sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blobab8c16f8bcafebec3faeecb412669792eab664a0
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
56 head_size = 4;
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
69 * Allocate skbuffer.
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
83 * Populate skbdesc.
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
97 return skb;
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
128 void rt2x00queue_free_skb(struct queue_entry *entry)
130 if (!entry->skb)
131 return;
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
138 void rt2x00queue_align_frame(struct sk_buff *skb)
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
143 if (!align)
144 return;
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
162 if (payload_align > header_align)
163 header_align += 4;
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
173 * Move the header.
175 memmove(skb->data, skb->data + header_align, header_length);
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
196 if (!l2pad)
197 return;
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
203 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
204 struct txentry_desc *txdesc)
206 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
207 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
208 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
209 unsigned long irqflags;
211 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
212 return;
214 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 if (!test_bit(REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->cap_flags))
217 return;
220 * The hardware is not able to insert a sequence number. Assign a
221 * software generated one here.
223 * This is wrong because beacons are not getting sequence
224 * numbers assigned properly.
226 * A secondary problem exists for drivers that cannot toggle
227 * sequence counting per-frame, since those will override the
228 * sequence counter given by mac80211.
230 spin_lock_irqsave(&intf->seqlock, irqflags);
232 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
233 intf->seqno += 0x10;
234 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
235 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
237 spin_unlock_irqrestore(&intf->seqlock, irqflags);
241 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
242 struct txentry_desc *txdesc,
243 const struct rt2x00_rate *hwrate)
245 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
246 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
247 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
248 unsigned int data_length;
249 unsigned int duration;
250 unsigned int residual;
253 * Determine with what IFS priority this frame should be send.
254 * Set ifs to IFS_SIFS when the this is not the first fragment,
255 * or this fragment came after RTS/CTS.
257 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
258 txdesc->u.plcp.ifs = IFS_BACKOFF;
259 else
260 txdesc->u.plcp.ifs = IFS_SIFS;
262 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
263 data_length = entry->skb->len + 4;
264 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
267 * PLCP setup
268 * Length calculation depends on OFDM/CCK rate.
270 txdesc->u.plcp.signal = hwrate->plcp;
271 txdesc->u.plcp.service = 0x04;
273 if (hwrate->flags & DEV_RATE_OFDM) {
274 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
275 txdesc->u.plcp.length_low = data_length & 0x3f;
276 } else {
278 * Convert length to microseconds.
280 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
281 duration = GET_DURATION(data_length, hwrate->bitrate);
283 if (residual != 0) {
284 duration++;
287 * Check if we need to set the Length Extension
289 if (hwrate->bitrate == 110 && residual <= 30)
290 txdesc->u.plcp.service |= 0x80;
293 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
294 txdesc->u.plcp.length_low = duration & 0xff;
297 * When preamble is enabled we should set the
298 * preamble bit for the signal.
300 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
301 txdesc->u.plcp.signal |= 0x08;
305 static void rt2x00queue_create_tx_descriptor_ht(struct queue_entry *entry,
306 struct txentry_desc *txdesc,
307 const struct rt2x00_rate *hwrate)
309 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
310 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
311 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
313 if (tx_info->control.sta)
314 txdesc->u.ht.mpdu_density =
315 tx_info->control.sta->ht_cap.ampdu_density;
317 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
320 * Only one STBC stream is supported for now.
322 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
323 txdesc->u.ht.stbc = 1;
326 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
327 * mcs rate to be used
329 if (txrate->flags & IEEE80211_TX_RC_MCS) {
330 txdesc->u.ht.mcs = txrate->idx;
333 * MIMO PS should be set to 1 for STA's using dynamic SM PS
334 * when using more then one tx stream (>MCS7).
336 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
337 ((tx_info->control.sta->ht_cap.cap &
338 IEEE80211_HT_CAP_SM_PS) >>
339 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
340 WLAN_HT_CAP_SM_PS_DYNAMIC)
341 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
342 } else {
343 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
344 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
345 txdesc->u.ht.mcs |= 0x08;
349 * This frame is eligible for an AMPDU, however, don't aggregate
350 * frames that are intended to probe a specific tx rate.
352 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
353 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
354 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
357 * Set 40Mhz mode if necessary (for legacy rates this will
358 * duplicate the frame to both channels).
360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
367 * Determine IFS values
368 * - Use TXOP_BACKOFF for management frames except beacons
369 * - Use TXOP_SIFS for fragment bursts
370 * - Use TXOP_HTTXOP for everything else
372 * Note: rt2800 devices won't use CTS protection (if used)
373 * for frames not transmitted with TXOP_HTTXOP
375 if (ieee80211_is_mgmt(hdr->frame_control) &&
376 !ieee80211_is_beacon(hdr->frame_control))
377 txdesc->u.ht.txop = TXOP_BACKOFF;
378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379 txdesc->u.ht.txop = TXOP_SIFS;
380 else
381 txdesc->u.ht.txop = TXOP_HTTXOP;
384 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
385 struct txentry_desc *txdesc)
387 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
388 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
389 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
390 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
391 struct ieee80211_rate *rate;
392 const struct rt2x00_rate *hwrate = NULL;
394 memset(txdesc, 0, sizeof(*txdesc));
397 * Header and frame information.
399 txdesc->length = entry->skb->len;
400 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
403 * Check whether this frame is to be acked.
405 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
406 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
409 * Check if this is a RTS/CTS frame
411 if (ieee80211_is_rts(hdr->frame_control) ||
412 ieee80211_is_cts(hdr->frame_control)) {
413 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
414 if (ieee80211_is_rts(hdr->frame_control))
415 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
416 else
417 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
418 if (tx_info->control.rts_cts_rate_idx >= 0)
419 rate =
420 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
424 * Determine retry information.
426 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
427 if (txdesc->retry_limit >= rt2x00dev->long_retry)
428 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
431 * Check if more fragments are pending
433 if (ieee80211_has_morefrags(hdr->frame_control)) {
434 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
435 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
439 * Check if more frames (!= fragments) are pending
441 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
442 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
445 * Beacons and probe responses require the tsf timestamp
446 * to be inserted into the frame.
448 if (ieee80211_is_beacon(hdr->frame_control) ||
449 ieee80211_is_probe_resp(hdr->frame_control))
450 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
452 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
453 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
454 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
457 * Determine rate modulation.
459 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
460 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
461 else if (txrate->flags & IEEE80211_TX_RC_MCS)
462 txdesc->rate_mode = RATE_MODE_HT_MIX;
463 else {
464 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
465 hwrate = rt2x00_get_rate(rate->hw_value);
466 if (hwrate->flags & DEV_RATE_OFDM)
467 txdesc->rate_mode = RATE_MODE_OFDM;
468 else
469 txdesc->rate_mode = RATE_MODE_CCK;
473 * Apply TX descriptor handling by components
475 rt2x00crypto_create_tx_descriptor(entry, txdesc);
476 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
478 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
479 rt2x00queue_create_tx_descriptor_ht(entry, txdesc, hwrate);
480 else
481 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
484 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
485 struct txentry_desc *txdesc)
487 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
490 * This should not happen, we already checked the entry
491 * was ours. When the hardware disagrees there has been
492 * a queue corruption!
494 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
495 rt2x00dev->ops->lib->get_entry_state(entry))) {
496 ERROR(rt2x00dev,
497 "Corrupt queue %d, accessing entry which is not ours.\n"
498 "Please file bug report to %s.\n",
499 entry->queue->qid, DRV_PROJECT);
500 return -EINVAL;
504 * Add the requested extra tx headroom in front of the skb.
506 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
507 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
510 * Call the driver's write_tx_data function, if it exists.
512 if (rt2x00dev->ops->lib->write_tx_data)
513 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
516 * Map the skb to DMA.
518 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
519 rt2x00queue_map_txskb(entry);
521 return 0;
524 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
525 struct txentry_desc *txdesc)
527 struct data_queue *queue = entry->queue;
529 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
532 * All processing on the frame has been completed, this means
533 * it is now ready to be dumped to userspace through debugfs.
535 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
538 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
539 struct txentry_desc *txdesc)
542 * Check if we need to kick the queue, there are however a few rules
543 * 1) Don't kick unless this is the last in frame in a burst.
544 * When the burst flag is set, this frame is always followed
545 * by another frame which in some way are related to eachother.
546 * This is true for fragments, RTS or CTS-to-self frames.
547 * 2) Rule 1 can be broken when the available entries
548 * in the queue are less then a certain threshold.
550 if (rt2x00queue_threshold(queue) ||
551 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
552 queue->rt2x00dev->ops->lib->kick_queue(queue);
555 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
556 bool local)
558 struct ieee80211_tx_info *tx_info;
559 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
560 struct txentry_desc txdesc;
561 struct skb_frame_desc *skbdesc;
562 u8 rate_idx, rate_flags;
564 if (unlikely(rt2x00queue_full(queue))) {
565 ERROR(queue->rt2x00dev,
566 "Dropping frame due to full tx queue %d.\n", queue->qid);
567 return -ENOBUFS;
570 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
571 &entry->flags))) {
572 ERROR(queue->rt2x00dev,
573 "Arrived at non-free entry in the non-full queue %d.\n"
574 "Please file bug report to %s.\n",
575 queue->qid, DRV_PROJECT);
576 return -EINVAL;
580 * Copy all TX descriptor information into txdesc,
581 * after that we are free to use the skb->cb array
582 * for our information.
584 entry->skb = skb;
585 rt2x00queue_create_tx_descriptor(entry, &txdesc);
588 * All information is retrieved from the skb->cb array,
589 * now we should claim ownership of the driver part of that
590 * array, preserving the bitrate index and flags.
592 tx_info = IEEE80211_SKB_CB(skb);
593 rate_idx = tx_info->control.rates[0].idx;
594 rate_flags = tx_info->control.rates[0].flags;
595 skbdesc = get_skb_frame_desc(skb);
596 memset(skbdesc, 0, sizeof(*skbdesc));
597 skbdesc->entry = entry;
598 skbdesc->tx_rate_idx = rate_idx;
599 skbdesc->tx_rate_flags = rate_flags;
601 if (local)
602 skbdesc->flags |= SKBDESC_NOT_MAC80211;
605 * When hardware encryption is supported, and this frame
606 * is to be encrypted, we should strip the IV/EIV data from
607 * the frame so we can provide it to the driver separately.
609 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
610 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
611 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
612 rt2x00crypto_tx_copy_iv(skb, &txdesc);
613 else
614 rt2x00crypto_tx_remove_iv(skb, &txdesc);
618 * When DMA allocation is required we should guarantee to the
619 * driver that the DMA is aligned to a 4-byte boundary.
620 * However some drivers require L2 padding to pad the payload
621 * rather then the header. This could be a requirement for
622 * PCI and USB devices, while header alignment only is valid
623 * for PCI devices.
625 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
626 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
627 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
628 rt2x00queue_align_frame(entry->skb);
631 * It could be possible that the queue was corrupted and this
632 * call failed. Since we always return NETDEV_TX_OK to mac80211,
633 * this frame will simply be dropped.
635 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
636 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
637 entry->skb = NULL;
638 return -EIO;
641 set_bit(ENTRY_DATA_PENDING, &entry->flags);
643 rt2x00queue_index_inc(entry, Q_INDEX);
644 rt2x00queue_write_tx_descriptor(entry, &txdesc);
645 rt2x00queue_kick_tx_queue(queue, &txdesc);
647 return 0;
650 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
651 struct ieee80211_vif *vif)
653 struct rt2x00_intf *intf = vif_to_intf(vif);
655 if (unlikely(!intf->beacon))
656 return -ENOBUFS;
658 mutex_lock(&intf->beacon_skb_mutex);
661 * Clean up the beacon skb.
663 rt2x00queue_free_skb(intf->beacon);
666 * Clear beacon (single bssid devices don't need to clear the beacon
667 * since the beacon queue will get stopped anyway).
669 if (rt2x00dev->ops->lib->clear_beacon)
670 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
672 mutex_unlock(&intf->beacon_skb_mutex);
674 return 0;
677 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
678 struct ieee80211_vif *vif)
680 struct rt2x00_intf *intf = vif_to_intf(vif);
681 struct skb_frame_desc *skbdesc;
682 struct txentry_desc txdesc;
684 if (unlikely(!intf->beacon))
685 return -ENOBUFS;
688 * Clean up the beacon skb.
690 rt2x00queue_free_skb(intf->beacon);
692 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
693 if (!intf->beacon->skb)
694 return -ENOMEM;
697 * Copy all TX descriptor information into txdesc,
698 * after that we are free to use the skb->cb array
699 * for our information.
701 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
704 * Fill in skb descriptor
706 skbdesc = get_skb_frame_desc(intf->beacon->skb);
707 memset(skbdesc, 0, sizeof(*skbdesc));
708 skbdesc->entry = intf->beacon;
711 * Send beacon to hardware.
713 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
715 return 0;
719 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
720 struct ieee80211_vif *vif)
722 struct rt2x00_intf *intf = vif_to_intf(vif);
723 int ret;
725 mutex_lock(&intf->beacon_skb_mutex);
726 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
727 mutex_unlock(&intf->beacon_skb_mutex);
729 return ret;
732 bool rt2x00queue_for_each_entry(struct data_queue *queue,
733 enum queue_index start,
734 enum queue_index end,
735 void *data,
736 bool (*fn)(struct queue_entry *entry,
737 void *data))
739 unsigned long irqflags;
740 unsigned int index_start;
741 unsigned int index_end;
742 unsigned int i;
744 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
745 ERROR(queue->rt2x00dev,
746 "Entry requested from invalid index range (%d - %d)\n",
747 start, end);
748 return true;
752 * Only protect the range we are going to loop over,
753 * if during our loop a extra entry is set to pending
754 * it should not be kicked during this run, since it
755 * is part of another TX operation.
757 spin_lock_irqsave(&queue->index_lock, irqflags);
758 index_start = queue->index[start];
759 index_end = queue->index[end];
760 spin_unlock_irqrestore(&queue->index_lock, irqflags);
763 * Start from the TX done pointer, this guarantees that we will
764 * send out all frames in the correct order.
766 if (index_start < index_end) {
767 for (i = index_start; i < index_end; i++) {
768 if (fn(&queue->entries[i], data))
769 return true;
771 } else {
772 for (i = index_start; i < queue->limit; i++) {
773 if (fn(&queue->entries[i], data))
774 return true;
777 for (i = 0; i < index_end; i++) {
778 if (fn(&queue->entries[i], data))
779 return true;
783 return false;
785 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
787 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
788 enum queue_index index)
790 struct queue_entry *entry;
791 unsigned long irqflags;
793 if (unlikely(index >= Q_INDEX_MAX)) {
794 ERROR(queue->rt2x00dev,
795 "Entry requested from invalid index type (%d)\n", index);
796 return NULL;
799 spin_lock_irqsave(&queue->index_lock, irqflags);
801 entry = &queue->entries[queue->index[index]];
803 spin_unlock_irqrestore(&queue->index_lock, irqflags);
805 return entry;
807 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
809 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
811 struct data_queue *queue = entry->queue;
812 unsigned long irqflags;
814 if (unlikely(index >= Q_INDEX_MAX)) {
815 ERROR(queue->rt2x00dev,
816 "Index change on invalid index type (%d)\n", index);
817 return;
820 spin_lock_irqsave(&queue->index_lock, irqflags);
822 queue->index[index]++;
823 if (queue->index[index] >= queue->limit)
824 queue->index[index] = 0;
826 entry->last_action = jiffies;
828 if (index == Q_INDEX) {
829 queue->length++;
830 } else if (index == Q_INDEX_DONE) {
831 queue->length--;
832 queue->count++;
835 spin_unlock_irqrestore(&queue->index_lock, irqflags);
838 void rt2x00queue_pause_queue(struct data_queue *queue)
840 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
841 !test_bit(QUEUE_STARTED, &queue->flags) ||
842 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
843 return;
845 switch (queue->qid) {
846 case QID_AC_VO:
847 case QID_AC_VI:
848 case QID_AC_BE:
849 case QID_AC_BK:
851 * For TX queues, we have to disable the queue
852 * inside mac80211.
854 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
855 break;
856 default:
857 break;
860 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
862 void rt2x00queue_unpause_queue(struct data_queue *queue)
864 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
865 !test_bit(QUEUE_STARTED, &queue->flags) ||
866 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
867 return;
869 switch (queue->qid) {
870 case QID_AC_VO:
871 case QID_AC_VI:
872 case QID_AC_BE:
873 case QID_AC_BK:
875 * For TX queues, we have to enable the queue
876 * inside mac80211.
878 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
879 break;
880 case QID_RX:
882 * For RX we need to kick the queue now in order to
883 * receive frames.
885 queue->rt2x00dev->ops->lib->kick_queue(queue);
886 default:
887 break;
890 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
892 void rt2x00queue_start_queue(struct data_queue *queue)
894 mutex_lock(&queue->status_lock);
896 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
897 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
898 mutex_unlock(&queue->status_lock);
899 return;
902 set_bit(QUEUE_PAUSED, &queue->flags);
904 queue->rt2x00dev->ops->lib->start_queue(queue);
906 rt2x00queue_unpause_queue(queue);
908 mutex_unlock(&queue->status_lock);
910 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
912 void rt2x00queue_stop_queue(struct data_queue *queue)
914 mutex_lock(&queue->status_lock);
916 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
917 mutex_unlock(&queue->status_lock);
918 return;
921 rt2x00queue_pause_queue(queue);
923 queue->rt2x00dev->ops->lib->stop_queue(queue);
925 mutex_unlock(&queue->status_lock);
927 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
929 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
931 bool started;
932 bool tx_queue =
933 (queue->qid == QID_AC_VO) ||
934 (queue->qid == QID_AC_VI) ||
935 (queue->qid == QID_AC_BE) ||
936 (queue->qid == QID_AC_BK);
938 mutex_lock(&queue->status_lock);
941 * If the queue has been started, we must stop it temporarily
942 * to prevent any new frames to be queued on the device. If
943 * we are not dropping the pending frames, the queue must
944 * only be stopped in the software and not the hardware,
945 * otherwise the queue will never become empty on its own.
947 started = test_bit(QUEUE_STARTED, &queue->flags);
948 if (started) {
950 * Pause the queue
952 rt2x00queue_pause_queue(queue);
955 * If we are not supposed to drop any pending
956 * frames, this means we must force a start (=kick)
957 * to the queue to make sure the hardware will
958 * start transmitting.
960 if (!drop && tx_queue)
961 queue->rt2x00dev->ops->lib->kick_queue(queue);
965 * Check if driver supports flushing, if that is the case we can
966 * defer the flushing to the driver. Otherwise we must use the
967 * alternative which just waits for the queue to become empty.
969 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
970 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
973 * The queue flush has failed...
975 if (unlikely(!rt2x00queue_empty(queue)))
976 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
979 * Restore the queue to the previous status
981 if (started)
982 rt2x00queue_unpause_queue(queue);
984 mutex_unlock(&queue->status_lock);
986 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
988 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
990 struct data_queue *queue;
993 * rt2x00queue_start_queue will call ieee80211_wake_queue
994 * for each queue after is has been properly initialized.
996 tx_queue_for_each(rt2x00dev, queue)
997 rt2x00queue_start_queue(queue);
999 rt2x00queue_start_queue(rt2x00dev->rx);
1001 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1003 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1005 struct data_queue *queue;
1008 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1009 * as well, but we are completely shutting doing everything
1010 * now, so it is much safer to stop all TX queues at once,
1011 * and use rt2x00queue_stop_queue for cleaning up.
1013 ieee80211_stop_queues(rt2x00dev->hw);
1015 tx_queue_for_each(rt2x00dev, queue)
1016 rt2x00queue_stop_queue(queue);
1018 rt2x00queue_stop_queue(rt2x00dev->rx);
1020 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1022 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1024 struct data_queue *queue;
1026 tx_queue_for_each(rt2x00dev, queue)
1027 rt2x00queue_flush_queue(queue, drop);
1029 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1031 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1033 static void rt2x00queue_reset(struct data_queue *queue)
1035 unsigned long irqflags;
1036 unsigned int i;
1038 spin_lock_irqsave(&queue->index_lock, irqflags);
1040 queue->count = 0;
1041 queue->length = 0;
1043 for (i = 0; i < Q_INDEX_MAX; i++)
1044 queue->index[i] = 0;
1046 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1049 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1051 struct data_queue *queue;
1052 unsigned int i;
1054 queue_for_each(rt2x00dev, queue) {
1055 rt2x00queue_reset(queue);
1057 for (i = 0; i < queue->limit; i++)
1058 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1062 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1063 const struct data_queue_desc *qdesc)
1065 struct queue_entry *entries;
1066 unsigned int entry_size;
1067 unsigned int i;
1069 rt2x00queue_reset(queue);
1071 queue->limit = qdesc->entry_num;
1072 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1073 queue->data_size = qdesc->data_size;
1074 queue->desc_size = qdesc->desc_size;
1077 * Allocate all queue entries.
1079 entry_size = sizeof(*entries) + qdesc->priv_size;
1080 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1081 if (!entries)
1082 return -ENOMEM;
1084 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1085 (((char *)(__base)) + ((__limit) * (__esize)) + \
1086 ((__index) * (__psize)))
1088 for (i = 0; i < queue->limit; i++) {
1089 entries[i].flags = 0;
1090 entries[i].queue = queue;
1091 entries[i].skb = NULL;
1092 entries[i].entry_idx = i;
1093 entries[i].priv_data =
1094 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1095 sizeof(*entries), qdesc->priv_size);
1098 #undef QUEUE_ENTRY_PRIV_OFFSET
1100 queue->entries = entries;
1102 return 0;
1105 static void rt2x00queue_free_skbs(struct data_queue *queue)
1107 unsigned int i;
1109 if (!queue->entries)
1110 return;
1112 for (i = 0; i < queue->limit; i++) {
1113 rt2x00queue_free_skb(&queue->entries[i]);
1117 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1119 unsigned int i;
1120 struct sk_buff *skb;
1122 for (i = 0; i < queue->limit; i++) {
1123 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1124 if (!skb)
1125 return -ENOMEM;
1126 queue->entries[i].skb = skb;
1129 return 0;
1132 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1134 struct data_queue *queue;
1135 int status;
1137 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1138 if (status)
1139 goto exit;
1141 tx_queue_for_each(rt2x00dev, queue) {
1142 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1143 if (status)
1144 goto exit;
1147 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1148 if (status)
1149 goto exit;
1151 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1152 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1153 rt2x00dev->ops->atim);
1154 if (status)
1155 goto exit;
1158 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1159 if (status)
1160 goto exit;
1162 return 0;
1164 exit:
1165 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1167 rt2x00queue_uninitialize(rt2x00dev);
1169 return status;
1172 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1174 struct data_queue *queue;
1176 rt2x00queue_free_skbs(rt2x00dev->rx);
1178 queue_for_each(rt2x00dev, queue) {
1179 kfree(queue->entries);
1180 queue->entries = NULL;
1184 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1185 struct data_queue *queue, enum data_queue_qid qid)
1187 mutex_init(&queue->status_lock);
1188 spin_lock_init(&queue->index_lock);
1190 queue->rt2x00dev = rt2x00dev;
1191 queue->qid = qid;
1192 queue->txop = 0;
1193 queue->aifs = 2;
1194 queue->cw_min = 5;
1195 queue->cw_max = 10;
1198 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1200 struct data_queue *queue;
1201 enum data_queue_qid qid;
1202 unsigned int req_atim =
1203 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1206 * We need the following queues:
1207 * RX: 1
1208 * TX: ops->tx_queues
1209 * Beacon: 1
1210 * Atim: 1 (if required)
1212 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1214 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1215 if (!queue) {
1216 ERROR(rt2x00dev, "Queue allocation failed.\n");
1217 return -ENOMEM;
1221 * Initialize pointers
1223 rt2x00dev->rx = queue;
1224 rt2x00dev->tx = &queue[1];
1225 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1226 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1229 * Initialize queue parameters.
1230 * RX: qid = QID_RX
1231 * TX: qid = QID_AC_VO + index
1232 * TX: cw_min: 2^5 = 32.
1233 * TX: cw_max: 2^10 = 1024.
1234 * BCN: qid = QID_BEACON
1235 * ATIM: qid = QID_ATIM
1237 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1239 qid = QID_AC_VO;
1240 tx_queue_for_each(rt2x00dev, queue)
1241 rt2x00queue_init(rt2x00dev, queue, qid++);
1243 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1244 if (req_atim)
1245 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1247 return 0;
1250 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1252 kfree(rt2x00dev->rx);
1253 rt2x00dev->rx = NULL;
1254 rt2x00dev->tx = NULL;
1255 rt2x00dev->bcn = NULL;