 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
475 rt2x00dev
->last_beacon
= jiffies
;
477 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
481 if (tim
[1] < sizeof(*tim_ie
))
485 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
487 /* Check whenever the PHY can be turned off again. */
489 /* 1. What about buffered unicast traffic for our AID? */
490 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
492 /* 2. Maybe the AP wants to send multicast/broadcast data? */
493 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
495 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
496 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
497 IEEE80211_CONF_CHANGE_PS
);
500 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
501 struct rxdone_entry_desc
*rxdesc
)
503 struct ieee80211_supported_band
*sband
;
504 const struct rt2x00_rate
*rate
;
506 int signal
= rxdesc
->signal
;
507 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
509 switch (rxdesc
->rate_mode
) {
513 * For non-HT rates the MCS value needs to contain the
514 * actually used rate modulation (CCK or OFDM).
516 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
517 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
519 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
520 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
521 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
522 if (((type
== RXDONE_SIGNAL_PLCP
) &&
523 (rate
->plcp
== signal
)) ||
524 ((type
== RXDONE_SIGNAL_BITRATE
) &&
525 (rate
->bitrate
== signal
)) ||
526 ((type
== RXDONE_SIGNAL_MCS
) &&
527 (rate
->mcs
== signal
))) {
532 case RATE_MODE_HT_MIX
:
533 case RATE_MODE_HT_GREENFIELD
:
534 if (signal
>= 0 && signal
<= 76)
541 WARNING(rt2x00dev
, "Frame received with unrecognized signal, "
542 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
543 rxdesc
->rate_mode
, signal
, type
);
547 void rt2x00lib_rxdone(struct queue_entry
*entry
)
549 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
550 struct rxdone_entry_desc rxdesc
;
552 struct ieee80211_rx_status
*rx_status
;
553 unsigned int header_length
;
556 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
557 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
560 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
564 * Allocate a new sk_buffer. If no new buffer available, drop the
565 * received frame and reuse the existing buffer.
567 skb
= rt2x00queue_alloc_rxskb(entry
);
574 rt2x00queue_unmap_skb(entry
);
577 * Extract the RXD details.
579 memset(&rxdesc
, 0, sizeof(rxdesc
));
580 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
583 * The data behind the ieee80211 header must be
584 * aligned on a 4 byte boundary.
586 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
589 * Hardware might have stripped the IV/EIV/ICV data,
590 * in that case it is possible that the data was
591 * provided separately (through hardware descriptor)
592 * in which case we should reinsert the data into the frame.
594 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
595 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
596 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
598 else if (header_length
&&
599 (rxdesc
.size
> header_length
) &&
600 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
601 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
603 /* Trim buffer to correct size */
604 skb_trim(entry
->skb
, rxdesc
.size
);
607 * Translate the signal to the correct bitrate index.
609 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
610 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
611 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
612 rxdesc
.flags
|= RX_FLAG_HT
;
615 * Check if this is a beacon, and more frames have been
616 * buffered while we were in powersaving mode.
618 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
621 * Update extra components
623 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
624 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
625 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
->skb
);
628 * Initialize RX status information, and send frame
631 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
632 rx_status
->mactime
= rxdesc
.timestamp
;
633 rx_status
->band
= rt2x00dev
->curr_band
;
634 rx_status
->freq
= rt2x00dev
->curr_freq
;
635 rx_status
->rate_idx
= rate_idx
;
636 rx_status
->signal
= rxdesc
.rssi
;
637 rx_status
->flag
= rxdesc
.flags
;
638 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
640 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
643 * Replace the skb with the freshly allocated one.
649 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
650 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
651 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
652 rt2x00dev
->ops
->lib
->clear_entry(entry
);
654 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
657 * Driver initialization handlers.
659 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
661 .flags
= DEV_RATE_CCK
,
665 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
668 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
672 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
675 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
679 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
682 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
686 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
689 .flags
= DEV_RATE_OFDM
,
693 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
696 .flags
= DEV_RATE_OFDM
,
700 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
703 .flags
= DEV_RATE_OFDM
,
707 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
710 .flags
= DEV_RATE_OFDM
,
714 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
717 .flags
= DEV_RATE_OFDM
,
721 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
724 .flags
= DEV_RATE_OFDM
,
728 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
731 .flags
= DEV_RATE_OFDM
,
735 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
738 .flags
= DEV_RATE_OFDM
,
742 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
746 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
747 const int channel
, const int tx_power
,
750 /* XXX: this assumption about the band is wrong for 802.11j */
751 entry
->band
= channel
<= 14 ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
752 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
754 entry
->hw_value
= value
;
755 entry
->max_power
= tx_power
;
756 entry
->max_antenna_gain
= 0xff;
759 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
760 const u16 index
, const struct rt2x00_rate
*rate
)
763 entry
->bitrate
= rate
->bitrate
;
764 entry
->hw_value
= index
;
765 entry
->hw_value_short
= index
;
767 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
768 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
771 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
772 struct hw_mode_spec
*spec
)
774 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
775 struct ieee80211_channel
*channels
;
776 struct ieee80211_rate
*rates
;
777 unsigned int num_rates
;
781 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
783 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
786 channels
= kzalloc(sizeof(*channels
) * spec
->num_channels
, GFP_KERNEL
);
790 rates
= kzalloc(sizeof(*rates
) * num_rates
, GFP_KERNEL
);
792 goto exit_free_channels
;
795 * Initialize Rate list.
797 for (i
= 0; i
< num_rates
; i
++)
798 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
801 * Initialize Channel list.
803 for (i
= 0; i
< spec
->num_channels
; i
++) {
804 rt2x00lib_channel(&channels
[i
],
805 spec
->channels
[i
].channel
,
806 spec
->channels_info
[i
].max_power
, i
);
810 * Intitialize 802.11b, 802.11g
814 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
815 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
816 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
817 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
818 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
819 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
820 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
821 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].ht_cap
,
822 &spec
->ht
, sizeof(spec
->ht
));
826 * Intitialize 802.11a
828 * Channels: OFDM, UNII, HiperLAN2.
830 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
831 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
832 spec
->num_channels
- 14;
833 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
835 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
836 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
837 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
838 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
839 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].ht_cap
,
840 &spec
->ht
, sizeof(spec
->ht
));
847 ERROR(rt2x00dev
, "Allocation ieee80211 modes failed.\n");
851 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
853 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
854 ieee80211_unregister_hw(rt2x00dev
->hw
);
856 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
857 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
858 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
859 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
860 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
863 kfree(rt2x00dev
->spec
.channels_info
);
866 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
868 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
871 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
875 * Initialize HW modes.
877 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
882 * Initialize HW fields.
884 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
887 * Initialize extra TX headroom required.
889 rt2x00dev
->hw
->extra_tx_headroom
=
890 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
891 rt2x00dev
->ops
->extra_tx_headroom
);
894 * Take TX headroom required for alignment into account.
896 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
897 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
898 else if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
899 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
902 * Allocate tx status FIFO for driver use.
904 if (test_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
)) {
906 * Allocate the txstatus fifo. In the worst case the tx
907 * status fifo has to hold the tx status of all entries
908 * in all tx queues. Hence, calculate the kfifo size as
909 * tx_queues * entry_num and round up to the nearest
913 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
914 rt2x00dev
->ops
->tx
->entry_num
*
917 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
924 * Initialize tasklets if used by the driver. Tasklets are
925 * disabled until the interrupts are turned on. The driver
926 * has to handle that.
928 #define RT2X00_TASKLET_INIT(taskletname) \
929 if (rt2x00dev->ops->lib->taskletname) { \
930 tasklet_init(&rt2x00dev->taskletname, \
931 rt2x00dev->ops->lib->taskletname, \
932 (unsigned long)rt2x00dev); \
933 tasklet_disable(&rt2x00dev->taskletname); \
936 RT2X00_TASKLET_INIT(txstatus_tasklet
);
937 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
938 RT2X00_TASKLET_INIT(tbtt_tasklet
);
939 RT2X00_TASKLET_INIT(rxdone_tasklet
);
940 RT2X00_TASKLET_INIT(autowake_tasklet
);
942 #undef RT2X00_TASKLET_INIT
947 status
= ieee80211_register_hw(rt2x00dev
->hw
);
951 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
957 * Initialization/uninitialization handlers.
959 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
961 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
965 * Unregister extra components.
967 rt2x00rfkill_unregister(rt2x00dev
);
970 * Allow the HW to uninitialize.
972 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
975 * Free allocated queue entries.
977 rt2x00queue_uninitialize(rt2x00dev
);
980 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
984 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
988 * Allocate all queue entries.
990 status
= rt2x00queue_initialize(rt2x00dev
);
995 * Initialize the device.
997 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
999 rt2x00queue_uninitialize(rt2x00dev
);
1003 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1006 * Register the extra components.
1008 rt2x00rfkill_register(rt2x00dev
);
1013 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1017 if (test_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1021 * If this is the first interface which is added,
1022 * we should load the firmware now.
1024 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1029 * Initialize the device.
1031 retval
= rt2x00lib_initialize(rt2x00dev
);
1035 rt2x00dev
->intf_ap_count
= 0;
1036 rt2x00dev
->intf_sta_count
= 0;
1037 rt2x00dev
->intf_associated
= 0;
1039 /* Enable the radio */
1040 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1044 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1049 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1051 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1055 * Perhaps we can add something smarter here,
1056 * but for now just disabling the radio should do.
1058 rt2x00lib_disable_radio(rt2x00dev
);
1060 rt2x00dev
->intf_ap_count
= 0;
1061 rt2x00dev
->intf_sta_count
= 0;
1062 rt2x00dev
->intf_associated
= 0;
1066 * driver allocation handlers.
1068 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1070 int retval
= -ENOMEM
;
1072 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1073 mutex_init(&rt2x00dev
->csr_mutex
);
1075 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1078 * Make room for rt2x00_intf inside the per-interface
1079 * structure ieee80211_vif.
1081 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1084 * Determine which operating modes are supported, all modes
1085 * which require beaconing, depend on the availability of
1088 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1089 if (rt2x00dev
->ops
->bcn
->entry_num
> 0)
1090 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1091 BIT(NL80211_IFTYPE_ADHOC
) |
1092 BIT(NL80211_IFTYPE_AP
) |
1093 BIT(NL80211_IFTYPE_MESH_POINT
) |
1094 BIT(NL80211_IFTYPE_WDS
);
1099 rt2x00dev
->workqueue
=
1100 alloc_ordered_workqueue(wiphy_name(rt2x00dev
->hw
->wiphy
), 0);
1101 if (!rt2x00dev
->workqueue
) {
1106 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1107 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1110 * Let the driver probe the device to detect the capabilities.
1112 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1114 ERROR(rt2x00dev
, "Failed to allocate device.\n");
1119 * Allocate queue array.
1121 retval
= rt2x00queue_allocate(rt2x00dev
);
1126 * Initialize ieee80211 structure.
1128 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1130 ERROR(rt2x00dev
, "Failed to initialize hw.\n");
1135 * Register extra components.
1137 rt2x00link_register(rt2x00dev
);
1138 rt2x00leds_register(rt2x00dev
);
1139 rt2x00debug_register(rt2x00dev
);
1144 rt2x00lib_remove_dev(rt2x00dev
);
1148 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1150 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1152 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1157 rt2x00lib_disable_radio(rt2x00dev
);
1162 cancel_work_sync(&rt2x00dev
->intf_work
);
1163 if (rt2x00_is_usb(rt2x00dev
)) {
1164 del_timer_sync(&rt2x00dev
->txstatus_timer
);
1165 cancel_work_sync(&rt2x00dev
->rxdone_work
);
1166 cancel_work_sync(&rt2x00dev
->txdone_work
);
1168 destroy_workqueue(rt2x00dev
->workqueue
);
1171 * Free the tx status fifo.
1173 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1176 * Kill the tx status tasklet.
1178 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1179 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1180 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1181 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1182 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1185 * Uninitialize device.
1187 rt2x00lib_uninitialize(rt2x00dev
);
1190 * Free extra components
1192 rt2x00debug_deregister(rt2x00dev
);
1193 rt2x00leds_unregister(rt2x00dev
);
1196 * Free ieee80211_hw memory.
1198 rt2x00lib_remove_hw(rt2x00dev
);
1201 * Free firmware image.
1203 rt2x00lib_free_firmware(rt2x00dev
);
1206 * Free queue structures.
1208 rt2x00queue_free(rt2x00dev
);
1210 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1213 * Device state handlers
1216 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1218 NOTICE(rt2x00dev
, "Going to sleep.\n");
1221 * Prevent mac80211 from accessing driver while suspended.
1223 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1227 * Cleanup as much as possible.
1229 rt2x00lib_uninitialize(rt2x00dev
);
1232 * Suspend/disable extra components.
1234 rt2x00leds_suspend(rt2x00dev
);
1235 rt2x00debug_deregister(rt2x00dev
);
1238 * Set device mode to sleep for power management,
1239 * on some hardware this call seems to consistently fail.
1240 * From the specifications it is hard to tell why it fails,
1241 * and if this is a "bad thing".
1242 * Overall it is safe to just ignore the failure and
1243 * continue suspending. The only downside is that the
1244 * device will not be in optimal power save mode, but with
1245 * the radio and the other components already disabled the
1246 * device is as good as disabled.
1248 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1249 WARNING(rt2x00dev
, "Device failed to enter sleep state, "
1250 "continue suspending.\n");
1254 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1256 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1258 NOTICE(rt2x00dev
, "Waking up.\n");
1261 * Restore/enable extra components.
1263 rt2x00debug_register(rt2x00dev
);
1264 rt2x00leds_resume(rt2x00dev
);
1267 * We are ready again to receive requests from mac80211.
1269 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1273 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1274 #endif /* CONFIG_PM */
1277 * rt2x00lib module information.
1279 MODULE_AUTHOR(DRV_PROJECT
);
1280 MODULE_VERSION(DRV_VERSION
);
1281 MODULE_DESCRIPTION("rt2x00 library");
1282 MODULE_LICENSE("GPL");