Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / dma / amba-pl08x.c
blob196a7378d33238ec0a08c1ac3672d428fff370cd
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/delay.h>
83 #include <linux/dmapool.h>
84 #include <linux/dmaengine.h>
85 #include <linux/amba/bus.h>
86 #include <linux/amba/pl08x.h>
87 #include <linux/debugfs.h>
88 #include <linux/seq_file.h>
90 #include <asm/hardware/pl080.h>
92 #define DRIVER_NAME "pl08xdmac"
94 /**
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
99 struct vendor_data {
100 u8 channels;
101 bool dualmaster;
105 * PL08X private data structures
106 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
107 * start & end do not - their bus bit info is in cctl. Also note that these
108 * are fixed 32-bit quantities.
110 struct pl08x_lli {
111 u32 src;
112 u32 dst;
113 u32 lli;
114 u32 cctl;
118 * struct pl08x_driver_data - the local state holder for the PL08x
119 * @slave: slave engine for this instance
120 * @memcpy: memcpy engine for this instance
121 * @base: virtual memory base (remapped) for the PL08x
122 * @adev: the corresponding AMBA (PrimeCell) bus entry
123 * @vd: vendor data for this PL08x variant
124 * @pd: platform data passed in from the platform/machine
125 * @phy_chans: array of data for the physical channels
126 * @pool: a pool for the LLI descriptors
127 * @pool_ctr: counter of LLIs in the pool
128 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
129 * @mem_buses: set to indicate memory transfers on AHB2.
130 * @lock: a spinlock for this struct
132 struct pl08x_driver_data {
133 struct dma_device slave;
134 struct dma_device memcpy;
135 void __iomem *base;
136 struct amba_device *adev;
137 const struct vendor_data *vd;
138 struct pl08x_platform_data *pd;
139 struct pl08x_phy_chan *phy_chans;
140 struct dma_pool *pool;
141 int pool_ctr;
142 u8 lli_buses;
143 u8 mem_buses;
144 spinlock_t lock;
148 * PL08X specific defines
152 * Memory boundaries: the manual for PL08x says that the controller
153 * cannot read past a 1KiB boundary, so these defines are used to
154 * create transfer LLIs that do not cross such boundaries.
156 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
157 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159 /* Size (bytes) of each LLI buffer allocated for one transfer */
160 # define PL08X_LLI_TSFR_SIZE 0x2000
162 /* Maximum times we call dma_pool_alloc on this pool without freeing */
163 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
164 #define PL08X_ALIGN 8
166 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168 return container_of(chan, struct pl08x_dma_chan, chan);
171 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
173 return container_of(tx, struct pl08x_txd, tx);
177 * Physical channel handling
180 /* Whether a certain channel is busy or not */
181 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
183 unsigned int val;
185 val = readl(ch->base + PL080_CH_CONFIG);
186 return val & PL080_CONFIG_ACTIVE;
190 * Set the initial DMA register values i.e. those for the first LLI
191 * The next LLI pointer and the configuration interrupt bit have
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
195 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
196 struct pl08x_txd *txd)
198 struct pl08x_driver_data *pl08x = plchan->host;
199 struct pl08x_phy_chan *phychan = plchan->phychan;
200 struct pl08x_lli *lli = &txd->llis_va[0];
201 u32 val;
203 plchan->at = txd;
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan))
207 cpu_relax();
209 dev_vdbg(&pl08x->adev->dev,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
213 txd->ccfg);
215 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
216 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
217 writel(lli->lli, phychan->base + PL080_CH_LLI);
218 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
219 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
224 cpu_relax();
226 /* Do not access config register until channel shows as inactive */
227 val = readl(phychan->base + PL080_CH_CONFIG);
228 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
229 val = readl(phychan->base + PL080_CH_CONFIG);
231 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
235 * Pause the channel by setting the HALT bit.
237 * For M->P transfers, pause the DMAC first and then stop the peripheral -
238 * the FIFO can only drain if the peripheral is still requesting data.
239 * (note: this can still timeout if the DMAC FIFO never drains of data.)
241 * For P->M transfers, disable the peripheral first to stop it filling
242 * the DMAC FIFO, and then pause the DMAC.
244 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
246 u32 val;
247 int timeout;
249 /* Set the HALT bit and wait for the FIFO to drain */
250 val = readl(ch->base + PL080_CH_CONFIG);
251 val |= PL080_CONFIG_HALT;
252 writel(val, ch->base + PL080_CH_CONFIG);
254 /* Wait for channel inactive */
255 for (timeout = 1000; timeout; timeout--) {
256 if (!pl08x_phy_channel_busy(ch))
257 break;
258 udelay(1);
260 if (pl08x_phy_channel_busy(ch))
261 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
264 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
266 u32 val;
268 /* Clear the HALT bit */
269 val = readl(ch->base + PL080_CH_CONFIG);
270 val &= ~PL080_CONFIG_HALT;
271 writel(val, ch->base + PL080_CH_CONFIG);
276 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
277 * clears any pending interrupt status. This should not be used for
278 * an on-going transfer, but as a method of shutting down a channel
279 * (eg, when it's no longer used) or terminating a transfer.
281 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
282 struct pl08x_phy_chan *ch)
284 u32 val = readl(ch->base + PL080_CH_CONFIG);
286 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
287 PL080_CONFIG_TC_IRQ_MASK);
289 writel(val, ch->base + PL080_CH_CONFIG);
291 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
292 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
295 static inline u32 get_bytes_in_cctl(u32 cctl)
297 /* The source width defines the number of bytes */
298 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
300 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
301 case PL080_WIDTH_8BIT:
302 break;
303 case PL080_WIDTH_16BIT:
304 bytes *= 2;
305 break;
306 case PL080_WIDTH_32BIT:
307 bytes *= 4;
308 break;
310 return bytes;
313 /* The channel should be paused when calling this */
314 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
316 struct pl08x_phy_chan *ch;
317 struct pl08x_txd *txd;
318 unsigned long flags;
319 size_t bytes = 0;
321 spin_lock_irqsave(&plchan->lock, flags);
322 ch = plchan->phychan;
323 txd = plchan->at;
326 * Follow the LLIs to get the number of remaining
327 * bytes in the currently active transaction.
329 if (ch && txd) {
330 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
332 /* First get the remaining bytes in the active transfer */
333 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
335 if (clli) {
336 struct pl08x_lli *llis_va = txd->llis_va;
337 dma_addr_t llis_bus = txd->llis_bus;
338 int index;
340 BUG_ON(clli < llis_bus || clli >= llis_bus +
341 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
344 * Locate the next LLI - as this is an array,
345 * it's simple maths to find.
347 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
349 for (; index < MAX_NUM_TSFR_LLIS; index++) {
350 bytes += get_bytes_in_cctl(llis_va[index].cctl);
353 * A LLI pointer of 0 terminates the LLI list
355 if (!llis_va[index].lli)
356 break;
361 /* Sum up all queued transactions */
362 if (!list_empty(&plchan->pend_list)) {
363 struct pl08x_txd *txdi;
364 list_for_each_entry(txdi, &plchan->pend_list, node) {
365 bytes += txdi->len;
369 spin_unlock_irqrestore(&plchan->lock, flags);
371 return bytes;
375 * Allocate a physical channel for a virtual channel
377 * Try to locate a physical channel to be used for this transfer. If all
378 * are taken return NULL and the requester will have to cope by using
379 * some fallback PIO mode or retrying later.
381 static struct pl08x_phy_chan *
382 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
383 struct pl08x_dma_chan *virt_chan)
385 struct pl08x_phy_chan *ch = NULL;
386 unsigned long flags;
387 int i;
389 for (i = 0; i < pl08x->vd->channels; i++) {
390 ch = &pl08x->phy_chans[i];
392 spin_lock_irqsave(&ch->lock, flags);
394 if (!ch->serving) {
395 ch->serving = virt_chan;
396 ch->signal = -1;
397 spin_unlock_irqrestore(&ch->lock, flags);
398 break;
401 spin_unlock_irqrestore(&ch->lock, flags);
404 if (i == pl08x->vd->channels) {
405 /* No physical channel available, cope with it */
406 return NULL;
409 return ch;
412 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
413 struct pl08x_phy_chan *ch)
415 unsigned long flags;
417 spin_lock_irqsave(&ch->lock, flags);
419 /* Stop the channel and clear its interrupts */
420 pl08x_terminate_phy_chan(pl08x, ch);
422 /* Mark it as free */
423 ch->serving = NULL;
424 spin_unlock_irqrestore(&ch->lock, flags);
428 * LLI handling
431 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433 switch (coded) {
434 case PL080_WIDTH_8BIT:
435 return 1;
436 case PL080_WIDTH_16BIT:
437 return 2;
438 case PL080_WIDTH_32BIT:
439 return 4;
440 default:
441 break;
443 BUG();
444 return 0;
447 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
448 size_t tsize)
450 u32 retbits = cctl;
452 /* Remove all src, dst and transfer size bits */
453 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
454 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457 /* Then set the bits according to the parameters */
458 switch (srcwidth) {
459 case 1:
460 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
461 break;
462 case 2:
463 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 break;
465 case 4:
466 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
467 break;
468 default:
469 BUG();
470 break;
473 switch (dstwidth) {
474 case 1:
475 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
476 break;
477 case 2:
478 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 break;
480 case 4:
481 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
482 break;
483 default:
484 BUG();
485 break;
488 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
489 return retbits;
492 struct pl08x_lli_build_data {
493 struct pl08x_txd *txd;
494 struct pl08x_bus_data srcbus;
495 struct pl08x_bus_data dstbus;
496 size_t remainder;
497 u32 lli_bus;
501 * Autoselect a master bus to use for the transfer this prefers the
502 * destination bus if both available if fixed address on one bus the
503 * other will be chosen
505 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
506 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508 if (!(cctl & PL080_CONTROL_DST_INCR)) {
509 *mbus = &bd->srcbus;
510 *sbus = &bd->dstbus;
511 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
512 *mbus = &bd->dstbus;
513 *sbus = &bd->srcbus;
514 } else {
515 if (bd->dstbus.buswidth == 4) {
516 *mbus = &bd->dstbus;
517 *sbus = &bd->srcbus;
518 } else if (bd->srcbus.buswidth == 4) {
519 *mbus = &bd->srcbus;
520 *sbus = &bd->dstbus;
521 } else if (bd->dstbus.buswidth == 2) {
522 *mbus = &bd->dstbus;
523 *sbus = &bd->srcbus;
524 } else if (bd->srcbus.buswidth == 2) {
525 *mbus = &bd->srcbus;
526 *sbus = &bd->dstbus;
527 } else {
528 /* bd->srcbus.buswidth == 1 */
529 *mbus = &bd->dstbus;
530 *sbus = &bd->srcbus;
536 * Fills in one LLI for a certain transfer descriptor and advance the counter
538 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
539 int num_llis, int len, u32 cctl)
541 struct pl08x_lli *llis_va = bd->txd->llis_va;
542 dma_addr_t llis_bus = bd->txd->llis_bus;
544 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
546 llis_va[num_llis].cctl = cctl;
547 llis_va[num_llis].src = bd->srcbus.addr;
548 llis_va[num_llis].dst = bd->dstbus.addr;
549 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
550 llis_va[num_llis].lli |= bd->lli_bus;
552 if (cctl & PL080_CONTROL_SRC_INCR)
553 bd->srcbus.addr += len;
554 if (cctl & PL080_CONTROL_DST_INCR)
555 bd->dstbus.addr += len;
557 BUG_ON(bd->remainder < len);
559 bd->remainder -= len;
563 * Return number of bytes to fill to boundary, or len.
564 * This calculation works for any value of addr.
566 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568 size_t boundary_len = PL08X_BOUNDARY_SIZE -
569 (addr & (PL08X_BOUNDARY_SIZE - 1));
571 return min(boundary_len, len);
575 * This fills in the table of LLIs for the transfer descriptor
576 * Note that we assume we never have to change the burst sizes
577 * Return 0 for error
579 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
580 struct pl08x_txd *txd)
582 struct pl08x_bus_data *mbus, *sbus;
583 struct pl08x_lli_build_data bd;
584 int num_llis = 0;
585 u32 cctl;
586 size_t max_bytes_per_lli;
587 size_t total_bytes = 0;
588 struct pl08x_lli *llis_va;
590 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
591 &txd->llis_bus);
592 if (!txd->llis_va) {
593 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
594 return 0;
597 pl08x->pool_ctr++;
599 /* Get the default CCTL */
600 cctl = txd->cctl;
602 bd.txd = txd;
603 bd.srcbus.addr = txd->src_addr;
604 bd.dstbus.addr = txd->dst_addr;
605 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
607 /* Find maximum width of the source bus */
608 bd.srcbus.maxwidth =
609 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
610 PL080_CONTROL_SWIDTH_SHIFT);
612 /* Find maximum width of the destination bus */
613 bd.dstbus.maxwidth =
614 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
615 PL080_CONTROL_DWIDTH_SHIFT);
617 /* Set up the bus widths to the maximum */
618 bd.srcbus.buswidth = bd.srcbus.maxwidth;
619 bd.dstbus.buswidth = bd.dstbus.maxwidth;
622 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
625 PL080_CONTROL_TRANSFER_SIZE_MASK;
627 /* We need to count this down to zero */
628 bd.remainder = txd->len;
631 * Choose bus to align to
632 * - prefers destination bus if both available
633 * - if fixed address on one bus chooses other
635 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
637 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
638 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
639 bd.srcbus.buswidth,
640 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
641 bd.dstbus.buswidth,
642 bd.remainder, max_bytes_per_lli);
643 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
644 mbus == &bd.srcbus ? "src" : "dst",
645 sbus == &bd.srcbus ? "src" : "dst");
647 if (txd->len < mbus->buswidth) {
648 /* Less than a bus width available - send as single bytes */
649 while (bd.remainder) {
650 dev_vdbg(&pl08x->adev->dev,
651 "%s single byte LLIs for a transfer of "
652 "less than a bus width (remain 0x%08x)\n",
653 __func__, bd.remainder);
654 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
655 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
656 total_bytes++;
658 } else {
659 /* Make one byte LLIs until master bus is aligned */
660 while ((mbus->addr) % (mbus->buswidth)) {
661 dev_vdbg(&pl08x->adev->dev,
662 "%s adjustment lli for less than bus width "
663 "(remain 0x%08x)\n",
664 __func__, bd.remainder);
665 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
666 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
667 total_bytes++;
671 * Master now aligned
672 * - if slave is not then we must set its width down
674 if (sbus->addr % sbus->buswidth) {
675 dev_dbg(&pl08x->adev->dev,
676 "%s set down bus width to one byte\n",
677 __func__);
679 sbus->buswidth = 1;
683 * Make largest possible LLIs until less than one bus
684 * width left
686 while (bd.remainder > (mbus->buswidth - 1)) {
687 size_t lli_len, target_len, tsize, odd_bytes;
690 * If enough left try to send max possible,
691 * otherwise try to send the remainder
693 target_len = min(bd.remainder, max_bytes_per_lli);
696 * Set bus lengths for incrementing buses to the
697 * number of bytes which fill to next memory boundary,
698 * limiting on the target length calculated above.
700 if (cctl & PL080_CONTROL_SRC_INCR)
701 bd.srcbus.fill_bytes =
702 pl08x_pre_boundary(bd.srcbus.addr,
703 target_len);
704 else
705 bd.srcbus.fill_bytes = target_len;
707 if (cctl & PL080_CONTROL_DST_INCR)
708 bd.dstbus.fill_bytes =
709 pl08x_pre_boundary(bd.dstbus.addr,
710 target_len);
711 else
712 bd.dstbus.fill_bytes = target_len;
714 /* Find the nearest */
715 lli_len = min(bd.srcbus.fill_bytes,
716 bd.dstbus.fill_bytes);
718 BUG_ON(lli_len > bd.remainder);
720 if (lli_len <= 0) {
721 dev_err(&pl08x->adev->dev,
722 "%s lli_len is %zu, <= 0\n",
723 __func__, lli_len);
724 return 0;
727 if (lli_len == target_len) {
729 * Can send what we wanted.
730 * Maintain alignment
732 lli_len = (lli_len/mbus->buswidth) *
733 mbus->buswidth;
734 odd_bytes = 0;
735 } else {
737 * So now we know how many bytes to transfer
738 * to get to the nearest boundary. The next
739 * LLI will past the boundary. However, we
740 * may be working to a boundary on the slave
741 * bus. We need to ensure the master stays
742 * aligned, and that we are working in
743 * multiples of the bus widths.
745 odd_bytes = lli_len % mbus->buswidth;
746 lli_len -= odd_bytes;
750 if (lli_len) {
752 * Check against minimum bus alignment:
753 * Calculate actual transfer size in relation
754 * to bus width an get a maximum remainder of
755 * the smallest bus width - 1
757 /* FIXME: use round_down()? */
758 tsize = lli_len / min(mbus->buswidth,
759 sbus->buswidth);
760 lli_len = tsize * min(mbus->buswidth,
761 sbus->buswidth);
763 if (target_len != lli_len) {
764 dev_vdbg(&pl08x->adev->dev,
765 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
766 __func__, target_len, lli_len, txd->len);
769 cctl = pl08x_cctl_bits(cctl,
770 bd.srcbus.buswidth,
771 bd.dstbus.buswidth,
772 tsize);
774 dev_vdbg(&pl08x->adev->dev,
775 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
776 __func__, lli_len, bd.remainder);
777 pl08x_fill_lli_for_desc(&bd, num_llis++,
778 lli_len, cctl);
779 total_bytes += lli_len;
783 if (odd_bytes) {
785 * Creep past the boundary, maintaining
786 * master alignment
788 int j;
789 for (j = 0; (j < mbus->buswidth)
790 && (bd.remainder); j++) {
791 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
792 dev_vdbg(&pl08x->adev->dev,
793 "%s align with boundary, single byte (remain 0x%08zx)\n",
794 __func__, bd.remainder);
795 pl08x_fill_lli_for_desc(&bd,
796 num_llis++, 1, cctl);
797 total_bytes++;
803 * Send any odd bytes
805 while (bd.remainder) {
806 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
807 dev_vdbg(&pl08x->adev->dev,
808 "%s align with boundary, single odd byte (remain %zu)\n",
809 __func__, bd.remainder);
810 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
811 total_bytes++;
814 if (total_bytes != txd->len) {
815 dev_err(&pl08x->adev->dev,
816 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
817 __func__, total_bytes, txd->len);
818 return 0;
821 if (num_llis >= MAX_NUM_TSFR_LLIS) {
822 dev_err(&pl08x->adev->dev,
823 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
824 __func__, (u32) MAX_NUM_TSFR_LLIS);
825 return 0;
828 llis_va = txd->llis_va;
829 /* The final LLI terminates the LLI. */
830 llis_va[num_llis - 1].lli = 0;
831 /* The final LLI element shall also fire an interrupt. */
832 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
834 #ifdef VERBOSE_DEBUG
836 int i;
838 dev_vdbg(&pl08x->adev->dev,
839 "%-3s %-9s %-10s %-10s %-10s %s\n",
840 "lli", "", "csrc", "cdst", "clli", "cctl");
841 for (i = 0; i < num_llis; i++) {
842 dev_vdbg(&pl08x->adev->dev,
843 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
844 i, &llis_va[i], llis_va[i].src,
845 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
849 #endif
851 return num_llis;
854 /* You should call this with the struct pl08x lock held */
855 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
856 struct pl08x_txd *txd)
858 /* Free the LLI */
859 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
861 pl08x->pool_ctr--;
863 kfree(txd);
866 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
867 struct pl08x_dma_chan *plchan)
869 struct pl08x_txd *txdi = NULL;
870 struct pl08x_txd *next;
872 if (!list_empty(&plchan->pend_list)) {
873 list_for_each_entry_safe(txdi,
874 next, &plchan->pend_list, node) {
875 list_del(&txdi->node);
876 pl08x_free_txd(pl08x, txdi);
882 * The DMA ENGINE API
884 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
886 return 0;
889 static void pl08x_free_chan_resources(struct dma_chan *chan)
894 * This should be called with the channel plchan->lock held
896 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
897 struct pl08x_txd *txd)
899 struct pl08x_driver_data *pl08x = plchan->host;
900 struct pl08x_phy_chan *ch;
901 int ret;
903 /* Check if we already have a channel */
904 if (plchan->phychan)
905 return 0;
907 ch = pl08x_get_phy_channel(pl08x, plchan);
908 if (!ch) {
909 /* No physical channel available, cope with it */
910 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
911 return -EBUSY;
915 * OK we have a physical channel: for memcpy() this is all we
916 * need, but for slaves the physical signals may be muxed!
917 * Can the platform allow us to use this channel?
919 if (plchan->slave &&
920 ch->signal < 0 &&
921 pl08x->pd->get_signal) {
922 ret = pl08x->pd->get_signal(plchan);
923 if (ret < 0) {
924 dev_dbg(&pl08x->adev->dev,
925 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
926 ch->id, plchan->name);
927 /* Release physical channel & return */
928 pl08x_put_phy_channel(pl08x, ch);
929 return -EBUSY;
931 ch->signal = ret;
933 /* Assign the flow control signal to this channel */
934 if (txd->direction == DMA_TO_DEVICE)
935 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
936 else if (txd->direction == DMA_FROM_DEVICE)
937 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
940 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
941 ch->id,
942 ch->signal,
943 plchan->name);
945 plchan->phychan_hold++;
946 plchan->phychan = ch;
948 return 0;
951 static void release_phy_channel(struct pl08x_dma_chan *plchan)
953 struct pl08x_driver_data *pl08x = plchan->host;
955 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
956 pl08x->pd->put_signal(plchan);
957 plchan->phychan->signal = -1;
959 pl08x_put_phy_channel(pl08x, plchan->phychan);
960 plchan->phychan = NULL;
963 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
965 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
966 struct pl08x_txd *txd = to_pl08x_txd(tx);
967 unsigned long flags;
969 spin_lock_irqsave(&plchan->lock, flags);
971 plchan->chan.cookie += 1;
972 if (plchan->chan.cookie < 0)
973 plchan->chan.cookie = 1;
974 tx->cookie = plchan->chan.cookie;
976 /* Put this onto the pending list */
977 list_add_tail(&txd->node, &plchan->pend_list);
980 * If there was no physical channel available for this memcpy,
981 * stack the request up and indicate that the channel is waiting
982 * for a free physical channel.
984 if (!plchan->slave && !plchan->phychan) {
985 /* Do this memcpy whenever there is a channel ready */
986 plchan->state = PL08X_CHAN_WAITING;
987 plchan->waiting = txd;
988 } else {
989 plchan->phychan_hold--;
992 spin_unlock_irqrestore(&plchan->lock, flags);
994 return tx->cookie;
997 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
998 struct dma_chan *chan, unsigned long flags)
1000 struct dma_async_tx_descriptor *retval = NULL;
1002 return retval;
1006 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1007 * If slaves are relying on interrupts to signal completion this function
1008 * must not be called with interrupts disabled.
1010 static enum dma_status
1011 pl08x_dma_tx_status(struct dma_chan *chan,
1012 dma_cookie_t cookie,
1013 struct dma_tx_state *txstate)
1015 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1016 dma_cookie_t last_used;
1017 dma_cookie_t last_complete;
1018 enum dma_status ret;
1019 u32 bytesleft = 0;
1021 last_used = plchan->chan.cookie;
1022 last_complete = plchan->lc;
1024 ret = dma_async_is_complete(cookie, last_complete, last_used);
1025 if (ret == DMA_SUCCESS) {
1026 dma_set_tx_state(txstate, last_complete, last_used, 0);
1027 return ret;
1031 * This cookie not complete yet
1033 last_used = plchan->chan.cookie;
1034 last_complete = plchan->lc;
1036 /* Get number of bytes left in the active transactions and queue */
1037 bytesleft = pl08x_getbytes_chan(plchan);
1039 dma_set_tx_state(txstate, last_complete, last_used,
1040 bytesleft);
1042 if (plchan->state == PL08X_CHAN_PAUSED)
1043 return DMA_PAUSED;
1045 /* Whether waiting or running, we're in progress */
1046 return DMA_IN_PROGRESS;
1049 /* PrimeCell DMA extension */
1050 struct burst_table {
1051 u32 burstwords;
1052 u32 reg;
1055 static const struct burst_table burst_sizes[] = {
1057 .burstwords = 256,
1058 .reg = PL080_BSIZE_256,
1061 .burstwords = 128,
1062 .reg = PL080_BSIZE_128,
1065 .burstwords = 64,
1066 .reg = PL080_BSIZE_64,
1069 .burstwords = 32,
1070 .reg = PL080_BSIZE_32,
1073 .burstwords = 16,
1074 .reg = PL080_BSIZE_16,
1077 .burstwords = 8,
1078 .reg = PL080_BSIZE_8,
1081 .burstwords = 4,
1082 .reg = PL080_BSIZE_4,
1085 .burstwords = 0,
1086 .reg = PL080_BSIZE_1,
1091 * Given the source and destination available bus masks, select which
1092 * will be routed to each port. We try to have source and destination
1093 * on separate ports, but always respect the allowable settings.
1095 static u32 pl08x_select_bus(u8 src, u8 dst)
1097 u32 cctl = 0;
1099 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1100 cctl |= PL080_CONTROL_DST_AHB2;
1101 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1102 cctl |= PL080_CONTROL_SRC_AHB2;
1104 return cctl;
1107 static u32 pl08x_cctl(u32 cctl)
1109 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1110 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1111 PL080_CONTROL_PROT_MASK);
1113 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1114 return cctl | PL080_CONTROL_PROT_SYS;
1117 static u32 pl08x_width(enum dma_slave_buswidth width)
1119 switch (width) {
1120 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1121 return PL080_WIDTH_8BIT;
1122 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1123 return PL080_WIDTH_16BIT;
1124 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1125 return PL080_WIDTH_32BIT;
1126 default:
1127 return ~0;
1131 static u32 pl08x_burst(u32 maxburst)
1133 int i;
1135 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1136 if (burst_sizes[i].burstwords <= maxburst)
1137 break;
1139 return burst_sizes[i].reg;
1142 static int dma_set_runtime_config(struct dma_chan *chan,
1143 struct dma_slave_config *config)
1145 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1146 struct pl08x_driver_data *pl08x = plchan->host;
1147 enum dma_slave_buswidth addr_width;
1148 u32 width, burst, maxburst;
1149 u32 cctl = 0;
1151 if (!plchan->slave)
1152 return -EINVAL;
1154 /* Transfer direction */
1155 plchan->runtime_direction = config->direction;
1156 if (config->direction == DMA_TO_DEVICE) {
1157 addr_width = config->dst_addr_width;
1158 maxburst = config->dst_maxburst;
1159 } else if (config->direction == DMA_FROM_DEVICE) {
1160 addr_width = config->src_addr_width;
1161 maxburst = config->src_maxburst;
1162 } else {
1163 dev_err(&pl08x->adev->dev,
1164 "bad runtime_config: alien transfer direction\n");
1165 return -EINVAL;
1168 width = pl08x_width(addr_width);
1169 if (width == ~0) {
1170 dev_err(&pl08x->adev->dev,
1171 "bad runtime_config: alien address width\n");
1172 return -EINVAL;
1175 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1176 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1179 * If this channel will only request single transfers, set this
1180 * down to ONE element. Also select one element if no maxburst
1181 * is specified.
1183 if (plchan->cd->single)
1184 maxburst = 1;
1186 burst = pl08x_burst(maxburst);
1187 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1188 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1190 if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1191 plchan->src_addr = config->src_addr;
1192 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1193 pl08x_select_bus(plchan->cd->periph_buses,
1194 pl08x->mem_buses);
1195 } else {
1196 plchan->dst_addr = config->dst_addr;
1197 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1198 pl08x_select_bus(pl08x->mem_buses,
1199 plchan->cd->periph_buses);
1202 dev_dbg(&pl08x->adev->dev,
1203 "configured channel %s (%s) for %s, data width %d, "
1204 "maxburst %d words, LE, CCTL=0x%08x\n",
1205 dma_chan_name(chan), plchan->name,
1206 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1207 addr_width,
1208 maxburst,
1209 cctl);
1211 return 0;
1215 * Slave transactions callback to the slave device to allow
1216 * synchronization of slave DMA signals with the DMAC enable
1218 static void pl08x_issue_pending(struct dma_chan *chan)
1220 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1221 unsigned long flags;
1223 spin_lock_irqsave(&plchan->lock, flags);
1224 /* Something is already active, or we're waiting for a channel... */
1225 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1226 spin_unlock_irqrestore(&plchan->lock, flags);
1227 return;
1230 /* Take the first element in the queue and execute it */
1231 if (!list_empty(&plchan->pend_list)) {
1232 struct pl08x_txd *next;
1234 next = list_first_entry(&plchan->pend_list,
1235 struct pl08x_txd,
1236 node);
1237 list_del(&next->node);
1238 plchan->state = PL08X_CHAN_RUNNING;
1240 pl08x_start_txd(plchan, next);
1243 spin_unlock_irqrestore(&plchan->lock, flags);
1246 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1247 struct pl08x_txd *txd)
1249 struct pl08x_driver_data *pl08x = plchan->host;
1250 unsigned long flags;
1251 int num_llis, ret;
1253 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1254 if (!num_llis) {
1255 kfree(txd);
1256 return -EINVAL;
1259 spin_lock_irqsave(&plchan->lock, flags);
1262 * See if we already have a physical channel allocated,
1263 * else this is the time to try to get one.
1265 ret = prep_phy_channel(plchan, txd);
1266 if (ret) {
1268 * No physical channel was available.
1270 * memcpy transfers can be sorted out at submission time.
1272 * Slave transfers may have been denied due to platform
1273 * channel muxing restrictions. Since there is no guarantee
1274 * that this will ever be resolved, and the signal must be
1275 * acquired AFTER acquiring the physical channel, we will let
1276 * them be NACK:ed with -EBUSY here. The drivers can retry
1277 * the prep() call if they are eager on doing this using DMA.
1279 if (plchan->slave) {
1280 pl08x_free_txd_list(pl08x, plchan);
1281 pl08x_free_txd(pl08x, txd);
1282 spin_unlock_irqrestore(&plchan->lock, flags);
1283 return -EBUSY;
1285 } else
1287 * Else we're all set, paused and ready to roll, status
1288 * will switch to PL08X_CHAN_RUNNING when we call
1289 * issue_pending(). If there is something running on the
1290 * channel already we don't change its state.
1292 if (plchan->state == PL08X_CHAN_IDLE)
1293 plchan->state = PL08X_CHAN_PAUSED;
1295 spin_unlock_irqrestore(&plchan->lock, flags);
1297 return 0;
1300 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1301 unsigned long flags)
1303 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1305 if (txd) {
1306 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1307 txd->tx.flags = flags;
1308 txd->tx.tx_submit = pl08x_tx_submit;
1309 INIT_LIST_HEAD(&txd->node);
1311 /* Always enable error and terminal interrupts */
1312 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1313 PL080_CONFIG_TC_IRQ_MASK;
1315 return txd;
1319 * Initialize a descriptor to be used by memcpy submit
1321 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1322 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1323 size_t len, unsigned long flags)
1325 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1326 struct pl08x_driver_data *pl08x = plchan->host;
1327 struct pl08x_txd *txd;
1328 int ret;
1330 txd = pl08x_get_txd(plchan, flags);
1331 if (!txd) {
1332 dev_err(&pl08x->adev->dev,
1333 "%s no memory for descriptor\n", __func__);
1334 return NULL;
1337 txd->direction = DMA_NONE;
1338 txd->src_addr = src;
1339 txd->dst_addr = dest;
1340 txd->len = len;
1342 /* Set platform data for m2m */
1343 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1344 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1345 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1347 /* Both to be incremented or the code will break */
1348 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1350 if (pl08x->vd->dualmaster)
1351 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1352 pl08x->mem_buses);
1354 ret = pl08x_prep_channel_resources(plchan, txd);
1355 if (ret)
1356 return NULL;
1358 return &txd->tx;
1361 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1362 struct dma_chan *chan, struct scatterlist *sgl,
1363 unsigned int sg_len, enum dma_data_direction direction,
1364 unsigned long flags)
1366 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1367 struct pl08x_driver_data *pl08x = plchan->host;
1368 struct pl08x_txd *txd;
1369 int ret;
1372 * Current implementation ASSUMES only one sg
1374 if (sg_len != 1) {
1375 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1376 __func__);
1377 BUG();
1380 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1381 __func__, sgl->length, plchan->name);
1383 txd = pl08x_get_txd(plchan, flags);
1384 if (!txd) {
1385 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1386 return NULL;
1389 if (direction != plchan->runtime_direction)
1390 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1391 "the direction configured for the PrimeCell\n",
1392 __func__);
1395 * Set up addresses, the PrimeCell configured address
1396 * will take precedence since this may configure the
1397 * channel target address dynamically at runtime.
1399 txd->direction = direction;
1400 txd->len = sgl->length;
1402 if (direction == DMA_TO_DEVICE) {
1403 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1404 txd->cctl = plchan->dst_cctl;
1405 txd->src_addr = sgl->dma_address;
1406 txd->dst_addr = plchan->dst_addr;
1407 } else if (direction == DMA_FROM_DEVICE) {
1408 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1409 txd->cctl = plchan->src_cctl;
1410 txd->src_addr = plchan->src_addr;
1411 txd->dst_addr = sgl->dma_address;
1412 } else {
1413 dev_err(&pl08x->adev->dev,
1414 "%s direction unsupported\n", __func__);
1415 return NULL;
1418 ret = pl08x_prep_channel_resources(plchan, txd);
1419 if (ret)
1420 return NULL;
1422 return &txd->tx;
1425 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1426 unsigned long arg)
1428 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1429 struct pl08x_driver_data *pl08x = plchan->host;
1430 unsigned long flags;
1431 int ret = 0;
1433 /* Controls applicable to inactive channels */
1434 if (cmd == DMA_SLAVE_CONFIG) {
1435 return dma_set_runtime_config(chan,
1436 (struct dma_slave_config *)arg);
1440 * Anything succeeds on channels with no physical allocation and
1441 * no queued transfers.
1443 spin_lock_irqsave(&plchan->lock, flags);
1444 if (!plchan->phychan && !plchan->at) {
1445 spin_unlock_irqrestore(&plchan->lock, flags);
1446 return 0;
1449 switch (cmd) {
1450 case DMA_TERMINATE_ALL:
1451 plchan->state = PL08X_CHAN_IDLE;
1453 if (plchan->phychan) {
1454 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1457 * Mark physical channel as free and free any slave
1458 * signal
1460 release_phy_channel(plchan);
1462 /* Dequeue jobs and free LLIs */
1463 if (plchan->at) {
1464 pl08x_free_txd(pl08x, plchan->at);
1465 plchan->at = NULL;
1467 /* Dequeue jobs not yet fired as well */
1468 pl08x_free_txd_list(pl08x, plchan);
1469 break;
1470 case DMA_PAUSE:
1471 pl08x_pause_phy_chan(plchan->phychan);
1472 plchan->state = PL08X_CHAN_PAUSED;
1473 break;
1474 case DMA_RESUME:
1475 pl08x_resume_phy_chan(plchan->phychan);
1476 plchan->state = PL08X_CHAN_RUNNING;
1477 break;
1478 default:
1479 /* Unknown command */
1480 ret = -ENXIO;
1481 break;
1484 spin_unlock_irqrestore(&plchan->lock, flags);
1486 return ret;
1489 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1491 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1492 char *name = chan_id;
1494 /* Check that the channel is not taken! */
1495 if (!strcmp(plchan->name, name))
1496 return true;
1498 return false;
1502 * Just check that the device is there and active
1503 * TODO: turn this bit on/off depending on the number of physical channels
1504 * actually used, if it is zero... well shut it off. That will save some
1505 * power. Cut the clock at the same time.
1507 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1509 u32 val;
1511 val = readl(pl08x->base + PL080_CONFIG);
1512 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1513 /* We implicitly clear bit 1 and that means little-endian mode */
1514 val |= PL080_CONFIG_ENABLE;
1515 writel(val, pl08x->base + PL080_CONFIG);
1518 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1520 struct device *dev = txd->tx.chan->device->dev;
1522 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1523 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1524 dma_unmap_single(dev, txd->src_addr, txd->len,
1525 DMA_TO_DEVICE);
1526 else
1527 dma_unmap_page(dev, txd->src_addr, txd->len,
1528 DMA_TO_DEVICE);
1530 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1531 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1532 dma_unmap_single(dev, txd->dst_addr, txd->len,
1533 DMA_FROM_DEVICE);
1534 else
1535 dma_unmap_page(dev, txd->dst_addr, txd->len,
1536 DMA_FROM_DEVICE);
1540 static void pl08x_tasklet(unsigned long data)
1542 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1543 struct pl08x_driver_data *pl08x = plchan->host;
1544 struct pl08x_txd *txd;
1545 unsigned long flags;
1547 spin_lock_irqsave(&plchan->lock, flags);
1549 txd = plchan->at;
1550 plchan->at = NULL;
1552 if (txd) {
1553 /* Update last completed */
1554 plchan->lc = txd->tx.cookie;
1557 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1558 if (!list_empty(&plchan->pend_list)) {
1559 struct pl08x_txd *next;
1561 next = list_first_entry(&plchan->pend_list,
1562 struct pl08x_txd,
1563 node);
1564 list_del(&next->node);
1566 pl08x_start_txd(plchan, next);
1567 } else if (plchan->phychan_hold) {
1569 * This channel is still in use - we have a new txd being
1570 * prepared and will soon be queued. Don't give up the
1571 * physical channel.
1573 } else {
1574 struct pl08x_dma_chan *waiting = NULL;
1577 * No more jobs, so free up the physical channel
1578 * Free any allocated signal on slave transfers too
1580 release_phy_channel(plchan);
1581 plchan->state = PL08X_CHAN_IDLE;
1584 * And NOW before anyone else can grab that free:d up
1585 * physical channel, see if there is some memcpy pending
1586 * that seriously needs to start because of being stacked
1587 * up while we were choking the physical channels with data.
1589 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1590 chan.device_node) {
1591 if (waiting->state == PL08X_CHAN_WAITING &&
1592 waiting->waiting != NULL) {
1593 int ret;
1595 /* This should REALLY not fail now */
1596 ret = prep_phy_channel(waiting,
1597 waiting->waiting);
1598 BUG_ON(ret);
1599 waiting->phychan_hold--;
1600 waiting->state = PL08X_CHAN_RUNNING;
1601 waiting->waiting = NULL;
1602 pl08x_issue_pending(&waiting->chan);
1603 break;
1608 spin_unlock_irqrestore(&plchan->lock, flags);
1610 if (txd) {
1611 dma_async_tx_callback callback = txd->tx.callback;
1612 void *callback_param = txd->tx.callback_param;
1614 /* Don't try to unmap buffers on slave channels */
1615 if (!plchan->slave)
1616 pl08x_unmap_buffers(txd);
1618 /* Free the descriptor */
1619 spin_lock_irqsave(&plchan->lock, flags);
1620 pl08x_free_txd(pl08x, txd);
1621 spin_unlock_irqrestore(&plchan->lock, flags);
1623 /* Callback to signal completion */
1624 if (callback)
1625 callback(callback_param);
1629 static irqreturn_t pl08x_irq(int irq, void *dev)
1631 struct pl08x_driver_data *pl08x = dev;
1632 u32 mask = 0;
1633 u32 val;
1634 int i;
1636 val = readl(pl08x->base + PL080_ERR_STATUS);
1637 if (val) {
1638 /* An error interrupt (on one or more channels) */
1639 dev_err(&pl08x->adev->dev,
1640 "%s error interrupt, register value 0x%08x\n",
1641 __func__, val);
1643 * Simply clear ALL PL08X error interrupts,
1644 * regardless of channel and cause
1645 * FIXME: should be 0x00000003 on PL081 really.
1647 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1649 val = readl(pl08x->base + PL080_INT_STATUS);
1650 for (i = 0; i < pl08x->vd->channels; i++) {
1651 if ((1 << i) & val) {
1652 /* Locate physical channel */
1653 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1654 struct pl08x_dma_chan *plchan = phychan->serving;
1656 /* Schedule tasklet on this channel */
1657 tasklet_schedule(&plchan->tasklet);
1659 mask |= (1 << i);
1662 /* Clear only the terminal interrupts on channels we processed */
1663 writel(mask, pl08x->base + PL080_TC_CLEAR);
1665 return mask ? IRQ_HANDLED : IRQ_NONE;
1668 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1670 u32 cctl = pl08x_cctl(chan->cd->cctl);
1672 chan->slave = true;
1673 chan->name = chan->cd->bus_id;
1674 chan->src_addr = chan->cd->addr;
1675 chan->dst_addr = chan->cd->addr;
1676 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1677 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1678 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1679 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1683 * Initialise the DMAC memcpy/slave channels.
1684 * Make a local wrapper to hold required data
1686 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1687 struct dma_device *dmadev,
1688 unsigned int channels,
1689 bool slave)
1691 struct pl08x_dma_chan *chan;
1692 int i;
1694 INIT_LIST_HEAD(&dmadev->channels);
1697 * Register as many many memcpy as we have physical channels,
1698 * we won't always be able to use all but the code will have
1699 * to cope with that situation.
1701 for (i = 0; i < channels; i++) {
1702 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1703 if (!chan) {
1704 dev_err(&pl08x->adev->dev,
1705 "%s no memory for channel\n", __func__);
1706 return -ENOMEM;
1709 chan->host = pl08x;
1710 chan->state = PL08X_CHAN_IDLE;
1712 if (slave) {
1713 chan->cd = &pl08x->pd->slave_channels[i];
1714 pl08x_dma_slave_init(chan);
1715 } else {
1716 chan->cd = &pl08x->pd->memcpy_channel;
1717 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1718 if (!chan->name) {
1719 kfree(chan);
1720 return -ENOMEM;
1723 if (chan->cd->circular_buffer) {
1724 dev_err(&pl08x->adev->dev,
1725 "channel %s: circular buffers not supported\n",
1726 chan->name);
1727 kfree(chan);
1728 continue;
1730 dev_info(&pl08x->adev->dev,
1731 "initialize virtual channel \"%s\"\n",
1732 chan->name);
1734 chan->chan.device = dmadev;
1735 chan->chan.cookie = 0;
1736 chan->lc = 0;
1738 spin_lock_init(&chan->lock);
1739 INIT_LIST_HEAD(&chan->pend_list);
1740 tasklet_init(&chan->tasklet, pl08x_tasklet,
1741 (unsigned long) chan);
1743 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1745 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1746 i, slave ? "slave" : "memcpy");
1747 return i;
1750 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1752 struct pl08x_dma_chan *chan = NULL;
1753 struct pl08x_dma_chan *next;
1755 list_for_each_entry_safe(chan,
1756 next, &dmadev->channels, chan.device_node) {
1757 list_del(&chan->chan.device_node);
1758 kfree(chan);
1762 #ifdef CONFIG_DEBUG_FS
1763 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1765 switch (state) {
1766 case PL08X_CHAN_IDLE:
1767 return "idle";
1768 case PL08X_CHAN_RUNNING:
1769 return "running";
1770 case PL08X_CHAN_PAUSED:
1771 return "paused";
1772 case PL08X_CHAN_WAITING:
1773 return "waiting";
1774 default:
1775 break;
1777 return "UNKNOWN STATE";
1780 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1782 struct pl08x_driver_data *pl08x = s->private;
1783 struct pl08x_dma_chan *chan;
1784 struct pl08x_phy_chan *ch;
1785 unsigned long flags;
1786 int i;
1788 seq_printf(s, "PL08x physical channels:\n");
1789 seq_printf(s, "CHANNEL:\tUSER:\n");
1790 seq_printf(s, "--------\t-----\n");
1791 for (i = 0; i < pl08x->vd->channels; i++) {
1792 struct pl08x_dma_chan *virt_chan;
1794 ch = &pl08x->phy_chans[i];
1796 spin_lock_irqsave(&ch->lock, flags);
1797 virt_chan = ch->serving;
1799 seq_printf(s, "%d\t\t%s\n",
1800 ch->id, virt_chan ? virt_chan->name : "(none)");
1802 spin_unlock_irqrestore(&ch->lock, flags);
1805 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1806 seq_printf(s, "CHANNEL:\tSTATE:\n");
1807 seq_printf(s, "--------\t------\n");
1808 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1809 seq_printf(s, "%s\t\t%s\n", chan->name,
1810 pl08x_state_str(chan->state));
1813 seq_printf(s, "\nPL08x virtual slave channels:\n");
1814 seq_printf(s, "CHANNEL:\tSTATE:\n");
1815 seq_printf(s, "--------\t------\n");
1816 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1817 seq_printf(s, "%s\t\t%s\n", chan->name,
1818 pl08x_state_str(chan->state));
1821 return 0;
1824 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826 return single_open(file, pl08x_debugfs_show, inode->i_private);
1829 static const struct file_operations pl08x_debugfs_operations = {
1830 .open = pl08x_debugfs_open,
1831 .read = seq_read,
1832 .llseek = seq_lseek,
1833 .release = single_release,
1836 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838 /* Expose a simple debugfs interface to view all clocks */
1839 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1840 NULL, pl08x,
1841 &pl08x_debugfs_operations);
1844 #else
1845 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1848 #endif
1850 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852 struct pl08x_driver_data *pl08x;
1853 const struct vendor_data *vd = id->data;
1854 int ret = 0;
1855 int i;
1857 ret = amba_request_regions(adev, NULL);
1858 if (ret)
1859 return ret;
1861 /* Create the driver state holder */
1862 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1863 if (!pl08x) {
1864 ret = -ENOMEM;
1865 goto out_no_pl08x;
1868 /* Initialize memcpy engine */
1869 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1870 pl08x->memcpy.dev = &adev->dev;
1871 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1873 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1874 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1875 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1876 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1877 pl08x->memcpy.device_control = pl08x_control;
1879 /* Initialize slave engine */
1880 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1881 pl08x->slave.dev = &adev->dev;
1882 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1883 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1884 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1885 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1886 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1887 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1888 pl08x->slave.device_control = pl08x_control;
1890 /* Get the platform data */
1891 pl08x->pd = dev_get_platdata(&adev->dev);
1892 if (!pl08x->pd) {
1893 dev_err(&adev->dev, "no platform data supplied\n");
1894 goto out_no_platdata;
1897 /* Assign useful pointers to the driver state */
1898 pl08x->adev = adev;
1899 pl08x->vd = vd;
1901 /* By default, AHB1 only. If dualmaster, from platform */
1902 pl08x->lli_buses = PL08X_AHB1;
1903 pl08x->mem_buses = PL08X_AHB1;
1904 if (pl08x->vd->dualmaster) {
1905 pl08x->lli_buses = pl08x->pd->lli_buses;
1906 pl08x->mem_buses = pl08x->pd->mem_buses;
1909 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1910 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1911 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1912 if (!pl08x->pool) {
1913 ret = -ENOMEM;
1914 goto out_no_lli_pool;
1917 spin_lock_init(&pl08x->lock);
1919 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1920 if (!pl08x->base) {
1921 ret = -ENOMEM;
1922 goto out_no_ioremap;
1925 /* Turn on the PL08x */
1926 pl08x_ensure_on(pl08x);
1928 /* Attach the interrupt handler */
1929 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1930 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1932 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1933 DRIVER_NAME, pl08x);
1934 if (ret) {
1935 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1936 __func__, adev->irq[0]);
1937 goto out_no_irq;
1940 /* Initialize physical channels */
1941 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1942 GFP_KERNEL);
1943 if (!pl08x->phy_chans) {
1944 dev_err(&adev->dev, "%s failed to allocate "
1945 "physical channel holders\n",
1946 __func__);
1947 goto out_no_phychans;
1950 for (i = 0; i < vd->channels; i++) {
1951 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953 ch->id = i;
1954 ch->base = pl08x->base + PL080_Cx_BASE(i);
1955 spin_lock_init(&ch->lock);
1956 ch->serving = NULL;
1957 ch->signal = -1;
1958 dev_info(&adev->dev,
1959 "physical channel %d is %s\n", i,
1960 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1963 /* Register as many memcpy channels as there are physical channels */
1964 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1965 pl08x->vd->channels, false);
1966 if (ret <= 0) {
1967 dev_warn(&pl08x->adev->dev,
1968 "%s failed to enumerate memcpy channels - %d\n",
1969 __func__, ret);
1970 goto out_no_memcpy;
1972 pl08x->memcpy.chancnt = ret;
1974 /* Register slave channels */
1975 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1976 pl08x->pd->num_slave_channels,
1977 true);
1978 if (ret <= 0) {
1979 dev_warn(&pl08x->adev->dev,
1980 "%s failed to enumerate slave channels - %d\n",
1981 __func__, ret);
1982 goto out_no_slave;
1984 pl08x->slave.chancnt = ret;
1986 ret = dma_async_device_register(&pl08x->memcpy);
1987 if (ret) {
1988 dev_warn(&pl08x->adev->dev,
1989 "%s failed to register memcpy as an async device - %d\n",
1990 __func__, ret);
1991 goto out_no_memcpy_reg;
1994 ret = dma_async_device_register(&pl08x->slave);
1995 if (ret) {
1996 dev_warn(&pl08x->adev->dev,
1997 "%s failed to register slave as an async device - %d\n",
1998 __func__, ret);
1999 goto out_no_slave_reg;
2002 amba_set_drvdata(adev, pl08x);
2003 init_pl08x_debugfs(pl08x);
2004 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2005 amba_part(adev), amba_rev(adev),
2006 (unsigned long long)adev->res.start, adev->irq[0]);
2007 return 0;
2009 out_no_slave_reg:
2010 dma_async_device_unregister(&pl08x->memcpy);
2011 out_no_memcpy_reg:
2012 pl08x_free_virtual_channels(&pl08x->slave);
2013 out_no_slave:
2014 pl08x_free_virtual_channels(&pl08x->memcpy);
2015 out_no_memcpy:
2016 kfree(pl08x->phy_chans);
2017 out_no_phychans:
2018 free_irq(adev->irq[0], pl08x);
2019 out_no_irq:
2020 iounmap(pl08x->base);
2021 out_no_ioremap:
2022 dma_pool_destroy(pl08x->pool);
2023 out_no_lli_pool:
2024 out_no_platdata:
2025 kfree(pl08x);
2026 out_no_pl08x:
2027 amba_release_regions(adev);
2028 return ret;
2031 /* PL080 has 8 channels and the PL080 have just 2 */
2032 static struct vendor_data vendor_pl080 = {
2033 .channels = 8,
2034 .dualmaster = true,
2037 static struct vendor_data vendor_pl081 = {
2038 .channels = 2,
2039 .dualmaster = false,
2042 static struct amba_id pl08x_ids[] = {
2043 /* PL080 */
2045 .id = 0x00041080,
2046 .mask = 0x000fffff,
2047 .data = &vendor_pl080,
2049 /* PL081 */
2051 .id = 0x00041081,
2052 .mask = 0x000fffff,
2053 .data = &vendor_pl081,
2055 /* Nomadik 8815 PL080 variant */
2057 .id = 0x00280880,
2058 .mask = 0x00ffffff,
2059 .data = &vendor_pl080,
2061 { 0, 0 },
2064 static struct amba_driver pl08x_amba_driver = {
2065 .drv.name = DRIVER_NAME,
2066 .id_table = pl08x_ids,
2067 .probe = pl08x_probe,
2070 static int __init pl08x_init(void)
2072 int retval;
2073 retval = amba_driver_register(&pl08x_amba_driver);
2074 if (retval)
2075 printk(KERN_WARNING DRIVER_NAME
2076 "failed to register as an AMBA device (%d)\n",
2077 retval);
2078 return retval;
2080 subsys_initcall(pl08x_init);