sfc: Don't use enums as a bitmask.
[zen-stable.git] / sound / sparc / dbri.c
blob73f9cbacc0775bbc9cb1cf8f36f187e5606e8486
1 /*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCStation 10, 20, LX and Voyager models.
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 * data time multiplexer with ISDN support (aka T7259)
16 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 * Documentation:
19 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20 * Sparc Technology Business (courtesy of Sun Support)
21 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 * available from the Lucent (formerly AT&T microelectronics) home
23 * page.
24 * - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 * Interfaces: CHI, Audio In & Out, 2 bits parallel
27 * Documentation: from the Crystal Semiconductor home page.
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, no. 0-15) or between two serial
31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) time multiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
49 * I've tried to stick to the following function naming conventions:
50 * snd_* ALSA stuff
51 * cs4215_* CS4215 codec specific stuff
52 * dbri_* DBRI high-level stuff
53 * other DBRI low-level stuff
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <asm/atomic.h>
74 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
75 MODULE_DESCRIPTION("Sun DBRI");
76 MODULE_LICENSE("GPL");
77 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
80 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
81 /* Enable this card */
82 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84 module_param_array(index, int, NULL, 0444);
85 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
86 module_param_array(id, charp, NULL, 0444);
87 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
88 module_param_array(enable, bool, NULL, 0444);
89 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91 #undef DBRI_DEBUG
93 #define D_INT (1<<0)
94 #define D_GEN (1<<1)
95 #define D_CMD (1<<2)
96 #define D_MM (1<<3)
97 #define D_USR (1<<4)
98 #define D_DESC (1<<5)
100 static int dbri_debug;
101 module_param(dbri_debug, int, 0644);
102 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104 #ifdef DBRI_DEBUG
105 static char *cmds[] = {
106 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
107 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
110 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112 #else
113 #define dprintk(a, x...) do { } while (0)
115 #endif /* DBRI_DEBUG */
117 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
118 (intr << 27) | \
119 value)
121 /***************************************************************************
122 CS4215 specific definitions and structures
123 ****************************************************************************/
125 struct cs4215 {
126 __u8 data[4]; /* Data mode: Time slots 5-8 */
127 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
128 __u8 onboard;
129 __u8 offset; /* Bit offset from frame sync to time slot 1 */
130 volatile __u32 status;
131 volatile __u32 version;
132 __u8 precision; /* In bits, either 8 or 16 */
133 __u8 channels; /* 1 or 2 */
137 * Control mode first
140 /* Time Slot 1, Status register */
141 #define CS4215_CLB (1<<2) /* Control Latch Bit */
142 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
143 /* 0: line: 2.8V, speaker 8V */
144 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
145 #define CS4215_RSRVD_1 (1<<5)
147 /* Time Slot 2, Data Format Register */
148 #define CS4215_DFR_LINEAR16 0
149 #define CS4215_DFR_ULAW 1
150 #define CS4215_DFR_ALAW 2
151 #define CS4215_DFR_LINEAR8 3
152 #define CS4215_DFR_STEREO (1<<2)
153 static struct {
154 unsigned short freq;
155 unsigned char xtal;
156 unsigned char csval;
157 } CS4215_FREQ[] = {
158 { 8000, (1 << 4), (0 << 3) },
159 { 16000, (1 << 4), (1 << 3) },
160 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
161 { 32000, (1 << 4), (3 << 3) },
162 /* { NA, (1 << 4), (4 << 3) }, */
163 /* { NA, (1 << 4), (5 << 3) }, */
164 { 48000, (1 << 4), (6 << 3) },
165 { 9600, (1 << 4), (7 << 3) },
166 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
167 { 11025, (2 << 4), (1 << 3) },
168 { 18900, (2 << 4), (2 << 3) },
169 { 22050, (2 << 4), (3 << 3) },
170 { 37800, (2 << 4), (4 << 3) },
171 { 44100, (2 << 4), (5 << 3) },
172 { 33075, (2 << 4), (6 << 3) },
173 { 6615, (2 << 4), (7 << 3) },
174 { 0, 0, 0}
177 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
179 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
181 /* Time Slot 3, Serial Port Control register */
182 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
183 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
184 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
185 #define CS4215_BSEL_128 (1<<2)
186 #define CS4215_BSEL_256 (2<<2)
187 #define CS4215_MCK_MAST (0<<4) /* Master clock */
188 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
189 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
190 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
191 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
193 /* Time Slot 4, Test Register */
194 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
195 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
197 /* Time Slot 5, Parallel Port Register */
198 /* Read only here and the same as the in data mode */
200 /* Time Slot 6, Reserved */
202 /* Time Slot 7, Version Register */
203 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205 /* Time Slot 8, Reserved */
208 * Data mode
210 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
212 /* Time Slot 5, Output Setting */
213 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
214 #define CS4215_LE (1<<6) /* Line Out Enable */
215 #define CS4215_HE (1<<7) /* Headphone Enable */
217 /* Time Slot 6, Output Setting */
218 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
219 #define CS4215_SE (1<<6) /* Speaker Enable */
220 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
222 /* Time Slot 7, Input Setting */
223 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
224 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
225 #define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
226 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
227 #define CS4215_PIO1 (1<<7)
229 /* Time Slot 8, Input Setting */
230 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
231 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
233 /***************************************************************************
234 DBRI specific definitions and structures
235 ****************************************************************************/
237 /* DBRI main registers */
238 #define REG0 0x00 /* Status and Control */
239 #define REG1 0x04 /* Mode and Interrupt */
240 #define REG2 0x08 /* Parallel IO */
241 #define REG3 0x0c /* Test */
242 #define REG8 0x20 /* Command Queue Pointer */
243 #define REG9 0x24 /* Interrupt Queue Pointer */
245 #define DBRI_NO_CMDS 64
246 #define DBRI_INT_BLK 64
247 #define DBRI_NO_DESCS 64
248 #define DBRI_NO_PIPES 32
249 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
251 #define DBRI_REC 0
252 #define DBRI_PLAY 1
253 #define DBRI_NO_STREAMS 2
255 /* One transmit/receive descriptor */
256 /* When ba != 0 descriptor is used */
257 struct dbri_mem {
258 volatile __u32 word1;
259 __u32 ba; /* Transmit/Receive Buffer Address */
260 __u32 nda; /* Next Descriptor Address */
261 volatile __u32 word4;
264 /* This structure is in a DMA region where it can accessed by both
265 * the CPU and the DBRI
267 struct dbri_dma {
268 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
269 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
270 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
273 #define dbri_dma_off(member, elem) \
274 ((u32)(unsigned long) \
275 (&(((struct dbri_dma *)0)->member[elem])))
277 enum in_or_out { PIPEinput, PIPEoutput };
279 struct dbri_pipe {
280 u32 sdp; /* SDP command word */
281 int nextpipe; /* Next pipe in linked list */
282 int length; /* Length of timeslot (bits) */
283 int first_desc; /* Index of first descriptor */
284 int desc; /* Index of active descriptor */
285 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
288 /* Per stream (playback or record) information */
289 struct dbri_streaminfo {
290 struct snd_pcm_substream *substream;
291 u32 dvma_buffer; /* Device view of ALSA DMA buffer */
292 int size; /* Size of DMA buffer */
293 size_t offset; /* offset in user buffer */
294 int pipe; /* Data pipe used */
295 int left_gain; /* mixer elements */
296 int right_gain;
299 /* This structure holds the information for both chips (DBRI & CS4215) */
300 struct snd_dbri {
301 int regs_size, irq; /* Needed for unload */
302 struct platform_device *op; /* OF device info */
303 spinlock_t lock;
305 struct dbri_dma *dma; /* Pointer to our DMA block */
306 u32 dma_dvma; /* DBRI visible DMA address */
308 void __iomem *regs; /* dbri HW regs */
309 int dbri_irqp; /* intr queue pointer */
311 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
312 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
313 spinlock_t cmdlock; /* Protects cmd queue accesses */
314 s32 *cmdptr; /* Pointer to the last queued cmd */
316 int chi_bpf;
318 struct cs4215 mm; /* mmcodec special info */
319 /* per stream (playback/record) info */
320 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
323 #define DBRI_MAX_VOLUME 63 /* Output volume */
324 #define DBRI_MAX_GAIN 15 /* Input gain */
326 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
327 #define D_P (1<<15) /* Program command & queue pointer valid */
328 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
329 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
330 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
331 #define D_X (1<<7) /* Sanity Timer Disable */
332 #define D_T (1<<6) /* Permit activation of the TE interface */
333 #define D_N (1<<5) /* Permit activation of the NT interface */
334 #define D_C (1<<4) /* Permit activation of the CHI interface */
335 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
336 #define D_D (1<<2) /* Disable Master Mode */
337 #define D_H (1<<1) /* Halt for Analysis */
338 #define D_R (1<<0) /* Soft Reset */
340 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
341 #define D_LITTLE_END (1<<8) /* Byte Order */
342 #define D_BIG_END (0<<8) /* Byte Order */
343 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
344 #define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
345 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
346 #define D_MBE (1<<1) /* Burst Error on SBus (read only) */
347 #define D_IR (1<<0) /* Interrupt Indicator (read only) */
349 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
350 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
351 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
352 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
353 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
354 #define D_ENPIO (0xf0) /* Enable all the pins */
355 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
356 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
357 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
358 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
360 /* DBRI Commands (Page 20) */
361 #define D_WAIT 0x0 /* Stop execution */
362 #define D_PAUSE 0x1 /* Flush long pipes */
363 #define D_JUMP 0x2 /* New command queue */
364 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
365 #define D_REX 0x4 /* Report command execution via interrupt */
366 #define D_SDP 0x5 /* Setup Data Pipe */
367 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
368 #define D_DTS 0x7 /* Define Time Slot */
369 #define D_SSP 0x8 /* Set short Data Pipe */
370 #define D_CHI 0x9 /* Set CHI Global Mode */
371 #define D_NT 0xa /* NT Command */
372 #define D_TE 0xb /* TE Command */
373 #define D_CDEC 0xc /* Codec setup */
374 #define D_TEST 0xd /* No comment */
375 #define D_CDM 0xe /* CHI Data mode command */
377 /* Special bits for some commands */
378 #define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380 /* Setup Data Pipe */
381 /* IRM */
382 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
383 #define D_SDP_CHANGE (2<<18) /* Report any changes */
384 #define D_SDP_EVERY (3<<18) /* Report any changes */
385 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
386 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
388 /* Pipe data MODE */
389 #define D_SDP_MEM (0<<13) /* To/from memory */
390 #define D_SDP_HDLC (2<<13)
391 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
392 #define D_SDP_SER (4<<13) /* Serial to serial */
393 #define D_SDP_FIXED (6<<13) /* Short only */
394 #define D_SDP_MODE(v) ((v)&(7<<13))
396 #define D_SDP_TO_SER (1<<12) /* Direction */
397 #define D_SDP_FROM_SER (0<<12) /* Direction */
398 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
399 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
400 #define D_SDP_P (1<<10) /* Pointer Valid */
401 #define D_SDP_A (1<<8) /* Abort */
402 #define D_SDP_C (1<<7) /* Clear */
404 /* Define Time Slot */
405 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
406 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
407 #define D_DTS_INS (1<<15) /* Insert Time Slot */
408 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
409 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
410 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
412 /* Time Slot defines */
413 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
414 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
415 #define D_TS_DI (1<<13) /* Data Invert */
416 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
417 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
418 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
419 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
420 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
421 #define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423 /* Concentration Highway Interface Modes */
424 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
425 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
426 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
427 #define D_CHI_OD (1<<13) /* Open Drain Enable */
428 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
429 #define D_CHI_FD (1<<11) /* Frame Drive */
430 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
432 /* NT: These are here for completeness */
433 #define D_NT_FBIT (1<<17) /* Frame Bit */
434 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
435 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
436 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
437 #define D_NT_ISNT (1<<13) /* Configure interface as NT */
438 #define D_NT_FT (1<<12) /* Fixed Timing */
439 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
440 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
441 #define D_NT_ACT (1<<9) /* Activate Interface */
442 #define D_NT_MFE (1<<8) /* Multiframe Enable */
443 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
444 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
445 #define D_NT_FACT (1<<1) /* Force Activation */
446 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
448 /* Codec Setup */
449 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
450 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
451 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
453 /* Test */
454 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
455 #define D_TEST_SIZE(v) ((v)<<11) /* */
456 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
457 #define D_TEST_PROC 0x6 /* Microprocessor test */
458 #define D_TEST_SER 0x7 /* Serial-Controller test */
459 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
460 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
461 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
462 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
463 #define D_TEST_DUMP 0xe /* ROM Dump */
465 /* CHI Data Mode */
466 #define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
467 #define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
468 #define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
469 #define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
470 #define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
471 #define D_CDM_REN (1 << 0) /* Receive Highway Enable */
473 /* The Interrupts */
474 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
475 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
476 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
477 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
478 #define D_INTR_EOL 5 /* End of List */
479 #define D_INTR_CMDI 6 /* Command has bean read */
480 #define D_INTR_XCMP 8 /* Transmission of frame complete */
481 #define D_INTR_SBRI 9 /* BRI status change info */
482 #define D_INTR_FXDT 10 /* Fixed data change */
483 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
484 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
485 #define D_INTR_DBYT 12 /* Dropped by frame slip */
486 #define D_INTR_RBYT 13 /* Repeated by frame slip */
487 #define D_INTR_LINT 14 /* Lost Interrupt */
488 #define D_INTR_UNDR 15 /* DMA underrun */
490 #define D_INTR_TE 32
491 #define D_INTR_NT 34
492 #define D_INTR_CHI 36
493 #define D_INTR_CMD 38
495 #define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
496 #define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
497 #define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
498 #define D_INTR_GETVAL(v) ((v) & 0xffff)
499 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
501 #define D_P_0 0 /* TE receive anchor */
502 #define D_P_1 1 /* TE transmit anchor */
503 #define D_P_2 2 /* NT transmit anchor */
504 #define D_P_3 3 /* NT receive anchor */
505 #define D_P_4 4 /* CHI send data */
506 #define D_P_5 5 /* CHI receive data */
507 #define D_P_6 6 /* */
508 #define D_P_7 7 /* */
509 #define D_P_8 8 /* */
510 #define D_P_9 9 /* */
511 #define D_P_10 10 /* */
512 #define D_P_11 11 /* */
513 #define D_P_12 12 /* */
514 #define D_P_13 13 /* */
515 #define D_P_14 14 /* */
516 #define D_P_15 15 /* */
517 #define D_P_16 16 /* CHI anchor pipe */
518 #define D_P_17 17 /* CHI send */
519 #define D_P_18 18 /* CHI receive */
520 #define D_P_19 19 /* CHI receive */
521 #define D_P_20 20 /* CHI receive */
522 #define D_P_21 21 /* */
523 #define D_P_22 22 /* */
524 #define D_P_23 23 /* */
525 #define D_P_24 24 /* */
526 #define D_P_25 25 /* */
527 #define D_P_26 26 /* */
528 #define D_P_27 27 /* */
529 #define D_P_28 28 /* */
530 #define D_P_29 29 /* */
531 #define D_P_30 30 /* */
532 #define D_P_31 31 /* */
534 /* Transmit descriptor defines */
535 #define DBRI_TD_F (1 << 31) /* End of Frame */
536 #define DBRI_TD_D (1 << 30) /* Do not append CRC */
537 #define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
538 #define DBRI_TD_B (1 << 15) /* Final interrupt */
539 #define DBRI_TD_M (1 << 14) /* Marker interrupt */
540 #define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
541 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
542 #define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
543 #define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
544 #define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
545 #define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
546 /* Maximum buffer size per TD: almost 8KB */
547 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
549 /* Receive descriptor defines */
550 #define DBRI_RD_F (1 << 31) /* End of Frame */
551 #define DBRI_RD_C (1 << 30) /* Completed buffer */
552 #define DBRI_RD_B (1 << 15) /* Final interrupt */
553 #define DBRI_RD_M (1 << 14) /* Marker interrupt */
554 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
555 #define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
556 #define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
557 #define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
558 #define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
559 #define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
560 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
562 /* stream_info[] access */
563 /* Translate the ALSA direction into the array index */
564 #define DBRI_STREAMNO(substream) \
565 (substream->stream == \
566 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568 /* Return a pointer to dbri_streaminfo */
569 #define DBRI_STREAM(dbri, substream) \
570 &dbri->stream_info[DBRI_STREAMNO(substream)]
573 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
574 * So we have to reverse the bits. Note: not all bit lengths are supported
576 static __u32 reverse_bytes(__u32 b, int len)
578 switch (len) {
579 case 32:
580 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
581 case 16:
582 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
583 case 8:
584 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
585 case 4:
586 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
587 case 2:
588 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
589 case 1:
590 case 0:
591 break;
592 default:
593 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
596 return b;
600 ****************************************************************************
601 ************** DBRI initialization and command synchronization *************
602 ****************************************************************************
604 Commands are sent to the DBRI by building a list of them in memory,
605 then writing the address of the first list item to DBRI register 8.
606 The list is terminated with a WAIT command, which generates a
607 CPU interrupt to signal completion.
609 Since the DBRI can run in parallel with the CPU, several means of
610 synchronization present themselves. The method implemented here uses
611 the dbri_cmdwait() to wait for execution of batch of sent commands.
613 A circular command buffer is used here. A new command is being added
614 while another can be executed. The scheme works by adding two WAIT commands
615 after each sent batch of commands. When the next batch is prepared it is
616 added after the WAIT commands then the WAITs are replaced with single JUMP
617 command to the new batch. The the DBRI is forced to reread the last WAIT
618 command (replaced by the JUMP by then). If the DBRI is still executing
619 previous commands the request to reread the WAIT command is ignored.
621 Every time a routine wants to write commands to the DBRI, it must
622 first call dbri_cmdlock() and get pointer to a free space in
623 dbri->dma->cmd buffer. After this, the commands can be written to
624 the buffer, and dbri_cmdsend() is called with the final pointer value
625 to send them to the DBRI.
629 #define MAXLOOPS 20
631 * Wait for the current command string to execute
633 static void dbri_cmdwait(struct snd_dbri *dbri)
635 int maxloops = MAXLOOPS;
636 unsigned long flags;
638 /* Delay if previous commands are still being processed */
639 spin_lock_irqsave(&dbri->lock, flags);
640 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
641 spin_unlock_irqrestore(&dbri->lock, flags);
642 msleep_interruptible(1);
643 spin_lock_irqsave(&dbri->lock, flags);
645 spin_unlock_irqrestore(&dbri->lock, flags);
647 if (maxloops == 0)
648 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
649 else
650 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
651 MAXLOOPS - maxloops - 1);
654 * Lock the command queue and return pointer to space for len cmd words
655 * It locks the cmdlock spinlock.
657 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
660 len += 2;
661 spin_lock(&dbri->cmdlock);
662 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
663 return dbri->cmdptr + 2;
664 else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
665 return dbri->dma->cmd;
666 else
667 printk(KERN_ERR "DBRI: no space for commands.");
669 return NULL;
673 * Send prepared cmd string. It works by writing a JUMP cmd into
674 * the last WAIT cmd and force DBRI to reread the cmd.
675 * The JUMP cmd points to the new cmd string.
676 * It also releases the cmdlock spinlock.
678 * Lock must be held before calling this.
680 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
682 s32 tmp, addr;
683 static int wait_id = 0;
685 wait_id++;
686 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
687 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
688 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
690 /* Replace the last command with JUMP */
691 addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
692 *(dbri->cmdptr+1) = addr;
693 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
695 #ifdef DBRI_DEBUG
696 if (cmd > dbri->cmdptr) {
697 s32 *ptr;
699 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
700 dprintk(D_CMD, "cmd: %lx:%08x\n",
701 (unsigned long)ptr, *ptr);
702 } else {
703 s32 *ptr = dbri->cmdptr;
705 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
706 ptr++;
707 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
708 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
709 dprintk(D_CMD, "cmd: %lx:%08x\n",
710 (unsigned long)ptr, *ptr);
712 #endif
714 /* Reread the last command */
715 tmp = sbus_readl(dbri->regs + REG0);
716 tmp |= D_P;
717 sbus_writel(tmp, dbri->regs + REG0);
719 dbri->cmdptr = cmd;
720 spin_unlock(&dbri->cmdlock);
723 /* Lock must be held when calling this */
724 static void dbri_reset(struct snd_dbri *dbri)
726 int i;
727 u32 tmp;
729 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
730 sbus_readl(dbri->regs + REG0),
731 sbus_readl(dbri->regs + REG2),
732 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
734 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
735 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
736 udelay(10);
738 /* A brute approach - DBRI falls back to working burst size by itself
739 * On SS20 D_S does not work, so do not try so high. */
740 tmp = sbus_readl(dbri->regs + REG0);
741 tmp |= D_G | D_E;
742 tmp &= ~D_S;
743 sbus_writel(tmp, dbri->regs + REG0);
746 /* Lock must not be held before calling this */
747 static void __devinit dbri_initialize(struct snd_dbri *dbri)
749 s32 *cmd;
750 u32 dma_addr;
751 unsigned long flags;
752 int n;
754 spin_lock_irqsave(&dbri->lock, flags);
756 dbri_reset(dbri);
758 /* Initialize pipes */
759 for (n = 0; n < DBRI_NO_PIPES; n++)
760 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
762 spin_lock_init(&dbri->cmdlock);
764 * Initialize the interrupt ring buffer.
766 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
767 dbri->dma->intr[0] = dma_addr;
768 dbri->dbri_irqp = 1;
770 * Set up the interrupt queue
772 spin_lock(&dbri->cmdlock);
773 cmd = dbri->cmdptr = dbri->dma->cmd;
774 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
775 *(cmd++) = dma_addr;
776 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
777 dbri->cmdptr = cmd;
778 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780 dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
781 sbus_writel(dma_addr, dbri->regs + REG8);
782 spin_unlock(&dbri->cmdlock);
784 spin_unlock_irqrestore(&dbri->lock, flags);
785 dbri_cmdwait(dbri);
789 ****************************************************************************
790 ************************** DBRI data pipe management ***********************
791 ****************************************************************************
793 While DBRI control functions use the command and interrupt buffers, the
794 main data path takes the form of data pipes, which can be short (command
795 and interrupt driven), or long (attached to DMA buffers). These functions
796 provide a rudimentary means of setting up and managing the DBRI's pipes,
797 but the calling functions have to make sure they respect the pipes' linked
798 list ordering, among other things. The transmit and receive functions
799 here interface closely with the transmit and receive interrupt code.
802 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
804 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
807 /* reset_pipe(dbri, pipe)
809 * Called on an in-use pipe to clear anything being transmitted or received
810 * Lock must be held before calling this.
812 static void reset_pipe(struct snd_dbri *dbri, int pipe)
814 int sdp;
815 int desc;
816 s32 *cmd;
818 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
819 printk(KERN_ERR "DBRI: reset_pipe called with "
820 "illegal pipe number\n");
821 return;
824 sdp = dbri->pipes[pipe].sdp;
825 if (sdp == 0) {
826 printk(KERN_ERR "DBRI: reset_pipe called "
827 "on uninitialized pipe\n");
828 return;
831 cmd = dbri_cmdlock(dbri, 3);
832 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
833 *(cmd++) = 0;
834 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
835 dbri_cmdsend(dbri, cmd, 3);
837 desc = dbri->pipes[pipe].first_desc;
838 if (desc >= 0)
839 do {
840 dbri->dma->desc[desc].ba = 0;
841 dbri->dma->desc[desc].nda = 0;
842 desc = dbri->next_desc[desc];
843 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
845 dbri->pipes[pipe].desc = -1;
846 dbri->pipes[pipe].first_desc = -1;
850 * Lock must be held before calling this.
852 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
854 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
855 printk(KERN_ERR "DBRI: setup_pipe called "
856 "with illegal pipe number\n");
857 return;
860 if ((sdp & 0xf800) != sdp) {
861 printk(KERN_ERR "DBRI: setup_pipe called "
862 "with strange SDP value\n");
863 /* sdp &= 0xf800; */
866 /* If this is a fixed receive pipe, arrange for an interrupt
867 * every time its data changes
869 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
870 sdp |= D_SDP_CHANGE;
872 sdp |= D_PIPE(pipe);
873 dbri->pipes[pipe].sdp = sdp;
874 dbri->pipes[pipe].desc = -1;
875 dbri->pipes[pipe].first_desc = -1;
877 reset_pipe(dbri, pipe);
881 * Lock must be held before calling this.
883 static void link_time_slot(struct snd_dbri *dbri, int pipe,
884 int prevpipe, int nextpipe,
885 int length, int cycle)
887 s32 *cmd;
888 int val;
890 if (pipe < 0 || pipe > DBRI_MAX_PIPE
891 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
892 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
893 printk(KERN_ERR
894 "DBRI: link_time_slot called with illegal pipe number\n");
895 return;
898 if (dbri->pipes[pipe].sdp == 0
899 || dbri->pipes[prevpipe].sdp == 0
900 || dbri->pipes[nextpipe].sdp == 0) {
901 printk(KERN_ERR "DBRI: link_time_slot called "
902 "on uninitialized pipe\n");
903 return;
906 dbri->pipes[prevpipe].nextpipe = pipe;
907 dbri->pipes[pipe].nextpipe = nextpipe;
908 dbri->pipes[pipe].length = length;
910 cmd = dbri_cmdlock(dbri, 4);
912 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
913 /* Deal with CHI special case:
914 * "If transmission on edges 0 or 1 is desired, then cycle n
915 * (where n = # of bit times per frame...) must be used."
916 * - DBRI data sheet, page 11
918 if (prevpipe == 16 && cycle == 0)
919 cycle = dbri->chi_bpf;
921 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
922 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
923 *(cmd++) = 0;
924 *(cmd++) =
925 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
926 } else {
927 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
928 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
929 *(cmd++) =
930 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931 *(cmd++) = 0;
933 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
935 dbri_cmdsend(dbri, cmd, 4);
938 #if 0
940 * Lock must be held before calling this.
942 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
943 enum in_or_out direction, int prevpipe,
944 int nextpipe)
946 s32 *cmd;
947 int val;
949 if (pipe < 0 || pipe > DBRI_MAX_PIPE
950 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
951 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
952 printk(KERN_ERR
953 "DBRI: unlink_time_slot called with illegal pipe number\n");
954 return;
957 cmd = dbri_cmdlock(dbri, 4);
959 if (direction == PIPEinput) {
960 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
961 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
962 *(cmd++) = D_TS_NEXT(nextpipe);
963 *(cmd++) = 0;
964 } else {
965 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
966 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
967 *(cmd++) = 0;
968 *(cmd++) = D_TS_NEXT(nextpipe);
970 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
972 dbri_cmdsend(dbri, cmd, 4);
974 #endif
976 /* xmit_fixed() / recv_fixed()
978 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
979 * expected to change much, and which we don't need to buffer.
980 * The DBRI only interrupts us when the data changes (receive pipes),
981 * or only changes the data when this function is called (transmit pipes).
982 * Only short pipes (numbers 16-31) can be used in fixed data mode.
984 * These function operate on a 32-bit field, no matter how large
985 * the actual time slot is. The interrupt handler takes care of bit
986 * ordering and alignment. An 8-bit time slot will always end up
987 * in the low-order 8 bits, filled either MSB-first or LSB-first,
988 * depending on the settings passed to setup_pipe().
990 * Lock must not be held before calling it.
992 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
994 s32 *cmd;
995 unsigned long flags;
997 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
998 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
999 return;
1002 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1003 printk(KERN_ERR "DBRI: xmit_fixed: "
1004 "Uninitialized pipe %d\n", pipe);
1005 return;
1008 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1010 return;
1013 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1014 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1015 pipe);
1016 return;
1019 /* DBRI short pipes always transmit LSB first */
1021 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1022 data = reverse_bytes(data, dbri->pipes[pipe].length);
1024 cmd = dbri_cmdlock(dbri, 3);
1026 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1027 *(cmd++) = data;
1028 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1030 spin_lock_irqsave(&dbri->lock, flags);
1031 dbri_cmdsend(dbri, cmd, 3);
1032 spin_unlock_irqrestore(&dbri->lock, flags);
1033 dbri_cmdwait(dbri);
1037 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1039 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1040 printk(KERN_ERR "DBRI: recv_fixed called with "
1041 "illegal pipe number\n");
1042 return;
1045 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1046 printk(KERN_ERR "DBRI: recv_fixed called on "
1047 "non-fixed pipe %d\n", pipe);
1048 return;
1051 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1052 printk(KERN_ERR "DBRI: recv_fixed called on "
1053 "transmit pipe %d\n", pipe);
1054 return;
1057 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1060 /* setup_descs()
1062 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1063 * with a DMA buffer.
1065 * Only pipe numbers 0-15 can be used in this mode.
1067 * This function takes a stream number pointing to a data buffer,
1068 * and work by building chains of descriptors which identify the
1069 * data buffers. Buffers too large for a single descriptor will
1070 * be spread across multiple descriptors.
1072 * All descriptors create a ring buffer.
1074 * Lock must be held before calling this.
1076 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1078 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1079 __u32 dvma_buffer;
1080 int desc;
1081 int len;
1082 int first_desc = -1;
1083 int last_desc = -1;
1085 if (info->pipe < 0 || info->pipe > 15) {
1086 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1087 return -2;
1090 if (dbri->pipes[info->pipe].sdp == 0) {
1091 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1092 info->pipe);
1093 return -2;
1096 dvma_buffer = info->dvma_buffer;
1097 len = info->size;
1099 if (streamno == DBRI_PLAY) {
1100 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1101 printk(KERN_ERR "DBRI: setup_descs: "
1102 "Called on receive pipe %d\n", info->pipe);
1103 return -2;
1105 } else {
1106 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1107 printk(KERN_ERR
1108 "DBRI: setup_descs: Called on transmit pipe %d\n",
1109 info->pipe);
1110 return -2;
1112 /* Should be able to queue multiple buffers
1113 * to receive on a pipe
1115 if (pipe_active(dbri, info->pipe)) {
1116 printk(KERN_ERR "DBRI: recv_on_pipe: "
1117 "Called on active pipe %d\n", info->pipe);
1118 return -2;
1121 /* Make sure buffer size is multiple of four */
1122 len &= ~3;
1125 /* Free descriptors if pipe has any */
1126 desc = dbri->pipes[info->pipe].first_desc;
1127 if (desc >= 0)
1128 do {
1129 dbri->dma->desc[desc].ba = 0;
1130 dbri->dma->desc[desc].nda = 0;
1131 desc = dbri->next_desc[desc];
1132 } while (desc != -1 &&
1133 desc != dbri->pipes[info->pipe].first_desc);
1135 dbri->pipes[info->pipe].desc = -1;
1136 dbri->pipes[info->pipe].first_desc = -1;
1138 desc = 0;
1139 while (len > 0) {
1140 int mylen;
1142 for (; desc < DBRI_NO_DESCS; desc++) {
1143 if (!dbri->dma->desc[desc].ba)
1144 break;
1147 if (desc == DBRI_NO_DESCS) {
1148 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1149 return -1;
1152 if (len > DBRI_TD_MAXCNT)
1153 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1154 else
1155 mylen = len;
1157 if (mylen > period)
1158 mylen = period;
1160 dbri->next_desc[desc] = -1;
1161 dbri->dma->desc[desc].ba = dvma_buffer;
1162 dbri->dma->desc[desc].nda = 0;
1164 if (streamno == DBRI_PLAY) {
1165 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1166 dbri->dma->desc[desc].word4 = 0;
1167 dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1168 } else {
1169 dbri->dma->desc[desc].word1 = 0;
1170 dbri->dma->desc[desc].word4 =
1171 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1174 if (first_desc == -1)
1175 first_desc = desc;
1176 else {
1177 dbri->next_desc[last_desc] = desc;
1178 dbri->dma->desc[last_desc].nda =
1179 dbri->dma_dvma + dbri_dma_off(desc, desc);
1182 last_desc = desc;
1183 dvma_buffer += mylen;
1184 len -= mylen;
1187 if (first_desc == -1 || last_desc == -1) {
1188 printk(KERN_ERR "DBRI: setup_descs: "
1189 " Not enough descriptors available\n");
1190 return -1;
1193 dbri->dma->desc[last_desc].nda =
1194 dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1195 dbri->next_desc[last_desc] = first_desc;
1196 dbri->pipes[info->pipe].first_desc = first_desc;
1197 dbri->pipes[info->pipe].desc = first_desc;
1199 #ifdef DBRI_DEBUG
1200 for (desc = first_desc; desc != -1;) {
1201 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1202 desc,
1203 dbri->dma->desc[desc].word1,
1204 dbri->dma->desc[desc].ba,
1205 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1206 desc = dbri->next_desc[desc];
1207 if (desc == first_desc)
1208 break;
1210 #endif
1211 return 0;
1215 ****************************************************************************
1216 ************************** DBRI - CHI interface ****************************
1217 ****************************************************************************
1219 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1220 multiplexed serial interface which the DBRI can operate in either master
1221 (give clock/frame sync) or slave (take clock/frame sync) mode.
1225 enum master_or_slave { CHImaster, CHIslave };
1228 * Lock must not be held before calling it.
1230 static void reset_chi(struct snd_dbri *dbri,
1231 enum master_or_slave master_or_slave,
1232 int bits_per_frame)
1234 s32 *cmd;
1235 int val;
1237 /* Set CHI Anchor: Pipe 16 */
1239 cmd = dbri_cmdlock(dbri, 4);
1240 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1241 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1242 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1243 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246 dbri_cmdsend(dbri, cmd, 4);
1248 dbri->pipes[16].sdp = 1;
1249 dbri->pipes[16].nextpipe = 16;
1251 cmd = dbri_cmdlock(dbri, 4);
1253 if (master_or_slave == CHIslave) {
1254 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256 * CHICM = 0 (slave mode, 8 kHz frame rate)
1257 * IR = give immediate CHI status interrupt
1258 * EN = give CHI status interrupt upon change
1260 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1261 } else {
1262 /* Setup DBRI for CHI Master - generate clock, FS
1264 * BPF = bits per 8 kHz frame
1265 * 12.288 MHz / CHICM_divisor = clock rate
1266 * FD = 1 - drive CHIFS on rising edge of CHICK
1268 int clockrate = bits_per_frame * 8;
1269 int divisor = 12288 / clockrate;
1271 if (divisor > 255 || divisor * clockrate != 12288)
1272 printk(KERN_ERR "DBRI: illegal bits_per_frame "
1273 "in setup_chi\n");
1275 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276 | D_CHI_BPF(bits_per_frame));
1279 dbri->chi_bpf = bits_per_frame;
1281 /* CHI Data Mode
1283 * RCE = 0 - receive on falling edge of CHICK
1284 * XCE = 1 - transmit on rising edge of CHICK
1285 * XEN = 1 - enable transmitter
1286 * REN = 1 - enable receiver
1289 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1293 dbri_cmdsend(dbri, cmd, 4);
1297 ****************************************************************************
1298 *********************** CS4215 audio codec management **********************
1299 ****************************************************************************
1301 In the standard SPARC audio configuration, the CS4215 codec is attached
1302 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304 * Lock must not be held before calling it.
1307 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1309 unsigned long flags;
1311 spin_lock_irqsave(&dbri->lock, flags);
1313 * Data mode:
1314 * Pipe 4: Send timeslots 1-4 (audio data)
1315 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1316 * Pipe 6: Receive timeslots 1-4 (audio data)
1317 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1318 * interrupt, and the rest of the data (slot 5 and 8) is
1319 * not relevant for us (only for doublechecking).
1321 * Control mode:
1322 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1323 * Pipe 18: Receive timeslot 1 (clb).
1324 * Pipe 19: Receive timeslot 7 (version).
1327 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1328 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1329 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1330 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335 spin_unlock_irqrestore(&dbri->lock, flags);
1337 dbri_cmdwait(dbri);
1340 static __devinit int cs4215_init_data(struct cs4215 *mm)
1343 * No action, memory resetting only.
1345 * Data Time Slot 5-8
1346 * Speaker,Line and Headphone enable. Gain set to the half.
1347 * Input is mike.
1349 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1350 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1351 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1352 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1355 * Control Time Slot 1-4
1356 * 0: Default I/O voltage scale
1357 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1358 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1359 * 3: Tests disabled
1361 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1362 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1363 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1364 mm->ctrl[3] = 0;
1366 mm->status = 0;
1367 mm->version = 0xff;
1368 mm->precision = 8; /* For ULAW */
1369 mm->channels = 1;
1371 return 0;
1374 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1376 if (muted) {
1377 dbri->mm.data[0] |= 63;
1378 dbri->mm.data[1] |= 63;
1379 dbri->mm.data[2] &= ~15;
1380 dbri->mm.data[3] &= ~15;
1381 } else {
1382 /* Start by setting the playback attenuation. */
1383 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1384 int left_gain = info->left_gain & 0x3f;
1385 int right_gain = info->right_gain & 0x3f;
1387 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1388 dbri->mm.data[1] &= ~0x3f;
1389 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392 /* Now set the recording gain. */
1393 info = &dbri->stream_info[DBRI_REC];
1394 left_gain = info->left_gain & 0xf;
1395 right_gain = info->right_gain & 0xf;
1396 dbri->mm.data[2] |= CS4215_LG(left_gain);
1397 dbri->mm.data[3] |= CS4215_RG(right_gain);
1400 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1404 * Set the CS4215 to data mode.
1406 static void cs4215_open(struct snd_dbri *dbri)
1408 int data_width;
1409 u32 tmp;
1410 unsigned long flags;
1412 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1413 dbri->mm.channels, dbri->mm.precision);
1415 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1416 * to make sure this takes. This avoids clicking noises.
1419 cs4215_setdata(dbri, 1);
1420 udelay(125);
1423 * Data mode:
1424 * Pipe 4: Send timeslots 1-4 (audio data)
1425 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1426 * Pipe 6: Receive timeslots 1-4 (audio data)
1427 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1428 * interrupt, and the rest of the data (slot 5 and 8) is
1429 * not relevant for us (only for doublechecking).
1431 * Just like in control mode, the time slots are all offset by eight
1432 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1433 * even if it's the CHI master. Don't ask me...
1435 spin_lock_irqsave(&dbri->lock, flags);
1436 tmp = sbus_readl(dbri->regs + REG0);
1437 tmp &= ~(D_C); /* Disable CHI */
1438 sbus_writel(tmp, dbri->regs + REG0);
1440 /* Switch CS4215 to data mode - set PIO3 to 1 */
1441 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1442 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1444 reset_chi(dbri, CHIslave, 128);
1446 /* Note: this next doesn't work for 8-bit stereo, because the two
1447 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1448 * (See CS4215 datasheet Fig 15)
1450 * DBRI non-contiguous mode would be required to make this work.
1452 data_width = dbri->mm.channels * dbri->mm.precision;
1454 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1455 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1456 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1457 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1459 /* FIXME: enable CHI after _setdata? */
1460 tmp = sbus_readl(dbri->regs + REG0);
1461 tmp |= D_C; /* Enable CHI */
1462 sbus_writel(tmp, dbri->regs + REG0);
1463 spin_unlock_irqrestore(&dbri->lock, flags);
1465 cs4215_setdata(dbri, 0);
1469 * Send the control information (i.e. audio format)
1471 static int cs4215_setctrl(struct snd_dbri *dbri)
1473 int i, val;
1474 u32 tmp;
1475 unsigned long flags;
1477 /* FIXME - let the CPU do something useful during these delays */
1479 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1480 * to make sure this takes. This avoids clicking noises.
1482 cs4215_setdata(dbri, 1);
1483 udelay(125);
1486 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1487 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1489 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1490 sbus_writel(val, dbri->regs + REG2);
1491 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1492 udelay(34);
1494 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1495 * operate as CHI master, supplying clocking and frame synchronization.
1497 * In Data mode, however, the CS4215 must be CHI master to insure
1498 * that its data stream is synchronous with its codec.
1500 * The upshot of all this? We start by putting the DBRI into master
1501 * mode, program the CS4215 in Control mode, then switch the CS4215
1502 * into Data mode and put the DBRI into slave mode. Various timing
1503 * requirements must be observed along the way.
1505 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1506 * others?), the addressing of the CS4215's time slots is
1507 * offset by eight bits, so we add eight to all the "cycle"
1508 * values in the Define Time Slot (DTS) commands. This is
1509 * done in hardware by a TI 248 that delays the DBRI->4215
1510 * frame sync signal by eight clock cycles. Anybody know why?
1512 spin_lock_irqsave(&dbri->lock, flags);
1513 tmp = sbus_readl(dbri->regs + REG0);
1514 tmp &= ~D_C; /* Disable CHI */
1515 sbus_writel(tmp, dbri->regs + REG0);
1517 reset_chi(dbri, CHImaster, 128);
1520 * Control mode:
1521 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1522 * Pipe 18: Receive timeslot 1 (clb).
1523 * Pipe 19: Receive timeslot 7 (version).
1526 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1527 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1528 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1529 spin_unlock_irqrestore(&dbri->lock, flags);
1531 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1535 spin_lock_irqsave(&dbri->lock, flags);
1536 tmp = sbus_readl(dbri->regs + REG0);
1537 tmp |= D_C; /* Enable CHI */
1538 sbus_writel(tmp, dbri->regs + REG0);
1539 spin_unlock_irqrestore(&dbri->lock, flags);
1541 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1542 msleep_interruptible(1);
1544 if (i == 0) {
1545 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1546 dbri->mm.status);
1547 return -1;
1550 /* Disable changes to our copy of the version number, as we are about
1551 * to leave control mode.
1553 recv_fixed(dbri, 19, NULL);
1555 /* Terminate CS4215 control mode - data sheet says
1556 * "Set CLB=1 and send two more frames of valid control info"
1558 dbri->mm.ctrl[0] |= CS4215_CLB;
1559 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1562 udelay(250);
1564 cs4215_setdata(dbri, 0);
1566 return 0;
1570 * Setup the codec with the sampling rate, audio format and number of
1571 * channels.
1572 * As part of the process we resend the settings for the data
1573 * timeslots as well.
1575 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1576 snd_pcm_format_t format, unsigned int channels)
1578 int freq_idx;
1579 int ret = 0;
1581 /* Lookup index for this rate */
1582 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1583 if (CS4215_FREQ[freq_idx].freq == rate)
1584 break;
1586 if (CS4215_FREQ[freq_idx].freq != rate) {
1587 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1588 return -1;
1591 switch (format) {
1592 case SNDRV_PCM_FORMAT_MU_LAW:
1593 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1594 dbri->mm.precision = 8;
1595 break;
1596 case SNDRV_PCM_FORMAT_A_LAW:
1597 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1598 dbri->mm.precision = 8;
1599 break;
1600 case SNDRV_PCM_FORMAT_U8:
1601 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1602 dbri->mm.precision = 8;
1603 break;
1604 case SNDRV_PCM_FORMAT_S16_BE:
1605 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1606 dbri->mm.precision = 16;
1607 break;
1608 default:
1609 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1610 return -1;
1613 /* Add rate parameters */
1614 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1615 dbri->mm.ctrl[2] = CS4215_XCLK |
1616 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618 dbri->mm.channels = channels;
1619 if (channels == 2)
1620 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1622 ret = cs4215_setctrl(dbri);
1623 if (ret == 0)
1624 cs4215_open(dbri); /* set codec to data mode */
1626 return ret;
1632 static __devinit int cs4215_init(struct snd_dbri *dbri)
1634 u32 reg2 = sbus_readl(dbri->regs + REG2);
1635 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1637 /* Look for the cs4215 chips */
1638 if (reg2 & D_PIO2) {
1639 dprintk(D_MM, "Onboard CS4215 detected\n");
1640 dbri->mm.onboard = 1;
1642 if (reg2 & D_PIO0) {
1643 dprintk(D_MM, "Speakerbox detected\n");
1644 dbri->mm.onboard = 0;
1646 if (reg2 & D_PIO2) {
1647 printk(KERN_INFO "DBRI: Using speakerbox / "
1648 "ignoring onboard mmcodec.\n");
1649 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1653 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1654 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1655 return -EIO;
1658 cs4215_setup_pipes(dbri);
1659 cs4215_init_data(&dbri->mm);
1661 /* Enable capture of the status & version timeslots. */
1662 recv_fixed(dbri, 18, &dbri->mm.status);
1663 recv_fixed(dbri, 19, &dbri->mm.version);
1665 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668 dbri->mm.offset);
1669 return -EIO;
1671 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1673 return 0;
1677 ****************************************************************************
1678 *************************** DBRI interrupt handler *************************
1679 ****************************************************************************
1681 The DBRI communicates with the CPU mainly via a circular interrupt
1682 buffer. When an interrupt is signaled, the CPU walks through the
1683 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684 Complicated interrupts are handled by dedicated functions (which
1685 appear first in this file). Any pending interrupts can be serviced by
1686 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687 interrupts are disabled.
1691 /* xmit_descs()
1693 * Starts transmitting the current TD's for recording/playing.
1694 * For playback, ALSA has filled the DMA memory with new data (we hope).
1696 static void xmit_descs(struct snd_dbri *dbri)
1698 struct dbri_streaminfo *info;
1699 s32 *cmd;
1700 unsigned long flags;
1701 int first_td;
1703 if (dbri == NULL)
1704 return; /* Disabled */
1706 info = &dbri->stream_info[DBRI_REC];
1707 spin_lock_irqsave(&dbri->lock, flags);
1709 if (info->pipe >= 0) {
1710 first_td = dbri->pipes[info->pipe].first_desc;
1712 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1714 /* Stream could be closed by the time we run. */
1715 if (first_td >= 0) {
1716 cmd = dbri_cmdlock(dbri, 2);
1717 *(cmd++) = DBRI_CMD(D_SDP, 0,
1718 dbri->pipes[info->pipe].sdp
1719 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1720 *(cmd++) = dbri->dma_dvma +
1721 dbri_dma_off(desc, first_td);
1722 dbri_cmdsend(dbri, cmd, 2);
1724 /* Reset our admin of the pipe. */
1725 dbri->pipes[info->pipe].desc = first_td;
1729 info = &dbri->stream_info[DBRI_PLAY];
1731 if (info->pipe >= 0) {
1732 first_td = dbri->pipes[info->pipe].first_desc;
1734 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1736 /* Stream could be closed by the time we run. */
1737 if (first_td >= 0) {
1738 cmd = dbri_cmdlock(dbri, 2);
1739 *(cmd++) = DBRI_CMD(D_SDP, 0,
1740 dbri->pipes[info->pipe].sdp
1741 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1742 *(cmd++) = dbri->dma_dvma +
1743 dbri_dma_off(desc, first_td);
1744 dbri_cmdsend(dbri, cmd, 2);
1746 /* Reset our admin of the pipe. */
1747 dbri->pipes[info->pipe].desc = first_td;
1751 spin_unlock_irqrestore(&dbri->lock, flags);
1754 /* transmission_complete_intr()
1756 * Called by main interrupt handler when DBRI signals transmission complete
1757 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1759 * Walks through the pipe's list of transmit buffer descriptors and marks
1760 * them as available. Stops when the first descriptor is found without
1761 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1763 * The DMA buffers are not released. They form a ring buffer and
1764 * they are filled by ALSA while others are transmitted by DMA.
1768 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1770 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1771 int td = dbri->pipes[pipe].desc;
1772 int status;
1774 while (td >= 0) {
1775 if (td >= DBRI_NO_DESCS) {
1776 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1777 return;
1780 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1781 if (!(status & DBRI_TD_TBC))
1782 break;
1784 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1786 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1787 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1789 td = dbri->next_desc[td];
1790 dbri->pipes[pipe].desc = td;
1793 /* Notify ALSA */
1794 spin_unlock(&dbri->lock);
1795 snd_pcm_period_elapsed(info->substream);
1796 spin_lock(&dbri->lock);
1799 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1801 struct dbri_streaminfo *info;
1802 int rd = dbri->pipes[pipe].desc;
1803 s32 status;
1805 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1806 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1807 return;
1810 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1811 status = dbri->dma->desc[rd].word1;
1812 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1814 info = &dbri->stream_info[DBRI_REC];
1815 info->offset += DBRI_RD_CNT(status);
1817 /* FIXME: Check status */
1819 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1820 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1822 /* Notify ALSA */
1823 spin_unlock(&dbri->lock);
1824 snd_pcm_period_elapsed(info->substream);
1825 spin_lock(&dbri->lock);
1828 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1830 int val = D_INTR_GETVAL(x);
1831 int channel = D_INTR_GETCHAN(x);
1832 int command = D_INTR_GETCMD(x);
1833 int code = D_INTR_GETCODE(x);
1834 #ifdef DBRI_DEBUG
1835 int rval = D_INTR_GETRVAL(x);
1836 #endif
1838 if (channel == D_INTR_CMD) {
1839 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1840 cmds[command], val);
1841 } else {
1842 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1843 channel, code, rval);
1846 switch (code) {
1847 case D_INTR_CMDI:
1848 if (command != D_WAIT)
1849 printk(KERN_ERR "DBRI: Command read interrupt\n");
1850 break;
1851 case D_INTR_BRDY:
1852 reception_complete_intr(dbri, channel);
1853 break;
1854 case D_INTR_XCMP:
1855 case D_INTR_MINT:
1856 transmission_complete_intr(dbri, channel);
1857 break;
1858 case D_INTR_UNDR:
1859 /* UNDR - Transmission underrun
1860 * resend SDP command with clear pipe bit (C) set
1863 /* FIXME: do something useful in case of underrun */
1864 printk(KERN_ERR "DBRI: Underrun error\n");
1865 #if 0
1866 s32 *cmd;
1867 int pipe = channel;
1868 int td = dbri->pipes[pipe].desc;
1870 dbri->dma->desc[td].word4 = 0;
1871 cmd = dbri_cmdlock(dbri, NoGetLock);
1872 *(cmd++) = DBRI_CMD(D_SDP, 0,
1873 dbri->pipes[pipe].sdp
1874 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1875 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1876 dbri_cmdsend(dbri, cmd);
1877 #endif
1879 break;
1880 case D_INTR_FXDT:
1881 /* FXDT - Fixed data change */
1882 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1883 val = reverse_bytes(val, dbri->pipes[channel].length);
1885 if (dbri->pipes[channel].recv_fixed_ptr)
1886 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1887 break;
1888 default:
1889 if (channel != D_INTR_CMD)
1890 printk(KERN_WARNING
1891 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1895 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1896 * buffer until it finds a zero word (indicating nothing more to do
1897 * right now). Non-zero words require processing and are handed off
1898 * to dbri_process_one_interrupt AFTER advancing the pointer.
1900 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1902 s32 x;
1904 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1905 dbri->dma->intr[dbri->dbri_irqp] = 0;
1906 dbri->dbri_irqp++;
1907 if (dbri->dbri_irqp == DBRI_INT_BLK)
1908 dbri->dbri_irqp = 1;
1910 dbri_process_one_interrupt(dbri, x);
1914 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1916 struct snd_dbri *dbri = dev_id;
1917 static int errcnt = 0;
1918 int x;
1920 if (dbri == NULL)
1921 return IRQ_NONE;
1922 spin_lock(&dbri->lock);
1925 * Read it, so the interrupt goes away.
1927 x = sbus_readl(dbri->regs + REG1);
1929 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1930 u32 tmp;
1932 if (x & D_MRR)
1933 printk(KERN_ERR
1934 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1936 if (x & D_MLE)
1937 printk(KERN_ERR
1938 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1940 if (x & D_LBG)
1941 printk(KERN_ERR
1942 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1943 if (x & D_MBE)
1944 printk(KERN_ERR
1945 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1947 /* Some of these SBus errors cause the chip's SBus circuitry
1948 * to be disabled, so just re-enable and try to keep going.
1950 * The only one I've seen is MRR, which will be triggered
1951 * if you let a transmit pipe underrun, then try to CDP it.
1953 * If these things persist, we reset the chip.
1955 if ((++errcnt) % 10 == 0) {
1956 dprintk(D_INT, "Interrupt errors exceeded.\n");
1957 dbri_reset(dbri);
1958 } else {
1959 tmp = sbus_readl(dbri->regs + REG0);
1960 tmp &= ~(D_D);
1961 sbus_writel(tmp, dbri->regs + REG0);
1965 dbri_process_interrupt_buffer(dbri);
1967 spin_unlock(&dbri->lock);
1969 return IRQ_HANDLED;
1972 /****************************************************************************
1973 PCM Interface
1974 ****************************************************************************/
1975 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1976 .info = SNDRV_PCM_INFO_MMAP |
1977 SNDRV_PCM_INFO_INTERLEAVED |
1978 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1979 SNDRV_PCM_INFO_MMAP_VALID |
1980 SNDRV_PCM_INFO_BATCH,
1981 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1982 SNDRV_PCM_FMTBIT_A_LAW |
1983 SNDRV_PCM_FMTBIT_U8 |
1984 SNDRV_PCM_FMTBIT_S16_BE,
1985 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1986 .rate_min = 5512,
1987 .rate_max = 48000,
1988 .channels_min = 1,
1989 .channels_max = 2,
1990 .buffer_bytes_max = 64 * 1024,
1991 .period_bytes_min = 1,
1992 .period_bytes_max = DBRI_TD_MAXCNT,
1993 .periods_min = 1,
1994 .periods_max = 1024,
1997 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1998 struct snd_pcm_hw_rule *rule)
2000 struct snd_interval *c = hw_param_interval(params,
2001 SNDRV_PCM_HW_PARAM_CHANNELS);
2002 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2003 struct snd_mask fmt;
2005 snd_mask_any(&fmt);
2006 if (c->min > 1) {
2007 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2008 return snd_mask_refine(f, &fmt);
2010 return 0;
2013 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2014 struct snd_pcm_hw_rule *rule)
2016 struct snd_interval *c = hw_param_interval(params,
2017 SNDRV_PCM_HW_PARAM_CHANNELS);
2018 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2019 struct snd_interval ch;
2021 snd_interval_any(&ch);
2022 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2023 ch.min = 1;
2024 ch.max = 1;
2025 ch.integer = 1;
2026 return snd_interval_refine(c, &ch);
2028 return 0;
2031 static int snd_dbri_open(struct snd_pcm_substream *substream)
2033 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2034 struct snd_pcm_runtime *runtime = substream->runtime;
2035 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2036 unsigned long flags;
2038 dprintk(D_USR, "open audio output.\n");
2039 runtime->hw = snd_dbri_pcm_hw;
2041 spin_lock_irqsave(&dbri->lock, flags);
2042 info->substream = substream;
2043 info->offset = 0;
2044 info->dvma_buffer = 0;
2045 info->pipe = -1;
2046 spin_unlock_irqrestore(&dbri->lock, flags);
2048 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2049 snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2050 -1);
2051 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2052 snd_hw_rule_channels, NULL,
2053 SNDRV_PCM_HW_PARAM_CHANNELS,
2054 -1);
2056 cs4215_open(dbri);
2058 return 0;
2061 static int snd_dbri_close(struct snd_pcm_substream *substream)
2063 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2064 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066 dprintk(D_USR, "close audio output.\n");
2067 info->substream = NULL;
2068 info->offset = 0;
2070 return 0;
2073 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2074 struct snd_pcm_hw_params *hw_params)
2076 struct snd_pcm_runtime *runtime = substream->runtime;
2077 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2078 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2079 int direction;
2080 int ret;
2082 /* set sampling rate, audio format and number of channels */
2083 ret = cs4215_prepare(dbri, params_rate(hw_params),
2084 params_format(hw_params),
2085 params_channels(hw_params));
2086 if (ret != 0)
2087 return ret;
2089 if ((ret = snd_pcm_lib_malloc_pages(substream,
2090 params_buffer_bytes(hw_params))) < 0) {
2091 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2092 return ret;
2095 /* hw_params can get called multiple times. Only map the DMA once.
2097 if (info->dvma_buffer == 0) {
2098 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2099 direction = DMA_TO_DEVICE;
2100 else
2101 direction = DMA_FROM_DEVICE;
2103 info->dvma_buffer =
2104 dma_map_single(&dbri->op->dev,
2105 runtime->dma_area,
2106 params_buffer_bytes(hw_params),
2107 direction);
2110 direction = params_buffer_bytes(hw_params);
2111 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2112 direction, info->dvma_buffer);
2113 return 0;
2116 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2118 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2119 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2120 int direction;
2122 dprintk(D_USR, "hw_free.\n");
2124 /* hw_free can get called multiple times. Only unmap the DMA once.
2126 if (info->dvma_buffer) {
2127 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2128 direction = DMA_TO_DEVICE;
2129 else
2130 direction = DMA_FROM_DEVICE;
2132 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2133 substream->runtime->buffer_size, direction);
2134 info->dvma_buffer = 0;
2136 if (info->pipe != -1) {
2137 reset_pipe(dbri, info->pipe);
2138 info->pipe = -1;
2141 return snd_pcm_lib_free_pages(substream);
2144 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2146 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148 int ret;
2150 info->size = snd_pcm_lib_buffer_bytes(substream);
2151 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2152 info->pipe = 4; /* Send pipe */
2153 else
2154 info->pipe = 6; /* Receive pipe */
2156 spin_lock_irq(&dbri->lock);
2157 info->offset = 0;
2159 /* Setup the all the transmit/receive descriptors to cover the
2160 * whole DMA buffer.
2162 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2163 snd_pcm_lib_period_bytes(substream));
2165 spin_unlock_irq(&dbri->lock);
2167 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2168 return ret;
2171 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2173 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2174 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2175 int ret = 0;
2177 switch (cmd) {
2178 case SNDRV_PCM_TRIGGER_START:
2179 dprintk(D_USR, "start audio, period is %d bytes\n",
2180 (int)snd_pcm_lib_period_bytes(substream));
2181 /* Re-submit the TDs. */
2182 xmit_descs(dbri);
2183 break;
2184 case SNDRV_PCM_TRIGGER_STOP:
2185 dprintk(D_USR, "stop audio.\n");
2186 reset_pipe(dbri, info->pipe);
2187 break;
2188 default:
2189 ret = -EINVAL;
2192 return ret;
2195 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2197 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2198 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2199 snd_pcm_uframes_t ret;
2201 ret = bytes_to_frames(substream->runtime, info->offset)
2202 % substream->runtime->buffer_size;
2203 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2204 ret, substream->runtime->buffer_size);
2205 return ret;
2208 static struct snd_pcm_ops snd_dbri_ops = {
2209 .open = snd_dbri_open,
2210 .close = snd_dbri_close,
2211 .ioctl = snd_pcm_lib_ioctl,
2212 .hw_params = snd_dbri_hw_params,
2213 .hw_free = snd_dbri_hw_free,
2214 .prepare = snd_dbri_prepare,
2215 .trigger = snd_dbri_trigger,
2216 .pointer = snd_dbri_pointer,
2219 static int __devinit snd_dbri_pcm(struct snd_card *card)
2221 struct snd_pcm *pcm;
2222 int err;
2224 if ((err = snd_pcm_new(card,
2225 /* ID */ "sun_dbri",
2226 /* device */ 0,
2227 /* playback count */ 1,
2228 /* capture count */ 1, &pcm)) < 0)
2229 return err;
2231 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2232 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2234 pcm->private_data = card->private_data;
2235 pcm->info_flags = 0;
2236 strcpy(pcm->name, card->shortname);
2238 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2239 SNDRV_DMA_TYPE_CONTINUOUS,
2240 snd_dma_continuous_data(GFP_KERNEL),
2241 64 * 1024, 64 * 1024)) < 0)
2242 return err;
2244 return 0;
2247 /*****************************************************************************
2248 Mixer interface
2249 *****************************************************************************/
2251 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2252 struct snd_ctl_elem_info *uinfo)
2254 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2255 uinfo->count = 2;
2256 uinfo->value.integer.min = 0;
2257 if (kcontrol->private_value == DBRI_PLAY)
2258 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2259 else
2260 uinfo->value.integer.max = DBRI_MAX_GAIN;
2261 return 0;
2264 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2265 struct snd_ctl_elem_value *ucontrol)
2267 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2268 struct dbri_streaminfo *info;
2270 if (snd_BUG_ON(!dbri))
2271 return -EINVAL;
2272 info = &dbri->stream_info[kcontrol->private_value];
2274 ucontrol->value.integer.value[0] = info->left_gain;
2275 ucontrol->value.integer.value[1] = info->right_gain;
2276 return 0;
2279 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2280 struct snd_ctl_elem_value *ucontrol)
2282 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2283 struct dbri_streaminfo *info =
2284 &dbri->stream_info[kcontrol->private_value];
2285 unsigned int vol[2];
2286 int changed = 0;
2288 vol[0] = ucontrol->value.integer.value[0];
2289 vol[1] = ucontrol->value.integer.value[1];
2290 if (kcontrol->private_value == DBRI_PLAY) {
2291 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2292 return -EINVAL;
2293 } else {
2294 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2295 return -EINVAL;
2298 if (info->left_gain != vol[0]) {
2299 info->left_gain = vol[0];
2300 changed = 1;
2302 if (info->right_gain != vol[1]) {
2303 info->right_gain = vol[1];
2304 changed = 1;
2306 if (changed) {
2307 /* First mute outputs, and wait 1/8000 sec (125 us)
2308 * to make sure this takes. This avoids clicking noises.
2310 cs4215_setdata(dbri, 1);
2311 udelay(125);
2312 cs4215_setdata(dbri, 0);
2314 return changed;
2317 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2318 struct snd_ctl_elem_info *uinfo)
2320 int mask = (kcontrol->private_value >> 16) & 0xff;
2322 uinfo->type = (mask == 1) ?
2323 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2324 uinfo->count = 1;
2325 uinfo->value.integer.min = 0;
2326 uinfo->value.integer.max = mask;
2327 return 0;
2330 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2331 struct snd_ctl_elem_value *ucontrol)
2333 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2334 int elem = kcontrol->private_value & 0xff;
2335 int shift = (kcontrol->private_value >> 8) & 0xff;
2336 int mask = (kcontrol->private_value >> 16) & 0xff;
2337 int invert = (kcontrol->private_value >> 24) & 1;
2339 if (snd_BUG_ON(!dbri))
2340 return -EINVAL;
2342 if (elem < 4)
2343 ucontrol->value.integer.value[0] =
2344 (dbri->mm.data[elem] >> shift) & mask;
2345 else
2346 ucontrol->value.integer.value[0] =
2347 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349 if (invert == 1)
2350 ucontrol->value.integer.value[0] =
2351 mask - ucontrol->value.integer.value[0];
2352 return 0;
2355 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2356 struct snd_ctl_elem_value *ucontrol)
2358 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2359 int elem = kcontrol->private_value & 0xff;
2360 int shift = (kcontrol->private_value >> 8) & 0xff;
2361 int mask = (kcontrol->private_value >> 16) & 0xff;
2362 int invert = (kcontrol->private_value >> 24) & 1;
2363 int changed = 0;
2364 unsigned short val;
2366 if (snd_BUG_ON(!dbri))
2367 return -EINVAL;
2369 val = (ucontrol->value.integer.value[0] & mask);
2370 if (invert == 1)
2371 val = mask - val;
2372 val <<= shift;
2374 if (elem < 4) {
2375 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2376 ~(mask << shift)) | val;
2377 changed = (val != dbri->mm.data[elem]);
2378 } else {
2379 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2380 ~(mask << shift)) | val;
2381 changed = (val != dbri->mm.ctrl[elem - 4]);
2384 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2385 "mixer-value=%ld, mm-value=0x%x\n",
2386 mask, changed, ucontrol->value.integer.value[0],
2387 dbri->mm.data[elem & 3]);
2389 if (changed) {
2390 /* First mute outputs, and wait 1/8000 sec (125 us)
2391 * to make sure this takes. This avoids clicking noises.
2393 cs4215_setdata(dbri, 1);
2394 udelay(125);
2395 cs4215_setdata(dbri, 0);
2397 return changed;
2400 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2401 timeslots. Shift is the bit offset in the timeslot, mask defines the
2402 number of bits. invert is a boolean for use with attenuation.
2404 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2405 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2406 .info = snd_cs4215_info_single, \
2407 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2408 .private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2409 ((invert) << 24) },
2411 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2413 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414 .name = "Playback Volume",
2415 .info = snd_cs4215_info_volume,
2416 .get = snd_cs4215_get_volume,
2417 .put = snd_cs4215_put_volume,
2418 .private_value = DBRI_PLAY,
2420 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2421 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2422 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425 .name = "Capture Volume",
2426 .info = snd_cs4215_info_volume,
2427 .get = snd_cs4215_get_volume,
2428 .put = snd_cs4215_put_volume,
2429 .private_value = DBRI_REC,
2431 /* FIXME: mic/line switch */
2432 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2433 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2434 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2435 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438 static int __devinit snd_dbri_mixer(struct snd_card *card)
2440 int idx, err;
2441 struct snd_dbri *dbri;
2443 if (snd_BUG_ON(!card || !card->private_data))
2444 return -EINVAL;
2445 dbri = card->private_data;
2447 strcpy(card->mixername, card->shortname);
2449 for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2450 err = snd_ctl_add(card,
2451 snd_ctl_new1(&dbri_controls[idx], dbri));
2452 if (err < 0)
2453 return err;
2456 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2457 dbri->stream_info[idx].left_gain = 0;
2458 dbri->stream_info[idx].right_gain = 0;
2461 return 0;
2464 /****************************************************************************
2465 /proc interface
2466 ****************************************************************************/
2467 static void dbri_regs_read(struct snd_info_entry *entry,
2468 struct snd_info_buffer *buffer)
2470 struct snd_dbri *dbri = entry->private_data;
2472 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2473 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2474 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2475 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478 #ifdef DBRI_DEBUG
2479 static void dbri_debug_read(struct snd_info_entry *entry,
2480 struct snd_info_buffer *buffer)
2482 struct snd_dbri *dbri = entry->private_data;
2483 int pipe;
2484 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486 for (pipe = 0; pipe < 32; pipe++) {
2487 if (pipe_active(dbri, pipe)) {
2488 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2489 snd_iprintf(buffer,
2490 "Pipe %d: %s SDP=0x%x desc=%d, "
2491 "len=%d next %d\n",
2492 pipe,
2493 (pptr->sdp & D_SDP_TO_SER) ? "output" :
2494 "input",
2495 pptr->sdp, pptr->desc,
2496 pptr->length, pptr->nextpipe);
2500 #endif
2502 static void __devinit snd_dbri_proc(struct snd_card *card)
2504 struct snd_dbri *dbri = card->private_data;
2505 struct snd_info_entry *entry;
2507 if (!snd_card_proc_new(card, "regs", &entry))
2508 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2510 #ifdef DBRI_DEBUG
2511 if (!snd_card_proc_new(card, "debug", &entry)) {
2512 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2513 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2515 #endif
2519 ****************************************************************************
2520 **************************** Initialization ********************************
2521 ****************************************************************************
2523 static void snd_dbri_free(struct snd_dbri *dbri);
2525 static int __devinit snd_dbri_create(struct snd_card *card,
2526 struct platform_device *op,
2527 int irq, int dev)
2529 struct snd_dbri *dbri = card->private_data;
2530 int err;
2532 spin_lock_init(&dbri->lock);
2533 dbri->op = op;
2534 dbri->irq = irq;
2536 dbri->dma = dma_alloc_coherent(&op->dev,
2537 sizeof(struct dbri_dma),
2538 &dbri->dma_dvma, GFP_ATOMIC);
2539 if (!dbri->dma)
2540 return -ENOMEM;
2541 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2543 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2544 dbri->dma, dbri->dma_dvma);
2546 /* Map the registers into memory. */
2547 dbri->regs_size = resource_size(&op->resource[0]);
2548 dbri->regs = of_ioremap(&op->resource[0], 0,
2549 dbri->regs_size, "DBRI Registers");
2550 if (!dbri->regs) {
2551 printk(KERN_ERR "DBRI: could not allocate registers\n");
2552 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2553 (void *)dbri->dma, dbri->dma_dvma);
2554 return -EIO;
2557 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2558 "DBRI audio", dbri);
2559 if (err) {
2560 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2561 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2562 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2563 (void *)dbri->dma, dbri->dma_dvma);
2564 return err;
2567 /* Do low level initialization of the DBRI and CS4215 chips */
2568 dbri_initialize(dbri);
2569 err = cs4215_init(dbri);
2570 if (err) {
2571 snd_dbri_free(dbri);
2572 return err;
2575 return 0;
2578 static void snd_dbri_free(struct snd_dbri *dbri)
2580 dprintk(D_GEN, "snd_dbri_free\n");
2581 dbri_reset(dbri);
2583 if (dbri->irq)
2584 free_irq(dbri->irq, dbri);
2586 if (dbri->regs)
2587 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2589 if (dbri->dma)
2590 dma_free_coherent(&dbri->op->dev,
2591 sizeof(struct dbri_dma),
2592 (void *)dbri->dma, dbri->dma_dvma);
2595 static int __devinit dbri_probe(struct platform_device *op)
2597 struct snd_dbri *dbri;
2598 struct resource *rp;
2599 struct snd_card *card;
2600 static int dev = 0;
2601 int irq;
2602 int err;
2604 if (dev >= SNDRV_CARDS)
2605 return -ENODEV;
2606 if (!enable[dev]) {
2607 dev++;
2608 return -ENOENT;
2611 irq = op->archdata.irqs[0];
2612 if (irq <= 0) {
2613 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2614 return -ENODEV;
2617 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2618 sizeof(struct snd_dbri), &card);
2619 if (err < 0)
2620 return err;
2622 strcpy(card->driver, "DBRI");
2623 strcpy(card->shortname, "Sun DBRI");
2624 rp = &op->resource[0];
2625 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2626 card->shortname,
2627 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2629 err = snd_dbri_create(card, op, irq, dev);
2630 if (err < 0) {
2631 snd_card_free(card);
2632 return err;
2635 dbri = card->private_data;
2636 err = snd_dbri_pcm(card);
2637 if (err < 0)
2638 goto _err;
2640 err = snd_dbri_mixer(card);
2641 if (err < 0)
2642 goto _err;
2644 /* /proc file handling */
2645 snd_dbri_proc(card);
2646 dev_set_drvdata(&op->dev, card);
2648 err = snd_card_register(card);
2649 if (err < 0)
2650 goto _err;
2652 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2653 dev, dbri->regs,
2654 dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2655 dev++;
2657 return 0;
2659 _err:
2660 snd_dbri_free(dbri);
2661 snd_card_free(card);
2662 return err;
2665 static int __devexit dbri_remove(struct platform_device *op)
2667 struct snd_card *card = dev_get_drvdata(&op->dev);
2669 snd_dbri_free(card->private_data);
2670 snd_card_free(card);
2672 dev_set_drvdata(&op->dev, NULL);
2674 return 0;
2677 static const struct of_device_id dbri_match[] = {
2679 .name = "SUNW,DBRIe",
2682 .name = "SUNW,DBRIf",
2687 MODULE_DEVICE_TABLE(of, dbri_match);
2689 static struct platform_driver dbri_sbus_driver = {
2690 .driver = {
2691 .name = "dbri",
2692 .owner = THIS_MODULE,
2693 .of_match_table = dbri_match,
2695 .probe = dbri_probe,
2696 .remove = __devexit_p(dbri_remove),
2699 /* Probe for the dbri chip and then attach the driver. */
2700 static int __init dbri_init(void)
2702 return platform_driver_register(&dbri_sbus_driver);
2705 static void __exit dbri_exit(void)
2707 platform_driver_unregister(&dbri_sbus_driver);
2710 module_init(dbri_init);
2711 module_exit(dbri_exit);