2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/delay.h>
83 #include <linux/dmapool.h>
84 #include <linux/dmaengine.h>
85 #include <linux/amba/bus.h>
86 #include <linux/amba/pl08x.h>
87 #include <linux/debugfs.h>
88 #include <linux/seq_file.h>
90 #include <asm/hardware/pl080.h>
92 #define DRIVER_NAME "pl08xdmac"
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
105 * PL08X private data structures
106 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
107 * start & end do not - their bus bit info is in cctl. Also note that these
108 * are fixed 32-bit quantities.
118 * struct pl08x_driver_data - the local state holder for the PL08x
119 * @slave: slave engine for this instance
120 * @memcpy: memcpy engine for this instance
121 * @base: virtual memory base (remapped) for the PL08x
122 * @adev: the corresponding AMBA (PrimeCell) bus entry
123 * @vd: vendor data for this PL08x variant
124 * @pd: platform data passed in from the platform/machine
125 * @phy_chans: array of data for the physical channels
126 * @pool: a pool for the LLI descriptors
127 * @pool_ctr: counter of LLIs in the pool
128 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
129 * @mem_buses: set to indicate memory transfers on AHB2.
130 * @lock: a spinlock for this struct
132 struct pl08x_driver_data
{
133 struct dma_device slave
;
134 struct dma_device memcpy
;
136 struct amba_device
*adev
;
137 const struct vendor_data
*vd
;
138 struct pl08x_platform_data
*pd
;
139 struct pl08x_phy_chan
*phy_chans
;
140 struct dma_pool
*pool
;
148 * PL08X specific defines
152 * Memory boundaries: the manual for PL08x says that the controller
153 * cannot read past a 1KiB boundary, so these defines are used to
154 * create transfer LLIs that do not cross such boundaries.
156 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
157 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
159 /* Size (bytes) of each LLI buffer allocated for one transfer */
160 # define PL08X_LLI_TSFR_SIZE 0x2000
162 /* Maximum times we call dma_pool_alloc on this pool without freeing */
163 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
164 #define PL08X_ALIGN 8
166 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
168 return container_of(chan
, struct pl08x_dma_chan
, chan
);
171 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
173 return container_of(tx
, struct pl08x_txd
, tx
);
177 * Physical channel handling
180 /* Whether a certain channel is busy or not */
181 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
185 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
186 return val
& PL080_CONFIG_ACTIVE
;
190 * Set the initial DMA register values i.e. those for the first LLI
191 * The next LLI pointer and the configuration interrupt bit have
192 * been set when the LLIs were constructed. Poke them into the hardware
193 * and start the transfer.
195 static void pl08x_start_txd(struct pl08x_dma_chan
*plchan
,
196 struct pl08x_txd
*txd
)
198 struct pl08x_driver_data
*pl08x
= plchan
->host
;
199 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
200 struct pl08x_lli
*lli
= &txd
->llis_va
[0];
205 /* Wait for channel inactive */
206 while (pl08x_phy_channel_busy(phychan
))
209 dev_vdbg(&pl08x
->adev
->dev
,
210 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
212 phychan
->id
, lli
->src
, lli
->dst
, lli
->lli
, lli
->cctl
,
215 writel(lli
->src
, phychan
->base
+ PL080_CH_SRC_ADDR
);
216 writel(lli
->dst
, phychan
->base
+ PL080_CH_DST_ADDR
);
217 writel(lli
->lli
, phychan
->base
+ PL080_CH_LLI
);
218 writel(lli
->cctl
, phychan
->base
+ PL080_CH_CONTROL
);
219 writel(txd
->ccfg
, phychan
->base
+ PL080_CH_CONFIG
);
221 /* Enable the DMA channel */
222 /* Do not access config register until channel shows as disabled */
223 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
226 /* Do not access config register until channel shows as inactive */
227 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
228 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
229 val
= readl(phychan
->base
+ PL080_CH_CONFIG
);
231 writel(val
| PL080_CONFIG_ENABLE
, phychan
->base
+ PL080_CH_CONFIG
);
235 * Pause the channel by setting the HALT bit.
237 * For M->P transfers, pause the DMAC first and then stop the peripheral -
238 * the FIFO can only drain if the peripheral is still requesting data.
239 * (note: this can still timeout if the DMAC FIFO never drains of data.)
241 * For P->M transfers, disable the peripheral first to stop it filling
242 * the DMAC FIFO, and then pause the DMAC.
244 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
249 /* Set the HALT bit and wait for the FIFO to drain */
250 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
251 val
|= PL080_CONFIG_HALT
;
252 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
254 /* Wait for channel inactive */
255 for (timeout
= 1000; timeout
; timeout
--) {
256 if (!pl08x_phy_channel_busy(ch
))
260 if (pl08x_phy_channel_busy(ch
))
261 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
264 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
268 /* Clear the HALT bit */
269 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
270 val
&= ~PL080_CONFIG_HALT
;
271 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
276 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
277 * clears any pending interrupt status. This should not be used for
278 * an on-going transfer, but as a method of shutting down a channel
279 * (eg, when it's no longer used) or terminating a transfer.
281 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
282 struct pl08x_phy_chan
*ch
)
284 u32 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
286 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
287 PL080_CONFIG_TC_IRQ_MASK
);
289 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
291 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
292 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
295 static inline u32
get_bytes_in_cctl(u32 cctl
)
297 /* The source width defines the number of bytes */
298 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
300 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
301 case PL080_WIDTH_8BIT
:
303 case PL080_WIDTH_16BIT
:
306 case PL080_WIDTH_32BIT
:
313 /* The channel should be paused when calling this */
314 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
316 struct pl08x_phy_chan
*ch
;
317 struct pl08x_txd
*txd
;
321 spin_lock_irqsave(&plchan
->lock
, flags
);
322 ch
= plchan
->phychan
;
326 * Follow the LLIs to get the number of remaining
327 * bytes in the currently active transaction.
330 u32 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
332 /* First get the remaining bytes in the active transfer */
333 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
336 struct pl08x_lli
*llis_va
= txd
->llis_va
;
337 dma_addr_t llis_bus
= txd
->llis_bus
;
340 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
341 sizeof(struct pl08x_lli
) * MAX_NUM_TSFR_LLIS
);
344 * Locate the next LLI - as this is an array,
345 * it's simple maths to find.
347 index
= (clli
- llis_bus
) / sizeof(struct pl08x_lli
);
349 for (; index
< MAX_NUM_TSFR_LLIS
; index
++) {
350 bytes
+= get_bytes_in_cctl(llis_va
[index
].cctl
);
353 * A LLI pointer of 0 terminates the LLI list
355 if (!llis_va
[index
].lli
)
361 /* Sum up all queued transactions */
362 if (!list_empty(&plchan
->pend_list
)) {
363 struct pl08x_txd
*txdi
;
364 list_for_each_entry(txdi
, &plchan
->pend_list
, node
) {
369 spin_unlock_irqrestore(&plchan
->lock
, flags
);
375 * Allocate a physical channel for a virtual channel
377 * Try to locate a physical channel to be used for this transfer. If all
378 * are taken return NULL and the requester will have to cope by using
379 * some fallback PIO mode or retrying later.
381 static struct pl08x_phy_chan
*
382 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
383 struct pl08x_dma_chan
*virt_chan
)
385 struct pl08x_phy_chan
*ch
= NULL
;
389 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
390 ch
= &pl08x
->phy_chans
[i
];
392 spin_lock_irqsave(&ch
->lock
, flags
);
395 ch
->serving
= virt_chan
;
397 spin_unlock_irqrestore(&ch
->lock
, flags
);
401 spin_unlock_irqrestore(&ch
->lock
, flags
);
404 if (i
== pl08x
->vd
->channels
) {
405 /* No physical channel available, cope with it */
412 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
413 struct pl08x_phy_chan
*ch
)
417 spin_lock_irqsave(&ch
->lock
, flags
);
419 /* Stop the channel and clear its interrupts */
420 pl08x_terminate_phy_chan(pl08x
, ch
);
422 /* Mark it as free */
424 spin_unlock_irqrestore(&ch
->lock
, flags
);
431 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
434 case PL080_WIDTH_8BIT
:
436 case PL080_WIDTH_16BIT
:
438 case PL080_WIDTH_32BIT
:
447 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
452 /* Remove all src, dst and transfer size bits */
453 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
454 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
455 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
457 /* Then set the bits according to the parameters */
460 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
463 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
466 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
475 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
478 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
481 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
488 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
492 struct pl08x_lli_build_data
{
493 struct pl08x_txd
*txd
;
494 struct pl08x_bus_data srcbus
;
495 struct pl08x_bus_data dstbus
;
501 * Autoselect a master bus to use for the transfer this prefers the
502 * destination bus if both available if fixed address on one bus the
503 * other will be chosen
505 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
506 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
508 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
511 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
515 if (bd
->dstbus
.buswidth
== 4) {
518 } else if (bd
->srcbus
.buswidth
== 4) {
521 } else if (bd
->dstbus
.buswidth
== 2) {
524 } else if (bd
->srcbus
.buswidth
== 2) {
528 /* bd->srcbus.buswidth == 1 */
536 * Fills in one LLI for a certain transfer descriptor and advance the counter
538 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data
*bd
,
539 int num_llis
, int len
, u32 cctl
)
541 struct pl08x_lli
*llis_va
= bd
->txd
->llis_va
;
542 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
544 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
546 llis_va
[num_llis
].cctl
= cctl
;
547 llis_va
[num_llis
].src
= bd
->srcbus
.addr
;
548 llis_va
[num_llis
].dst
= bd
->dstbus
.addr
;
549 llis_va
[num_llis
].lli
= llis_bus
+ (num_llis
+ 1) * sizeof(struct pl08x_lli
);
550 llis_va
[num_llis
].lli
|= bd
->lli_bus
;
552 if (cctl
& PL080_CONTROL_SRC_INCR
)
553 bd
->srcbus
.addr
+= len
;
554 if (cctl
& PL080_CONTROL_DST_INCR
)
555 bd
->dstbus
.addr
+= len
;
557 BUG_ON(bd
->remainder
< len
);
559 bd
->remainder
-= len
;
563 * Return number of bytes to fill to boundary, or len.
564 * This calculation works for any value of addr.
566 static inline size_t pl08x_pre_boundary(u32 addr
, size_t len
)
568 size_t boundary_len
= PL08X_BOUNDARY_SIZE
-
569 (addr
& (PL08X_BOUNDARY_SIZE
- 1));
571 return min(boundary_len
, len
);
575 * This fills in the table of LLIs for the transfer descriptor
576 * Note that we assume we never have to change the burst sizes
579 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
580 struct pl08x_txd
*txd
)
582 struct pl08x_bus_data
*mbus
, *sbus
;
583 struct pl08x_lli_build_data bd
;
586 size_t max_bytes_per_lli
;
587 size_t total_bytes
= 0;
588 struct pl08x_lli
*llis_va
;
590 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
,
593 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
599 /* Get the default CCTL */
603 bd
.srcbus
.addr
= txd
->src_addr
;
604 bd
.dstbus
.addr
= txd
->dst_addr
;
605 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
607 /* Find maximum width of the source bus */
609 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
610 PL080_CONTROL_SWIDTH_SHIFT
);
612 /* Find maximum width of the destination bus */
614 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
615 PL080_CONTROL_DWIDTH_SHIFT
);
617 /* Set up the bus widths to the maximum */
618 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
619 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
622 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 max_bytes_per_lli
= min(bd
.srcbus
.buswidth
, bd
.dstbus
.buswidth
) *
625 PL080_CONTROL_TRANSFER_SIZE_MASK
;
627 /* We need to count this down to zero */
628 bd
.remainder
= txd
->len
;
631 * Choose bus to align to
632 * - prefers destination bus if both available
633 * - if fixed address on one bus chooses other
635 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
637 dev_vdbg(&pl08x
->adev
->dev
, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
638 bd
.srcbus
.addr
, cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
640 bd
.dstbus
.addr
, cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
642 bd
.remainder
, max_bytes_per_lli
);
643 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
644 mbus
== &bd
.srcbus
? "src" : "dst",
645 sbus
== &bd
.srcbus
? "src" : "dst");
647 if (txd
->len
< mbus
->buswidth
) {
648 /* Less than a bus width available - send as single bytes */
649 while (bd
.remainder
) {
650 dev_vdbg(&pl08x
->adev
->dev
,
651 "%s single byte LLIs for a transfer of "
652 "less than a bus width (remain 0x%08x)\n",
653 __func__
, bd
.remainder
);
654 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
655 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
659 /* Make one byte LLIs until master bus is aligned */
660 while ((mbus
->addr
) % (mbus
->buswidth
)) {
661 dev_vdbg(&pl08x
->adev
->dev
,
662 "%s adjustment lli for less than bus width "
664 __func__
, bd
.remainder
);
665 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
666 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
672 * - if slave is not then we must set its width down
674 if (sbus
->addr
% sbus
->buswidth
) {
675 dev_dbg(&pl08x
->adev
->dev
,
676 "%s set down bus width to one byte\n",
683 * Make largest possible LLIs until less than one bus
686 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
687 size_t lli_len
, target_len
, tsize
, odd_bytes
;
690 * If enough left try to send max possible,
691 * otherwise try to send the remainder
693 target_len
= min(bd
.remainder
, max_bytes_per_lli
);
696 * Set bus lengths for incrementing buses to the
697 * number of bytes which fill to next memory boundary,
698 * limiting on the target length calculated above.
700 if (cctl
& PL080_CONTROL_SRC_INCR
)
701 bd
.srcbus
.fill_bytes
=
702 pl08x_pre_boundary(bd
.srcbus
.addr
,
705 bd
.srcbus
.fill_bytes
= target_len
;
707 if (cctl
& PL080_CONTROL_DST_INCR
)
708 bd
.dstbus
.fill_bytes
=
709 pl08x_pre_boundary(bd
.dstbus
.addr
,
712 bd
.dstbus
.fill_bytes
= target_len
;
714 /* Find the nearest */
715 lli_len
= min(bd
.srcbus
.fill_bytes
,
716 bd
.dstbus
.fill_bytes
);
718 BUG_ON(lli_len
> bd
.remainder
);
721 dev_err(&pl08x
->adev
->dev
,
722 "%s lli_len is %zu, <= 0\n",
727 if (lli_len
== target_len
) {
729 * Can send what we wanted.
732 lli_len
= (lli_len
/mbus
->buswidth
) *
737 * So now we know how many bytes to transfer
738 * to get to the nearest boundary. The next
739 * LLI will past the boundary. However, we
740 * may be working to a boundary on the slave
741 * bus. We need to ensure the master stays
742 * aligned, and that we are working in
743 * multiples of the bus widths.
745 odd_bytes
= lli_len
% mbus
->buswidth
;
746 lli_len
-= odd_bytes
;
752 * Check against minimum bus alignment:
753 * Calculate actual transfer size in relation
754 * to bus width an get a maximum remainder of
755 * the smallest bus width - 1
757 /* FIXME: use round_down()? */
758 tsize
= lli_len
/ min(mbus
->buswidth
,
760 lli_len
= tsize
* min(mbus
->buswidth
,
763 if (target_len
!= lli_len
) {
764 dev_vdbg(&pl08x
->adev
->dev
,
765 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
766 __func__
, target_len
, lli_len
, txd
->len
);
769 cctl
= pl08x_cctl_bits(cctl
,
774 dev_vdbg(&pl08x
->adev
->dev
,
775 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
776 __func__
, lli_len
, bd
.remainder
);
777 pl08x_fill_lli_for_desc(&bd
, num_llis
++,
779 total_bytes
+= lli_len
;
785 * Creep past the boundary, maintaining
789 for (j
= 0; (j
< mbus
->buswidth
)
790 && (bd
.remainder
); j
++) {
791 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
792 dev_vdbg(&pl08x
->adev
->dev
,
793 "%s align with boundary, single byte (remain 0x%08zx)\n",
794 __func__
, bd
.remainder
);
795 pl08x_fill_lli_for_desc(&bd
,
796 num_llis
++, 1, cctl
);
805 while (bd
.remainder
) {
806 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
807 dev_vdbg(&pl08x
->adev
->dev
,
808 "%s align with boundary, single odd byte (remain %zu)\n",
809 __func__
, bd
.remainder
);
810 pl08x_fill_lli_for_desc(&bd
, num_llis
++, 1, cctl
);
814 if (total_bytes
!= txd
->len
) {
815 dev_err(&pl08x
->adev
->dev
,
816 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
817 __func__
, total_bytes
, txd
->len
);
821 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
822 dev_err(&pl08x
->adev
->dev
,
823 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
824 __func__
, (u32
) MAX_NUM_TSFR_LLIS
);
828 llis_va
= txd
->llis_va
;
829 /* The final LLI terminates the LLI. */
830 llis_va
[num_llis
- 1].lli
= 0;
831 /* The final LLI element shall also fire an interrupt. */
832 llis_va
[num_llis
- 1].cctl
|= PL080_CONTROL_TC_IRQ_EN
;
838 dev_vdbg(&pl08x
->adev
->dev
,
839 "%-3s %-9s %-10s %-10s %-10s %s\n",
840 "lli", "", "csrc", "cdst", "clli", "cctl");
841 for (i
= 0; i
< num_llis
; i
++) {
842 dev_vdbg(&pl08x
->adev
->dev
,
843 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
844 i
, &llis_va
[i
], llis_va
[i
].src
,
845 llis_va
[i
].dst
, llis_va
[i
].lli
, llis_va
[i
].cctl
854 /* You should call this with the struct pl08x lock held */
855 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
856 struct pl08x_txd
*txd
)
859 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
866 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
867 struct pl08x_dma_chan
*plchan
)
869 struct pl08x_txd
*txdi
= NULL
;
870 struct pl08x_txd
*next
;
872 if (!list_empty(&plchan
->pend_list
)) {
873 list_for_each_entry_safe(txdi
,
874 next
, &plchan
->pend_list
, node
) {
875 list_del(&txdi
->node
);
876 pl08x_free_txd(pl08x
, txdi
);
884 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
889 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
894 * This should be called with the channel plchan->lock held
896 static int prep_phy_channel(struct pl08x_dma_chan
*plchan
,
897 struct pl08x_txd
*txd
)
899 struct pl08x_driver_data
*pl08x
= plchan
->host
;
900 struct pl08x_phy_chan
*ch
;
903 /* Check if we already have a channel */
907 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
909 /* No physical channel available, cope with it */
910 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
915 * OK we have a physical channel: for memcpy() this is all we
916 * need, but for slaves the physical signals may be muxed!
917 * Can the platform allow us to use this channel?
921 pl08x
->pd
->get_signal
) {
922 ret
= pl08x
->pd
->get_signal(plchan
);
924 dev_dbg(&pl08x
->adev
->dev
,
925 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
926 ch
->id
, plchan
->name
);
927 /* Release physical channel & return */
928 pl08x_put_phy_channel(pl08x
, ch
);
933 /* Assign the flow control signal to this channel */
934 if (txd
->direction
== DMA_TO_DEVICE
)
935 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
936 else if (txd
->direction
== DMA_FROM_DEVICE
)
937 txd
->ccfg
|= ch
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
940 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d and signal %d for xfer on %s\n",
945 plchan
->phychan_hold
++;
946 plchan
->phychan
= ch
;
951 static void release_phy_channel(struct pl08x_dma_chan
*plchan
)
953 struct pl08x_driver_data
*pl08x
= plchan
->host
;
955 if ((plchan
->phychan
->signal
>= 0) && pl08x
->pd
->put_signal
) {
956 pl08x
->pd
->put_signal(plchan
);
957 plchan
->phychan
->signal
= -1;
959 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
960 plchan
->phychan
= NULL
;
963 static dma_cookie_t
pl08x_tx_submit(struct dma_async_tx_descriptor
*tx
)
965 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(tx
->chan
);
966 struct pl08x_txd
*txd
= to_pl08x_txd(tx
);
969 spin_lock_irqsave(&plchan
->lock
, flags
);
971 plchan
->chan
.cookie
+= 1;
972 if (plchan
->chan
.cookie
< 0)
973 plchan
->chan
.cookie
= 1;
974 tx
->cookie
= plchan
->chan
.cookie
;
976 /* Put this onto the pending list */
977 list_add_tail(&txd
->node
, &plchan
->pend_list
);
980 * If there was no physical channel available for this memcpy,
981 * stack the request up and indicate that the channel is waiting
982 * for a free physical channel.
984 if (!plchan
->slave
&& !plchan
->phychan
) {
985 /* Do this memcpy whenever there is a channel ready */
986 plchan
->state
= PL08X_CHAN_WAITING
;
987 plchan
->waiting
= txd
;
989 plchan
->phychan_hold
--;
992 spin_unlock_irqrestore(&plchan
->lock
, flags
);
997 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
998 struct dma_chan
*chan
, unsigned long flags
)
1000 struct dma_async_tx_descriptor
*retval
= NULL
;
1006 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1007 * If slaves are relying on interrupts to signal completion this function
1008 * must not be called with interrupts disabled.
1010 static enum dma_status
1011 pl08x_dma_tx_status(struct dma_chan
*chan
,
1012 dma_cookie_t cookie
,
1013 struct dma_tx_state
*txstate
)
1015 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1016 dma_cookie_t last_used
;
1017 dma_cookie_t last_complete
;
1018 enum dma_status ret
;
1021 last_used
= plchan
->chan
.cookie
;
1022 last_complete
= plchan
->lc
;
1024 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
1025 if (ret
== DMA_SUCCESS
) {
1026 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
1031 * This cookie not complete yet
1033 last_used
= plchan
->chan
.cookie
;
1034 last_complete
= plchan
->lc
;
1036 /* Get number of bytes left in the active transactions and queue */
1037 bytesleft
= pl08x_getbytes_chan(plchan
);
1039 dma_set_tx_state(txstate
, last_complete
, last_used
,
1042 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1045 /* Whether waiting or running, we're in progress */
1046 return DMA_IN_PROGRESS
;
1049 /* PrimeCell DMA extension */
1050 struct burst_table
{
1055 static const struct burst_table burst_sizes
[] = {
1058 .reg
= PL080_BSIZE_256
,
1062 .reg
= PL080_BSIZE_128
,
1066 .reg
= PL080_BSIZE_64
,
1070 .reg
= PL080_BSIZE_32
,
1074 .reg
= PL080_BSIZE_16
,
1078 .reg
= PL080_BSIZE_8
,
1082 .reg
= PL080_BSIZE_4
,
1086 .reg
= PL080_BSIZE_1
,
1091 * Given the source and destination available bus masks, select which
1092 * will be routed to each port. We try to have source and destination
1093 * on separate ports, but always respect the allowable settings.
1095 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1099 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1100 cctl
|= PL080_CONTROL_DST_AHB2
;
1101 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1102 cctl
|= PL080_CONTROL_SRC_AHB2
;
1107 static u32
pl08x_cctl(u32 cctl
)
1109 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1110 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1111 PL080_CONTROL_PROT_MASK
);
1113 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1114 return cctl
| PL080_CONTROL_PROT_SYS
;
1117 static u32
pl08x_width(enum dma_slave_buswidth width
)
1120 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1121 return PL080_WIDTH_8BIT
;
1122 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1123 return PL080_WIDTH_16BIT
;
1124 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1125 return PL080_WIDTH_32BIT
;
1131 static u32
pl08x_burst(u32 maxburst
)
1135 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1136 if (burst_sizes
[i
].burstwords
<= maxburst
)
1139 return burst_sizes
[i
].reg
;
1142 static int dma_set_runtime_config(struct dma_chan
*chan
,
1143 struct dma_slave_config
*config
)
1145 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1146 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1147 enum dma_slave_buswidth addr_width
;
1148 u32 width
, burst
, maxburst
;
1154 /* Transfer direction */
1155 plchan
->runtime_direction
= config
->direction
;
1156 if (config
->direction
== DMA_TO_DEVICE
) {
1157 addr_width
= config
->dst_addr_width
;
1158 maxburst
= config
->dst_maxburst
;
1159 } else if (config
->direction
== DMA_FROM_DEVICE
) {
1160 addr_width
= config
->src_addr_width
;
1161 maxburst
= config
->src_maxburst
;
1163 dev_err(&pl08x
->adev
->dev
,
1164 "bad runtime_config: alien transfer direction\n");
1168 width
= pl08x_width(addr_width
);
1170 dev_err(&pl08x
->adev
->dev
,
1171 "bad runtime_config: alien address width\n");
1175 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1176 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1179 * If this channel will only request single transfers, set this
1180 * down to ONE element. Also select one element if no maxburst
1183 if (plchan
->cd
->single
)
1186 burst
= pl08x_burst(maxburst
);
1187 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1188 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1190 if (plchan
->runtime_direction
== DMA_FROM_DEVICE
) {
1191 plchan
->src_addr
= config
->src_addr
;
1192 plchan
->src_cctl
= pl08x_cctl(cctl
) | PL080_CONTROL_DST_INCR
|
1193 pl08x_select_bus(plchan
->cd
->periph_buses
,
1196 plchan
->dst_addr
= config
->dst_addr
;
1197 plchan
->dst_cctl
= pl08x_cctl(cctl
) | PL080_CONTROL_SRC_INCR
|
1198 pl08x_select_bus(pl08x
->mem_buses
,
1199 plchan
->cd
->periph_buses
);
1202 dev_dbg(&pl08x
->adev
->dev
,
1203 "configured channel %s (%s) for %s, data width %d, "
1204 "maxburst %d words, LE, CCTL=0x%08x\n",
1205 dma_chan_name(chan
), plchan
->name
,
1206 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
1215 * Slave transactions callback to the slave device to allow
1216 * synchronization of slave DMA signals with the DMAC enable
1218 static void pl08x_issue_pending(struct dma_chan
*chan
)
1220 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1221 unsigned long flags
;
1223 spin_lock_irqsave(&plchan
->lock
, flags
);
1224 /* Something is already active, or we're waiting for a channel... */
1225 if (plchan
->at
|| plchan
->state
== PL08X_CHAN_WAITING
) {
1226 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1230 /* Take the first element in the queue and execute it */
1231 if (!list_empty(&plchan
->pend_list
)) {
1232 struct pl08x_txd
*next
;
1234 next
= list_first_entry(&plchan
->pend_list
,
1237 list_del(&next
->node
);
1238 plchan
->state
= PL08X_CHAN_RUNNING
;
1240 pl08x_start_txd(plchan
, next
);
1243 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1246 static int pl08x_prep_channel_resources(struct pl08x_dma_chan
*plchan
,
1247 struct pl08x_txd
*txd
)
1249 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1250 unsigned long flags
;
1253 num_llis
= pl08x_fill_llis_for_desc(pl08x
, txd
);
1259 spin_lock_irqsave(&plchan
->lock
, flags
);
1262 * See if we already have a physical channel allocated,
1263 * else this is the time to try to get one.
1265 ret
= prep_phy_channel(plchan
, txd
);
1268 * No physical channel was available.
1270 * memcpy transfers can be sorted out at submission time.
1272 * Slave transfers may have been denied due to platform
1273 * channel muxing restrictions. Since there is no guarantee
1274 * that this will ever be resolved, and the signal must be
1275 * acquired AFTER acquiring the physical channel, we will let
1276 * them be NACK:ed with -EBUSY here. The drivers can retry
1277 * the prep() call if they are eager on doing this using DMA.
1279 if (plchan
->slave
) {
1280 pl08x_free_txd_list(pl08x
, plchan
);
1281 pl08x_free_txd(pl08x
, txd
);
1282 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1287 * Else we're all set, paused and ready to roll, status
1288 * will switch to PL08X_CHAN_RUNNING when we call
1289 * issue_pending(). If there is something running on the
1290 * channel already we don't change its state.
1292 if (plchan
->state
== PL08X_CHAN_IDLE
)
1293 plchan
->state
= PL08X_CHAN_PAUSED
;
1295 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1300 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
,
1301 unsigned long flags
)
1303 struct pl08x_txd
*txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1306 dma_async_tx_descriptor_init(&txd
->tx
, &plchan
->chan
);
1307 txd
->tx
.flags
= flags
;
1308 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1309 INIT_LIST_HEAD(&txd
->node
);
1311 /* Always enable error and terminal interrupts */
1312 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1313 PL080_CONFIG_TC_IRQ_MASK
;
1319 * Initialize a descriptor to be used by memcpy submit
1321 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1322 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1323 size_t len
, unsigned long flags
)
1325 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1326 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1327 struct pl08x_txd
*txd
;
1330 txd
= pl08x_get_txd(plchan
, flags
);
1332 dev_err(&pl08x
->adev
->dev
,
1333 "%s no memory for descriptor\n", __func__
);
1337 txd
->direction
= DMA_NONE
;
1338 txd
->src_addr
= src
;
1339 txd
->dst_addr
= dest
;
1342 /* Set platform data for m2m */
1343 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1344 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl
&
1345 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1347 /* Both to be incremented or the code will break */
1348 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1350 if (pl08x
->vd
->dualmaster
)
1351 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1354 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1361 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1362 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1363 unsigned int sg_len
, enum dma_data_direction direction
,
1364 unsigned long flags
)
1366 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1367 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1368 struct pl08x_txd
*txd
;
1372 * Current implementation ASSUMES only one sg
1375 dev_err(&pl08x
->adev
->dev
, "%s prepared too long sglist\n",
1380 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1381 __func__
, sgl
->length
, plchan
->name
);
1383 txd
= pl08x_get_txd(plchan
, flags
);
1385 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1389 if (direction
!= plchan
->runtime_direction
)
1390 dev_err(&pl08x
->adev
->dev
, "%s DMA setup does not match "
1391 "the direction configured for the PrimeCell\n",
1395 * Set up addresses, the PrimeCell configured address
1396 * will take precedence since this may configure the
1397 * channel target address dynamically at runtime.
1399 txd
->direction
= direction
;
1400 txd
->len
= sgl
->length
;
1402 if (direction
== DMA_TO_DEVICE
) {
1403 txd
->ccfg
|= PL080_FLOW_MEM2PER
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1404 txd
->cctl
= plchan
->dst_cctl
;
1405 txd
->src_addr
= sgl
->dma_address
;
1406 txd
->dst_addr
= plchan
->dst_addr
;
1407 } else if (direction
== DMA_FROM_DEVICE
) {
1408 txd
->ccfg
|= PL080_FLOW_PER2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1409 txd
->cctl
= plchan
->src_cctl
;
1410 txd
->src_addr
= plchan
->src_addr
;
1411 txd
->dst_addr
= sgl
->dma_address
;
1413 dev_err(&pl08x
->adev
->dev
,
1414 "%s direction unsupported\n", __func__
);
1418 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1425 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1428 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1429 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1430 unsigned long flags
;
1433 /* Controls applicable to inactive channels */
1434 if (cmd
== DMA_SLAVE_CONFIG
) {
1435 return dma_set_runtime_config(chan
,
1436 (struct dma_slave_config
*)arg
);
1440 * Anything succeeds on channels with no physical allocation and
1441 * no queued transfers.
1443 spin_lock_irqsave(&plchan
->lock
, flags
);
1444 if (!plchan
->phychan
&& !plchan
->at
) {
1445 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1450 case DMA_TERMINATE_ALL
:
1451 plchan
->state
= PL08X_CHAN_IDLE
;
1453 if (plchan
->phychan
) {
1454 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
1457 * Mark physical channel as free and free any slave
1460 release_phy_channel(plchan
);
1462 /* Dequeue jobs and free LLIs */
1464 pl08x_free_txd(pl08x
, plchan
->at
);
1467 /* Dequeue jobs not yet fired as well */
1468 pl08x_free_txd_list(pl08x
, plchan
);
1471 pl08x_pause_phy_chan(plchan
->phychan
);
1472 plchan
->state
= PL08X_CHAN_PAUSED
;
1475 pl08x_resume_phy_chan(plchan
->phychan
);
1476 plchan
->state
= PL08X_CHAN_RUNNING
;
1479 /* Unknown command */
1484 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1489 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1491 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1492 char *name
= chan_id
;
1494 /* Check that the channel is not taken! */
1495 if (!strcmp(plchan
->name
, name
))
1502 * Just check that the device is there and active
1503 * TODO: turn this bit on/off depending on the number of physical channels
1504 * actually used, if it is zero... well shut it off. That will save some
1505 * power. Cut the clock at the same time.
1507 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1511 val
= readl(pl08x
->base
+ PL080_CONFIG
);
1512 val
&= ~(PL080_CONFIG_M2_BE
| PL080_CONFIG_M1_BE
| PL080_CONFIG_ENABLE
);
1513 /* We implicitly clear bit 1 and that means little-endian mode */
1514 val
|= PL080_CONFIG_ENABLE
;
1515 writel(val
, pl08x
->base
+ PL080_CONFIG
);
1518 static void pl08x_unmap_buffers(struct pl08x_txd
*txd
)
1520 struct device
*dev
= txd
->tx
.chan
->device
->dev
;
1522 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
1523 if (txd
->tx
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
1524 dma_unmap_single(dev
, txd
->src_addr
, txd
->len
,
1527 dma_unmap_page(dev
, txd
->src_addr
, txd
->len
,
1530 if (!(txd
->tx
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
1531 if (txd
->tx
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
1532 dma_unmap_single(dev
, txd
->dst_addr
, txd
->len
,
1535 dma_unmap_page(dev
, txd
->dst_addr
, txd
->len
,
1540 static void pl08x_tasklet(unsigned long data
)
1542 struct pl08x_dma_chan
*plchan
= (struct pl08x_dma_chan
*) data
;
1543 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1544 struct pl08x_txd
*txd
;
1545 unsigned long flags
;
1547 spin_lock_irqsave(&plchan
->lock
, flags
);
1553 /* Update last completed */
1554 plchan
->lc
= txd
->tx
.cookie
;
1557 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1558 if (!list_empty(&plchan
->pend_list
)) {
1559 struct pl08x_txd
*next
;
1561 next
= list_first_entry(&plchan
->pend_list
,
1564 list_del(&next
->node
);
1566 pl08x_start_txd(plchan
, next
);
1567 } else if (plchan
->phychan_hold
) {
1569 * This channel is still in use - we have a new txd being
1570 * prepared and will soon be queued. Don't give up the
1574 struct pl08x_dma_chan
*waiting
= NULL
;
1577 * No more jobs, so free up the physical channel
1578 * Free any allocated signal on slave transfers too
1580 release_phy_channel(plchan
);
1581 plchan
->state
= PL08X_CHAN_IDLE
;
1584 * And NOW before anyone else can grab that free:d up
1585 * physical channel, see if there is some memcpy pending
1586 * that seriously needs to start because of being stacked
1587 * up while we were choking the physical channels with data.
1589 list_for_each_entry(waiting
, &pl08x
->memcpy
.channels
,
1591 if (waiting
->state
== PL08X_CHAN_WAITING
&&
1592 waiting
->waiting
!= NULL
) {
1595 /* This should REALLY not fail now */
1596 ret
= prep_phy_channel(waiting
,
1599 waiting
->phychan_hold
--;
1600 waiting
->state
= PL08X_CHAN_RUNNING
;
1601 waiting
->waiting
= NULL
;
1602 pl08x_issue_pending(&waiting
->chan
);
1608 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1611 dma_async_tx_callback callback
= txd
->tx
.callback
;
1612 void *callback_param
= txd
->tx
.callback_param
;
1614 /* Don't try to unmap buffers on slave channels */
1616 pl08x_unmap_buffers(txd
);
1618 /* Free the descriptor */
1619 spin_lock_irqsave(&plchan
->lock
, flags
);
1620 pl08x_free_txd(pl08x
, txd
);
1621 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1623 /* Callback to signal completion */
1625 callback(callback_param
);
1629 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1631 struct pl08x_driver_data
*pl08x
= dev
;
1636 val
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1638 /* An error interrupt (on one or more channels) */
1639 dev_err(&pl08x
->adev
->dev
,
1640 "%s error interrupt, register value 0x%08x\n",
1643 * Simply clear ALL PL08X error interrupts,
1644 * regardless of channel and cause
1645 * FIXME: should be 0x00000003 on PL081 really.
1647 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1649 val
= readl(pl08x
->base
+ PL080_INT_STATUS
);
1650 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1651 if ((1 << i
) & val
) {
1652 /* Locate physical channel */
1653 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1654 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1656 /* Schedule tasklet on this channel */
1657 tasklet_schedule(&plchan
->tasklet
);
1662 /* Clear only the terminal interrupts on channels we processed */
1663 writel(mask
, pl08x
->base
+ PL080_TC_CLEAR
);
1665 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1668 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1670 u32 cctl
= pl08x_cctl(chan
->cd
->cctl
);
1673 chan
->name
= chan
->cd
->bus_id
;
1674 chan
->src_addr
= chan
->cd
->addr
;
1675 chan
->dst_addr
= chan
->cd
->addr
;
1676 chan
->src_cctl
= cctl
| PL080_CONTROL_DST_INCR
|
1677 pl08x_select_bus(chan
->cd
->periph_buses
, chan
->host
->mem_buses
);
1678 chan
->dst_cctl
= cctl
| PL080_CONTROL_SRC_INCR
|
1679 pl08x_select_bus(chan
->host
->mem_buses
, chan
->cd
->periph_buses
);
1683 * Initialise the DMAC memcpy/slave channels.
1684 * Make a local wrapper to hold required data
1686 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1687 struct dma_device
*dmadev
,
1688 unsigned int channels
,
1691 struct pl08x_dma_chan
*chan
;
1694 INIT_LIST_HEAD(&dmadev
->channels
);
1697 * Register as many many memcpy as we have physical channels,
1698 * we won't always be able to use all but the code will have
1699 * to cope with that situation.
1701 for (i
= 0; i
< channels
; i
++) {
1702 chan
= kzalloc(sizeof(struct pl08x_dma_chan
), GFP_KERNEL
);
1704 dev_err(&pl08x
->adev
->dev
,
1705 "%s no memory for channel\n", __func__
);
1710 chan
->state
= PL08X_CHAN_IDLE
;
1713 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1714 pl08x_dma_slave_init(chan
);
1716 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1717 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1723 if (chan
->cd
->circular_buffer
) {
1724 dev_err(&pl08x
->adev
->dev
,
1725 "channel %s: circular buffers not supported\n",
1730 dev_info(&pl08x
->adev
->dev
,
1731 "initialize virtual channel \"%s\"\n",
1734 chan
->chan
.device
= dmadev
;
1735 chan
->chan
.cookie
= 0;
1738 spin_lock_init(&chan
->lock
);
1739 INIT_LIST_HEAD(&chan
->pend_list
);
1740 tasklet_init(&chan
->tasklet
, pl08x_tasklet
,
1741 (unsigned long) chan
);
1743 list_add_tail(&chan
->chan
.device_node
, &dmadev
->channels
);
1745 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1746 i
, slave
? "slave" : "memcpy");
1750 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1752 struct pl08x_dma_chan
*chan
= NULL
;
1753 struct pl08x_dma_chan
*next
;
1755 list_for_each_entry_safe(chan
,
1756 next
, &dmadev
->channels
, chan
.device_node
) {
1757 list_del(&chan
->chan
.device_node
);
1762 #ifdef CONFIG_DEBUG_FS
1763 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1766 case PL08X_CHAN_IDLE
:
1768 case PL08X_CHAN_RUNNING
:
1770 case PL08X_CHAN_PAUSED
:
1772 case PL08X_CHAN_WAITING
:
1777 return "UNKNOWN STATE";
1780 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1782 struct pl08x_driver_data
*pl08x
= s
->private;
1783 struct pl08x_dma_chan
*chan
;
1784 struct pl08x_phy_chan
*ch
;
1785 unsigned long flags
;
1788 seq_printf(s
, "PL08x physical channels:\n");
1789 seq_printf(s
, "CHANNEL:\tUSER:\n");
1790 seq_printf(s
, "--------\t-----\n");
1791 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1792 struct pl08x_dma_chan
*virt_chan
;
1794 ch
= &pl08x
->phy_chans
[i
];
1796 spin_lock_irqsave(&ch
->lock
, flags
);
1797 virt_chan
= ch
->serving
;
1799 seq_printf(s
, "%d\t\t%s\n",
1800 ch
->id
, virt_chan
? virt_chan
->name
: "(none)");
1802 spin_unlock_irqrestore(&ch
->lock
, flags
);
1805 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1806 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1807 seq_printf(s
, "--------\t------\n");
1808 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, chan
.device_node
) {
1809 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1810 pl08x_state_str(chan
->state
));
1813 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1814 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1815 seq_printf(s
, "--------\t------\n");
1816 list_for_each_entry(chan
, &pl08x
->slave
.channels
, chan
.device_node
) {
1817 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1818 pl08x_state_str(chan
->state
));
1824 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1826 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1829 static const struct file_operations pl08x_debugfs_operations
= {
1830 .open
= pl08x_debugfs_open
,
1832 .llseek
= seq_lseek
,
1833 .release
= single_release
,
1836 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1838 /* Expose a simple debugfs interface to view all clocks */
1839 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
), S_IFREG
| S_IRUGO
,
1841 &pl08x_debugfs_operations
);
1845 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1850 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
1852 struct pl08x_driver_data
*pl08x
;
1853 const struct vendor_data
*vd
= id
->data
;
1857 ret
= amba_request_regions(adev
, NULL
);
1861 /* Create the driver state holder */
1862 pl08x
= kzalloc(sizeof(struct pl08x_driver_data
), GFP_KERNEL
);
1868 /* Initialize memcpy engine */
1869 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
1870 pl08x
->memcpy
.dev
= &adev
->dev
;
1871 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1872 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
1873 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
1874 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1875 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
1876 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
1877 pl08x
->memcpy
.device_control
= pl08x_control
;
1879 /* Initialize slave engine */
1880 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
1881 pl08x
->slave
.dev
= &adev
->dev
;
1882 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1883 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
1884 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1885 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
1886 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
1887 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
1888 pl08x
->slave
.device_control
= pl08x_control
;
1890 /* Get the platform data */
1891 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
1893 dev_err(&adev
->dev
, "no platform data supplied\n");
1894 goto out_no_platdata
;
1897 /* Assign useful pointers to the driver state */
1901 /* By default, AHB1 only. If dualmaster, from platform */
1902 pl08x
->lli_buses
= PL08X_AHB1
;
1903 pl08x
->mem_buses
= PL08X_AHB1
;
1904 if (pl08x
->vd
->dualmaster
) {
1905 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
1906 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
1909 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1910 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
1911 PL08X_LLI_TSFR_SIZE
, PL08X_ALIGN
, 0);
1914 goto out_no_lli_pool
;
1917 spin_lock_init(&pl08x
->lock
);
1919 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1922 goto out_no_ioremap
;
1925 /* Turn on the PL08x */
1926 pl08x_ensure_on(pl08x
);
1928 /* Attach the interrupt handler */
1929 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1930 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
1932 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
1933 DRIVER_NAME
, pl08x
);
1935 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
1936 __func__
, adev
->irq
[0]);
1940 /* Initialize physical channels */
1941 pl08x
->phy_chans
= kmalloc((vd
->channels
* sizeof(struct pl08x_phy_chan
)),
1943 if (!pl08x
->phy_chans
) {
1944 dev_err(&adev
->dev
, "%s failed to allocate "
1945 "physical channel holders\n",
1947 goto out_no_phychans
;
1950 for (i
= 0; i
< vd
->channels
; i
++) {
1951 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
1954 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
1955 spin_lock_init(&ch
->lock
);
1958 dev_info(&adev
->dev
,
1959 "physical channel %d is %s\n", i
,
1960 pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
1963 /* Register as many memcpy channels as there are physical channels */
1964 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
1965 pl08x
->vd
->channels
, false);
1967 dev_warn(&pl08x
->adev
->dev
,
1968 "%s failed to enumerate memcpy channels - %d\n",
1972 pl08x
->memcpy
.chancnt
= ret
;
1974 /* Register slave channels */
1975 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
1976 pl08x
->pd
->num_slave_channels
,
1979 dev_warn(&pl08x
->adev
->dev
,
1980 "%s failed to enumerate slave channels - %d\n",
1984 pl08x
->slave
.chancnt
= ret
;
1986 ret
= dma_async_device_register(&pl08x
->memcpy
);
1988 dev_warn(&pl08x
->adev
->dev
,
1989 "%s failed to register memcpy as an async device - %d\n",
1991 goto out_no_memcpy_reg
;
1994 ret
= dma_async_device_register(&pl08x
->slave
);
1996 dev_warn(&pl08x
->adev
->dev
,
1997 "%s failed to register slave as an async device - %d\n",
1999 goto out_no_slave_reg
;
2002 amba_set_drvdata(adev
, pl08x
);
2003 init_pl08x_debugfs(pl08x
);
2004 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2005 amba_part(adev
), amba_rev(adev
),
2006 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2010 dma_async_device_unregister(&pl08x
->memcpy
);
2012 pl08x_free_virtual_channels(&pl08x
->slave
);
2014 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2016 kfree(pl08x
->phy_chans
);
2018 free_irq(adev
->irq
[0], pl08x
);
2020 iounmap(pl08x
->base
);
2022 dma_pool_destroy(pl08x
->pool
);
2027 amba_release_regions(adev
);
2031 /* PL080 has 8 channels and the PL080 have just 2 */
2032 static struct vendor_data vendor_pl080
= {
2037 static struct vendor_data vendor_pl081
= {
2039 .dualmaster
= false,
2042 static struct amba_id pl08x_ids
[] = {
2047 .data
= &vendor_pl080
,
2053 .data
= &vendor_pl081
,
2055 /* Nomadik 8815 PL080 variant */
2059 .data
= &vendor_pl080
,
2064 static struct amba_driver pl08x_amba_driver
= {
2065 .drv
.name
= DRIVER_NAME
,
2066 .id_table
= pl08x_ids
,
2067 .probe
= pl08x_probe
,
2070 static int __init
pl08x_init(void)
2073 retval
= amba_driver_register(&pl08x_amba_driver
);
2075 printk(KERN_WARNING DRIVER_NAME
2076 "failed to register as an AMBA device (%d)\n",
2080 subsys_initcall(pl08x_init
);