1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
45 void rtl92se_get_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
47 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
48 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
49 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
53 *((u32
*) (val
)) = rtlpci
->receive_config
;
56 case HW_VAR_RF_STATE
: {
57 *((enum rf_pwrstate
*)(val
)) = ppsc
->rfpwr_state
;
60 case HW_VAR_FW_PSMODE_STATUS
: {
61 *((bool *) (val
)) = ppsc
->fw_current_inpsmode
;
64 case HW_VAR_CORRECT_TSF
: {
66 u32
*ptsf_low
= (u32
*)&tsf
;
67 u32
*ptsf_high
= ((u32
*)&tsf
) + 1;
69 *ptsf_high
= rtl_read_dword(rtlpriv
, (TSFR
+ 4));
70 *ptsf_low
= rtl_read_dword(rtlpriv
, TSFR
);
72 *((u64
*) (val
)) = tsf
;
77 *((bool *)(val
)) = rtlpriv
->dm
.current_mrc_switch
;
81 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
82 ("switch case not process\n"));
88 void rtl92se_set_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
90 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
91 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
92 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
93 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
94 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
95 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
98 case HW_VAR_ETHER_ADDR
:{
99 rtl_write_dword(rtlpriv
, IDR0
, ((u32
*)(val
))[0]);
100 rtl_write_word(rtlpriv
, IDR4
, ((u16
*)(val
+ 4))[0]);
103 case HW_VAR_BASIC_RATE
:{
104 u16 rate_cfg
= ((u16
*) val
)[0];
107 if (rtlhal
->version
== VERSION_8192S_ACUT
)
108 rate_cfg
= rate_cfg
& 0x150;
110 rate_cfg
= rate_cfg
& 0x15f;
114 rtl_write_byte(rtlpriv
, RRSR
, rate_cfg
& 0xff);
115 rtl_write_byte(rtlpriv
, RRSR
+ 1,
116 (rate_cfg
>> 8) & 0xff);
118 while (rate_cfg
> 0x1) {
119 rate_cfg
= (rate_cfg
>> 1);
122 rtl_write_byte(rtlpriv
, INIRTSMCS_SEL
, rate_index
);
127 rtl_write_dword(rtlpriv
, BSSIDR
, ((u32
*)(val
))[0]);
128 rtl_write_word(rtlpriv
, BSSIDR
+ 4,
129 ((u16
*)(val
+ 4))[0]);
133 rtl_write_byte(rtlpriv
, SIFS_OFDM
, val
[0]);
134 rtl_write_byte(rtlpriv
, SIFS_OFDM
+ 1, val
[1]);
137 case HW_VAR_SLOT_TIME
:{
140 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
141 ("HW_VAR_SLOT_TIME %x\n", val
[0]));
143 rtl_write_byte(rtlpriv
, SLOT_TIME
, val
[0]);
145 for (e_aci
= 0; e_aci
< AC_MAX
; e_aci
++) {
146 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
152 case HW_VAR_ACK_PREAMBLE
:{
154 u8 short_preamble
= (bool) (*(u8
*) val
);
155 reg_tmp
= (mac
->cur_40_prime_sc
) << 5;
159 rtl_write_byte(rtlpriv
, RRSR
+ 2, reg_tmp
);
162 case HW_VAR_AMPDU_MIN_SPACE
:{
163 u8 min_spacing_to_set
;
166 min_spacing_to_set
= *((u8
*)val
);
167 if (min_spacing_to_set
<= 7) {
168 if (rtlpriv
->sec
.pairwise_enc_algorithm
==
174 if (min_spacing_to_set
< sec_min_space
)
175 min_spacing_to_set
= sec_min_space
;
176 if (min_spacing_to_set
> 5)
177 min_spacing_to_set
= 5;
180 ((mac
->min_space_cfg
& 0xf8) |
183 *val
= min_spacing_to_set
;
185 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
186 ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187 mac
->min_space_cfg
));
189 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
194 case HW_VAR_SHORTGI_DENSITY
:{
197 density_to_set
= *((u8
*) val
);
198 mac
->min_space_cfg
= rtlpriv
->rtlhal
.minspace_cfg
;
199 mac
->min_space_cfg
|= (density_to_set
<< 3);
201 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
202 ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203 mac
->min_space_cfg
));
205 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
210 case HW_VAR_AMPDU_FACTOR
:{
213 u8 factorlevel
[18] = {
214 2, 4, 4, 7, 7, 13, 13,
219 factor_toset
= *((u8
*) val
);
220 if (factor_toset
<= 3) {
221 factor_toset
= (1 << (factor_toset
+ 2));
222 if (factor_toset
> 0xf)
225 for (index
= 0; index
< 17; index
++) {
226 if (factorlevel
[index
] > factor_toset
)
231 for (index
= 0; index
< 8; index
++) {
232 regtoset
= ((factorlevel
[index
* 2]) |
235 rtl_write_byte(rtlpriv
,
236 AGGLEN_LMT_L
+ index
,
240 regtoset
= ((factorlevel
[16]) |
241 (factorlevel
[17] << 4));
242 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, regtoset
);
244 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
245 ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
250 case HW_VAR_AC_PARAM
:{
251 u8 e_aci
= *((u8
*) val
);
252 rtl92s_dm_init_edca_turbo(hw
);
254 if (rtlpci
->acm_method
!= eAcmWay2_SW
)
255 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
260 case HW_VAR_ACM_CTRL
:{
261 u8 e_aci
= *((u8
*) val
);
262 union aci_aifsn
*p_aci_aifsn
= (union aci_aifsn
*)(&(
264 u8 acm
= p_aci_aifsn
->f
.acm
;
265 u8 acm_ctrl
= rtl_read_byte(rtlpriv
, AcmHwCtrl
);
267 acm_ctrl
= acm_ctrl
| ((rtlpci
->acm_method
== 2) ?
273 acm_ctrl
|= AcmHw_BeqEn
;
276 acm_ctrl
|= AcmHw_ViqEn
;
279 acm_ctrl
|= AcmHw_VoqEn
;
282 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
283 ("HW_VAR_ACM_CTRL acm set "
284 "failed: eACI is %d\n", acm
));
290 acm_ctrl
&= (~AcmHw_BeqEn
);
293 acm_ctrl
&= (~AcmHw_ViqEn
);
296 acm_ctrl
&= (~AcmHw_BeqEn
);
299 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
300 ("switch case not process\n"));
305 RT_TRACE(rtlpriv
, COMP_QOS
, DBG_TRACE
,
306 ("HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl
));
307 rtl_write_byte(rtlpriv
, AcmHwCtrl
, acm_ctrl
);
311 rtl_write_dword(rtlpriv
, RCR
, ((u32
*) (val
))[0]);
312 rtlpci
->receive_config
= ((u32
*) (val
))[0];
315 case HW_VAR_RETRY_LIMIT
:{
316 u8 retry_limit
= ((u8
*) (val
))[0];
318 rtl_write_word(rtlpriv
, RETRY_LIMIT
,
319 retry_limit
<< RETRY_LIMIT_SHORT_SHIFT
|
320 retry_limit
<< RETRY_LIMIT_LONG_SHIFT
);
323 case HW_VAR_DUAL_TSF_RST
: {
326 case HW_VAR_EFUSE_BYTES
: {
327 rtlefuse
->efuse_usedbytes
= *((u16
*) val
);
330 case HW_VAR_EFUSE_USAGE
: {
331 rtlefuse
->efuse_usedpercentage
= *((u8
*) val
);
334 case HW_VAR_IO_CMD
: {
337 case HW_VAR_WPA_CONFIG
: {
338 rtl_write_byte(rtlpriv
, REG_SECR
, *((u8
*) val
));
341 case HW_VAR_SET_RPWM
:{
344 case HW_VAR_H2C_FW_PWRMODE
:{
347 case HW_VAR_FW_PSMODE_STATUS
: {
348 ppsc
->fw_current_inpsmode
= *((bool *) val
);
351 case HW_VAR_H2C_FW_JOINBSSRPT
:{
357 case HW_VAR_CORRECT_TSF
:{
361 bool bmrc_toset
= *((bool *)val
);
365 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
367 u1bdata
= (u8
)rtl_get_bbreg(hw
,
368 ROFDM1_TRXPATHENABLE
,
370 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
372 ((u1bdata
& 0xf0) | 0x03));
373 u1bdata
= (u8
)rtl_get_bbreg(hw
,
374 ROFDM0_TRXPATHENABLE
,
376 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
380 /* Update current settings. */
381 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
383 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
385 u1bdata
= (u8
)rtl_get_bbreg(hw
,
386 ROFDM1_TRXPATHENABLE
,
388 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
390 ((u1bdata
& 0xf0) | 0x01));
391 u1bdata
= (u8
)rtl_get_bbreg(hw
,
392 ROFDM0_TRXPATHENABLE
,
394 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
395 MASKBYTE1
, (u1bdata
& 0xfb));
397 /* Update current settings. */
398 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
404 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
405 ("switch case not process\n"));
411 void rtl92se_enable_hw_security_config(struct ieee80211_hw
*hw
)
413 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
414 u8 sec_reg_value
= 0x0;
416 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("PairwiseEncAlgorithm = %d "
417 "GroupEncAlgorithm = %d\n",
418 rtlpriv
->sec
.pairwise_enc_algorithm
,
419 rtlpriv
->sec
.group_enc_algorithm
));
421 if (rtlpriv
->cfg
->mod_params
->sw_crypto
|| rtlpriv
->sec
.use_sw_sec
) {
422 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
423 ("not open hw encryption\n"));
427 sec_reg_value
= SCR_TXENCENABLE
| SCR_RXENCENABLE
;
429 if (rtlpriv
->sec
.use_defaultkey
) {
430 sec_reg_value
|= SCR_TXUSEDK
;
431 sec_reg_value
|= SCR_RXUSEDK
;
434 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
, ("The SECR-value %x\n",
437 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_WPA_CONFIG
, &sec_reg_value
);
441 static u8
_rtl92ce_halset_sysclk(struct ieee80211_hw
*hw
, u8 data
)
443 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
445 bool bresult
= false;
448 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
450 /* Wait the MAC synchronized. */
453 /* Check if it is set ready. */
454 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
455 bresult
= ((tmpvalue
& BIT(7)) == (data
& BIT(7)));
457 if ((data
& (BIT(6) | BIT(7))) == false) {
464 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
465 if ((tmpvalue
& BIT(6)))
468 printk(KERN_ERR
"wait for BIT(6) return value %x\n",
485 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw
*hw
)
487 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
490 /* The following config GPIO function */
491 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
492 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
494 /* config GPIO3 to input */
495 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
496 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
500 static u8
_rtl92se_rf_onoff_detect(struct ieee80211_hw
*hw
)
502 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
506 /* The following config GPIO function */
507 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
508 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
510 /* config GPIO3 to input */
511 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
512 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
514 /* On some of the platform, driver cannot read correct
515 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
519 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IN
);
520 retval
= (u1tmp
& HAL_8192S_HW_GPIO_OFF_BIT
) ? ERFON
: ERFOFF
;
525 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw
*hw
)
527 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
528 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
529 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
536 if (rtlpci
->first_init
) {
537 /* Reset PCIE Digital */
538 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
540 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
542 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
| BIT(0));
545 /* Switch to SW IO control */
546 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
547 if (tmpu1b
& BIT(7)) {
548 tmpu1b
&= ~(BIT(6) | BIT(7));
550 /* Set failed, return to prevent hang. */
551 if (!_rtl92ce_halset_sysclk(hw
, tmpu1b
))
555 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
557 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
560 /* Clear FW RPWM for FW control LPS.*/
561 rtl_write_byte(rtlpriv
, RPWM
, 0x0);
563 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
564 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
566 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
567 /* wait for BIT 10/11/15 to pull high automatically!! */
570 rtl_write_byte(rtlpriv
, CMDR
, 0);
571 rtl_write_byte(rtlpriv
, TCR
, 0);
573 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
574 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
576 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
578 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
580 /* Enable AFE clock source */
581 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
582 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
585 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
586 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
588 /* Enable AFE Macro Block's Bandgap */
589 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
590 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
593 /* Enable AFE Mbias */
594 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
595 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
598 /* Enable LDOA15 block */
599 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
600 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
602 /* Set Digital Vdd to Retention isolation Path. */
603 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_ISO_CTRL
);
604 rtl_write_word(rtlpriv
, REG_SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
606 /* For warm reboot NIC disappera bug. */
607 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
608 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
610 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x68);
612 /* Enable AFE PLL Macro Block */
613 /* We need to delay 100u before enabling PLL. */
615 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
616 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
618 /* for divider reset */
620 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) |
623 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
626 /* Enable MAC 80MHZ clock */
627 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
628 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
631 /* Release isolation AFE PLL & MD */
632 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, 0xA6);
634 /* Enable MAC clock */
635 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
636 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
638 /* Enable Core digital and enable IOREG R/W */
639 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
640 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
642 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
643 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
& ~(BIT(7)));
646 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
648 /* Switch the control path. */
649 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
650 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
652 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
653 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
654 if (!_rtl92ce_halset_sysclk(hw
, tmpu1b
))
655 return; /* Set failed, return to prevent hang. */
657 rtl_write_word(rtlpriv
, CMDR
, 0x07FC);
659 /* MH We must enable the section of code to prevent load IMEM fail. */
660 /* Load MAC register from WMAc temporarily We simulate macreg. */
661 /* txt HW will provide MAC txt later */
662 rtl_write_byte(rtlpriv
, 0x6, 0x30);
663 rtl_write_byte(rtlpriv
, 0x49, 0xf0);
665 rtl_write_byte(rtlpriv
, 0x4b, 0x81);
667 rtl_write_byte(rtlpriv
, 0xb5, 0x21);
669 rtl_write_byte(rtlpriv
, 0xdc, 0xff);
670 rtl_write_byte(rtlpriv
, 0xdd, 0xff);
671 rtl_write_byte(rtlpriv
, 0xde, 0xff);
672 rtl_write_byte(rtlpriv
, 0xdf, 0xff);
674 rtl_write_byte(rtlpriv
, 0x11a, 0x00);
675 rtl_write_byte(rtlpriv
, 0x11b, 0x00);
677 for (i
= 0; i
< 32; i
++)
678 rtl_write_byte(rtlpriv
, INIMCS_SEL
+ i
, 0x1b);
680 rtl_write_byte(rtlpriv
, 0x236, 0xff);
682 rtl_write_byte(rtlpriv
, 0x503, 0x22);
684 if (ppsc
->support_aspm
&& !ppsc
->support_backdoor
)
685 rtl_write_byte(rtlpriv
, 0x560, 0x40);
687 rtl_write_byte(rtlpriv
, 0x560, 0x00);
689 rtl_write_byte(rtlpriv
, DBG_PORT
, 0x91);
691 /* Set RX Desc Address */
692 rtl_write_dword(rtlpriv
, RDQDA
, rtlpci
->rx_ring
[RX_MPDU_QUEUE
].dma
);
693 rtl_write_dword(rtlpriv
, RCDA
, rtlpci
->rx_ring
[RX_CMD_QUEUE
].dma
);
695 /* Set TX Desc Address */
696 rtl_write_dword(rtlpriv
, TBKDA
, rtlpci
->tx_ring
[BK_QUEUE
].dma
);
697 rtl_write_dword(rtlpriv
, TBEDA
, rtlpci
->tx_ring
[BE_QUEUE
].dma
);
698 rtl_write_dword(rtlpriv
, TVIDA
, rtlpci
->tx_ring
[VI_QUEUE
].dma
);
699 rtl_write_dword(rtlpriv
, TVODA
, rtlpci
->tx_ring
[VO_QUEUE
].dma
);
700 rtl_write_dword(rtlpriv
, TBDA
, rtlpci
->tx_ring
[BEACON_QUEUE
].dma
);
701 rtl_write_dword(rtlpriv
, TCDA
, rtlpci
->tx_ring
[TXCMD_QUEUE
].dma
);
702 rtl_write_dword(rtlpriv
, TMDA
, rtlpci
->tx_ring
[MGNT_QUEUE
].dma
);
703 rtl_write_dword(rtlpriv
, THPDA
, rtlpci
->tx_ring
[HIGH_QUEUE
].dma
);
704 rtl_write_dword(rtlpriv
, HDA
, rtlpci
->tx_ring
[HCCA_QUEUE
].dma
);
706 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
708 /* To make sure that TxDMA can ready to download FW. */
709 /* We should reset TxDMA if IMEM RPT was not ready. */
711 tmpu1b
= rtl_read_byte(rtlpriv
, TCR
);
712 if ((tmpu1b
& TXDMA_INIT_VALUE
) == TXDMA_INIT_VALUE
)
716 } while (pollingcnt
--);
718 if (pollingcnt
<= 0) {
719 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
720 ("Polling TXDMA_INIT_VALUE "
721 "timeout!! Current TCR(%#x)\n", tmpu1b
));
722 tmpu1b
= rtl_read_byte(rtlpriv
, CMDR
);
723 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
& (~TXDMA_EN
));
726 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
| TXDMA_EN
);
729 /* After MACIO reset,we must refresh LED state. */
730 if ((ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
) ||
731 (ppsc
->rfoff_reason
== 0)) {
732 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
733 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
734 enum rf_pwrstate rfpwr_state_toset
;
735 rfpwr_state_toset
= _rtl92se_rf_onoff_detect(hw
);
737 if (rfpwr_state_toset
== ERFON
)
738 rtl92se_sw_led_on(hw
, pLed0
);
742 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw
*hw
)
744 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
745 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
746 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
747 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
751 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
753 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
754 /* Turn on 0x40 Command register */
755 rtl_write_word(rtlpriv
, CMDR
, (BBRSTN
| BB_GLB_RSTN
|
756 SCHEDULE_EN
| MACRXEN
| MACTXEN
| DDMA_EN
| FW2HW_EN
|
757 RXDMA_EN
| TXDMA_EN
| HCI_RXDMA_EN
| HCI_TXDMA_EN
));
759 /* Set TCR TX DMA pre 2 FULL enable bit */
760 rtl_write_dword(rtlpriv
, TCR
, rtl_read_dword(rtlpriv
, TCR
) |
764 rtl_write_dword(rtlpriv
, RCR
, rtlpci
->receive_config
);
766 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
768 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
769 /* Set CCK/OFDM SIFS */
770 /* CCK SIFS shall always be 10us. */
771 rtl_write_word(rtlpriv
, SIFS_CCK
, 0x0a0a);
772 rtl_write_word(rtlpriv
, SIFS_OFDM
, 0x1010);
775 rtl_write_byte(rtlpriv
, ACK_TIMEOUT
, 0x40);
778 rtl_write_word(rtlpriv
, BCN_INTERVAL
, 100);
779 rtl_write_word(rtlpriv
, ATIMWND
, 2);
781 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
782 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
783 /* Firmware allocate now, associate with FW internal setting.!!! */
785 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
786 /* 5.3 Set driver info, we only accept PHY status now. */
787 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
788 rtl_write_byte(rtlpriv
, RXDMA
, rtl_read_byte(rtlpriv
, RXDMA
) | BIT(6));
790 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
791 /* Set RRSR to all legacy rate and HT rate
792 * CCK rate is supported by default.
793 * CCK rate will be filtered out only when associated
794 * AP does not support it.
795 * Only enable ACK rate to OFDM 24M
796 * Disable RRSR for CCK rate in A-Cut */
798 if (rtlhal
->version
== VERSION_8192S_ACUT
)
799 rtl_write_byte(rtlpriv
, RRSR
, 0xf0);
800 else if (rtlhal
->version
== VERSION_8192S_BCUT
)
801 rtl_write_byte(rtlpriv
, RRSR
, 0xff);
802 rtl_write_byte(rtlpriv
, RRSR
+ 1, 0x01);
803 rtl_write_byte(rtlpriv
, RRSR
+ 2, 0x00);
805 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
806 /* fallback to CCK rate */
807 for (i
= 0; i
< 8; i
++) {
808 /*Disable RRSR for CCK rate in A-Cut */
809 if (rtlhal
->version
== VERSION_8192S_ACUT
)
810 rtl_write_dword(rtlpriv
, ARFR0
+ i
* 4, 0x1f0ff0f0);
813 /* Different rate use different AMPDU size */
814 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
815 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, 0x0f);
816 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
817 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
, 0x7442);
818 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
819 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 2, 0xddd7);
820 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
821 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 4, 0xd772);
822 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
823 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 6, 0xfffd);
825 /* Set Data / Response auto rate fallack retry count */
826 rtl_write_dword(rtlpriv
, DARFRC
, 0x04010000);
827 rtl_write_dword(rtlpriv
, DARFRC
+ 4, 0x09070605);
828 rtl_write_dword(rtlpriv
, RARFRC
, 0x04010000);
829 rtl_write_dword(rtlpriv
, RARFRC
+ 4, 0x09070605);
831 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
832 /* Set all rate to support SG */
833 rtl_write_word(rtlpriv
, SG_RATE
, 0xFFFF);
835 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
836 /* Set NAV protection length */
837 rtl_write_word(rtlpriv
, NAV_PROT_LEN
, 0x0080);
838 /* CF-END Threshold */
839 rtl_write_byte(rtlpriv
, CFEND_TH
, 0xFF);
840 /* Set AMPDU minimum space */
841 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, 0x07);
842 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
843 rtl_write_byte(rtlpriv
, TXOP_STALL_CTRL
, 0x00);
845 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
846 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
847 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
848 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
849 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
851 /* 14. Set driver info, we only accept PHY status now. */
852 rtl_write_byte(rtlpriv
, RXDRVINFO_SZ
, 4);
854 /* 15. For EEPROM R/W Workaround */
855 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
856 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
);
857 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, tmpu2b
| BIT(13));
858 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
);
859 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, tmpu2b
& (~BIT(8)));
862 /* We may R/W EFUSE in EEPROM mode */
863 if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
866 tempval
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1);
868 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, tempval
);
870 /* Change Program timing */
871 rtl_write_byte(rtlpriv
, REG_EFUSE_CTRL
+ 3, 0x72);
872 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("EFUSE CONFIG OK\n"));
875 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("OK\n"));
879 static void _rtl92se_hw_configure(struct ieee80211_hw
*hw
)
881 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
882 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
883 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
884 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
886 u8 reg_bw_opmode
= 0;
887 u32 reg_ratr
= 0, reg_rrsr
= 0;
890 reg_bw_opmode
= BW_OPMODE_20MHZ
;
891 reg_ratr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
| RATE_ALL_OFDM_1SS
|
893 reg_rrsr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
;
895 regtmp
= rtl_read_byte(rtlpriv
, INIRTSMCS_SEL
);
896 reg_rrsr
= ((reg_rrsr
& 0x000fffff) << 8) | regtmp
;
897 rtl_write_dword(rtlpriv
, INIRTSMCS_SEL
, reg_rrsr
);
898 rtl_write_byte(rtlpriv
, BW_OPMODE
, reg_bw_opmode
);
900 /* Set Retry Limit here */
901 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RETRY_LIMIT
,
902 (u8
*)(&rtlpci
->shortretry_limit
));
904 rtl_write_byte(rtlpriv
, MLT
, 0x8f);
906 /* For Min Spacing configuration. */
907 switch (rtlphy
->rf_type
) {
910 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_1T
<< 3);
914 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_2T
<< 3);
917 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, rtlhal
->minspace_cfg
);
920 int rtl92se_hw_init(struct ieee80211_hw
*hw
)
922 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
923 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
924 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
925 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
926 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
929 bool rtstatus
= true;
933 int wdcapra_add
[] = {
934 EDCAPARA_BE
, EDCAPARA_BK
,
935 EDCAPARA_VI
, EDCAPARA_VO
};
938 rtlpci
->being_init_adapter
= true;
940 rtlpriv
->intf_ops
->disable_aspm(hw
);
942 /* 1. MAC Initialize */
943 /* Before FW download, we have to set some MAC register */
944 _rtl92se_macconfig_before_fwdownload(hw
);
946 rtlhal
->version
= (enum version_8192s
)((rtl_read_dword(rtlpriv
,
947 PMC_FSM
) >> 16) & 0xF);
949 rtl8192se_gpiobit3_cfg_inputmode(hw
);
951 /* 2. download firmware */
952 rtstatus
= rtl92s_download_fw(hw
);
954 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
955 ("Failed to download FW. "
956 "Init HW without FW now.., Please copy FW into"
957 "/lib/firmware/rtlwifi\n"));
958 rtlhal
->fw_ready
= false;
960 rtlhal
->fw_ready
= true;
963 /* After FW download, we have to reset MAC register */
964 _rtl92se_macconfig_after_fwdownload(hw
);
966 /*Retrieve default FW Cmd IO map. */
967 rtlhal
->fwcmd_iomap
= rtl_read_word(rtlpriv
, LBUS_MON_ADDR
);
968 rtlhal
->fwcmd_ioparam
= rtl_read_dword(rtlpriv
, LBUS_ADDR_MASK
);
970 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
971 if (rtl92s_phy_mac_config(hw
) != true) {
972 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("MAC Config failed\n"));
976 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
977 /* We must set flag avoid BB/RF config period later!! */
978 rtl_write_dword(rtlpriv
, CMDR
, 0x37FC);
980 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
981 if (rtl92s_phy_bb_config(hw
) != true) {
982 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_EMERG
, ("BB Config failed\n"));
986 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
987 /* Before initalizing RF. We can not use FW to do RF-R/W. */
989 rtlphy
->rf_mode
= RF_OP_BY_SW_3WIRE
;
993 /* H/W or S/W RF OFF before sleep. */
994 if (rtlpriv
->psc
.rfoff_reason
> RF_CHANGE_BY_PS
) {
995 u32 rfoffreason
= rtlpriv
->psc
.rfoff_reason
;
997 rtlpriv
->psc
.rfoff_reason
= RF_CHANGE_BY_INIT
;
998 rtlpriv
->psc
.rfpwr_state
= ERFON
;
999 rtl_ps_set_rf_state(hw
, ERFOFF
, rfoffreason
, true);
1001 /* gpio radio on/off is out of adapter start */
1002 if (rtlpriv
->psc
.hwradiooff
== false) {
1003 rtlpriv
->psc
.rfpwr_state
= ERFON
;
1004 rtlpriv
->psc
.rfoff_reason
= 0;
1009 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1010 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, 0xDB);
1011 if (rtlhal
->version
== VERSION_8192S_ACUT
)
1012 rtl_write_byte(rtlpriv
, SPS1_CTRL
+ 3, 0x07);
1014 rtl_write_byte(rtlpriv
, RF_CTRL
, 0x07);
1016 if (rtl92s_phy_rf_config(hw
) != true) {
1017 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("RF Config failed\n"));
1021 /* After read predefined TXT, we must set BB/MAC/RF
1022 * register as our requirement */
1024 rtlphy
->rfreg_chnlval
[0] = rtl92s_phy_query_rf_reg(hw
,
1028 rtlphy
->rfreg_chnlval
[1] = rtl92s_phy_query_rf_reg(hw
,
1033 /*---- Set CCK and OFDM Block "ON"----*/
1034 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BCCKEN
, 0x1);
1035 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BOFDMEN
, 0x1);
1037 /*3 Set Hardware(Do nothing now) */
1038 _rtl92se_hw_configure(hw
);
1040 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1041 /* TX power index for different rate set. */
1042 /* Get original hw reg values */
1043 rtl92s_phy_get_hw_reg_originalvalue(hw
);
1044 /* Write correct tx power index */
1045 rtl92s_phy_set_txpower(hw
, rtlphy
->current_channel
);
1047 /* We must set MAC address after firmware download. */
1048 for (i
= 0; i
< 6; i
++)
1049 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1051 /* EEPROM R/W workaround */
1052 tmp_u1b
= rtl_read_byte(rtlpriv
, MAC_PINMUX_CFG
);
1053 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, tmp_u1b
& (~BIT(3)));
1055 rtl_write_byte(rtlpriv
, 0x4d, 0x0);
1057 if (hal_get_firmwareversion(rtlpriv
) >= 0x49) {
1058 tmp_byte
= rtl_read_byte(rtlpriv
, FW_RSVD_PG_CRTL
) & (~BIT(4));
1059 tmp_byte
= tmp_byte
| BIT(5);
1060 rtl_write_byte(rtlpriv
, FW_RSVD_PG_CRTL
, tmp_byte
);
1061 rtl_write_dword(rtlpriv
, TXDESC_MSK
, 0xFFFFCFFF);
1064 /* We enable high power and RA related mechanism after NIC
1066 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_INIT
);
1068 /* Add to prevent ASPM bug. */
1069 /* Always enable hst and NIC clock request. */
1070 rtl92s_phy_switch_ephy_parameter(hw
);
1073 * 1. Clear all H/W keys.
1074 * 2. Enable H/W encryption/decryption. */
1075 rtl_cam_reset_all_entry(hw
);
1076 secr_value
|= SCR_TXENCENABLE
;
1077 secr_value
|= SCR_RXENCENABLE
;
1078 secr_value
|= SCR_NOSKMC
;
1079 rtl_write_byte(rtlpriv
, REG_SECR
, secr_value
);
1081 for (i
= 0; i
< 4; i
++)
1082 rtl_write_dword(rtlpriv
, wdcapra_add
[i
], 0x5e4322);
1084 if (rtlphy
->rf_type
== RF_1T2R
) {
1085 bool mrc2set
= true;
1086 /* Turn on B-Path */
1087 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_MRC
, (u8
*)&mrc2set
);
1090 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_ON
);
1092 rtlpci
->being_init_adapter
= false;
1097 void rtl92se_set_mac_addr(struct rtl_io
*io
, const u8
* addr
)
1101 void rtl92se_set_check_bssid(struct ieee80211_hw
*hw
, bool check_bssid
)
1103 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1104 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1105 u32 reg_rcr
= rtlpci
->receive_config
;
1107 if (rtlpriv
->psc
.rfpwr_state
!= ERFON
)
1110 if (check_bssid
== true) {
1111 reg_rcr
|= (RCR_CBSSID
);
1112 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1113 } else if (check_bssid
== false) {
1114 reg_rcr
&= (~RCR_CBSSID
);
1115 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1120 static int _rtl92se_set_media_status(struct ieee80211_hw
*hw
,
1121 enum nl80211_iftype type
)
1123 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1124 u8 bt_msr
= rtl_read_byte(rtlpriv
, MSR
);
1125 enum led_ctl_mode ledaction
= LED_CTL_NO_LINK
;
1127 bt_msr
&= ~MSR_LINK_MASK
;
1130 case NL80211_IFTYPE_UNSPECIFIED
:
1131 bt_msr
|= (MSR_LINK_NONE
<< MSR_LINK_SHIFT
);
1132 ledaction
= LED_CTL_LINK
;
1133 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1134 ("Set Network type to NO LINK!\n"));
1136 case NL80211_IFTYPE_ADHOC
:
1137 bt_msr
|= (MSR_LINK_ADHOC
<< MSR_LINK_SHIFT
);
1138 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1139 ("Set Network type to Ad Hoc!\n"));
1141 case NL80211_IFTYPE_STATION
:
1142 bt_msr
|= (MSR_LINK_MANAGED
<< MSR_LINK_SHIFT
);
1143 ledaction
= LED_CTL_LINK
;
1144 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1145 ("Set Network type to STA!\n"));
1147 case NL80211_IFTYPE_AP
:
1148 bt_msr
|= (MSR_LINK_MASTER
<< MSR_LINK_SHIFT
);
1149 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1150 ("Set Network type to AP!\n"));
1153 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1154 ("Network type %d not support!\n", type
));
1160 rtl_write_byte(rtlpriv
, (MSR
), bt_msr
);
1162 temp
= rtl_read_dword(rtlpriv
, TCR
);
1163 rtl_write_dword(rtlpriv
, TCR
, temp
& (~BIT(8)));
1164 rtl_write_dword(rtlpriv
, TCR
, temp
| BIT(8));
1170 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1171 int rtl92se_set_network_type(struct ieee80211_hw
*hw
, enum nl80211_iftype type
)
1173 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1175 if (_rtl92se_set_media_status(hw
, type
))
1178 if (rtlpriv
->mac80211
.link_state
== MAC80211_LINKED
) {
1179 if (type
!= NL80211_IFTYPE_AP
)
1180 rtl92se_set_check_bssid(hw
, true);
1182 rtl92se_set_check_bssid(hw
, false);
1188 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1189 void rtl92se_set_qos(struct ieee80211_hw
*hw
, int aci
)
1191 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1192 rtl92s_dm_init_edca_turbo(hw
);
1196 rtl_write_dword(rtlpriv
, EDCAPARA_BK
, 0xa44f);
1199 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1202 rtl_write_dword(rtlpriv
, EDCAPARA_VI
, 0x5e4322);
1205 rtl_write_dword(rtlpriv
, EDCAPARA_VO
, 0x2f3222);
1208 RT_ASSERT(false, ("invalid aci: %d !\n", aci
));
1213 void rtl92se_enable_interrupt(struct ieee80211_hw
*hw
)
1215 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1216 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1218 rtl_write_dword(rtlpriv
, INTA_MASK
, rtlpci
->irq_mask
[0]);
1219 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1220 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, rtlpci
->irq_mask
[1] & 0x3F);
1222 rtlpci
->irq_enabled
= true;
1225 void rtl92se_disable_interrupt(struct ieee80211_hw
*hw
)
1227 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1228 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1230 rtl_write_dword(rtlpriv
, INTA_MASK
, 0);
1231 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, 0);
1233 rtlpci
->irq_enabled
= false;
1237 static u8
_rtl92s_set_sysclk(struct ieee80211_hw
*hw
, u8 data
)
1239 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1241 bool result
= false;
1244 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
1246 /* Wait the MAC synchronized. */
1249 /* Check if it is set ready. */
1250 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1251 result
= ((tmp
& BIT(7)) == (data
& BIT(7)));
1253 if ((data
& (BIT(6) | BIT(7))) == false) {
1259 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1264 printk(KERN_ERR
"wait for BIT(6) return value %x\n",
1281 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw
*hw
)
1283 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1284 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1285 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1288 if (rtlhal
->driver_going2unload
)
1289 rtl_write_byte(rtlpriv
, 0x560, 0x0);
1291 /* Power save for BB/RF */
1292 u1btmp
= rtl_read_byte(rtlpriv
, LDOV12D_CTRL
);
1294 rtl_write_byte(rtlpriv
, LDOV12D_CTRL
, u1btmp
);
1295 rtl_write_byte(rtlpriv
, SPS1_CTRL
, 0x0);
1296 rtl_write_byte(rtlpriv
, TXPAUSE
, 0xFF);
1297 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1299 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1300 rtl_write_byte(rtlpriv
, PHY_CCA
, 0x0);
1302 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1304 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1306 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1307 rtl_write_word(rtlpriv
, CMDR
, 0x0000);
1309 if (rtlhal
->driver_going2unload
) {
1310 u1btmp
= rtl_read_byte(rtlpriv
, (REG_SYS_FUNC_EN
+ 1));
1311 u1btmp
&= ~(BIT(0));
1312 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, u1btmp
);
1315 u1btmp
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1317 /* Add description. After switch control path. register
1318 * after page1 will be invisible. We can not do any IO
1319 * for register>0x40. After resume&MACIO reset, we need
1320 * to remember previous reg content. */
1321 if (u1btmp
& BIT(7)) {
1322 u1btmp
&= ~(BIT(6) | BIT(7));
1323 if (!_rtl92s_set_sysclk(hw
, u1btmp
)) {
1324 printk(KERN_ERR
"Switch ctrl path fail\n");
1329 /* Power save for MAC */
1330 if (ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
&&
1331 !rtlhal
->driver_going2unload
) {
1332 /* enable LED function */
1333 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1334 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1336 /* LED function disable. Power range is about 8mA now. */
1337 /* if write 0xF1 disconnet_pci power
1338 * ifconfig wlan0 down power are both high 35:70 */
1339 /* if write oxF9 disconnet_pci power
1340 * ifconfig wlan0 down power are both low 12:45*/
1341 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1344 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, 0x70);
1345 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, 0x68);
1346 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x00);
1347 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1348 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, 0x0E);
1349 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
1353 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw
*hw
)
1355 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1356 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1357 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
1358 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
1360 if (rtlpci
->up_first_time
== 1)
1363 if (rtlpriv
->psc
.rfoff_reason
== RF_CHANGE_BY_IPS
)
1364 rtl92se_sw_led_on(hw
, pLed0
);
1366 rtl92se_sw_led_off(hw
, pLed0
);
1370 static void _rtl92se_power_domain_init(struct ieee80211_hw
*hw
)
1372 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1376 rtlpriv
->psc
.pwrdomain_protect
= true;
1378 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1379 if (tmpu1b
& BIT(7)) {
1380 tmpu1b
&= ~(BIT(6) | BIT(7));
1381 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1382 rtlpriv
->psc
.pwrdomain_protect
= false;
1387 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
1388 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1390 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1391 tmpu1b
= rtl_read_byte(rtlpriv
, SYS_FUNC_EN
+ 1);
1393 /* If IPS we need to turn LED on. So we not
1394 * not disable BIT 3/7 of reg3. */
1395 if (rtlpriv
->psc
.rfoff_reason
& (RF_CHANGE_BY_IPS
| RF_CHANGE_BY_HW
))
1400 rtl_write_byte(rtlpriv
, SYS_FUNC_EN
+ 1, tmpu1b
);
1401 /* wait for BIT 10/11/15 to pull high automatically!! */
1404 rtl_write_byte(rtlpriv
, CMDR
, 0);
1405 rtl_write_byte(rtlpriv
, TCR
, 0);
1407 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1408 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
1410 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1411 tmpu1b
&= ~(BIT(3));
1412 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1414 /* Enable AFE clock source */
1415 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
1416 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
1419 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
1420 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
1422 /* Enable AFE Macro Block's Bandgap */
1423 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1424 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
1427 /* Enable AFE Mbias */
1428 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1429 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
1432 /* Enable LDOA15 block */
1433 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
1434 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
1436 /* Set Digital Vdd to Retention isolation Path. */
1437 tmpu2b
= rtl_read_word(rtlpriv
, SYS_ISO_CTRL
);
1438 rtl_write_word(rtlpriv
, SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
1441 /* For warm reboot NIC disappera bug. */
1442 tmpu2b
= rtl_read_word(rtlpriv
, SYS_FUNC_EN
);
1443 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
1445 rtl_write_byte(rtlpriv
, SYS_ISO_CTRL
+ 1, 0x68);
1447 /* Enable AFE PLL Macro Block */
1448 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
1449 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
1450 /* Enable MAC 80MHZ clock */
1451 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
1452 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
1455 /* Release isolation AFE PLL & MD */
1456 rtl_write_byte(rtlpriv
, SYS_ISO_CTRL
, 0xA6);
1458 /* Enable MAC clock */
1459 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1460 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
1462 /* Enable Core digital and enable IOREG R/W */
1463 tmpu2b
= rtl_read_word(rtlpriv
, SYS_FUNC_EN
);
1464 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
1466 rtl_write_word(rtlpriv
, SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
1468 /* Switch the control path. */
1469 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1470 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
1472 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1473 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
1474 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1475 rtlpriv
->psc
.pwrdomain_protect
= false;
1479 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1481 /* After MACIO reset,we must refresh LED state. */
1482 _rtl92se_gen_refreshledstate(hw
);
1484 rtlpriv
->psc
.pwrdomain_protect
= false;
1487 void rtl92se_card_disable(struct ieee80211_hw
*hw
)
1489 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1490 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1491 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1492 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1493 enum nl80211_iftype opmode
;
1496 rtlpriv
->intf_ops
->enable_aspm(hw
);
1498 if (rtlpci
->driver_is_goingto_unload
||
1499 ppsc
->rfoff_reason
> RF_CHANGE_BY_PS
)
1500 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_OFF
);
1502 /* we should chnge GPIO to input mode
1503 * this will drop away current about 25mA*/
1504 rtl8192se_gpiobit3_cfg_inputmode(hw
);
1506 /* this is very important for ips power save */
1507 while (wait
-- >= 10 && rtlpriv
->psc
.pwrdomain_protect
) {
1508 if (rtlpriv
->psc
.pwrdomain_protect
)
1514 mac
->link_state
= MAC80211_NOLINK
;
1515 opmode
= NL80211_IFTYPE_UNSPECIFIED
;
1516 _rtl92se_set_media_status(hw
, opmode
);
1518 _rtl92s_phy_set_rfhalt(hw
);
1522 void rtl92se_interrupt_recognized(struct ieee80211_hw
*hw
, u32
*p_inta
,
1525 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1526 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1528 *p_inta
= rtl_read_dword(rtlpriv
, ISR
) & rtlpci
->irq_mask
[0];
1529 rtl_write_dword(rtlpriv
, ISR
, *p_inta
);
1531 *p_intb
= rtl_read_dword(rtlpriv
, ISR
+ 4) & rtlpci
->irq_mask
[1];
1532 rtl_write_dword(rtlpriv
, ISR
+ 4, *p_intb
);
1535 void rtl92se_set_beacon_related_registers(struct ieee80211_hw
*hw
)
1537 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1538 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1539 u16 bcntime_cfg
= 0;
1540 u16 bcn_cw
= 6, bcn_ifs
= 0xf;
1541 u16 atim_window
= 2;
1543 /* ATIM Window (in unit of TU). */
1544 rtl_write_word(rtlpriv
, ATIMWND
, atim_window
);
1546 /* Beacon interval (in unit of TU). */
1547 rtl_write_word(rtlpriv
, BCN_INTERVAL
, mac
->beacon_interval
);
1549 /* DrvErlyInt (in unit of TU). (Time to send
1550 * interrupt to notify driver to change
1551 * beacon content) */
1552 rtl_write_word(rtlpriv
, BCN_DRV_EARLY_INT
, 10 << 4);
1554 /* BcnDMATIM(in unit of us). Indicates the
1555 * time before TBTT to perform beacon queue DMA */
1556 rtl_write_word(rtlpriv
, BCN_DMATIME
, 256);
1558 /* Force beacon frame transmission even
1559 * after receiving beacon frame from
1560 * other ad hoc STA */
1561 rtl_write_byte(rtlpriv
, BCN_ERR_THRESH
, 100);
1563 /* Beacon Time Configuration */
1564 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
)
1565 bcntime_cfg
|= (bcn_cw
<< BCN_TCFG_CW_SHIFT
);
1567 /* TODO: bcn_ifs may required to be changed on ASIC */
1568 bcntime_cfg
|= bcn_ifs
<< BCN_TCFG_IFS
;
1570 /*for beacon changed */
1571 rtl92s_phy_set_beacon_hwreg(hw
, mac
->beacon_interval
);
1574 void rtl92se_set_beacon_interval(struct ieee80211_hw
*hw
)
1576 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1577 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1578 u16 bcn_interval
= mac
->beacon_interval
;
1580 /* Beacon interval (in unit of TU). */
1581 rtl_write_word(rtlpriv
, BCN_INTERVAL
, bcn_interval
);
1582 /* 2008.10.24 added by tynli for beacon changed. */
1583 rtl92s_phy_set_beacon_hwreg(hw
, bcn_interval
);
1586 void rtl92se_update_interrupt_mask(struct ieee80211_hw
*hw
,
1587 u32 add_msr
, u32 rm_msr
)
1589 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1590 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1592 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
,
1593 ("add_msr:%x, rm_msr:%x\n", add_msr
, rm_msr
));
1596 rtlpci
->irq_mask
[0] |= add_msr
;
1599 rtlpci
->irq_mask
[0] &= (~rm_msr
);
1601 rtl92se_disable_interrupt(hw
);
1602 rtl92se_enable_interrupt(hw
);
1605 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw
*hw
)
1607 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1608 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1611 rtlhal
->ic_class
= IC_INFERIORITY_A
;
1613 /* Only retrieving while using EFUSE. */
1614 if ((rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) &&
1615 !rtlefuse
->autoload_failflag
) {
1616 efuse_id
= efuse_read_1byte(hw
, EFUSE_IC_ID_OFFSET
);
1618 if (efuse_id
== 0xfe)
1619 rtlhal
->ic_class
= IC_INFERIORITY_B
;
1623 static void _rtl92se_read_adapter_info(struct ieee80211_hw
*hw
)
1625 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1626 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1627 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1631 u8 hwinfo
[HWSET_MAX_SIZE_92S
];
1634 if (rtlefuse
->epromtype
== EEPROM_93C46
) {
1635 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1636 ("RTL819X Not boot from eeprom, check it !!"));
1637 } else if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
1638 rtl_efuse_shadow_map_update(hw
);
1640 memcpy((void *)hwinfo
, (void *)
1641 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
1642 HWSET_MAX_SIZE_92S
);
1645 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("MAP\n"),
1646 hwinfo
, HWSET_MAX_SIZE_92S
);
1648 eeprom_id
= *((u16
*)&hwinfo
[0]);
1649 if (eeprom_id
!= RTL8190_EEPROM_ID
) {
1650 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1651 ("EEPROM ID(%#x) is invalid!!\n", eeprom_id
));
1652 rtlefuse
->autoload_failflag
= true;
1654 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1655 rtlefuse
->autoload_failflag
= false;
1658 if (rtlefuse
->autoload_failflag
== true)
1661 _rtl8192se_get_IC_Inferiority(hw
);
1663 /* Read IC Version && Channel Plan */
1664 /* VID, DID SE 0xA-D */
1665 rtlefuse
->eeprom_vid
= *(u16
*)&hwinfo
[EEPROM_VID
];
1666 rtlefuse
->eeprom_did
= *(u16
*)&hwinfo
[EEPROM_DID
];
1667 rtlefuse
->eeprom_svid
= *(u16
*)&hwinfo
[EEPROM_SVID
];
1668 rtlefuse
->eeprom_smid
= *(u16
*)&hwinfo
[EEPROM_SMID
];
1669 rtlefuse
->eeprom_version
= *(u16
*)&hwinfo
[EEPROM_VERSION
];
1671 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1672 ("EEPROMId = 0x%4x\n", eeprom_id
));
1673 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1674 ("EEPROM VID = 0x%4x\n", rtlefuse
->eeprom_vid
));
1675 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1676 ("EEPROM DID = 0x%4x\n", rtlefuse
->eeprom_did
));
1677 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1678 ("EEPROM SVID = 0x%4x\n", rtlefuse
->eeprom_svid
));
1679 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1680 ("EEPROM SMID = 0x%4x\n", rtlefuse
->eeprom_smid
));
1682 for (i
= 0; i
< 6; i
+= 2) {
1683 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR
+ i
];
1684 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1687 for (i
= 0; i
< 6; i
++)
1688 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1690 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
,
1691 (MAC_FMT
"\n", MAC_ARG(rtlefuse
->dev_addr
)));
1693 /* Get Tx Power Level by Channel */
1694 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1695 /* 92S suupport RF A & B */
1696 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1697 for (i
= 0; i
< 3; i
++) {
1698 /* Read CCK RF A & B Tx power */
1699 rtlefuse
->eeprom_chnlarea_txpwr_cck
[rf_path
][i
] =
1700 hwinfo
[EEPROM_TXPOWERBASE
+ rf_path
* 3 + i
];
1702 /* Read OFDM RF A & B Tx power for 1T */
1703 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
[rf_path
][i
] =
1704 hwinfo
[EEPROM_TXPOWERBASE
+ 6 + rf_path
* 3 + i
];
1706 /* Read OFDM RF A & B Tx power for 2T */
1707 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
[rf_path
][i
]
1708 = hwinfo
[EEPROM_TXPOWERBASE
+ 12 +
1713 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1714 for (i
= 0; i
< 3; i
++)
1715 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1716 ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path
,
1717 i
, rtlefuse
->eeprom_chnlarea_txpwr_cck
1719 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1720 for (i
= 0; i
< 3; i
++)
1721 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1722 ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1724 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1726 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1727 for (i
= 0; i
< 3; i
++)
1728 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1729 ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1731 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
1734 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1736 /* Assign dedicated channel tx power */
1737 for (i
= 0; i
< 14; i
++) {
1738 /* channel 1~3 use the same Tx Power Level. */
1748 /* Record A & B CCK /OFDM - 1T/2T Channel area
1750 rtlefuse
->txpwrlevel_cck
[rf_path
][i
] =
1751 rtlefuse
->eeprom_chnlarea_txpwr_cck
1753 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
] =
1754 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1756 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
] =
1757 rtlefuse
->eeprom_chnlarea_txpwr_ht40_2sdiif
1761 for (i
= 0; i
< 14; i
++) {
1762 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1763 ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
1764 "[0x%x / 0x%x / 0x%x]\n", rf_path
, i
,
1765 rtlefuse
->txpwrlevel_cck
[rf_path
][i
],
1766 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
],
1767 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
]));
1771 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1772 for (i
= 0; i
< 3; i
++) {
1773 /* Read Power diff limit. */
1774 rtlefuse
->eeprom_pwrgroup
[rf_path
][i
] =
1775 hwinfo
[EEPROM_TXPWRGROUP
+ rf_path
* 3 + i
];
1779 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1780 /* Fill Pwr group */
1781 for (i
= 0; i
< 14; i
++) {
1792 rtlefuse
->pwrgroup_ht20
[rf_path
][i
] =
1793 (rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1795 rtlefuse
->pwrgroup_ht40
[rf_path
][i
] =
1796 ((rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1799 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1800 ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1802 rtlefuse
->pwrgroup_ht20
[rf_path
][i
]));
1803 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1804 ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1806 rtlefuse
->pwrgroup_ht40
[rf_path
][i
]));
1810 for (i
= 0; i
< 14; i
++) {
1811 /* Read tx power difference between HT OFDM 20/40 MHZ */
1822 tempval
= (*(u8
*)&hwinfo
[EEPROM_TX_PWR_HT20_DIFF
+
1824 rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
] = (tempval
& 0xF);
1825 rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
] =
1826 ((tempval
>> 4) & 0xF);
1828 /* Read OFDM<->HT tx power diff */
1839 tempval
= (*(u8
*)&hwinfo
[EEPROM_TX_PWR_OFDM_DIFF
+ index
])
1841 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
] =
1843 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
] =
1844 ((tempval
>> 4) & 0xF);
1846 tempval
= (*(u8
*)&hwinfo
[TX_PWR_SAFETY_CHK
]);
1847 rtlefuse
->txpwr_safetyflag
= (tempval
& 0x01);
1850 rtlefuse
->eeprom_regulatory
= 0;
1851 if (rtlefuse
->eeprom_version
>= 2) {
1853 if (rtlefuse
->eeprom_version
>= 4)
1854 rtlefuse
->eeprom_regulatory
=
1855 (hwinfo
[EEPROM_REGULATORY
] & 0x7);
1857 rtlefuse
->eeprom_regulatory
=
1858 (hwinfo
[EEPROM_REGULATORY
] & 0x1);
1860 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1861 ("eeprom_regulatory = 0x%x\n", rtlefuse
->eeprom_regulatory
));
1863 for (i
= 0; i
< 14; i
++)
1864 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1865 ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i
,
1866 rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
]));
1867 for (i
= 0; i
< 14; i
++)
1868 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1869 ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i
,
1870 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
]));
1871 for (i
= 0; i
< 14; i
++)
1872 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1873 ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i
,
1874 rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
]));
1875 for (i
= 0; i
< 14; i
++)
1876 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
,
1877 ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i
,
1878 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
]));
1880 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TxPwrSafetyFlag = %d\n",
1881 rtlefuse
->txpwr_safetyflag
));
1883 /* Read RF-indication and Tx Power gain
1884 * index diff of legacy to HT OFDM rate. */
1885 tempval
= (*(u8
*)&hwinfo
[EEPROM_RFIND_POWERDIFF
]) & 0xff;
1886 rtlefuse
->eeprom_txpowerdiff
= tempval
;
1887 rtlefuse
->legacy_httxpowerdiff
=
1888 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][0];
1890 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TxPowerDiff = %#x\n",
1891 rtlefuse
->eeprom_txpowerdiff
));
1893 /* Get TSSI value for each path. */
1894 usvalue
= *(u16
*)&hwinfo
[EEPROM_TSSI_A
];
1895 rtlefuse
->eeprom_tssi
[RF90_PATH_A
] = (u8
)((usvalue
& 0xff00) >> 8);
1896 usvalue
= *(u8
*)&hwinfo
[EEPROM_TSSI_B
];
1897 rtlefuse
->eeprom_tssi
[RF90_PATH_B
] = (u8
)(usvalue
& 0xff);
1899 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1900 rtlefuse
->eeprom_tssi
[RF90_PATH_A
],
1901 rtlefuse
->eeprom_tssi
[RF90_PATH_B
]));
1903 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1904 /* and read ThermalMeter from EEPROM */
1905 tempval
= *(u8
*)&hwinfo
[EEPROM_THERMALMETER
];
1906 rtlefuse
->eeprom_thermalmeter
= tempval
;
1907 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("thermalmeter = 0x%x\n",
1908 rtlefuse
->eeprom_thermalmeter
));
1910 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1911 rtlefuse
->thermalmeter
[0] = (rtlefuse
->eeprom_thermalmeter
& 0x1f);
1912 rtlefuse
->tssi_13dbm
= rtlefuse
->eeprom_thermalmeter
* 100;
1914 /* Read CrystalCap from EEPROM */
1915 tempval
= (*(u8
*)&hwinfo
[EEPROM_CRYSTALCAP
]) >> 4;
1916 rtlefuse
->eeprom_crystalcap
= tempval
;
1917 /* CrystalCap, BIT(12)~15 */
1918 rtlefuse
->crystalcap
= rtlefuse
->eeprom_crystalcap
;
1920 /* Read IC Version && Channel Plan */
1921 /* Version ID, Channel plan */
1922 rtlefuse
->eeprom_channelplan
= *(u8
*)&hwinfo
[EEPROM_CHANNELPLAN
];
1923 rtlefuse
->txpwr_fromeprom
= true;
1924 RTPRINT(rtlpriv
, FINIT
, INIT_TxPower
, ("EEPROM ChannelPlan = 0x%4x\n",
1925 rtlefuse
->eeprom_channelplan
));
1927 /* Read Customer ID or Board Type!!! */
1928 tempval
= *(u8
*)&hwinfo
[EEPROM_BOARDTYPE
];
1929 /* Change RF type definition */
1931 rtlphy
->rf_type
= RF_2T2R
;
1932 else if (tempval
== 1)
1933 rtlphy
->rf_type
= RF_1T2R
;
1934 else if (tempval
== 2)
1935 rtlphy
->rf_type
= RF_1T2R
;
1936 else if (tempval
== 3)
1937 rtlphy
->rf_type
= RF_1T1R
;
1939 /* 1T2R but 1SS (1x1 receive combining) */
1940 rtlefuse
->b1x1_recvcombine
= false;
1941 if (rtlphy
->rf_type
== RF_1T2R
) {
1942 tempval
= rtl_read_byte(rtlpriv
, 0x07);
1943 if (!(tempval
& BIT(0))) {
1944 rtlefuse
->b1x1_recvcombine
= true;
1945 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1946 ("RF_TYPE=1T2R but only 1SS\n"));
1949 rtlefuse
->b1ss_support
= rtlefuse
->b1x1_recvcombine
;
1950 rtlefuse
->eeprom_oemid
= *(u8
*)&hwinfo
[EEPROM_CUSTOMID
];
1952 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("EEPROM Customer ID: 0x%2x",
1953 rtlefuse
->eeprom_oemid
));
1955 /* set channel paln to world wide 13 */
1956 rtlefuse
->channel_plan
= COUNTRY_CODE_WORLD_WIDE_13
;
1959 void rtl92se_read_eeprom_info(struct ieee80211_hw
*hw
)
1961 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1962 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1965 tmp_u1b
= rtl_read_byte(rtlpriv
, EPROM_CMD
);
1967 if (tmp_u1b
& BIT(4)) {
1968 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EEPROM\n"));
1969 rtlefuse
->epromtype
= EEPROM_93C46
;
1971 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, ("Boot from EFUSE\n"));
1972 rtlefuse
->epromtype
= EEPROM_BOOT_EFUSE
;
1975 if (tmp_u1b
& BIT(5)) {
1976 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, ("Autoload OK\n"));
1977 rtlefuse
->autoload_failflag
= false;
1978 _rtl92se_read_adapter_info(hw
);
1980 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, ("Autoload ERR!!\n"));
1981 rtlefuse
->autoload_failflag
= true;
1985 static void rtl92se_update_hal_rate_table(struct ieee80211_hw
*hw
,
1986 struct ieee80211_sta
*sta
)
1988 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1989 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1990 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1991 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1994 u8 nmode
= mac
->ht_enable
;
1995 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
1996 u16 shortgi_rate
= 0;
1997 u32 tmp_ratr_value
= 0;
1998 u8 curtxbw_40mhz
= mac
->bw_40
;
1999 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
2001 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
2003 enum wireless_mode wirelessmode
= mac
->mode
;
2005 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2006 ratr_value
= sta
->supp_rates
[1] << 4;
2008 ratr_value
= sta
->supp_rates
[0];
2009 ratr_value
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2010 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2011 switch (wirelessmode
) {
2012 case WIRELESS_MODE_B
:
2013 ratr_value
&= 0x0000000D;
2015 case WIRELESS_MODE_G
:
2016 ratr_value
&= 0x00000FF5;
2018 case WIRELESS_MODE_N_24G
:
2019 case WIRELESS_MODE_N_5G
:
2021 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2022 ratr_value
&= 0x0007F005;
2026 if (get_rf_type(rtlphy
) == RF_1T2R
||
2027 get_rf_type(rtlphy
) == RF_1T1R
) {
2029 ratr_mask
= 0x000ff015;
2031 ratr_mask
= 0x000ff005;
2034 ratr_mask
= 0x0f0ff015;
2036 ratr_mask
= 0x0f0ff005;
2039 ratr_value
&= ratr_mask
;
2043 if (rtlphy
->rf_type
== RF_1T2R
)
2044 ratr_value
&= 0x000ff0ff;
2046 ratr_value
&= 0x0f0ff0ff;
2051 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2052 ratr_value
&= 0x0FFFFFFF;
2053 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2054 ratr_value
&= 0x0FFFFFF0;
2056 if (nmode
&& ((curtxbw_40mhz
&&
2057 curshortgi_40mhz
) || (!curtxbw_40mhz
&&
2058 curshortgi_20mhz
))) {
2060 ratr_value
|= 0x10000000;
2061 tmp_ratr_value
= (ratr_value
>> 12);
2063 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2064 if ((1 << shortgi_rate
) & tmp_ratr_value
)
2068 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2069 (shortgi_rate
<< 4) | (shortgi_rate
);
2071 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2074 rtl_write_dword(rtlpriv
, ARFR0
+ ratr_index
* 4, ratr_value
);
2075 if (ratr_value
& 0xfffff000)
2076 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_N
);
2078 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_BG
);
2080 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_DMESG
,
2081 ("%x\n", rtl_read_dword(rtlpriv
, ARFR0
)));
2084 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw
*hw
,
2085 struct ieee80211_sta
*sta
,
2088 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2089 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
2090 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2091 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
2092 struct rtl_sta_info
*sta_entry
= NULL
;
2095 u8 curtxbw_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SUP_WIDTH_20_40
)
2097 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
2099 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
2101 enum wireless_mode wirelessmode
= 0;
2102 bool shortgi
= false;
2104 u8 shortgi_rate
= 0;
2107 bool bmulticast
= false;
2109 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
2111 sta_entry
= (struct rtl_sta_info
*) sta
->drv_priv
;
2112 wirelessmode
= sta_entry
->wireless_mode
;
2113 if (mac
->opmode
== NL80211_IFTYPE_STATION
)
2114 curtxbw_40mhz
= mac
->bw_40
;
2115 else if (mac
->opmode
== NL80211_IFTYPE_AP
||
2116 mac
->opmode
== NL80211_IFTYPE_ADHOC
)
2117 macid
= sta
->aid
+ 1;
2119 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2120 ratr_bitmap
= sta
->supp_rates
[1] << 4;
2122 ratr_bitmap
= sta
->supp_rates
[0];
2123 ratr_bitmap
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2124 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2125 switch (wirelessmode
) {
2126 case WIRELESS_MODE_B
:
2127 band
|= WIRELESS_11B
;
2128 ratr_index
= RATR_INX_WIRELESS_B
;
2129 if (ratr_bitmap
& 0x0000000c)
2130 ratr_bitmap
&= 0x0000000d;
2132 ratr_bitmap
&= 0x0000000f;
2134 case WIRELESS_MODE_G
:
2135 band
|= (WIRELESS_11G
| WIRELESS_11B
);
2136 ratr_index
= RATR_INX_WIRELESS_GB
;
2138 if (rssi_level
== 1)
2139 ratr_bitmap
&= 0x00000f00;
2140 else if (rssi_level
== 2)
2141 ratr_bitmap
&= 0x00000ff0;
2143 ratr_bitmap
&= 0x00000ff5;
2145 case WIRELESS_MODE_A
:
2146 band
|= WIRELESS_11A
;
2147 ratr_index
= RATR_INX_WIRELESS_A
;
2148 ratr_bitmap
&= 0x00000ff0;
2150 case WIRELESS_MODE_N_24G
:
2151 case WIRELESS_MODE_N_5G
:
2152 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2153 ratr_index
= RATR_INX_WIRELESS_NGB
;
2155 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2156 if (rssi_level
== 1)
2157 ratr_bitmap
&= 0x00070000;
2158 else if (rssi_level
== 2)
2159 ratr_bitmap
&= 0x0007f000;
2161 ratr_bitmap
&= 0x0007f005;
2163 if (rtlphy
->rf_type
== RF_1T2R
||
2164 rtlphy
->rf_type
== RF_1T1R
) {
2165 if (rssi_level
== 1) {
2166 ratr_bitmap
&= 0x000f0000;
2167 } else if (rssi_level
== 3) {
2168 ratr_bitmap
&= 0x000fc000;
2169 } else if (rssi_level
== 5) {
2170 ratr_bitmap
&= 0x000ff000;
2173 ratr_bitmap
&= 0x000ff015;
2175 ratr_bitmap
&= 0x000ff005;
2178 if (rssi_level
== 1) {
2179 ratr_bitmap
&= 0x0f8f0000;
2180 } else if (rssi_level
== 3) {
2181 ratr_bitmap
&= 0x0f8fc000;
2182 } else if (rssi_level
== 5) {
2183 ratr_bitmap
&= 0x0f8ff000;
2186 ratr_bitmap
&= 0x0f8ff015;
2188 ratr_bitmap
&= 0x0f8ff005;
2193 if ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
2194 (!curtxbw_40mhz
&& curshortgi_20mhz
)) {
2197 else if (macid
== 1)
2202 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2203 ratr_index
= RATR_INX_WIRELESS_NGB
;
2205 if (rtlphy
->rf_type
== RF_1T2R
)
2206 ratr_bitmap
&= 0x000ff0ff;
2208 ratr_bitmap
&= 0x0f8ff0ff;
2212 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2213 ratr_bitmap
&= 0x0FFFFFFF;
2214 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2215 ratr_bitmap
&= 0x0FFFFFF0;
2218 ratr_bitmap
|= 0x10000000;
2219 /* Get MAX MCS available. */
2220 ratr_value
= (ratr_bitmap
>> 12);
2221 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2222 if ((1 << shortgi_rate
) & ratr_value
)
2226 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2227 (shortgi_rate
<< 4) | (shortgi_rate
);
2228 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2231 mask
|= (bmulticast
? 1 : 0) << 9 | (macid
& 0x1f) << 4 | (band
& 0xf);
2233 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_TRACE
, ("mask = %x, bitmap = %x\n",
2234 mask
, ratr_bitmap
));
2235 rtl_write_dword(rtlpriv
, 0x2c4, ratr_bitmap
);
2236 rtl_write_dword(rtlpriv
, WFM5
, (FW_RA_UPDATE_MASK
| (mask
<< 8)));
2239 sta_entry
->ratr_index
= ratr_index
;
2242 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw
*hw
,
2243 struct ieee80211_sta
*sta
, u8 rssi_level
)
2245 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2247 if (rtlpriv
->dm
.useramask
)
2248 rtl92se_update_hal_rate_mask(hw
, sta
, rssi_level
);
2250 rtl92se_update_hal_rate_table(hw
, sta
);
2253 void rtl92se_update_channel_access_setting(struct ieee80211_hw
*hw
)
2255 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2256 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2259 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SLOT_TIME
,
2260 (u8
*)&mac
->slot_time
);
2261 sifs_timer
= 0x0e0e;
2262 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SIFS
, (u8
*)&sifs_timer
);
2266 /* this ifunction is for RFKILL, it's different with windows,
2267 * because UI will disable wireless when GPIO Radio Off.
2268 * And here we not check or Disable/Enable ASPM like windows*/
2269 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw
*hw
, u8
*valid
)
2271 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2272 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
2273 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2274 enum rf_pwrstate rfpwr_toset
, cur_rfstate
;
2275 unsigned long flag
= 0;
2276 bool actuallyset
= false;
2277 bool turnonbypowerdomain
= false;
2279 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2280 if ((rtlpci
->up_first_time
== 1) || (rtlpci
->being_init_adapter
))
2283 if (ppsc
->swrf_processing
)
2286 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2287 if (ppsc
->rfchange_inprogress
) {
2288 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2291 ppsc
->rfchange_inprogress
= true;
2292 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2295 cur_rfstate
= ppsc
->rfpwr_state
;
2297 /* because after _rtl92s_phy_set_rfhalt, all power
2298 * closed, so we must open some power for GPIO check,
2299 * or we will always check GPIO RFOFF here,
2300 * And we should close power after GPIO check */
2301 if (RT_IN_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
)) {
2302 _rtl92se_power_domain_init(hw
);
2303 turnonbypowerdomain
= true;
2306 rfpwr_toset
= _rtl92se_rf_onoff_detect(hw
);
2308 if ((ppsc
->hwradiooff
== true) && (rfpwr_toset
== ERFON
)) {
2309 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2310 ("RFKILL-HW Radio ON, RF ON\n"));
2312 rfpwr_toset
= ERFON
;
2313 ppsc
->hwradiooff
= false;
2315 } else if ((ppsc
->hwradiooff
== false) && (rfpwr_toset
== ERFOFF
)) {
2316 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2317 ("RFKILL-HW Radio OFF, RF OFF\n"));
2319 rfpwr_toset
= ERFOFF
;
2320 ppsc
->hwradiooff
= true;
2325 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2326 ppsc
->rfchange_inprogress
= false;
2327 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2329 /* this not include ifconfig wlan0 down case */
2330 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2332 /* because power_domain_init may be happen when
2333 * _rtl92s_phy_set_rfhalt, this will open some powers
2334 * and cause current increasing about 40 mA for ips,
2335 * rfoff and ifconfig down, so we set
2336 * _rtl92s_phy_set_rfhalt again here */
2337 if (ppsc
->reg_rfps_level
& RT_RF_OFF_LEVL_HALT_NIC
&&
2338 turnonbypowerdomain
) {
2339 _rtl92s_phy_set_rfhalt(hw
);
2340 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
2343 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2344 ppsc
->rfchange_inprogress
= false;
2345 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2349 return !ppsc
->hwradiooff
;
2353 /* Is_wepkey just used for WEP used as group & pairwise key
2354 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2355 void rtl92se_set_key(struct ieee80211_hw
*hw
, u32 key_index
, u8
*p_macaddr
,
2356 bool is_group
, u8 enc_algo
, bool is_wepkey
, bool clear_all
)
2358 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2359 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2360 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
2361 u8
*macaddr
= p_macaddr
;
2364 bool is_pairwise
= false;
2366 static u8 cam_const_addr
[4][6] = {
2367 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2368 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2369 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2370 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2372 static u8 cam_const_broad
[] = {
2373 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2379 u8 clear_number
= 5;
2381 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
, ("clear_all\n"));
2383 for (idx
= 0; idx
< clear_number
; idx
++) {
2384 rtl_cam_mark_invalid(hw
, cam_offset
+ idx
);
2385 rtl_cam_empty_entry(hw
, cam_offset
+ idx
);
2388 memset(rtlpriv
->sec
.key_buf
[idx
], 0,
2390 rtlpriv
->sec
.key_len
[idx
] = 0;
2396 case WEP40_ENCRYPTION
:
2397 enc_algo
= CAM_WEP40
;
2399 case WEP104_ENCRYPTION
:
2400 enc_algo
= CAM_WEP104
;
2402 case TKIP_ENCRYPTION
:
2403 enc_algo
= CAM_TKIP
;
2405 case AESCCMP_ENCRYPTION
:
2409 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
2410 ("switch case not process\n"));
2411 enc_algo
= CAM_TKIP
;
2415 if (is_wepkey
|| rtlpriv
->sec
.use_defaultkey
) {
2416 macaddr
= cam_const_addr
[key_index
];
2417 entry_id
= key_index
;
2420 macaddr
= cam_const_broad
;
2421 entry_id
= key_index
;
2423 if (mac
->opmode
== NL80211_IFTYPE_AP
) {
2424 entry_id
= rtl_cam_get_free_entry(hw
,
2426 if (entry_id
>= TOTAL_CAM_ENTRY
) {
2428 COMP_SEC
, DBG_EMERG
,
2429 ("Can not find free hw"
2430 " security cam entry\n"));
2434 entry_id
= CAM_PAIRWISE_KEY_POSITION
;
2437 key_index
= PAIRWISE_KEYIDX
;
2442 if (rtlpriv
->sec
.key_len
[key_index
] == 0) {
2443 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2444 ("delete one entry, entry_id is %d\n",
2446 if (mac
->opmode
== NL80211_IFTYPE_AP
)
2447 rtl_cam_del_entry(hw
, p_macaddr
);
2448 rtl_cam_delete_one_entry(hw
, p_macaddr
, entry_id
);
2450 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2451 ("The insert KEY length is %d\n",
2452 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]));
2453 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2454 ("The insert KEY is %x %x\n",
2455 rtlpriv
->sec
.key_buf
[0][0],
2456 rtlpriv
->sec
.key_buf
[0][1]));
2458 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2459 ("add one entry\n"));
2461 RT_PRINT_DATA(rtlpriv
, COMP_SEC
, DBG_LOUD
,
2462 "Pairwiase Key content :",
2463 rtlpriv
->sec
.pairwise_key
,
2464 rtlpriv
->sec
.key_len
[PAIRWISE_KEYIDX
]);
2466 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2467 ("set Pairwiase key\n"));
2469 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2471 CAM_CONFIG_NO_USEDK
,
2472 rtlpriv
->sec
.key_buf
[key_index
]);
2474 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2475 ("set group key\n"));
2477 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
) {
2478 rtl_cam_add_one_entry(hw
,
2481 CAM_PAIRWISE_KEY_POSITION
,
2482 enc_algo
, CAM_CONFIG_NO_USEDK
,
2483 rtlpriv
->sec
.key_buf
[entry_id
]);
2486 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2488 CAM_CONFIG_NO_USEDK
,
2489 rtlpriv
->sec
.key_buf
[entry_id
]);
2496 void rtl92se_suspend(struct ieee80211_hw
*hw
)
2498 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2500 rtlpci
->up_first_time
= true;
2503 void rtl92se_resume(struct ieee80211_hw
*hw
)
2505 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2508 pci_read_config_dword(rtlpci
->pdev
, 0x40, &val
);
2509 if ((val
& 0x0000ff00) != 0)
2510 pci_write_config_dword(rtlpci
->pdev
, 0x40,