2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
)
38 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
40 struct skb_frame_desc
*skbdesc
;
41 unsigned int frame_size
;
42 unsigned int head_size
= 0;
43 unsigned int tail_size
= 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size
= entry
->queue
->data_size
+ entry
->queue
->desc_size
;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
)) {
71 skb
= dev_alloc_skb(frame_size
+ head_size
+ tail_size
);
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb
, head_size
);
80 skb_put(skb
, frame_size
);
85 skbdesc
= get_skb_frame_desc(skb
);
86 memset(skbdesc
, 0, sizeof(*skbdesc
));
87 skbdesc
->entry
= entry
;
89 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
)) {
90 skbdesc
->skb_dma
= dma_map_single(rt2x00dev
->dev
,
94 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
100 void rt2x00queue_map_txskb(struct queue_entry
*entry
)
102 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
103 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
106 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
107 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
111 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
113 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
114 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
116 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
117 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
119 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
120 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
121 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
123 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
128 void rt2x00queue_free_skb(struct queue_entry
*entry
)
133 rt2x00queue_unmap_skb(entry
);
134 dev_kfree_skb_any(entry
->skb
);
138 void rt2x00queue_align_frame(struct sk_buff
*skb
)
140 unsigned int frame_length
= skb
->len
;
141 unsigned int align
= ALIGN_SIZE(skb
, 0);
146 skb_push(skb
, align
);
147 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
148 skb_trim(skb
, frame_length
);
151 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
153 unsigned int payload_length
= skb
->len
- header_length
;
154 unsigned int header_align
= ALIGN_SIZE(skb
, 0);
155 unsigned int payload_align
= ALIGN_SIZE(skb
, header_length
);
156 unsigned int l2pad
= payload_length
? L2PAD_SIZE(header_length
) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
162 if (payload_align
> header_align
)
165 /* There is nothing to do if no alignment is needed */
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb
, header_align
);
175 memmove(skb
->data
, skb
->data
+ header_align
, header_length
);
177 /* Move the payload, if present and if required */
178 if (payload_length
&& payload_align
)
179 memmove(skb
->data
+ header_length
+ l2pad
,
180 skb
->data
+ header_length
+ l2pad
+ payload_align
,
183 /* Trim the skb to the correct size */
184 skb_trim(skb
, header_length
+ l2pad
+ payload_length
);
187 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad
= (skb
->len
> header_length
) ?
194 L2PAD_SIZE(header_length
) : 0;
199 memmove(skb
->data
+ l2pad
, skb
->data
, header_length
);
200 skb_pull(skb
, l2pad
);
203 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry
*entry
,
204 struct txentry_desc
*txdesc
)
206 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
207 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
208 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
209 unsigned long irqflags
;
211 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
214 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
216 if (!test_bit(REQUIRE_SW_SEQNO
, &entry
->queue
->rt2x00dev
->cap_flags
))
220 * The hardware is not able to insert a sequence number. Assign a
221 * software generated one here.
223 * This is wrong because beacons are not getting sequence
224 * numbers assigned properly.
226 * A secondary problem exists for drivers that cannot toggle
227 * sequence counting per-frame, since those will override the
228 * sequence counter given by mac80211.
230 spin_lock_irqsave(&intf
->seqlock
, irqflags
);
232 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
234 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
235 hdr
->seq_ctrl
|= cpu_to_le16(intf
->seqno
);
237 spin_unlock_irqrestore(&intf
->seqlock
, irqflags
);
241 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry
*entry
,
242 struct txentry_desc
*txdesc
,
243 const struct rt2x00_rate
*hwrate
)
245 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
246 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
247 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
248 unsigned int data_length
;
249 unsigned int duration
;
250 unsigned int residual
;
253 * Determine with what IFS priority this frame should be send.
254 * Set ifs to IFS_SIFS when the this is not the first fragment,
255 * or this fragment came after RTS/CTS.
257 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
258 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
260 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
262 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
263 data_length
= entry
->skb
->len
+ 4;
264 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, entry
->skb
);
268 * Length calculation depends on OFDM/CCK rate.
270 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
271 txdesc
->u
.plcp
.service
= 0x04;
273 if (hwrate
->flags
& DEV_RATE_OFDM
) {
274 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
275 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
278 * Convert length to microseconds.
280 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
281 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
287 * Check if we need to set the Length Extension
289 if (hwrate
->bitrate
== 110 && residual
<= 30)
290 txdesc
->u
.plcp
.service
|= 0x80;
293 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
294 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
297 * When preamble is enabled we should set the
298 * preamble bit for the signal.
300 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
301 txdesc
->u
.plcp
.signal
|= 0x08;
305 static void rt2x00queue_create_tx_descriptor_ht(struct queue_entry
*entry
,
306 struct txentry_desc
*txdesc
,
307 const struct rt2x00_rate
*hwrate
)
309 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
310 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
311 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
313 if (tx_info
->control
.sta
)
314 txdesc
->u
.ht
.mpdu_density
=
315 tx_info
->control
.sta
->ht_cap
.ampdu_density
;
317 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
320 * Only one STBC stream is supported for now.
322 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
323 txdesc
->u
.ht
.stbc
= 1;
326 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
327 * mcs rate to be used
329 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
330 txdesc
->u
.ht
.mcs
= txrate
->idx
;
333 * MIMO PS should be set to 1 for STA's using dynamic SM PS
334 * when using more then one tx stream (>MCS7).
336 if (tx_info
->control
.sta
&& txdesc
->u
.ht
.mcs
> 7 &&
337 ((tx_info
->control
.sta
->ht_cap
.cap
&
338 IEEE80211_HT_CAP_SM_PS
) >>
339 IEEE80211_HT_CAP_SM_PS_SHIFT
) ==
340 WLAN_HT_CAP_SM_PS_DYNAMIC
)
341 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
343 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
344 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
345 txdesc
->u
.ht
.mcs
|= 0x08;
349 * This frame is eligible for an AMPDU, however, don't aggregate
350 * frames that are intended to probe a specific tx rate.
352 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
353 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
354 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
357 * Set 40Mhz mode if necessary (for legacy rates this will
358 * duplicate the frame to both channels).
360 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
361 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
362 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
363 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
364 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
367 * Determine IFS values
368 * - Use TXOP_BACKOFF for management frames except beacons
369 * - Use TXOP_SIFS for fragment bursts
370 * - Use TXOP_HTTXOP for everything else
372 * Note: rt2800 devices won't use CTS protection (if used)
373 * for frames not transmitted with TXOP_HTTXOP
375 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
376 !ieee80211_is_beacon(hdr
->frame_control
))
377 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
378 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
379 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
381 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
384 static void rt2x00queue_create_tx_descriptor(struct queue_entry
*entry
,
385 struct txentry_desc
*txdesc
)
387 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
388 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
389 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)entry
->skb
->data
;
390 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
391 struct ieee80211_rate
*rate
;
392 const struct rt2x00_rate
*hwrate
= NULL
;
394 memset(txdesc
, 0, sizeof(*txdesc
));
397 * Header and frame information.
399 txdesc
->length
= entry
->skb
->len
;
400 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
403 * Check whether this frame is to be acked.
405 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
406 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
409 * Check if this is a RTS/CTS frame
411 if (ieee80211_is_rts(hdr
->frame_control
) ||
412 ieee80211_is_cts(hdr
->frame_control
)) {
413 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
414 if (ieee80211_is_rts(hdr
->frame_control
))
415 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
417 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
418 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
420 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
424 * Determine retry information.
426 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
427 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
428 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
431 * Check if more fragments are pending
433 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
434 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
435 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
439 * Check if more frames (!= fragments) are pending
441 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
442 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
445 * Beacons and probe responses require the tsf timestamp
446 * to be inserted into the frame.
448 if (ieee80211_is_beacon(hdr
->frame_control
) ||
449 ieee80211_is_probe_resp(hdr
->frame_control
))
450 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
452 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
453 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
454 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
457 * Determine rate modulation.
459 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
460 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
461 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
462 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
464 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
465 hwrate
= rt2x00_get_rate(rate
->hw_value
);
466 if (hwrate
->flags
& DEV_RATE_OFDM
)
467 txdesc
->rate_mode
= RATE_MODE_OFDM
;
469 txdesc
->rate_mode
= RATE_MODE_CCK
;
473 * Apply TX descriptor handling by components
475 rt2x00crypto_create_tx_descriptor(entry
, txdesc
);
476 rt2x00queue_create_tx_descriptor_seq(entry
, txdesc
);
478 if (test_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
))
479 rt2x00queue_create_tx_descriptor_ht(entry
, txdesc
, hwrate
);
481 rt2x00queue_create_tx_descriptor_plcp(entry
, txdesc
, hwrate
);
484 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
485 struct txentry_desc
*txdesc
)
487 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
490 * This should not happen, we already checked the entry
491 * was ours. When the hardware disagrees there has been
492 * a queue corruption!
494 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
495 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
497 "Corrupt queue %d, accessing entry which is not ours.\n"
498 "Please file bug report to %s.\n",
499 entry
->queue
->qid
, DRV_PROJECT
);
504 * Add the requested extra tx headroom in front of the skb.
506 skb_push(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
507 memset(entry
->skb
->data
, 0, rt2x00dev
->ops
->extra_tx_headroom
);
510 * Call the driver's write_tx_data function, if it exists.
512 if (rt2x00dev
->ops
->lib
->write_tx_data
)
513 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
516 * Map the skb to DMA.
518 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
519 rt2x00queue_map_txskb(entry
);
524 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
525 struct txentry_desc
*txdesc
)
527 struct data_queue
*queue
= entry
->queue
;
529 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
532 * All processing on the frame has been completed, this means
533 * it is now ready to be dumped to userspace through debugfs.
535 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
538 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
539 struct txentry_desc
*txdesc
)
542 * Check if we need to kick the queue, there are however a few rules
543 * 1) Don't kick unless this is the last in frame in a burst.
544 * When the burst flag is set, this frame is always followed
545 * by another frame which in some way are related to eachother.
546 * This is true for fragments, RTS or CTS-to-self frames.
547 * 2) Rule 1 can be broken when the available entries
548 * in the queue are less then a certain threshold.
550 if (rt2x00queue_threshold(queue
) ||
551 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
552 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
555 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
558 struct ieee80211_tx_info
*tx_info
;
559 struct queue_entry
*entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
560 struct txentry_desc txdesc
;
561 struct skb_frame_desc
*skbdesc
;
562 u8 rate_idx
, rate_flags
;
564 if (unlikely(rt2x00queue_full(queue
))) {
565 ERROR(queue
->rt2x00dev
,
566 "Dropping frame due to full tx queue %d.\n", queue
->qid
);
570 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
572 ERROR(queue
->rt2x00dev
,
573 "Arrived at non-free entry in the non-full queue %d.\n"
574 "Please file bug report to %s.\n",
575 queue
->qid
, DRV_PROJECT
);
580 * Copy all TX descriptor information into txdesc,
581 * after that we are free to use the skb->cb array
582 * for our information.
585 rt2x00queue_create_tx_descriptor(entry
, &txdesc
);
588 * All information is retrieved from the skb->cb array,
589 * now we should claim ownership of the driver part of that
590 * array, preserving the bitrate index and flags.
592 tx_info
= IEEE80211_SKB_CB(skb
);
593 rate_idx
= tx_info
->control
.rates
[0].idx
;
594 rate_flags
= tx_info
->control
.rates
[0].flags
;
595 skbdesc
= get_skb_frame_desc(skb
);
596 memset(skbdesc
, 0, sizeof(*skbdesc
));
597 skbdesc
->entry
= entry
;
598 skbdesc
->tx_rate_idx
= rate_idx
;
599 skbdesc
->tx_rate_flags
= rate_flags
;
602 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
605 * When hardware encryption is supported, and this frame
606 * is to be encrypted, we should strip the IV/EIV data from
607 * the frame so we can provide it to the driver separately.
609 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
610 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
611 if (test_bit(REQUIRE_COPY_IV
, &queue
->rt2x00dev
->cap_flags
))
612 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
614 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
618 * When DMA allocation is required we should guarantee to the
619 * driver that the DMA is aligned to a 4-byte boundary.
620 * However some drivers require L2 padding to pad the payload
621 * rather then the header. This could be a requirement for
622 * PCI and USB devices, while header alignment only is valid
625 if (test_bit(REQUIRE_L2PAD
, &queue
->rt2x00dev
->cap_flags
))
626 rt2x00queue_insert_l2pad(entry
->skb
, txdesc
.header_length
);
627 else if (test_bit(REQUIRE_DMA
, &queue
->rt2x00dev
->cap_flags
))
628 rt2x00queue_align_frame(entry
->skb
);
631 * It could be possible that the queue was corrupted and this
632 * call failed. Since we always return NETDEV_TX_OK to mac80211,
633 * this frame will simply be dropped.
635 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
636 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
641 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
643 rt2x00queue_index_inc(entry
, Q_INDEX
);
644 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
645 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
650 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
651 struct ieee80211_vif
*vif
)
653 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
655 if (unlikely(!intf
->beacon
))
658 mutex_lock(&intf
->beacon_skb_mutex
);
661 * Clean up the beacon skb.
663 rt2x00queue_free_skb(intf
->beacon
);
666 * Clear beacon (single bssid devices don't need to clear the beacon
667 * since the beacon queue will get stopped anyway).
669 if (rt2x00dev
->ops
->lib
->clear_beacon
)
670 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
672 mutex_unlock(&intf
->beacon_skb_mutex
);
677 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
678 struct ieee80211_vif
*vif
)
680 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
681 struct skb_frame_desc
*skbdesc
;
682 struct txentry_desc txdesc
;
684 if (unlikely(!intf
->beacon
))
688 * Clean up the beacon skb.
690 rt2x00queue_free_skb(intf
->beacon
);
692 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
693 if (!intf
->beacon
->skb
)
697 * Copy all TX descriptor information into txdesc,
698 * after that we are free to use the skb->cb array
699 * for our information.
701 rt2x00queue_create_tx_descriptor(intf
->beacon
, &txdesc
);
704 * Fill in skb descriptor
706 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
707 memset(skbdesc
, 0, sizeof(*skbdesc
));
708 skbdesc
->entry
= intf
->beacon
;
711 * Send beacon to hardware.
713 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
719 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
720 struct ieee80211_vif
*vif
)
722 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
725 mutex_lock(&intf
->beacon_skb_mutex
);
726 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
727 mutex_unlock(&intf
->beacon_skb_mutex
);
732 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
733 enum queue_index start
,
734 enum queue_index end
,
736 bool (*fn
)(struct queue_entry
*entry
,
739 unsigned long irqflags
;
740 unsigned int index_start
;
741 unsigned int index_end
;
744 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
745 ERROR(queue
->rt2x00dev
,
746 "Entry requested from invalid index range (%d - %d)\n",
752 * Only protect the range we are going to loop over,
753 * if during our loop a extra entry is set to pending
754 * it should not be kicked during this run, since it
755 * is part of another TX operation.
757 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
758 index_start
= queue
->index
[start
];
759 index_end
= queue
->index
[end
];
760 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
763 * Start from the TX done pointer, this guarantees that we will
764 * send out all frames in the correct order.
766 if (index_start
< index_end
) {
767 for (i
= index_start
; i
< index_end
; i
++) {
768 if (fn(&queue
->entries
[i
], data
))
772 for (i
= index_start
; i
< queue
->limit
; i
++) {
773 if (fn(&queue
->entries
[i
], data
))
777 for (i
= 0; i
< index_end
; i
++) {
778 if (fn(&queue
->entries
[i
], data
))
785 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
787 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
788 enum queue_index index
)
790 struct queue_entry
*entry
;
791 unsigned long irqflags
;
793 if (unlikely(index
>= Q_INDEX_MAX
)) {
794 ERROR(queue
->rt2x00dev
,
795 "Entry requested from invalid index type (%d)\n", index
);
799 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
801 entry
= &queue
->entries
[queue
->index
[index
]];
803 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
807 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
809 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
811 struct data_queue
*queue
= entry
->queue
;
812 unsigned long irqflags
;
814 if (unlikely(index
>= Q_INDEX_MAX
)) {
815 ERROR(queue
->rt2x00dev
,
816 "Index change on invalid index type (%d)\n", index
);
820 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
822 queue
->index
[index
]++;
823 if (queue
->index
[index
] >= queue
->limit
)
824 queue
->index
[index
] = 0;
826 entry
->last_action
= jiffies
;
828 if (index
== Q_INDEX
) {
830 } else if (index
== Q_INDEX_DONE
) {
835 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
838 void rt2x00queue_pause_queue(struct data_queue
*queue
)
840 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
841 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
842 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
845 switch (queue
->qid
) {
851 * For TX queues, we have to disable the queue
854 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
860 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
862 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
864 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
865 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
866 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
869 switch (queue
->qid
) {
875 * For TX queues, we have to enable the queue
878 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
882 * For RX we need to kick the queue now in order to
885 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
890 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
892 void rt2x00queue_start_queue(struct data_queue
*queue
)
894 mutex_lock(&queue
->status_lock
);
896 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
897 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
898 mutex_unlock(&queue
->status_lock
);
902 set_bit(QUEUE_PAUSED
, &queue
->flags
);
904 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
906 rt2x00queue_unpause_queue(queue
);
908 mutex_unlock(&queue
->status_lock
);
910 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
912 void rt2x00queue_stop_queue(struct data_queue
*queue
)
914 mutex_lock(&queue
->status_lock
);
916 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
917 mutex_unlock(&queue
->status_lock
);
921 rt2x00queue_pause_queue(queue
);
923 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
925 mutex_unlock(&queue
->status_lock
);
927 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
929 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
933 (queue
->qid
== QID_AC_VO
) ||
934 (queue
->qid
== QID_AC_VI
) ||
935 (queue
->qid
== QID_AC_BE
) ||
936 (queue
->qid
== QID_AC_BK
);
938 mutex_lock(&queue
->status_lock
);
941 * If the queue has been started, we must stop it temporarily
942 * to prevent any new frames to be queued on the device. If
943 * we are not dropping the pending frames, the queue must
944 * only be stopped in the software and not the hardware,
945 * otherwise the queue will never become empty on its own.
947 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
952 rt2x00queue_pause_queue(queue
);
955 * If we are not supposed to drop any pending
956 * frames, this means we must force a start (=kick)
957 * to the queue to make sure the hardware will
958 * start transmitting.
960 if (!drop
&& tx_queue
)
961 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
965 * Check if driver supports flushing, if that is the case we can
966 * defer the flushing to the driver. Otherwise we must use the
967 * alternative which just waits for the queue to become empty.
969 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
970 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
973 * The queue flush has failed...
975 if (unlikely(!rt2x00queue_empty(queue
)))
976 WARNING(queue
->rt2x00dev
, "Queue %d failed to flush\n", queue
->qid
);
979 * Restore the queue to the previous status
982 rt2x00queue_unpause_queue(queue
);
984 mutex_unlock(&queue
->status_lock
);
986 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
988 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
990 struct data_queue
*queue
;
993 * rt2x00queue_start_queue will call ieee80211_wake_queue
994 * for each queue after is has been properly initialized.
996 tx_queue_for_each(rt2x00dev
, queue
)
997 rt2x00queue_start_queue(queue
);
999 rt2x00queue_start_queue(rt2x00dev
->rx
);
1001 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1003 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1005 struct data_queue
*queue
;
1008 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1009 * as well, but we are completely shutting doing everything
1010 * now, so it is much safer to stop all TX queues at once,
1011 * and use rt2x00queue_stop_queue for cleaning up.
1013 ieee80211_stop_queues(rt2x00dev
->hw
);
1015 tx_queue_for_each(rt2x00dev
, queue
)
1016 rt2x00queue_stop_queue(queue
);
1018 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1020 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1022 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1024 struct data_queue
*queue
;
1026 tx_queue_for_each(rt2x00dev
, queue
)
1027 rt2x00queue_flush_queue(queue
, drop
);
1029 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1031 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1033 static void rt2x00queue_reset(struct data_queue
*queue
)
1035 unsigned long irqflags
;
1038 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1043 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1044 queue
->index
[i
] = 0;
1046 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1049 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1051 struct data_queue
*queue
;
1054 queue_for_each(rt2x00dev
, queue
) {
1055 rt2x00queue_reset(queue
);
1057 for (i
= 0; i
< queue
->limit
; i
++)
1058 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1062 static int rt2x00queue_alloc_entries(struct data_queue
*queue
,
1063 const struct data_queue_desc
*qdesc
)
1065 struct queue_entry
*entries
;
1066 unsigned int entry_size
;
1069 rt2x00queue_reset(queue
);
1071 queue
->limit
= qdesc
->entry_num
;
1072 queue
->threshold
= DIV_ROUND_UP(qdesc
->entry_num
, 10);
1073 queue
->data_size
= qdesc
->data_size
;
1074 queue
->desc_size
= qdesc
->desc_size
;
1077 * Allocate all queue entries.
1079 entry_size
= sizeof(*entries
) + qdesc
->priv_size
;
1080 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1084 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1085 (((char *)(__base)) + ((__limit) * (__esize)) + \
1086 ((__index) * (__psize)))
1088 for (i
= 0; i
< queue
->limit
; i
++) {
1089 entries
[i
].flags
= 0;
1090 entries
[i
].queue
= queue
;
1091 entries
[i
].skb
= NULL
;
1092 entries
[i
].entry_idx
= i
;
1093 entries
[i
].priv_data
=
1094 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1095 sizeof(*entries
), qdesc
->priv_size
);
1098 #undef QUEUE_ENTRY_PRIV_OFFSET
1100 queue
->entries
= entries
;
1105 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1109 if (!queue
->entries
)
1112 for (i
= 0; i
< queue
->limit
; i
++) {
1113 rt2x00queue_free_skb(&queue
->entries
[i
]);
1117 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1120 struct sk_buff
*skb
;
1122 for (i
= 0; i
< queue
->limit
; i
++) {
1123 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
]);
1126 queue
->entries
[i
].skb
= skb
;
1132 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1134 struct data_queue
*queue
;
1137 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
, rt2x00dev
->ops
->rx
);
1141 tx_queue_for_each(rt2x00dev
, queue
) {
1142 status
= rt2x00queue_alloc_entries(queue
, rt2x00dev
->ops
->tx
);
1147 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
, rt2x00dev
->ops
->bcn
);
1151 if (test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
)) {
1152 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
,
1153 rt2x00dev
->ops
->atim
);
1158 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1165 ERROR(rt2x00dev
, "Queue entries allocation failed.\n");
1167 rt2x00queue_uninitialize(rt2x00dev
);
1172 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1174 struct data_queue
*queue
;
1176 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1178 queue_for_each(rt2x00dev
, queue
) {
1179 kfree(queue
->entries
);
1180 queue
->entries
= NULL
;
1184 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1185 struct data_queue
*queue
, enum data_queue_qid qid
)
1187 mutex_init(&queue
->status_lock
);
1188 spin_lock_init(&queue
->index_lock
);
1190 queue
->rt2x00dev
= rt2x00dev
;
1198 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1200 struct data_queue
*queue
;
1201 enum data_queue_qid qid
;
1202 unsigned int req_atim
=
1203 !!test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1206 * We need the following queues:
1208 * TX: ops->tx_queues
1210 * Atim: 1 (if required)
1212 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1214 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1216 ERROR(rt2x00dev
, "Queue allocation failed.\n");
1221 * Initialize pointers
1223 rt2x00dev
->rx
= queue
;
1224 rt2x00dev
->tx
= &queue
[1];
1225 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1226 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1229 * Initialize queue parameters.
1231 * TX: qid = QID_AC_VO + index
1232 * TX: cw_min: 2^5 = 32.
1233 * TX: cw_max: 2^10 = 1024.
1234 * BCN: qid = QID_BEACON
1235 * ATIM: qid = QID_ATIM
1237 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1240 tx_queue_for_each(rt2x00dev
, queue
)
1241 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1243 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1245 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1250 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1252 kfree(rt2x00dev
->rx
);
1253 rt2x00dev
->rx
= NULL
;
1254 rt2x00dev
->tx
= NULL
;
1255 rt2x00dev
->bcn
= NULL
;