1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
35 struct zd_reg_alpha2_map
{
40 static struct zd_reg_alpha2_map reg_alpha2_map
[] = {
41 { ZD_REGDOMAIN_FCC
, "US" },
42 { ZD_REGDOMAIN_IC
, "CA" },
43 { ZD_REGDOMAIN_ETSI
, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN
, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2
, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3
, "JP" },
47 { ZD_REGDOMAIN_SPAIN
, "ES" },
48 { ZD_REGDOMAIN_FRANCE
, "FR" },
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates
[] = {
54 .hw_value
= ZD_CCK_RATE_1M
, },
56 .hw_value
= ZD_CCK_RATE_2M
,
57 .hw_value_short
= ZD_CCK_RATE_2M
| ZD_CCK_PREA_SHORT
,
58 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
60 .hw_value
= ZD_CCK_RATE_5_5M
,
61 .hw_value_short
= ZD_CCK_RATE_5_5M
| ZD_CCK_PREA_SHORT
,
62 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
64 .hw_value
= ZD_CCK_RATE_11M
,
65 .hw_value_short
= ZD_CCK_RATE_11M
| ZD_CCK_PREA_SHORT
,
66 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
68 .hw_value
= ZD_OFDM_RATE_6M
,
71 .hw_value
= ZD_OFDM_RATE_9M
,
74 .hw_value
= ZD_OFDM_RATE_12M
,
77 .hw_value
= ZD_OFDM_RATE_18M
,
80 .hw_value
= ZD_OFDM_RATE_24M
,
83 .hw_value
= ZD_OFDM_RATE_36M
,
86 .hw_value
= ZD_OFDM_RATE_48M
,
89 .hw_value
= ZD_OFDM_RATE_54M
,
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
106 static const struct tx_retry_rate zd_retry_rates
[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
121 static const struct ieee80211_channel zd_channels
[] = {
122 { .center_freq
= 2412, .hw_value
= 1 },
123 { .center_freq
= 2417, .hw_value
= 2 },
124 { .center_freq
= 2422, .hw_value
= 3 },
125 { .center_freq
= 2427, .hw_value
= 4 },
126 { .center_freq
= 2432, .hw_value
= 5 },
127 { .center_freq
= 2437, .hw_value
= 6 },
128 { .center_freq
= 2442, .hw_value
= 7 },
129 { .center_freq
= 2447, .hw_value
= 8 },
130 { .center_freq
= 2452, .hw_value
= 9 },
131 { .center_freq
= 2457, .hw_value
= 10 },
132 { .center_freq
= 2462, .hw_value
= 11 },
133 { .center_freq
= 2467, .hw_value
= 12 },
134 { .center_freq
= 2472, .hw_value
= 13 },
135 { .center_freq
= 2484, .hw_value
= 14 },
138 static void housekeeping_init(struct zd_mac
*mac
);
139 static void housekeeping_enable(struct zd_mac
*mac
);
140 static void housekeeping_disable(struct zd_mac
*mac
);
141 static void beacon_init(struct zd_mac
*mac
);
142 static void beacon_enable(struct zd_mac
*mac
);
143 static void beacon_disable(struct zd_mac
*mac
);
144 static void set_rts_cts(struct zd_mac
*mac
, unsigned int short_preamble
);
145 static int zd_mac_config_beacon(struct ieee80211_hw
*hw
,
146 struct sk_buff
*beacon
);
148 static int zd_reg2alpha2(u8 regdomain
, char *alpha2
)
151 struct zd_reg_alpha2_map
*reg_map
;
152 for (i
= 0; i
< ARRAY_SIZE(reg_alpha2_map
); i
++) {
153 reg_map
= ®_alpha2_map
[i
];
154 if (regdomain
== reg_map
->reg
) {
155 alpha2
[0] = reg_map
->alpha2
[0];
156 alpha2
[1] = reg_map
->alpha2
[1];
163 int zd_mac_preinit_hw(struct ieee80211_hw
*hw
)
167 struct zd_mac
*mac
= zd_hw_mac(hw
);
169 r
= zd_chip_read_mac_addr_fw(&mac
->chip
, addr
);
173 SET_IEEE80211_PERM_ADDR(hw
, addr
);
178 int zd_mac_init_hw(struct ieee80211_hw
*hw
)
181 struct zd_mac
*mac
= zd_hw_mac(hw
);
182 struct zd_chip
*chip
= &mac
->chip
;
184 u8 default_regdomain
;
186 r
= zd_chip_enable_int(chip
);
189 r
= zd_chip_init_hw(chip
);
193 ZD_ASSERT(!irqs_disabled());
195 r
= zd_read_regdomain(chip
, &default_regdomain
);
198 spin_lock_irq(&mac
->lock
);
199 mac
->regdomain
= mac
->default_regdomain
= default_regdomain
;
200 spin_unlock_irq(&mac
->lock
);
202 /* We must inform the device that we are doing encryption/decryption in
203 * software at the moment. */
204 r
= zd_set_encryption_type(chip
, ENC_SNIFFER
);
208 r
= zd_reg2alpha2(mac
->regdomain
, alpha2
);
212 r
= regulatory_hint(hw
->wiphy
, alpha2
);
214 zd_chip_disable_int(chip
);
219 void zd_mac_clear(struct zd_mac
*mac
)
221 flush_workqueue(zd_workqueue
);
222 zd_chip_clear(&mac
->chip
);
223 ZD_ASSERT(!spin_is_locked(&mac
->lock
));
224 ZD_MEMCLEAR(mac
, sizeof(struct zd_mac
));
227 static int set_rx_filter(struct zd_mac
*mac
)
230 u32 filter
= STA_RX_FILTER
;
232 spin_lock_irqsave(&mac
->lock
, flags
);
234 filter
|= RX_FILTER_CTRL
;
235 spin_unlock_irqrestore(&mac
->lock
, flags
);
237 return zd_iowrite32(&mac
->chip
, CR_RX_FILTER
, filter
);
240 static int set_mac_and_bssid(struct zd_mac
*mac
)
247 r
= zd_write_mac_addr(&mac
->chip
, mac
->vif
->addr
);
251 /* Vendor driver after setting MAC either sets BSSID for AP or
252 * filter for other modes.
254 if (mac
->type
!= NL80211_IFTYPE_AP
)
255 return set_rx_filter(mac
);
257 return zd_write_bssid(&mac
->chip
, mac
->vif
->addr
);
260 static int set_mc_hash(struct zd_mac
*mac
)
262 struct zd_mc_hash hash
;
264 return zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
267 int zd_op_start(struct ieee80211_hw
*hw
)
269 struct zd_mac
*mac
= zd_hw_mac(hw
);
270 struct zd_chip
*chip
= &mac
->chip
;
271 struct zd_usb
*usb
= &chip
->usb
;
274 if (!usb
->initialized
) {
275 r
= zd_usb_init_hw(usb
);
280 r
= zd_chip_enable_int(chip
);
284 r
= zd_chip_set_basic_rates(chip
, CR_RATES_80211B
| CR_RATES_80211G
);
287 r
= set_rx_filter(mac
);
290 r
= set_mc_hash(mac
);
293 r
= zd_chip_switch_radio_on(chip
);
296 r
= zd_chip_enable_rxtx(chip
);
299 r
= zd_chip_enable_hwint(chip
);
303 housekeeping_enable(mac
);
305 set_bit(ZD_DEVICE_RUNNING
, &mac
->flags
);
308 zd_chip_disable_rxtx(chip
);
310 zd_chip_switch_radio_off(chip
);
312 zd_chip_disable_int(chip
);
317 void zd_op_stop(struct ieee80211_hw
*hw
)
319 struct zd_mac
*mac
= zd_hw_mac(hw
);
320 struct zd_chip
*chip
= &mac
->chip
;
322 struct sk_buff_head
*ack_wait_queue
= &mac
->ack_wait_queue
;
324 clear_bit(ZD_DEVICE_RUNNING
, &mac
->flags
);
326 /* The order here deliberately is a little different from the open()
327 * method, since we need to make sure there is no opportunity for RX
328 * frames to be processed by mac80211 after we have stopped it.
331 zd_chip_disable_rxtx(chip
);
333 housekeeping_disable(mac
);
334 flush_workqueue(zd_workqueue
);
336 zd_chip_disable_hwint(chip
);
337 zd_chip_switch_radio_off(chip
);
338 zd_chip_disable_int(chip
);
341 while ((skb
= skb_dequeue(ack_wait_queue
)))
342 dev_kfree_skb_any(skb
);
345 int zd_restore_settings(struct zd_mac
*mac
)
347 struct sk_buff
*beacon
;
348 struct zd_mc_hash multicast_hash
;
349 unsigned int short_preamble
;
350 int r
, beacon_interval
, beacon_period
;
353 dev_dbg_f(zd_mac_dev(mac
), "\n");
355 spin_lock_irq(&mac
->lock
);
356 multicast_hash
= mac
->multicast_hash
;
357 short_preamble
= mac
->short_preamble
;
358 beacon_interval
= mac
->beacon
.interval
;
359 beacon_period
= mac
->beacon
.period
;
360 channel
= mac
->channel
;
361 spin_unlock_irq(&mac
->lock
);
363 r
= set_mac_and_bssid(mac
);
365 dev_dbg_f(zd_mac_dev(mac
), "set_mac_and_bssid failed, %d\n", r
);
369 r
= zd_chip_set_channel(&mac
->chip
, channel
);
371 dev_dbg_f(zd_mac_dev(mac
), "zd_chip_set_channel failed, %d\n",
376 set_rts_cts(mac
, short_preamble
);
378 r
= zd_chip_set_multicast_hash(&mac
->chip
, &multicast_hash
);
380 dev_dbg_f(zd_mac_dev(mac
),
381 "zd_chip_set_multicast_hash failed, %d\n", r
);
385 if (mac
->type
== NL80211_IFTYPE_MESH_POINT
||
386 mac
->type
== NL80211_IFTYPE_ADHOC
||
387 mac
->type
== NL80211_IFTYPE_AP
) {
388 if (mac
->vif
!= NULL
) {
389 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
391 zd_mac_config_beacon(mac
->hw
, beacon
);
396 zd_set_beacon_interval(&mac
->chip
, beacon_interval
,
397 beacon_period
, mac
->type
);
399 spin_lock_irq(&mac
->lock
);
400 mac
->beacon
.last_update
= jiffies
;
401 spin_unlock_irq(&mac
->lock
);
408 * zd_mac_tx_status - reports tx status of a packet if required
409 * @hw - a &struct ieee80211_hw pointer
411 * @flags: extra flags to set in the TX status info
412 * @ackssi: ACK signal strength
413 * @success - True for successful transmission of the frame
415 * This information calls ieee80211_tx_status_irqsafe() if required by the
416 * control information. It copies the control information into the status
419 * If no status information has been requested, the skb is freed.
421 static void zd_mac_tx_status(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
422 int ackssi
, struct tx_status
*tx_status
)
424 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
426 int success
= 1, retry
= 1;
428 const struct tx_retry_rate
*retries
;
430 ieee80211_tx_info_clear_status(info
);
433 success
= !tx_status
->failure
;
434 retry
= tx_status
->retry
+ success
;
439 info
->flags
|= IEEE80211_TX_STAT_ACK
;
442 info
->flags
&= ~IEEE80211_TX_STAT_ACK
;
445 first_idx
= info
->status
.rates
[0].idx
;
446 ZD_ASSERT(0<=first_idx
&& first_idx
<ARRAY_SIZE(zd_retry_rates
));
447 retries
= &zd_retry_rates
[first_idx
];
448 ZD_ASSERT(1 <= retry
&& retry
<= retries
->count
);
450 info
->status
.rates
[0].idx
= retries
->rate
[0];
451 info
->status
.rates
[0].count
= 1; // (retry > 1 ? 2 : 1);
453 for (i
=1; i
<IEEE80211_TX_MAX_RATES
-1 && i
<retry
; i
++) {
454 info
->status
.rates
[i
].idx
= retries
->rate
[i
];
455 info
->status
.rates
[i
].count
= 1; // ((i==retry-1) && success ? 1:2);
457 for (; i
<IEEE80211_TX_MAX_RATES
&& i
<retry
; i
++) {
458 info
->status
.rates
[i
].idx
= retries
->rate
[retry
- 1];
459 info
->status
.rates
[i
].count
= 1; // (success ? 1:2);
461 if (i
<IEEE80211_TX_MAX_RATES
)
462 info
->status
.rates
[i
].idx
= -1; /* terminate */
464 info
->status
.ack_signal
= ackssi
;
465 ieee80211_tx_status_irqsafe(hw
, skb
);
469 * zd_mac_tx_failed - callback for failed frames
470 * @dev: the mac80211 wireless device
472 * This function is called if a frame couldn't be successfully
473 * transferred. The first frame from the tx queue, will be selected and
474 * reported as error to the upper layers.
476 void zd_mac_tx_failed(struct urb
*urb
)
478 struct ieee80211_hw
* hw
= zd_usb_to_hw(urb
->context
);
479 struct zd_mac
*mac
= zd_hw_mac(hw
);
480 struct sk_buff_head
*q
= &mac
->ack_wait_queue
;
482 struct tx_status
*tx_status
= (struct tx_status
*)urb
->transfer_buffer
;
484 int success
= !tx_status
->failure
;
485 int retry
= tx_status
->retry
+ success
;
489 q
= &mac
->ack_wait_queue
;
490 spin_lock_irqsave(&q
->lock
, flags
);
492 skb_queue_walk(q
, skb
) {
493 struct ieee80211_hdr
*tx_hdr
;
494 struct ieee80211_tx_info
*info
;
495 int first_idx
, final_idx
;
496 const struct tx_retry_rate
*retries
;
501 /* if the hardware reports a failure and we had a 802.11 ACK
502 * pending, then we skip the first skb when searching for a
504 if (tx_status
->failure
&& mac
->ack_pending
&&
505 skb_queue_is_first(q
, skb
)) {
509 tx_hdr
= (struct ieee80211_hdr
*)skb
->data
;
511 /* we skip all frames not matching the reported destination */
512 if (unlikely(memcmp(tx_hdr
->addr1
, tx_status
->mac
, ETH_ALEN
))) {
516 /* we skip all frames not matching the reported final rate */
518 info
= IEEE80211_SKB_CB(skb
);
519 first_idx
= info
->status
.rates
[0].idx
;
520 ZD_ASSERT(0<=first_idx
&& first_idx
<ARRAY_SIZE(zd_retry_rates
));
521 retries
= &zd_retry_rates
[first_idx
];
522 if (retry
<= 0 || retry
> retries
->count
)
525 final_idx
= retries
->rate
[retry
- 1];
526 final_rate
= zd_rates
[final_idx
].hw_value
;
528 if (final_rate
!= tx_status
->rate
) {
537 for (i
=1; i
<=position
; i
++) {
538 skb
= __skb_dequeue(q
);
539 zd_mac_tx_status(hw
, skb
,
540 mac
->ack_pending
? mac
->ack_signal
: 0,
541 i
== position
? tx_status
: NULL
);
542 mac
->ack_pending
= 0;
546 spin_unlock_irqrestore(&q
->lock
, flags
);
550 * zd_mac_tx_to_dev - callback for USB layer
551 * @skb: a &sk_buff pointer
552 * @error: error value, 0 if transmission successful
554 * Informs the MAC layer that the frame has successfully transferred to the
555 * device. If an ACK is required and the transfer to the device has been
556 * successful, the packets are put on the @ack_wait_queue with
557 * the control set removed.
559 void zd_mac_tx_to_dev(struct sk_buff
*skb
, int error
)
561 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
562 struct ieee80211_hw
*hw
= info
->rate_driver_data
[0];
563 struct zd_mac
*mac
= zd_hw_mac(hw
);
565 ieee80211_tx_info_clear_status(info
);
567 skb_pull(skb
, sizeof(struct zd_ctrlset
));
568 if (unlikely(error
||
569 (info
->flags
& IEEE80211_TX_CTL_NO_ACK
))) {
571 * FIXME : do we need to fill in anything ?
573 ieee80211_tx_status_irqsafe(hw
, skb
);
575 struct sk_buff_head
*q
= &mac
->ack_wait_queue
;
577 skb_queue_tail(q
, skb
);
578 while (skb_queue_len(q
) > ZD_MAC_MAX_ACK_WAITERS
) {
579 zd_mac_tx_status(hw
, skb_dequeue(q
),
580 mac
->ack_pending
? mac
->ack_signal
: 0,
582 mac
->ack_pending
= 0;
587 static int zd_calc_tx_length_us(u8
*service
, u8 zd_rate
, u16 tx_length
)
589 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
590 * the zd-rate values.
592 static const u8 rate_divisor
[] = {
593 [ZD_PURE_RATE(ZD_CCK_RATE_1M
)] = 1,
594 [ZD_PURE_RATE(ZD_CCK_RATE_2M
)] = 2,
595 /* Bits must be doubled. */
596 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M
)] = 11,
597 [ZD_PURE_RATE(ZD_CCK_RATE_11M
)] = 11,
598 [ZD_PURE_RATE(ZD_OFDM_RATE_6M
)] = 6,
599 [ZD_PURE_RATE(ZD_OFDM_RATE_9M
)] = 9,
600 [ZD_PURE_RATE(ZD_OFDM_RATE_12M
)] = 12,
601 [ZD_PURE_RATE(ZD_OFDM_RATE_18M
)] = 18,
602 [ZD_PURE_RATE(ZD_OFDM_RATE_24M
)] = 24,
603 [ZD_PURE_RATE(ZD_OFDM_RATE_36M
)] = 36,
604 [ZD_PURE_RATE(ZD_OFDM_RATE_48M
)] = 48,
605 [ZD_PURE_RATE(ZD_OFDM_RATE_54M
)] = 54,
608 u32 bits
= (u32
)tx_length
* 8;
611 divisor
= rate_divisor
[ZD_PURE_RATE(zd_rate
)];
616 case ZD_CCK_RATE_5_5M
:
617 bits
= (2*bits
) + 10; /* round up to the next integer */
619 case ZD_CCK_RATE_11M
:
622 *service
&= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
623 if (0 < t
&& t
<= 3) {
624 *service
|= ZD_PLCP_SERVICE_LENGTH_EXTENSION
;
627 bits
+= 10; /* round up to the next integer */
634 static void cs_set_control(struct zd_mac
*mac
, struct zd_ctrlset
*cs
,
635 struct ieee80211_hdr
*header
,
636 struct ieee80211_tx_info
*info
)
640 * - if backoff needed, enable bit 0
641 * - if burst (backoff not needed) disable bit 0
647 if (info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
)
648 cs
->control
|= ZD_CS_NEED_RANDOM_BACKOFF
;
650 /* No ACK expected (multicast, etc.) */
651 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
652 cs
->control
|= ZD_CS_NO_ACK
;
655 if (ieee80211_is_pspoll(header
->frame_control
))
656 cs
->control
|= ZD_CS_PS_POLL_FRAME
;
658 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_RTS_CTS
)
659 cs
->control
|= ZD_CS_RTS
;
661 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
)
662 cs
->control
|= ZD_CS_SELF_CTS
;
664 /* FIXME: Management frame? */
667 static int zd_mac_config_beacon(struct ieee80211_hw
*hw
, struct sk_buff
*beacon
)
669 struct zd_mac
*mac
= zd_hw_mac(hw
);
670 int r
, ret
, num_cmds
, req_pos
= 0;
672 /* 4 more bytes for tail CRC */
673 u32 full_len
= beacon
->len
+ 4;
674 unsigned long end_jiffies
, message_jiffies
;
675 struct zd_ioreq32
*ioreqs
;
677 /* Alloc memory for full beacon write at once. */
678 num_cmds
= 1 + zd_chip_is_zd1211b(&mac
->chip
) + full_len
;
679 ioreqs
= kmalloc(num_cmds
* sizeof(struct zd_ioreq32
), GFP_KERNEL
);
683 mutex_lock(&mac
->chip
.mutex
);
685 r
= zd_iowrite32_locked(&mac
->chip
, 0, CR_BCN_FIFO_SEMAPHORE
);
688 r
= zd_ioread32_locked(&mac
->chip
, &tmp
, CR_BCN_FIFO_SEMAPHORE
);
692 end_jiffies
= jiffies
+ HZ
/ 2; /*~500ms*/
693 message_jiffies
= jiffies
+ HZ
/ 10; /*~100ms*/
695 r
= zd_ioread32_locked(&mac
->chip
, &tmp
, CR_BCN_FIFO_SEMAPHORE
);
698 if (time_is_before_eq_jiffies(message_jiffies
)) {
699 message_jiffies
= jiffies
+ HZ
/ 10;
700 dev_err(zd_mac_dev(mac
),
701 "CR_BCN_FIFO_SEMAPHORE not ready\n");
702 if (time_is_before_eq_jiffies(end_jiffies
)) {
703 dev_err(zd_mac_dev(mac
),
704 "Giving up beacon config.\n");
712 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
713 ioreqs
[req_pos
].value
= full_len
- 1;
715 if (zd_chip_is_zd1211b(&mac
->chip
)) {
716 ioreqs
[req_pos
].addr
= CR_BCN_LENGTH
;
717 ioreqs
[req_pos
].value
= full_len
- 1;
721 for (j
= 0 ; j
< beacon
->len
; j
++) {
722 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
723 ioreqs
[req_pos
].value
= *((u8
*)(beacon
->data
+ j
));
727 for (j
= 0; j
< 4; j
++) {
728 ioreqs
[req_pos
].addr
= CR_BCN_FIFO
;
729 ioreqs
[req_pos
].value
= 0x0;
733 BUG_ON(req_pos
!= num_cmds
);
735 r
= zd_iowrite32a_locked(&mac
->chip
, ioreqs
, num_cmds
);
739 * Try very hard to release device beacon semaphore, as otherwise
740 * device/driver can be left in unusable state.
742 end_jiffies
= jiffies
+ HZ
/ 2; /*~500ms*/
743 ret
= zd_iowrite32_locked(&mac
->chip
, 1, CR_BCN_FIFO_SEMAPHORE
);
745 if (time_is_before_eq_jiffies(end_jiffies
)) {
751 ret
= zd_iowrite32_locked(&mac
->chip
, 1, CR_BCN_FIFO_SEMAPHORE
);
755 dev_err(zd_mac_dev(mac
), "Could not release "
756 "CR_BCN_FIFO_SEMAPHORE!\n");
757 if (r
< 0 || ret
< 0) {
763 /* 802.11b/g 2.4G CCK 1Mb
764 * 802.11a, not yet implemented, uses different values (see GPL vendor
767 r
= zd_iowrite32_locked(&mac
->chip
, 0x00000400 | (full_len
<< 19),
770 mutex_unlock(&mac
->chip
.mutex
);
775 mutex_unlock(&mac
->chip
.mutex
);
778 /* semaphore stuck, reset device to avoid fw freeze later */
779 dev_warn(zd_mac_dev(mac
), "CR_BCN_FIFO_SEMAPHORE stuck, "
780 "reseting device...");
781 usb_queue_reset_device(mac
->chip
.usb
.intf
);
786 static int fill_ctrlset(struct zd_mac
*mac
,
790 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
791 unsigned int frag_len
= skb
->len
+ FCS_LEN
;
792 unsigned int packet_length
;
793 struct ieee80211_rate
*txrate
;
794 struct zd_ctrlset
*cs
= (struct zd_ctrlset
*)
795 skb_push(skb
, sizeof(struct zd_ctrlset
));
796 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
798 ZD_ASSERT(frag_len
<= 0xffff);
800 txrate
= ieee80211_get_tx_rate(mac
->hw
, info
);
802 cs
->modulation
= txrate
->hw_value
;
803 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
804 cs
->modulation
= txrate
->hw_value_short
;
806 cs
->tx_length
= cpu_to_le16(frag_len
);
808 cs_set_control(mac
, cs
, hdr
, info
);
810 packet_length
= frag_len
+ sizeof(struct zd_ctrlset
) + 10;
811 ZD_ASSERT(packet_length
<= 0xffff);
812 /* ZD1211B: Computing the length difference this way, gives us
813 * flexibility to compute the packet length.
815 cs
->packet_length
= cpu_to_le16(zd_chip_is_zd1211b(&mac
->chip
) ?
816 packet_length
- frag_len
: packet_length
);
820 * - transmit frame length in microseconds
821 * - seems to be derived from frame length
822 * - see Cal_Us_Service() in zdinlinef.h
823 * - if macp->bTxBurstEnable is enabled, then multiply by 4
824 * - bTxBurstEnable is never set in the vendor driver
827 * - "for PLCP configuration"
828 * - always 0 except in some situations at 802.11b 11M
829 * - see line 53 of zdinlinef.h
832 r
= zd_calc_tx_length_us(&cs
->service
, ZD_RATE(cs
->modulation
),
833 le16_to_cpu(cs
->tx_length
));
836 cs
->current_length
= cpu_to_le16(r
);
837 cs
->next_frame_length
= 0;
843 * zd_op_tx - transmits a network frame to the device
845 * @dev: mac80211 hardware device
846 * @skb: socket buffer
847 * @control: the control structure
849 * This function transmit an IEEE 802.11 network frame to the device. The
850 * control block of the skbuff will be initialized. If necessary the incoming
851 * mac80211 queues will be stopped.
853 static void zd_op_tx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
855 struct zd_mac
*mac
= zd_hw_mac(hw
);
856 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
859 r
= fill_ctrlset(mac
, skb
);
863 info
->rate_driver_data
[0] = hw
;
865 r
= zd_usb_tx(&mac
->chip
.usb
, skb
);
875 * filter_ack - filters incoming packets for acknowledgements
876 * @dev: the mac80211 device
877 * @rx_hdr: received header
878 * @stats: the status for the received packet
880 * This functions looks for ACK packets and tries to match them with the
881 * frames in the tx queue. If a match is found the frame will be dequeued and
882 * the upper layers is informed about the successful transmission. If
883 * mac80211 queues have been stopped and the number of frames still to be
884 * transmitted is low the queues will be opened again.
886 * Returns 1 if the frame was an ACK, 0 if it was ignored.
888 static int filter_ack(struct ieee80211_hw
*hw
, struct ieee80211_hdr
*rx_hdr
,
889 struct ieee80211_rx_status
*stats
)
891 struct zd_mac
*mac
= zd_hw_mac(hw
);
893 struct sk_buff_head
*q
;
898 if (!ieee80211_is_ack(rx_hdr
->frame_control
))
901 q
= &mac
->ack_wait_queue
;
902 spin_lock_irqsave(&q
->lock
, flags
);
903 skb_queue_walk(q
, skb
) {
904 struct ieee80211_hdr
*tx_hdr
;
908 if (mac
->ack_pending
&& skb_queue_is_first(q
, skb
))
911 tx_hdr
= (struct ieee80211_hdr
*)skb
->data
;
912 if (likely(!memcmp(tx_hdr
->addr2
, rx_hdr
->addr1
, ETH_ALEN
)))
920 for (i
=1; i
<position
; i
++) {
921 skb
= __skb_dequeue(q
);
922 zd_mac_tx_status(hw
, skb
,
923 mac
->ack_pending
? mac
->ack_signal
: 0,
925 mac
->ack_pending
= 0;
928 mac
->ack_pending
= 1;
929 mac
->ack_signal
= stats
->signal
;
931 /* Prevent pending tx-packet on AP-mode */
932 if (mac
->type
== NL80211_IFTYPE_AP
) {
933 skb
= __skb_dequeue(q
);
934 zd_mac_tx_status(hw
, skb
, mac
->ack_signal
, NULL
);
935 mac
->ack_pending
= 0;
939 spin_unlock_irqrestore(&q
->lock
, flags
);
943 int zd_mac_rx(struct ieee80211_hw
*hw
, const u8
*buffer
, unsigned int length
)
945 struct zd_mac
*mac
= zd_hw_mac(hw
);
946 struct ieee80211_rx_status stats
;
947 const struct rx_status
*status
;
955 if (length
< ZD_PLCP_HEADER_SIZE
+ 10 /* IEEE80211_1ADDR_LEN */ +
956 FCS_LEN
+ sizeof(struct rx_status
))
959 memset(&stats
, 0, sizeof(stats
));
961 /* Note about pass_failed_fcs and pass_ctrl access below:
962 * mac locking intentionally omitted here, as this is the only unlocked
963 * reader and the only writer is configure_filter. Plus, if there were
964 * any races accessing these variables, it wouldn't really matter.
965 * If mac80211 ever provides a way for us to access filter flags
966 * from outside configure_filter, we could improve on this. Also, this
967 * situation may change once we implement some kind of DMA-into-skb
970 /* Caller has to ensure that length >= sizeof(struct rx_status). */
971 status
= (struct rx_status
*)
972 (buffer
+ (length
- sizeof(struct rx_status
)));
973 if (status
->frame_status
& ZD_RX_ERROR
) {
974 if (mac
->pass_failed_fcs
&&
975 (status
->frame_status
& ZD_RX_CRC32_ERROR
)) {
976 stats
.flag
|= RX_FLAG_FAILED_FCS_CRC
;
983 stats
.freq
= zd_channels
[_zd_chip_get_channel(&mac
->chip
) - 1].center_freq
;
984 stats
.band
= IEEE80211_BAND_2GHZ
;
985 stats
.signal
= status
->signal_strength
;
987 rate
= zd_rx_rate(buffer
, status
);
989 /* todo: return index in the big switches in zd_rx_rate instead */
990 for (i
= 0; i
< mac
->band
.n_bitrates
; i
++)
991 if (rate
== mac
->band
.bitrates
[i
].hw_value
)
994 length
-= ZD_PLCP_HEADER_SIZE
+ sizeof(struct rx_status
);
995 buffer
+= ZD_PLCP_HEADER_SIZE
;
997 /* Except for bad frames, filter each frame to see if it is an ACK, in
998 * which case our internal TX tracking is updated. Normally we then
999 * bail here as there's no need to pass ACKs on up to the stack, but
1000 * there is also the case where the stack has requested us to pass
1001 * control frames on up (pass_ctrl) which we must consider. */
1003 filter_ack(hw
, (struct ieee80211_hdr
*)buffer
, &stats
)
1007 fc
= get_unaligned((__le16
*)buffer
);
1008 need_padding
= ieee80211_is_data_qos(fc
) ^ ieee80211_has_a4(fc
);
1010 skb
= dev_alloc_skb(length
+ (need_padding
? 2 : 0));
1014 /* Make sure the payload data is 4 byte aligned. */
1015 skb_reserve(skb
, 2);
1018 /* FIXME : could we avoid this big memcpy ? */
1019 memcpy(skb_put(skb
, length
), buffer
, length
);
1021 memcpy(IEEE80211_SKB_RXCB(skb
), &stats
, sizeof(stats
));
1022 ieee80211_rx_irqsafe(hw
, skb
);
1026 static int zd_op_add_interface(struct ieee80211_hw
*hw
,
1027 struct ieee80211_vif
*vif
)
1029 struct zd_mac
*mac
= zd_hw_mac(hw
);
1031 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1032 if (mac
->type
!= NL80211_IFTYPE_UNSPECIFIED
)
1035 switch (vif
->type
) {
1036 case NL80211_IFTYPE_MONITOR
:
1037 case NL80211_IFTYPE_MESH_POINT
:
1038 case NL80211_IFTYPE_STATION
:
1039 case NL80211_IFTYPE_ADHOC
:
1040 case NL80211_IFTYPE_AP
:
1041 mac
->type
= vif
->type
;
1049 return set_mac_and_bssid(mac
);
1052 static void zd_op_remove_interface(struct ieee80211_hw
*hw
,
1053 struct ieee80211_vif
*vif
)
1055 struct zd_mac
*mac
= zd_hw_mac(hw
);
1056 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
1058 zd_set_beacon_interval(&mac
->chip
, 0, 0, NL80211_IFTYPE_UNSPECIFIED
);
1059 zd_write_mac_addr(&mac
->chip
, NULL
);
1062 static int zd_op_config(struct ieee80211_hw
*hw
, u32 changed
)
1064 struct zd_mac
*mac
= zd_hw_mac(hw
);
1065 struct ieee80211_conf
*conf
= &hw
->conf
;
1067 spin_lock_irq(&mac
->lock
);
1068 mac
->channel
= conf
->channel
->hw_value
;
1069 spin_unlock_irq(&mac
->lock
);
1071 return zd_chip_set_channel(&mac
->chip
, conf
->channel
->hw_value
);
1074 static void zd_beacon_done(struct zd_mac
*mac
)
1076 struct sk_buff
*skb
, *beacon
;
1078 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1080 if (!mac
->vif
|| mac
->vif
->type
!= NL80211_IFTYPE_AP
)
1084 * Send out buffered broad- and multicast frames.
1086 while (!ieee80211_queue_stopped(mac
->hw
, 0)) {
1087 skb
= ieee80211_get_buffered_bc(mac
->hw
, mac
->vif
);
1090 zd_op_tx(mac
->hw
, skb
);
1094 * Fetch next beacon so that tim_count is updated.
1096 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
1098 zd_mac_config_beacon(mac
->hw
, beacon
);
1102 spin_lock_irq(&mac
->lock
);
1103 mac
->beacon
.last_update
= jiffies
;
1104 spin_unlock_irq(&mac
->lock
);
1107 static void zd_process_intr(struct work_struct
*work
)
1110 unsigned long flags
;
1111 struct zd_mac
*mac
= container_of(work
, struct zd_mac
, process_intr
);
1113 spin_lock_irqsave(&mac
->lock
, flags
);
1114 int_status
= le16_to_cpu(*(__le16
*)(mac
->intr_buffer
+ 4));
1115 spin_unlock_irqrestore(&mac
->lock
, flags
);
1117 if (int_status
& INT_CFG_NEXT_BCN
) {
1118 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1119 zd_beacon_done(mac
);
1121 dev_dbg_f(zd_mac_dev(mac
), "Unsupported interrupt\n");
1124 zd_chip_enable_hwint(&mac
->chip
);
1128 static u64
zd_op_prepare_multicast(struct ieee80211_hw
*hw
,
1129 struct netdev_hw_addr_list
*mc_list
)
1131 struct zd_mac
*mac
= zd_hw_mac(hw
);
1132 struct zd_mc_hash hash
;
1133 struct netdev_hw_addr
*ha
;
1137 netdev_hw_addr_list_for_each(ha
, mc_list
) {
1138 dev_dbg_f(zd_mac_dev(mac
), "mc addr %pM\n", ha
->addr
);
1139 zd_mc_add_addr(&hash
, ha
->addr
);
1142 return hash
.low
| ((u64
)hash
.high
<< 32);
1145 #define SUPPORTED_FIF_FLAGS \
1146 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1147 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1148 static void zd_op_configure_filter(struct ieee80211_hw
*hw
,
1149 unsigned int changed_flags
,
1150 unsigned int *new_flags
,
1153 struct zd_mc_hash hash
= {
1155 .high
= multicast
>> 32,
1157 struct zd_mac
*mac
= zd_hw_mac(hw
);
1158 unsigned long flags
;
1161 /* Only deal with supported flags */
1162 changed_flags
&= SUPPORTED_FIF_FLAGS
;
1163 *new_flags
&= SUPPORTED_FIF_FLAGS
;
1166 * If multicast parameter (as returned by zd_op_prepare_multicast)
1167 * has changed, no bit in changed_flags is set. To handle this
1168 * situation, we do not return if changed_flags is 0. If we do so,
1169 * we will have some issue with IPv6 which uses multicast for link
1170 * layer address resolution.
1172 if (*new_flags
& (FIF_PROMISC_IN_BSS
| FIF_ALLMULTI
))
1173 zd_mc_add_all(&hash
);
1175 spin_lock_irqsave(&mac
->lock
, flags
);
1176 mac
->pass_failed_fcs
= !!(*new_flags
& FIF_FCSFAIL
);
1177 mac
->pass_ctrl
= !!(*new_flags
& FIF_CONTROL
);
1178 mac
->multicast_hash
= hash
;
1179 spin_unlock_irqrestore(&mac
->lock
, flags
);
1181 zd_chip_set_multicast_hash(&mac
->chip
, &hash
);
1183 if (changed_flags
& FIF_CONTROL
) {
1184 r
= set_rx_filter(mac
);
1186 dev_err(zd_mac_dev(mac
), "set_rx_filter error %d\n", r
);
1189 /* no handling required for FIF_OTHER_BSS as we don't currently
1190 * do BSSID filtering */
1191 /* FIXME: in future it would be nice to enable the probe response
1192 * filter (so that the driver doesn't see them) until
1193 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1194 * have to schedule work to enable prbresp reception, which might
1195 * happen too late. For now we'll just listen and forward them all the
1199 static void set_rts_cts(struct zd_mac
*mac
, unsigned int short_preamble
)
1201 mutex_lock(&mac
->chip
.mutex
);
1202 zd_chip_set_rts_cts_rate_locked(&mac
->chip
, short_preamble
);
1203 mutex_unlock(&mac
->chip
.mutex
);
1206 static void zd_op_bss_info_changed(struct ieee80211_hw
*hw
,
1207 struct ieee80211_vif
*vif
,
1208 struct ieee80211_bss_conf
*bss_conf
,
1211 struct zd_mac
*mac
= zd_hw_mac(hw
);
1214 dev_dbg_f(zd_mac_dev(mac
), "changes: %x\n", changes
);
1216 if (mac
->type
== NL80211_IFTYPE_MESH_POINT
||
1217 mac
->type
== NL80211_IFTYPE_ADHOC
||
1218 mac
->type
== NL80211_IFTYPE_AP
) {
1220 if (changes
& BSS_CHANGED_BEACON
) {
1221 struct sk_buff
*beacon
= ieee80211_beacon_get(hw
, vif
);
1224 zd_chip_disable_hwint(&mac
->chip
);
1225 zd_mac_config_beacon(hw
, beacon
);
1226 zd_chip_enable_hwint(&mac
->chip
);
1231 if (changes
& BSS_CHANGED_BEACON_ENABLED
) {
1235 if (bss_conf
->enable_beacon
) {
1236 period
= bss_conf
->dtim_period
;
1237 interval
= bss_conf
->beacon_int
;
1240 spin_lock_irq(&mac
->lock
);
1241 mac
->beacon
.period
= period
;
1242 mac
->beacon
.interval
= interval
;
1243 mac
->beacon
.last_update
= jiffies
;
1244 spin_unlock_irq(&mac
->lock
);
1246 zd_set_beacon_interval(&mac
->chip
, interval
, period
,
1250 associated
= is_valid_ether_addr(bss_conf
->bssid
);
1252 spin_lock_irq(&mac
->lock
);
1253 mac
->associated
= associated
;
1254 spin_unlock_irq(&mac
->lock
);
1256 /* TODO: do hardware bssid filtering */
1258 if (changes
& BSS_CHANGED_ERP_PREAMBLE
) {
1259 spin_lock_irq(&mac
->lock
);
1260 mac
->short_preamble
= bss_conf
->use_short_preamble
;
1261 spin_unlock_irq(&mac
->lock
);
1263 set_rts_cts(mac
, bss_conf
->use_short_preamble
);
1267 static u64
zd_op_get_tsf(struct ieee80211_hw
*hw
)
1269 struct zd_mac
*mac
= zd_hw_mac(hw
);
1270 return zd_chip_get_tsf(&mac
->chip
);
1273 static const struct ieee80211_ops zd_ops
= {
1275 .start
= zd_op_start
,
1277 .add_interface
= zd_op_add_interface
,
1278 .remove_interface
= zd_op_remove_interface
,
1279 .config
= zd_op_config
,
1280 .prepare_multicast
= zd_op_prepare_multicast
,
1281 .configure_filter
= zd_op_configure_filter
,
1282 .bss_info_changed
= zd_op_bss_info_changed
,
1283 .get_tsf
= zd_op_get_tsf
,
1286 struct ieee80211_hw
*zd_mac_alloc_hw(struct usb_interface
*intf
)
1289 struct ieee80211_hw
*hw
;
1291 hw
= ieee80211_alloc_hw(sizeof(struct zd_mac
), &zd_ops
);
1293 dev_dbg_f(&intf
->dev
, "out of memory\n");
1297 mac
= zd_hw_mac(hw
);
1299 memset(mac
, 0, sizeof(*mac
));
1300 spin_lock_init(&mac
->lock
);
1303 mac
->type
= NL80211_IFTYPE_UNSPECIFIED
;
1305 memcpy(mac
->channels
, zd_channels
, sizeof(zd_channels
));
1306 memcpy(mac
->rates
, zd_rates
, sizeof(zd_rates
));
1307 mac
->band
.n_bitrates
= ARRAY_SIZE(zd_rates
);
1308 mac
->band
.bitrates
= mac
->rates
;
1309 mac
->band
.n_channels
= ARRAY_SIZE(zd_channels
);
1310 mac
->band
.channels
= mac
->channels
;
1312 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = &mac
->band
;
1314 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
1315 IEEE80211_HW_SIGNAL_UNSPEC
|
1316 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
;
1318 hw
->wiphy
->interface_modes
=
1319 BIT(NL80211_IFTYPE_MESH_POINT
) |
1320 BIT(NL80211_IFTYPE_STATION
) |
1321 BIT(NL80211_IFTYPE_ADHOC
) |
1322 BIT(NL80211_IFTYPE_AP
);
1324 hw
->max_signal
= 100;
1326 hw
->extra_tx_headroom
= sizeof(struct zd_ctrlset
);
1329 * Tell mac80211 that we support multi rate retries
1331 hw
->max_rates
= IEEE80211_TX_MAX_RATES
;
1332 hw
->max_rate_tries
= 18; /* 9 rates * 2 retries/rate */
1334 skb_queue_head_init(&mac
->ack_wait_queue
);
1335 mac
->ack_pending
= 0;
1337 zd_chip_init(&mac
->chip
, hw
, intf
);
1338 housekeeping_init(mac
);
1340 INIT_WORK(&mac
->process_intr
, zd_process_intr
);
1342 SET_IEEE80211_DEV(hw
, &intf
->dev
);
1346 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1348 static void beacon_watchdog_handler(struct work_struct
*work
)
1350 struct zd_mac
*mac
=
1351 container_of(work
, struct zd_mac
, beacon
.watchdog_work
.work
);
1352 struct sk_buff
*beacon
;
1353 unsigned long timeout
;
1354 int interval
, period
;
1356 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1358 if (mac
->type
!= NL80211_IFTYPE_AP
|| !mac
->vif
)
1361 spin_lock_irq(&mac
->lock
);
1362 interval
= mac
->beacon
.interval
;
1363 period
= mac
->beacon
.period
;
1364 timeout
= mac
->beacon
.last_update
+ msecs_to_jiffies(interval
) + HZ
;
1365 spin_unlock_irq(&mac
->lock
);
1367 if (interval
> 0 && time_is_before_jiffies(timeout
)) {
1368 dev_dbg_f(zd_mac_dev(mac
), "beacon interrupt stalled, "
1370 "(interval: %d, dtim: %d)\n",
1373 zd_chip_disable_hwint(&mac
->chip
);
1375 beacon
= ieee80211_beacon_get(mac
->hw
, mac
->vif
);
1377 zd_mac_config_beacon(mac
->hw
, beacon
);
1381 zd_set_beacon_interval(&mac
->chip
, interval
, period
, mac
->type
);
1383 zd_chip_enable_hwint(&mac
->chip
);
1385 spin_lock_irq(&mac
->lock
);
1386 mac
->beacon
.last_update
= jiffies
;
1387 spin_unlock_irq(&mac
->lock
);
1391 queue_delayed_work(zd_workqueue
, &mac
->beacon
.watchdog_work
,
1392 BEACON_WATCHDOG_DELAY
);
1395 static void beacon_init(struct zd_mac
*mac
)
1397 INIT_DELAYED_WORK(&mac
->beacon
.watchdog_work
, beacon_watchdog_handler
);
1400 static void beacon_enable(struct zd_mac
*mac
)
1402 dev_dbg_f(zd_mac_dev(mac
), "\n");
1404 mac
->beacon
.last_update
= jiffies
;
1405 queue_delayed_work(zd_workqueue
, &mac
->beacon
.watchdog_work
,
1406 BEACON_WATCHDOG_DELAY
);
1409 static void beacon_disable(struct zd_mac
*mac
)
1411 dev_dbg_f(zd_mac_dev(mac
), "\n");
1412 cancel_delayed_work_sync(&mac
->beacon
.watchdog_work
);
1415 #define LINK_LED_WORK_DELAY HZ
1417 static void link_led_handler(struct work_struct
*work
)
1419 struct zd_mac
*mac
=
1420 container_of(work
, struct zd_mac
, housekeeping
.link_led_work
.work
);
1421 struct zd_chip
*chip
= &mac
->chip
;
1425 if (!test_bit(ZD_DEVICE_RUNNING
, &mac
->flags
))
1428 spin_lock_irq(&mac
->lock
);
1429 is_associated
= mac
->associated
;
1430 spin_unlock_irq(&mac
->lock
);
1432 r
= zd_chip_control_leds(chip
,
1433 is_associated
? ZD_LED_ASSOCIATED
: ZD_LED_SCANNING
);
1435 dev_dbg_f(zd_mac_dev(mac
), "zd_chip_control_leds error %d\n", r
);
1438 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1439 LINK_LED_WORK_DELAY
);
1442 static void housekeeping_init(struct zd_mac
*mac
)
1444 INIT_DELAYED_WORK(&mac
->housekeeping
.link_led_work
, link_led_handler
);
1447 static void housekeeping_enable(struct zd_mac
*mac
)
1449 dev_dbg_f(zd_mac_dev(mac
), "\n");
1450 queue_delayed_work(zd_workqueue
, &mac
->housekeeping
.link_led_work
,
1454 static void housekeeping_disable(struct zd_mac
*mac
)
1456 dev_dbg_f(zd_mac_dev(mac
), "\n");
1457 cancel_delayed_work_sync(&mac
->housekeeping
.link_led_work
);
1458 zd_chip_control_leds(&mac
->chip
, ZD_LED_OFF
);