Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / firewire / ohci.c
blobbcf792fac442576181f00596a018cf22a0dd67aa
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
106 struct context;
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool running;
129 bool flushing;
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
134 * free buffers.
136 struct list_head buffer_list;
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
142 struct descriptor_buffer *buffer_tail;
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
148 struct descriptor *last;
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
154 struct descriptor *prev;
156 descriptor_callback_t callback;
158 struct tasklet_struct tasklet;
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
175 u8 sync;
176 u8 tags;
179 #define CONFIG_ROM_SIZE 1024
181 struct fw_ohci {
182 struct fw_card card;
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
199 spinlock_t lock;
201 struct mutex phy_reg_mutex;
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
211 u32 it_context_support;
212 u32 it_context_mask; /* unoccupied IT contexts */
213 struct iso_context *it_context_list;
214 u64 ir_context_channels; /* unoccupied channels */
215 u32 ir_context_support;
216 u32 ir_context_mask; /* unoccupied IR contexts */
217 struct iso_context *ir_context_list;
218 u64 mc_channels; /* channels in use by the multichannel IR context */
219 bool mc_allocated;
221 __be32 *config_rom;
222 dma_addr_t config_rom_bus;
223 __be32 *next_config_rom;
224 dma_addr_t next_config_rom_bus;
225 __be32 next_header;
227 __le32 *self_id_cpu;
228 dma_addr_t self_id_bus;
229 struct tasklet_struct bus_reset_tasklet;
231 u32 self_id_buffer[512];
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236 return container_of(card, struct fw_ohci, card);
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
261 static char ohci_driver_name[] = KBUILD_MODNAME;
263 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 QUIRK_CYCLE_TIMER},
281 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 QUIRK_BE_HEADERS},
284 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 QUIRK_NO_MSI},
287 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 QUIRK_NO_MSI},
290 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 QUIRK_CYCLE_TIMER},
293 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
294 QUIRK_CYCLE_TIMER},
296 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
297 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
299 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_RESET_PACKET},
302 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
303 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks;
308 module_param_named(quirks, param_quirks, int, 0644);
309 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
310 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
311 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
312 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
313 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
314 ", disable MSI = " __stringify(QUIRK_NO_MSI)
315 ")");
317 #define OHCI_PARAM_DEBUG_AT_AR 1
318 #define OHCI_PARAM_DEBUG_SELFIDS 2
319 #define OHCI_PARAM_DEBUG_IRQS 4
320 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
324 static int param_debug;
325 module_param_named(debug, param_debug, int, 0644);
326 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
327 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
328 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
329 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
330 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 ", or a combination, or all = -1)");
333 static void log_irqs(u32 evt)
335 if (likely(!(param_debug &
336 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
337 return;
339 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
340 !(evt & OHCI1394_busReset))
341 return;
343 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 evt & OHCI1394_selfIDComplete ? " selfID" : "",
345 evt & OHCI1394_RQPkt ? " AR_req" : "",
346 evt & OHCI1394_RSPkt ? " AR_resp" : "",
347 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
348 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
349 evt & OHCI1394_isochRx ? " IR" : "",
350 evt & OHCI1394_isochTx ? " IT" : "",
351 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
352 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
353 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
354 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
355 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
356 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
357 evt & OHCI1394_busReset ? " busReset" : "",
358 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
359 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
360 OHCI1394_respTxComplete | OHCI1394_isochRx |
361 OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
363 OHCI1394_cycleInconsistent |
364 OHCI1394_regAccessFail | OHCI1394_busReset)
365 ? " ?" : "");
368 static const char *speed[] = {
369 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
371 static const char *power[] = {
372 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
373 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
375 static const char port[] = { '.', '-', 'p', 'c', };
377 static char _p(u32 *s, int shift)
379 return port[*s >> shift & 3];
382 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
384 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
385 return;
387 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 self_id_count, generation, node_id);
390 for (; self_id_count--; ++s)
391 if ((*s & 1 << 23) == 0)
392 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 "%s gc=%d %s %s%s%s\n",
394 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
395 speed[*s >> 14 & 3], *s >> 16 & 63,
396 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
397 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398 else
399 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
400 *s, *s >> 24 & 63,
401 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
402 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
405 static const char *evts[] = {
406 [0x00] = "evt_no_status", [0x01] = "-reserved-",
407 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
408 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
409 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
411 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
412 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
413 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
414 [0x10] = "-reserved-", [0x11] = "ack_complete",
415 [0x12] = "ack_pending ", [0x13] = "-reserved-",
416 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
417 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
418 [0x18] = "-reserved-", [0x19] = "-reserved-",
419 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
420 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
421 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
422 [0x20] = "pending/cancelled",
424 static const char *tcodes[] = {
425 [0x0] = "QW req", [0x1] = "BW req",
426 [0x2] = "W resp", [0x3] = "-reserved-",
427 [0x4] = "QR req", [0x5] = "BR req",
428 [0x6] = "QR resp", [0x7] = "BR resp",
429 [0x8] = "cycle start", [0x9] = "Lk req",
430 [0xa] = "async stream packet", [0xb] = "Lk resp",
431 [0xc] = "-reserved-", [0xd] = "-reserved-",
432 [0xe] = "link internal", [0xf] = "-reserved-",
435 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
437 int tcode = header[0] >> 4 & 0xf;
438 char specific[12];
440 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
441 return;
443 if (unlikely(evt >= ARRAY_SIZE(evts)))
444 evt = 0x1f;
446 if (evt == OHCI1394_evt_bus_reset) {
447 fw_notify("A%c evt_bus_reset, generation %d\n",
448 dir, (header[2] >> 16) & 0xff);
449 return;
452 switch (tcode) {
453 case 0x0: case 0x6: case 0x8:
454 snprintf(specific, sizeof(specific), " = %08x",
455 be32_to_cpu((__force __be32)header[3]));
456 break;
457 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 snprintf(specific, sizeof(specific), " %x,%x",
459 header[3] >> 16, header[3] & 0xffff);
460 break;
461 default:
462 specific[0] = '\0';
465 switch (tcode) {
466 case 0xa:
467 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468 break;
469 case 0xe:
470 fw_notify("A%c %s, PHY %08x %08x\n",
471 dir, evts[evt], header[1], header[2]);
472 break;
473 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 fw_notify("A%c spd %x tl %02x, "
475 "%04x -> %04x, %s, "
476 "%s, %04x%08x%s\n",
477 dir, speed, header[0] >> 10 & 0x3f,
478 header[1] >> 16, header[0] >> 16, evts[evt],
479 tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 break;
481 default:
482 fw_notify("A%c spd %x tl %02x, "
483 "%04x -> %04x, %s, "
484 "%s%s\n",
485 dir, speed, header[0] >> 10 & 0x3f,
486 header[1] >> 16, header[0] >> 16, evts[evt],
487 tcodes[tcode], specific);
491 #else
493 #define param_debug 0
494 static inline void log_irqs(u32 evt) {}
495 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
496 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
500 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
502 writel(data, ohci->registers + offset);
505 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
507 return readl(ohci->registers + offset);
510 static inline void flush_writes(const struct fw_ohci *ohci)
512 /* Do a dummy read to flush writes. */
513 reg_read(ohci, OHCI1394_Version);
517 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
518 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
519 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
520 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
522 static int read_phy_reg(struct fw_ohci *ohci, int addr)
524 u32 val;
525 int i;
527 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
528 for (i = 0; i < 3 + 100; i++) {
529 val = reg_read(ohci, OHCI1394_PhyControl);
530 if (!~val)
531 return -ENODEV; /* Card was ejected. */
533 if (val & OHCI1394_PhyControl_ReadDone)
534 return OHCI1394_PhyControl_ReadData(val);
537 * Try a few times without waiting. Sleeping is necessary
538 * only when the link/PHY interface is busy.
540 if (i >= 3)
541 msleep(1);
543 fw_error("failed to read phy reg\n");
545 return -EBUSY;
548 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
550 int i;
552 reg_write(ohci, OHCI1394_PhyControl,
553 OHCI1394_PhyControl_Write(addr, val));
554 for (i = 0; i < 3 + 100; i++) {
555 val = reg_read(ohci, OHCI1394_PhyControl);
556 if (!~val)
557 return -ENODEV; /* Card was ejected. */
559 if (!(val & OHCI1394_PhyControl_WritePending))
560 return 0;
562 if (i >= 3)
563 msleep(1);
565 fw_error("failed to write phy reg\n");
567 return -EBUSY;
570 static int update_phy_reg(struct fw_ohci *ohci, int addr,
571 int clear_bits, int set_bits)
573 int ret = read_phy_reg(ohci, addr);
574 if (ret < 0)
575 return ret;
578 * The interrupt status bits are cleared by writing a one bit.
579 * Avoid clearing them unless explicitly requested in set_bits.
581 if (addr == 5)
582 clear_bits |= PHY_INT_STATUS_BITS;
584 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
587 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
589 int ret;
591 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
592 if (ret < 0)
593 return ret;
595 return read_phy_reg(ohci, addr);
598 static int ohci_read_phy_reg(struct fw_card *card, int addr)
600 struct fw_ohci *ohci = fw_ohci(card);
601 int ret;
603 mutex_lock(&ohci->phy_reg_mutex);
604 ret = read_phy_reg(ohci, addr);
605 mutex_unlock(&ohci->phy_reg_mutex);
607 return ret;
610 static int ohci_update_phy_reg(struct fw_card *card, int addr,
611 int clear_bits, int set_bits)
613 struct fw_ohci *ohci = fw_ohci(card);
614 int ret;
616 mutex_lock(&ohci->phy_reg_mutex);
617 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
618 mutex_unlock(&ohci->phy_reg_mutex);
620 return ret;
623 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
625 return page_private(ctx->pages[i]);
628 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
630 struct descriptor *d;
632 d = &ctx->descriptors[index];
633 d->branch_address &= cpu_to_le32(~0xf);
634 d->res_count = cpu_to_le16(PAGE_SIZE);
635 d->transfer_status = 0;
637 wmb(); /* finish init of new descriptors before branch_address update */
638 d = &ctx->descriptors[ctx->last_buffer_index];
639 d->branch_address |= cpu_to_le32(1);
641 ctx->last_buffer_index = index;
643 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
646 static void ar_context_release(struct ar_context *ctx)
648 unsigned int i;
650 if (ctx->buffer)
651 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
653 for (i = 0; i < AR_BUFFERS; i++)
654 if (ctx->pages[i]) {
655 dma_unmap_page(ctx->ohci->card.device,
656 ar_buffer_bus(ctx, i),
657 PAGE_SIZE, DMA_FROM_DEVICE);
658 __free_page(ctx->pages[i]);
662 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
664 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
665 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
666 flush_writes(ctx->ohci);
668 fw_error("AR error: %s; DMA stopped\n", error_msg);
670 /* FIXME: restart? */
673 static inline unsigned int ar_next_buffer_index(unsigned int index)
675 return (index + 1) % AR_BUFFERS;
678 static inline unsigned int ar_prev_buffer_index(unsigned int index)
680 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
683 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
685 return ar_next_buffer_index(ctx->last_buffer_index);
689 * We search for the buffer that contains the last AR packet DMA data written
690 * by the controller.
692 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
693 unsigned int *buffer_offset)
695 unsigned int i, next_i, last = ctx->last_buffer_index;
696 __le16 res_count, next_res_count;
698 i = ar_first_buffer_index(ctx);
699 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
701 /* A buffer that is not yet completely filled must be the last one. */
702 while (i != last && res_count == 0) {
704 /* Peek at the next descriptor. */
705 next_i = ar_next_buffer_index(i);
706 rmb(); /* read descriptors in order */
707 next_res_count = ACCESS_ONCE(
708 ctx->descriptors[next_i].res_count);
710 * If the next descriptor is still empty, we must stop at this
711 * descriptor.
713 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
715 * The exception is when the DMA data for one packet is
716 * split over three buffers; in this case, the middle
717 * buffer's descriptor might be never updated by the
718 * controller and look still empty, and we have to peek
719 * at the third one.
721 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
722 next_i = ar_next_buffer_index(next_i);
723 rmb();
724 next_res_count = ACCESS_ONCE(
725 ctx->descriptors[next_i].res_count);
726 if (next_res_count != cpu_to_le16(PAGE_SIZE))
727 goto next_buffer_is_active;
730 break;
733 next_buffer_is_active:
734 i = next_i;
735 res_count = next_res_count;
738 rmb(); /* read res_count before the DMA data */
740 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
741 if (*buffer_offset > PAGE_SIZE) {
742 *buffer_offset = 0;
743 ar_context_abort(ctx, "corrupted descriptor");
746 return i;
749 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
750 unsigned int end_buffer_index,
751 unsigned int end_buffer_offset)
753 unsigned int i;
755 i = ar_first_buffer_index(ctx);
756 while (i != end_buffer_index) {
757 dma_sync_single_for_cpu(ctx->ohci->card.device,
758 ar_buffer_bus(ctx, i),
759 PAGE_SIZE, DMA_FROM_DEVICE);
760 i = ar_next_buffer_index(i);
762 if (end_buffer_offset > 0)
763 dma_sync_single_for_cpu(ctx->ohci->card.device,
764 ar_buffer_bus(ctx, i),
765 end_buffer_offset, DMA_FROM_DEVICE);
768 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
769 #define cond_le32_to_cpu(v) \
770 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
771 #else
772 #define cond_le32_to_cpu(v) le32_to_cpu(v)
773 #endif
775 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
777 struct fw_ohci *ohci = ctx->ohci;
778 struct fw_packet p;
779 u32 status, length, tcode;
780 int evt;
782 p.header[0] = cond_le32_to_cpu(buffer[0]);
783 p.header[1] = cond_le32_to_cpu(buffer[1]);
784 p.header[2] = cond_le32_to_cpu(buffer[2]);
786 tcode = (p.header[0] >> 4) & 0x0f;
787 switch (tcode) {
788 case TCODE_WRITE_QUADLET_REQUEST:
789 case TCODE_READ_QUADLET_RESPONSE:
790 p.header[3] = (__force __u32) buffer[3];
791 p.header_length = 16;
792 p.payload_length = 0;
793 break;
795 case TCODE_READ_BLOCK_REQUEST :
796 p.header[3] = cond_le32_to_cpu(buffer[3]);
797 p.header_length = 16;
798 p.payload_length = 0;
799 break;
801 case TCODE_WRITE_BLOCK_REQUEST:
802 case TCODE_READ_BLOCK_RESPONSE:
803 case TCODE_LOCK_REQUEST:
804 case TCODE_LOCK_RESPONSE:
805 p.header[3] = cond_le32_to_cpu(buffer[3]);
806 p.header_length = 16;
807 p.payload_length = p.header[3] >> 16;
808 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
809 ar_context_abort(ctx, "invalid packet length");
810 return NULL;
812 break;
814 case TCODE_WRITE_RESPONSE:
815 case TCODE_READ_QUADLET_REQUEST:
816 case OHCI_TCODE_PHY_PACKET:
817 p.header_length = 12;
818 p.payload_length = 0;
819 break;
821 default:
822 ar_context_abort(ctx, "invalid tcode");
823 return NULL;
826 p.payload = (void *) buffer + p.header_length;
828 /* FIXME: What to do about evt_* errors? */
829 length = (p.header_length + p.payload_length + 3) / 4;
830 status = cond_le32_to_cpu(buffer[length]);
831 evt = (status >> 16) & 0x1f;
833 p.ack = evt - 16;
834 p.speed = (status >> 21) & 0x7;
835 p.timestamp = status & 0xffff;
836 p.generation = ohci->request_generation;
838 log_ar_at_event('R', p.speed, p.header, evt);
841 * Several controllers, notably from NEC and VIA, forget to
842 * write ack_complete status at PHY packet reception.
844 if (evt == OHCI1394_evt_no_status &&
845 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
846 p.ack = ACK_COMPLETE;
849 * The OHCI bus reset handler synthesizes a PHY packet with
850 * the new generation number when a bus reset happens (see
851 * section 8.4.2.3). This helps us determine when a request
852 * was received and make sure we send the response in the same
853 * generation. We only need this for requests; for responses
854 * we use the unique tlabel for finding the matching
855 * request.
857 * Alas some chips sometimes emit bus reset packets with a
858 * wrong generation. We set the correct generation for these
859 * at a slightly incorrect time (in bus_reset_tasklet).
861 if (evt == OHCI1394_evt_bus_reset) {
862 if (!(ohci->quirks & QUIRK_RESET_PACKET))
863 ohci->request_generation = (p.header[2] >> 16) & 0xff;
864 } else if (ctx == &ohci->ar_request_ctx) {
865 fw_core_handle_request(&ohci->card, &p);
866 } else {
867 fw_core_handle_response(&ohci->card, &p);
870 return buffer + length + 1;
873 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
875 void *next;
877 while (p < end) {
878 next = handle_ar_packet(ctx, p);
879 if (!next)
880 return p;
881 p = next;
884 return p;
887 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
889 unsigned int i;
891 i = ar_first_buffer_index(ctx);
892 while (i != end_buffer) {
893 dma_sync_single_for_device(ctx->ohci->card.device,
894 ar_buffer_bus(ctx, i),
895 PAGE_SIZE, DMA_FROM_DEVICE);
896 ar_context_link_page(ctx, i);
897 i = ar_next_buffer_index(i);
901 static void ar_context_tasklet(unsigned long data)
903 struct ar_context *ctx = (struct ar_context *)data;
904 unsigned int end_buffer_index, end_buffer_offset;
905 void *p, *end;
907 p = ctx->pointer;
908 if (!p)
909 return;
911 end_buffer_index = ar_search_last_active_buffer(ctx,
912 &end_buffer_offset);
913 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
914 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
916 if (end_buffer_index < ar_first_buffer_index(ctx)) {
918 * The filled part of the overall buffer wraps around; handle
919 * all packets up to the buffer end here. If the last packet
920 * wraps around, its tail will be visible after the buffer end
921 * because the buffer start pages are mapped there again.
923 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
924 p = handle_ar_packets(ctx, p, buffer_end);
925 if (p < buffer_end)
926 goto error;
927 /* adjust p to point back into the actual buffer */
928 p -= AR_BUFFERS * PAGE_SIZE;
931 p = handle_ar_packets(ctx, p, end);
932 if (p != end) {
933 if (p > end)
934 ar_context_abort(ctx, "inconsistent descriptor");
935 goto error;
938 ctx->pointer = p;
939 ar_recycle_buffers(ctx, end_buffer_index);
941 return;
943 error:
944 ctx->pointer = NULL;
947 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
948 unsigned int descriptors_offset, u32 regs)
950 unsigned int i;
951 dma_addr_t dma_addr;
952 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
953 struct descriptor *d;
955 ctx->regs = regs;
956 ctx->ohci = ohci;
957 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
959 for (i = 0; i < AR_BUFFERS; i++) {
960 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
961 if (!ctx->pages[i])
962 goto out_of_memory;
963 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
964 0, PAGE_SIZE, DMA_FROM_DEVICE);
965 if (dma_mapping_error(ohci->card.device, dma_addr)) {
966 __free_page(ctx->pages[i]);
967 ctx->pages[i] = NULL;
968 goto out_of_memory;
970 set_page_private(ctx->pages[i], dma_addr);
973 for (i = 0; i < AR_BUFFERS; i++)
974 pages[i] = ctx->pages[i];
975 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
976 pages[AR_BUFFERS + i] = ctx->pages[i];
977 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
978 -1, PAGE_KERNEL);
979 if (!ctx->buffer)
980 goto out_of_memory;
982 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
983 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
985 for (i = 0; i < AR_BUFFERS; i++) {
986 d = &ctx->descriptors[i];
987 d->req_count = cpu_to_le16(PAGE_SIZE);
988 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
989 DESCRIPTOR_STATUS |
990 DESCRIPTOR_BRANCH_ALWAYS);
991 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
992 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
993 ar_next_buffer_index(i) * sizeof(struct descriptor));
996 return 0;
998 out_of_memory:
999 ar_context_release(ctx);
1001 return -ENOMEM;
1004 static void ar_context_run(struct ar_context *ctx)
1006 unsigned int i;
1008 for (i = 0; i < AR_BUFFERS; i++)
1009 ar_context_link_page(ctx, i);
1011 ctx->pointer = ctx->buffer;
1013 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1014 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1017 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1019 __le16 branch;
1021 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1023 /* figure out which descriptor the branch address goes in */
1024 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1025 return d;
1026 else
1027 return d + z - 1;
1030 static void context_tasklet(unsigned long data)
1032 struct context *ctx = (struct context *) data;
1033 struct descriptor *d, *last;
1034 u32 address;
1035 int z;
1036 struct descriptor_buffer *desc;
1038 desc = list_entry(ctx->buffer_list.next,
1039 struct descriptor_buffer, list);
1040 last = ctx->last;
1041 while (last->branch_address != 0) {
1042 struct descriptor_buffer *old_desc = desc;
1043 address = le32_to_cpu(last->branch_address);
1044 z = address & 0xf;
1045 address &= ~0xf;
1047 /* If the branch address points to a buffer outside of the
1048 * current buffer, advance to the next buffer. */
1049 if (address < desc->buffer_bus ||
1050 address >= desc->buffer_bus + desc->used)
1051 desc = list_entry(desc->list.next,
1052 struct descriptor_buffer, list);
1053 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1054 last = find_branch_descriptor(d, z);
1056 if (!ctx->callback(ctx, d, last))
1057 break;
1059 if (old_desc != desc) {
1060 /* If we've advanced to the next buffer, move the
1061 * previous buffer to the free list. */
1062 unsigned long flags;
1063 old_desc->used = 0;
1064 spin_lock_irqsave(&ctx->ohci->lock, flags);
1065 list_move_tail(&old_desc->list, &ctx->buffer_list);
1066 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1068 ctx->last = last;
1073 * Allocate a new buffer and add it to the list of free buffers for this
1074 * context. Must be called with ohci->lock held.
1076 static int context_add_buffer(struct context *ctx)
1078 struct descriptor_buffer *desc;
1079 dma_addr_t uninitialized_var(bus_addr);
1080 int offset;
1083 * 16MB of descriptors should be far more than enough for any DMA
1084 * program. This will catch run-away userspace or DoS attacks.
1086 if (ctx->total_allocation >= 16*1024*1024)
1087 return -ENOMEM;
1089 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1090 &bus_addr, GFP_ATOMIC);
1091 if (!desc)
1092 return -ENOMEM;
1094 offset = (void *)&desc->buffer - (void *)desc;
1095 desc->buffer_size = PAGE_SIZE - offset;
1096 desc->buffer_bus = bus_addr + offset;
1097 desc->used = 0;
1099 list_add_tail(&desc->list, &ctx->buffer_list);
1100 ctx->total_allocation += PAGE_SIZE;
1102 return 0;
1105 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1106 u32 regs, descriptor_callback_t callback)
1108 ctx->ohci = ohci;
1109 ctx->regs = regs;
1110 ctx->total_allocation = 0;
1112 INIT_LIST_HEAD(&ctx->buffer_list);
1113 if (context_add_buffer(ctx) < 0)
1114 return -ENOMEM;
1116 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1117 struct descriptor_buffer, list);
1119 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1120 ctx->callback = callback;
1123 * We put a dummy descriptor in the buffer that has a NULL
1124 * branch address and looks like it's been sent. That way we
1125 * have a descriptor to append DMA programs to.
1127 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1128 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1129 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1130 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1131 ctx->last = ctx->buffer_tail->buffer;
1132 ctx->prev = ctx->buffer_tail->buffer;
1134 return 0;
1137 static void context_release(struct context *ctx)
1139 struct fw_card *card = &ctx->ohci->card;
1140 struct descriptor_buffer *desc, *tmp;
1142 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1143 dma_free_coherent(card->device, PAGE_SIZE, desc,
1144 desc->buffer_bus -
1145 ((void *)&desc->buffer - (void *)desc));
1148 /* Must be called with ohci->lock held */
1149 static struct descriptor *context_get_descriptors(struct context *ctx,
1150 int z, dma_addr_t *d_bus)
1152 struct descriptor *d = NULL;
1153 struct descriptor_buffer *desc = ctx->buffer_tail;
1155 if (z * sizeof(*d) > desc->buffer_size)
1156 return NULL;
1158 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1159 /* No room for the descriptor in this buffer, so advance to the
1160 * next one. */
1162 if (desc->list.next == &ctx->buffer_list) {
1163 /* If there is no free buffer next in the list,
1164 * allocate one. */
1165 if (context_add_buffer(ctx) < 0)
1166 return NULL;
1168 desc = list_entry(desc->list.next,
1169 struct descriptor_buffer, list);
1170 ctx->buffer_tail = desc;
1173 d = desc->buffer + desc->used / sizeof(*d);
1174 memset(d, 0, z * sizeof(*d));
1175 *d_bus = desc->buffer_bus + desc->used;
1177 return d;
1180 static void context_run(struct context *ctx, u32 extra)
1182 struct fw_ohci *ohci = ctx->ohci;
1184 reg_write(ohci, COMMAND_PTR(ctx->regs),
1185 le32_to_cpu(ctx->last->branch_address));
1186 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1187 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1188 ctx->running = true;
1189 flush_writes(ohci);
1192 static void context_append(struct context *ctx,
1193 struct descriptor *d, int z, int extra)
1195 dma_addr_t d_bus;
1196 struct descriptor_buffer *desc = ctx->buffer_tail;
1198 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1200 desc->used += (z + extra) * sizeof(*d);
1202 wmb(); /* finish init of new descriptors before branch_address update */
1203 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1204 ctx->prev = find_branch_descriptor(d, z);
1207 static void context_stop(struct context *ctx)
1209 u32 reg;
1210 int i;
1212 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1213 ctx->running = false;
1215 for (i = 0; i < 1000; i++) {
1216 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1217 if ((reg & CONTEXT_ACTIVE) == 0)
1218 return;
1220 if (i)
1221 udelay(10);
1223 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1226 struct driver_data {
1227 u8 inline_data[8];
1228 struct fw_packet *packet;
1232 * This function apppends a packet to the DMA queue for transmission.
1233 * Must always be called with the ochi->lock held to ensure proper
1234 * generation handling and locking around packet queue manipulation.
1236 static int at_context_queue_packet(struct context *ctx,
1237 struct fw_packet *packet)
1239 struct fw_ohci *ohci = ctx->ohci;
1240 dma_addr_t d_bus, uninitialized_var(payload_bus);
1241 struct driver_data *driver_data;
1242 struct descriptor *d, *last;
1243 __le32 *header;
1244 int z, tcode;
1246 d = context_get_descriptors(ctx, 4, &d_bus);
1247 if (d == NULL) {
1248 packet->ack = RCODE_SEND_ERROR;
1249 return -1;
1252 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1253 d[0].res_count = cpu_to_le16(packet->timestamp);
1256 * The DMA format for asyncronous link packets is different
1257 * from the IEEE1394 layout, so shift the fields around
1258 * accordingly.
1261 tcode = (packet->header[0] >> 4) & 0x0f;
1262 header = (__le32 *) &d[1];
1263 switch (tcode) {
1264 case TCODE_WRITE_QUADLET_REQUEST:
1265 case TCODE_WRITE_BLOCK_REQUEST:
1266 case TCODE_WRITE_RESPONSE:
1267 case TCODE_READ_QUADLET_REQUEST:
1268 case TCODE_READ_BLOCK_REQUEST:
1269 case TCODE_READ_QUADLET_RESPONSE:
1270 case TCODE_READ_BLOCK_RESPONSE:
1271 case TCODE_LOCK_REQUEST:
1272 case TCODE_LOCK_RESPONSE:
1273 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1274 (packet->speed << 16));
1275 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1276 (packet->header[0] & 0xffff0000));
1277 header[2] = cpu_to_le32(packet->header[2]);
1279 if (TCODE_IS_BLOCK_PACKET(tcode))
1280 header[3] = cpu_to_le32(packet->header[3]);
1281 else
1282 header[3] = (__force __le32) packet->header[3];
1284 d[0].req_count = cpu_to_le16(packet->header_length);
1285 break;
1287 case TCODE_LINK_INTERNAL:
1288 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1289 (packet->speed << 16));
1290 header[1] = cpu_to_le32(packet->header[1]);
1291 header[2] = cpu_to_le32(packet->header[2]);
1292 d[0].req_count = cpu_to_le16(12);
1294 if (is_ping_packet(&packet->header[1]))
1295 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1296 break;
1298 case TCODE_STREAM_DATA:
1299 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1300 (packet->speed << 16));
1301 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1302 d[0].req_count = cpu_to_le16(8);
1303 break;
1305 default:
1306 /* BUG(); */
1307 packet->ack = RCODE_SEND_ERROR;
1308 return -1;
1311 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1312 driver_data = (struct driver_data *) &d[3];
1313 driver_data->packet = packet;
1314 packet->driver_data = driver_data;
1316 if (packet->payload_length > 0) {
1317 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1318 payload_bus = dma_map_single(ohci->card.device,
1319 packet->payload,
1320 packet->payload_length,
1321 DMA_TO_DEVICE);
1322 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1323 packet->ack = RCODE_SEND_ERROR;
1324 return -1;
1326 packet->payload_bus = payload_bus;
1327 packet->payload_mapped = true;
1328 } else {
1329 memcpy(driver_data->inline_data, packet->payload,
1330 packet->payload_length);
1331 payload_bus = d_bus + 3 * sizeof(*d);
1334 d[2].req_count = cpu_to_le16(packet->payload_length);
1335 d[2].data_address = cpu_to_le32(payload_bus);
1336 last = &d[2];
1337 z = 3;
1338 } else {
1339 last = &d[0];
1340 z = 2;
1343 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1344 DESCRIPTOR_IRQ_ALWAYS |
1345 DESCRIPTOR_BRANCH_ALWAYS);
1347 /* FIXME: Document how the locking works. */
1348 if (ohci->generation != packet->generation) {
1349 if (packet->payload_mapped)
1350 dma_unmap_single(ohci->card.device, payload_bus,
1351 packet->payload_length, DMA_TO_DEVICE);
1352 packet->ack = RCODE_GENERATION;
1353 return -1;
1356 context_append(ctx, d, z, 4 - z);
1358 if (ctx->running)
1359 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1360 else
1361 context_run(ctx, 0);
1363 return 0;
1366 static void at_context_flush(struct context *ctx)
1368 tasklet_disable(&ctx->tasklet);
1370 ctx->flushing = true;
1371 context_tasklet((unsigned long)ctx);
1372 ctx->flushing = false;
1374 tasklet_enable(&ctx->tasklet);
1377 static int handle_at_packet(struct context *context,
1378 struct descriptor *d,
1379 struct descriptor *last)
1381 struct driver_data *driver_data;
1382 struct fw_packet *packet;
1383 struct fw_ohci *ohci = context->ohci;
1384 int evt;
1386 if (last->transfer_status == 0 && !context->flushing)
1387 /* This descriptor isn't done yet, stop iteration. */
1388 return 0;
1390 driver_data = (struct driver_data *) &d[3];
1391 packet = driver_data->packet;
1392 if (packet == NULL)
1393 /* This packet was cancelled, just continue. */
1394 return 1;
1396 if (packet->payload_mapped)
1397 dma_unmap_single(ohci->card.device, packet->payload_bus,
1398 packet->payload_length, DMA_TO_DEVICE);
1400 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1401 packet->timestamp = le16_to_cpu(last->res_count);
1403 log_ar_at_event('T', packet->speed, packet->header, evt);
1405 switch (evt) {
1406 case OHCI1394_evt_timeout:
1407 /* Async response transmit timed out. */
1408 packet->ack = RCODE_CANCELLED;
1409 break;
1411 case OHCI1394_evt_flushed:
1413 * The packet was flushed should give same error as
1414 * when we try to use a stale generation count.
1416 packet->ack = RCODE_GENERATION;
1417 break;
1419 case OHCI1394_evt_missing_ack:
1420 if (context->flushing)
1421 packet->ack = RCODE_GENERATION;
1422 else {
1424 * Using a valid (current) generation count, but the
1425 * node is not on the bus or not sending acks.
1427 packet->ack = RCODE_NO_ACK;
1429 break;
1431 case ACK_COMPLETE + 0x10:
1432 case ACK_PENDING + 0x10:
1433 case ACK_BUSY_X + 0x10:
1434 case ACK_BUSY_A + 0x10:
1435 case ACK_BUSY_B + 0x10:
1436 case ACK_DATA_ERROR + 0x10:
1437 case ACK_TYPE_ERROR + 0x10:
1438 packet->ack = evt - 0x10;
1439 break;
1441 case OHCI1394_evt_no_status:
1442 if (context->flushing) {
1443 packet->ack = RCODE_GENERATION;
1444 break;
1446 /* fall through */
1448 default:
1449 packet->ack = RCODE_SEND_ERROR;
1450 break;
1453 packet->callback(packet, &ohci->card, packet->ack);
1455 return 1;
1458 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1459 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1460 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1461 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1462 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1464 static void handle_local_rom(struct fw_ohci *ohci,
1465 struct fw_packet *packet, u32 csr)
1467 struct fw_packet response;
1468 int tcode, length, i;
1470 tcode = HEADER_GET_TCODE(packet->header[0]);
1471 if (TCODE_IS_BLOCK_PACKET(tcode))
1472 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1473 else
1474 length = 4;
1476 i = csr - CSR_CONFIG_ROM;
1477 if (i + length > CONFIG_ROM_SIZE) {
1478 fw_fill_response(&response, packet->header,
1479 RCODE_ADDRESS_ERROR, NULL, 0);
1480 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1481 fw_fill_response(&response, packet->header,
1482 RCODE_TYPE_ERROR, NULL, 0);
1483 } else {
1484 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1485 (void *) ohci->config_rom + i, length);
1488 fw_core_handle_response(&ohci->card, &response);
1491 static void handle_local_lock(struct fw_ohci *ohci,
1492 struct fw_packet *packet, u32 csr)
1494 struct fw_packet response;
1495 int tcode, length, ext_tcode, sel, try;
1496 __be32 *payload, lock_old;
1497 u32 lock_arg, lock_data;
1499 tcode = HEADER_GET_TCODE(packet->header[0]);
1500 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501 payload = packet->payload;
1502 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1504 if (tcode == TCODE_LOCK_REQUEST &&
1505 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1506 lock_arg = be32_to_cpu(payload[0]);
1507 lock_data = be32_to_cpu(payload[1]);
1508 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1509 lock_arg = 0;
1510 lock_data = 0;
1511 } else {
1512 fw_fill_response(&response, packet->header,
1513 RCODE_TYPE_ERROR, NULL, 0);
1514 goto out;
1517 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1518 reg_write(ohci, OHCI1394_CSRData, lock_data);
1519 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1520 reg_write(ohci, OHCI1394_CSRControl, sel);
1522 for (try = 0; try < 20; try++)
1523 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1524 lock_old = cpu_to_be32(reg_read(ohci,
1525 OHCI1394_CSRData));
1526 fw_fill_response(&response, packet->header,
1527 RCODE_COMPLETE,
1528 &lock_old, sizeof(lock_old));
1529 goto out;
1532 fw_error("swap not done (CSR lock timeout)\n");
1533 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1535 out:
1536 fw_core_handle_response(&ohci->card, &response);
1539 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1541 u64 offset, csr;
1543 if (ctx == &ctx->ohci->at_request_ctx) {
1544 packet->ack = ACK_PENDING;
1545 packet->callback(packet, &ctx->ohci->card, packet->ack);
1548 offset =
1549 ((unsigned long long)
1550 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1551 packet->header[2];
1552 csr = offset - CSR_REGISTER_BASE;
1554 /* Handle config rom reads. */
1555 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1556 handle_local_rom(ctx->ohci, packet, csr);
1557 else switch (csr) {
1558 case CSR_BUS_MANAGER_ID:
1559 case CSR_BANDWIDTH_AVAILABLE:
1560 case CSR_CHANNELS_AVAILABLE_HI:
1561 case CSR_CHANNELS_AVAILABLE_LO:
1562 handle_local_lock(ctx->ohci, packet, csr);
1563 break;
1564 default:
1565 if (ctx == &ctx->ohci->at_request_ctx)
1566 fw_core_handle_request(&ctx->ohci->card, packet);
1567 else
1568 fw_core_handle_response(&ctx->ohci->card, packet);
1569 break;
1572 if (ctx == &ctx->ohci->at_response_ctx) {
1573 packet->ack = ACK_COMPLETE;
1574 packet->callback(packet, &ctx->ohci->card, packet->ack);
1578 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1580 unsigned long flags;
1581 int ret;
1583 spin_lock_irqsave(&ctx->ohci->lock, flags);
1585 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1586 ctx->ohci->generation == packet->generation) {
1587 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1588 handle_local_request(ctx, packet);
1589 return;
1592 ret = at_context_queue_packet(ctx, packet);
1593 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1595 if (ret < 0)
1596 packet->callback(packet, &ctx->ohci->card, packet->ack);
1600 static void detect_dead_context(struct fw_ohci *ohci,
1601 const char *name, unsigned int regs)
1603 u32 ctl;
1605 ctl = reg_read(ohci, CONTROL_SET(regs));
1606 if (ctl & CONTEXT_DEAD) {
1607 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1608 fw_error("DMA context %s has stopped, error code: %s\n",
1609 name, evts[ctl & 0x1f]);
1610 #else
1611 fw_error("DMA context %s has stopped, error code: %#x\n",
1612 name, ctl & 0x1f);
1613 #endif
1617 static void handle_dead_contexts(struct fw_ohci *ohci)
1619 unsigned int i;
1620 char name[8];
1622 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1623 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1624 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1625 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1626 for (i = 0; i < 32; ++i) {
1627 if (!(ohci->it_context_support & (1 << i)))
1628 continue;
1629 sprintf(name, "IT%u", i);
1630 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1632 for (i = 0; i < 32; ++i) {
1633 if (!(ohci->ir_context_support & (1 << i)))
1634 continue;
1635 sprintf(name, "IR%u", i);
1636 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1638 /* TODO: maybe try to flush and restart the dead contexts */
1641 static u32 cycle_timer_ticks(u32 cycle_timer)
1643 u32 ticks;
1645 ticks = cycle_timer & 0xfff;
1646 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1647 ticks += (3072 * 8000) * (cycle_timer >> 25);
1649 return ticks;
1653 * Some controllers exhibit one or more of the following bugs when updating the
1654 * iso cycle timer register:
1655 * - When the lowest six bits are wrapping around to zero, a read that happens
1656 * at the same time will return garbage in the lowest ten bits.
1657 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1658 * not incremented for about 60 ns.
1659 * - Occasionally, the entire register reads zero.
1661 * To catch these, we read the register three times and ensure that the
1662 * difference between each two consecutive reads is approximately the same, i.e.
1663 * less than twice the other. Furthermore, any negative difference indicates an
1664 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1665 * execute, so we have enough precision to compute the ratio of the differences.)
1667 static u32 get_cycle_time(struct fw_ohci *ohci)
1669 u32 c0, c1, c2;
1670 u32 t0, t1, t2;
1671 s32 diff01, diff12;
1672 int i;
1674 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1676 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1677 i = 0;
1678 c1 = c2;
1679 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1680 do {
1681 c0 = c1;
1682 c1 = c2;
1683 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1684 t0 = cycle_timer_ticks(c0);
1685 t1 = cycle_timer_ticks(c1);
1686 t2 = cycle_timer_ticks(c2);
1687 diff01 = t1 - t0;
1688 diff12 = t2 - t1;
1689 } while ((diff01 <= 0 || diff12 <= 0 ||
1690 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1691 && i++ < 20);
1694 return c2;
1698 * This function has to be called at least every 64 seconds. The bus_time
1699 * field stores not only the upper 25 bits of the BUS_TIME register but also
1700 * the most significant bit of the cycle timer in bit 6 so that we can detect
1701 * changes in this bit.
1703 static u32 update_bus_time(struct fw_ohci *ohci)
1705 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1707 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1708 ohci->bus_time += 0x40;
1710 return ohci->bus_time | cycle_time_seconds;
1713 static void bus_reset_tasklet(unsigned long data)
1715 struct fw_ohci *ohci = (struct fw_ohci *)data;
1716 int self_id_count, i, j, reg;
1717 int generation, new_generation;
1718 unsigned long flags;
1719 void *free_rom = NULL;
1720 dma_addr_t free_rom_bus = 0;
1721 bool is_new_root;
1723 reg = reg_read(ohci, OHCI1394_NodeID);
1724 if (!(reg & OHCI1394_NodeID_idValid)) {
1725 fw_notify("node ID not valid, new bus reset in progress\n");
1726 return;
1728 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1729 fw_notify("malconfigured bus\n");
1730 return;
1732 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1733 OHCI1394_NodeID_nodeNumber);
1735 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1736 if (!(ohci->is_root && is_new_root))
1737 reg_write(ohci, OHCI1394_LinkControlSet,
1738 OHCI1394_LinkControl_cycleMaster);
1739 ohci->is_root = is_new_root;
1741 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1742 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1743 fw_notify("inconsistent self IDs\n");
1744 return;
1747 * The count in the SelfIDCount register is the number of
1748 * bytes in the self ID receive buffer. Since we also receive
1749 * the inverted quadlets and a header quadlet, we shift one
1750 * bit extra to get the actual number of self IDs.
1752 self_id_count = (reg >> 3) & 0xff;
1753 if (self_id_count == 0 || self_id_count > 252) {
1754 fw_notify("inconsistent self IDs\n");
1755 return;
1757 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1758 rmb();
1760 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1761 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1762 fw_notify("inconsistent self IDs\n");
1763 return;
1765 ohci->self_id_buffer[j] =
1766 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1768 rmb();
1771 * Check the consistency of the self IDs we just read. The
1772 * problem we face is that a new bus reset can start while we
1773 * read out the self IDs from the DMA buffer. If this happens,
1774 * the DMA buffer will be overwritten with new self IDs and we
1775 * will read out inconsistent data. The OHCI specification
1776 * (section 11.2) recommends a technique similar to
1777 * linux/seqlock.h, where we remember the generation of the
1778 * self IDs in the buffer before reading them out and compare
1779 * it to the current generation after reading them out. If
1780 * the two generations match we know we have a consistent set
1781 * of self IDs.
1784 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1785 if (new_generation != generation) {
1786 fw_notify("recursive bus reset detected, "
1787 "discarding self ids\n");
1788 return;
1791 /* FIXME: Document how the locking works. */
1792 spin_lock_irqsave(&ohci->lock, flags);
1794 ohci->generation = -1; /* prevent AT packet queueing */
1795 context_stop(&ohci->at_request_ctx);
1796 context_stop(&ohci->at_response_ctx);
1798 spin_unlock_irqrestore(&ohci->lock, flags);
1801 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1802 * packets in the AT queues and software needs to drain them.
1803 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1805 at_context_flush(&ohci->at_request_ctx);
1806 at_context_flush(&ohci->at_response_ctx);
1808 spin_lock_irqsave(&ohci->lock, flags);
1810 ohci->generation = generation;
1811 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1813 if (ohci->quirks & QUIRK_RESET_PACKET)
1814 ohci->request_generation = generation;
1817 * This next bit is unrelated to the AT context stuff but we
1818 * have to do it under the spinlock also. If a new config rom
1819 * was set up before this reset, the old one is now no longer
1820 * in use and we can free it. Update the config rom pointers
1821 * to point to the current config rom and clear the
1822 * next_config_rom pointer so a new update can take place.
1825 if (ohci->next_config_rom != NULL) {
1826 if (ohci->next_config_rom != ohci->config_rom) {
1827 free_rom = ohci->config_rom;
1828 free_rom_bus = ohci->config_rom_bus;
1830 ohci->config_rom = ohci->next_config_rom;
1831 ohci->config_rom_bus = ohci->next_config_rom_bus;
1832 ohci->next_config_rom = NULL;
1835 * Restore config_rom image and manually update
1836 * config_rom registers. Writing the header quadlet
1837 * will indicate that the config rom is ready, so we
1838 * do that last.
1840 reg_write(ohci, OHCI1394_BusOptions,
1841 be32_to_cpu(ohci->config_rom[2]));
1842 ohci->config_rom[0] = ohci->next_header;
1843 reg_write(ohci, OHCI1394_ConfigROMhdr,
1844 be32_to_cpu(ohci->next_header));
1847 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1848 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1849 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1850 #endif
1852 spin_unlock_irqrestore(&ohci->lock, flags);
1854 if (free_rom)
1855 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1856 free_rom, free_rom_bus);
1858 log_selfids(ohci->node_id, generation,
1859 self_id_count, ohci->self_id_buffer);
1861 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1862 self_id_count, ohci->self_id_buffer,
1863 ohci->csr_state_setclear_abdicate);
1864 ohci->csr_state_setclear_abdicate = false;
1867 static irqreturn_t irq_handler(int irq, void *data)
1869 struct fw_ohci *ohci = data;
1870 u32 event, iso_event;
1871 int i;
1873 event = reg_read(ohci, OHCI1394_IntEventClear);
1875 if (!event || !~event)
1876 return IRQ_NONE;
1879 * busReset and postedWriteErr must not be cleared yet
1880 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1882 reg_write(ohci, OHCI1394_IntEventClear,
1883 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1884 log_irqs(event);
1886 if (event & OHCI1394_selfIDComplete)
1887 tasklet_schedule(&ohci->bus_reset_tasklet);
1889 if (event & OHCI1394_RQPkt)
1890 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1892 if (event & OHCI1394_RSPkt)
1893 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1895 if (event & OHCI1394_reqTxComplete)
1896 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1898 if (event & OHCI1394_respTxComplete)
1899 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1901 if (event & OHCI1394_isochRx) {
1902 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1903 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1905 while (iso_event) {
1906 i = ffs(iso_event) - 1;
1907 tasklet_schedule(
1908 &ohci->ir_context_list[i].context.tasklet);
1909 iso_event &= ~(1 << i);
1913 if (event & OHCI1394_isochTx) {
1914 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1915 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1917 while (iso_event) {
1918 i = ffs(iso_event) - 1;
1919 tasklet_schedule(
1920 &ohci->it_context_list[i].context.tasklet);
1921 iso_event &= ~(1 << i);
1925 if (unlikely(event & OHCI1394_regAccessFail))
1926 fw_error("Register access failure - "
1927 "please notify linux1394-devel@lists.sf.net\n");
1929 if (unlikely(event & OHCI1394_postedWriteErr)) {
1930 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1931 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1932 reg_write(ohci, OHCI1394_IntEventClear,
1933 OHCI1394_postedWriteErr);
1934 fw_error("PCI posted write error\n");
1937 if (unlikely(event & OHCI1394_cycleTooLong)) {
1938 if (printk_ratelimit())
1939 fw_notify("isochronous cycle too long\n");
1940 reg_write(ohci, OHCI1394_LinkControlSet,
1941 OHCI1394_LinkControl_cycleMaster);
1944 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1946 * We need to clear this event bit in order to make
1947 * cycleMatch isochronous I/O work. In theory we should
1948 * stop active cycleMatch iso contexts now and restart
1949 * them at least two cycles later. (FIXME?)
1951 if (printk_ratelimit())
1952 fw_notify("isochronous cycle inconsistent\n");
1955 if (unlikely(event & OHCI1394_unrecoverableError))
1956 handle_dead_contexts(ohci);
1958 if (event & OHCI1394_cycle64Seconds) {
1959 spin_lock(&ohci->lock);
1960 update_bus_time(ohci);
1961 spin_unlock(&ohci->lock);
1962 } else
1963 flush_writes(ohci);
1965 return IRQ_HANDLED;
1968 static int software_reset(struct fw_ohci *ohci)
1970 u32 val;
1971 int i;
1973 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1974 for (i = 0; i < 500; i++) {
1975 val = reg_read(ohci, OHCI1394_HCControlSet);
1976 if (!~val)
1977 return -ENODEV; /* Card was ejected. */
1979 if (!(val & OHCI1394_HCControl_softReset))
1980 return 0;
1982 msleep(1);
1985 return -EBUSY;
1988 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1990 size_t size = length * 4;
1992 memcpy(dest, src, size);
1993 if (size < CONFIG_ROM_SIZE)
1994 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1997 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1999 bool enable_1394a;
2000 int ret, clear, set, offset;
2002 /* Check if the driver should configure link and PHY. */
2003 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2004 OHCI1394_HCControl_programPhyEnable))
2005 return 0;
2007 /* Paranoia: check whether the PHY supports 1394a, too. */
2008 enable_1394a = false;
2009 ret = read_phy_reg(ohci, 2);
2010 if (ret < 0)
2011 return ret;
2012 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2013 ret = read_paged_phy_reg(ohci, 1, 8);
2014 if (ret < 0)
2015 return ret;
2016 if (ret >= 1)
2017 enable_1394a = true;
2020 if (ohci->quirks & QUIRK_NO_1394A)
2021 enable_1394a = false;
2023 /* Configure PHY and link consistently. */
2024 if (enable_1394a) {
2025 clear = 0;
2026 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2027 } else {
2028 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2029 set = 0;
2031 ret = update_phy_reg(ohci, 5, clear, set);
2032 if (ret < 0)
2033 return ret;
2035 if (enable_1394a)
2036 offset = OHCI1394_HCControlSet;
2037 else
2038 offset = OHCI1394_HCControlClear;
2039 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2041 /* Clean up: configuration has been taken care of. */
2042 reg_write(ohci, OHCI1394_HCControlClear,
2043 OHCI1394_HCControl_programPhyEnable);
2045 return 0;
2048 static int ohci_enable(struct fw_card *card,
2049 const __be32 *config_rom, size_t length)
2051 struct fw_ohci *ohci = fw_ohci(card);
2052 struct pci_dev *dev = to_pci_dev(card->device);
2053 u32 lps, seconds, version, irqs;
2054 int i, ret;
2056 if (software_reset(ohci)) {
2057 fw_error("Failed to reset ohci card.\n");
2058 return -EBUSY;
2062 * Now enable LPS, which we need in order to start accessing
2063 * most of the registers. In fact, on some cards (ALI M5251),
2064 * accessing registers in the SClk domain without LPS enabled
2065 * will lock up the machine. Wait 50msec to make sure we have
2066 * full link enabled. However, with some cards (well, at least
2067 * a JMicron PCIe card), we have to try again sometimes.
2069 reg_write(ohci, OHCI1394_HCControlSet,
2070 OHCI1394_HCControl_LPS |
2071 OHCI1394_HCControl_postedWriteEnable);
2072 flush_writes(ohci);
2074 for (lps = 0, i = 0; !lps && i < 3; i++) {
2075 msleep(50);
2076 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2077 OHCI1394_HCControl_LPS;
2080 if (!lps) {
2081 fw_error("Failed to set Link Power Status\n");
2082 return -EIO;
2085 reg_write(ohci, OHCI1394_HCControlClear,
2086 OHCI1394_HCControl_noByteSwapData);
2088 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2089 reg_write(ohci, OHCI1394_LinkControlSet,
2090 OHCI1394_LinkControl_cycleTimerEnable |
2091 OHCI1394_LinkControl_cycleMaster);
2093 reg_write(ohci, OHCI1394_ATRetries,
2094 OHCI1394_MAX_AT_REQ_RETRIES |
2095 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2096 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2097 (200 << 16));
2099 seconds = lower_32_bits(get_seconds());
2100 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2101 ohci->bus_time = seconds & ~0x3f;
2103 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2104 if (version >= OHCI_VERSION_1_1) {
2105 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2106 0xfffffffe);
2107 card->broadcast_channel_auto_allocated = true;
2110 /* Get implemented bits of the priority arbitration request counter. */
2111 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2112 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2113 reg_write(ohci, OHCI1394_FairnessControl, 0);
2114 card->priority_budget_implemented = ohci->pri_req_max != 0;
2116 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2117 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2118 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2120 ret = configure_1394a_enhancements(ohci);
2121 if (ret < 0)
2122 return ret;
2124 /* Activate link_on bit and contender bit in our self ID packets.*/
2125 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2126 if (ret < 0)
2127 return ret;
2130 * When the link is not yet enabled, the atomic config rom
2131 * update mechanism described below in ohci_set_config_rom()
2132 * is not active. We have to update ConfigRomHeader and
2133 * BusOptions manually, and the write to ConfigROMmap takes
2134 * effect immediately. We tie this to the enabling of the
2135 * link, so we have a valid config rom before enabling - the
2136 * OHCI requires that ConfigROMhdr and BusOptions have valid
2137 * values before enabling.
2139 * However, when the ConfigROMmap is written, some controllers
2140 * always read back quadlets 0 and 2 from the config rom to
2141 * the ConfigRomHeader and BusOptions registers on bus reset.
2142 * They shouldn't do that in this initial case where the link
2143 * isn't enabled. This means we have to use the same
2144 * workaround here, setting the bus header to 0 and then write
2145 * the right values in the bus reset tasklet.
2148 if (config_rom) {
2149 ohci->next_config_rom =
2150 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2151 &ohci->next_config_rom_bus,
2152 GFP_KERNEL);
2153 if (ohci->next_config_rom == NULL)
2154 return -ENOMEM;
2156 copy_config_rom(ohci->next_config_rom, config_rom, length);
2157 } else {
2159 * In the suspend case, config_rom is NULL, which
2160 * means that we just reuse the old config rom.
2162 ohci->next_config_rom = ohci->config_rom;
2163 ohci->next_config_rom_bus = ohci->config_rom_bus;
2166 ohci->next_header = ohci->next_config_rom[0];
2167 ohci->next_config_rom[0] = 0;
2168 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2169 reg_write(ohci, OHCI1394_BusOptions,
2170 be32_to_cpu(ohci->next_config_rom[2]));
2171 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2173 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2175 if (!(ohci->quirks & QUIRK_NO_MSI))
2176 pci_enable_msi(dev);
2177 if (request_irq(dev->irq, irq_handler,
2178 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2179 ohci_driver_name, ohci)) {
2180 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2181 pci_disable_msi(dev);
2182 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2183 ohci->config_rom, ohci->config_rom_bus);
2184 return -EIO;
2187 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2188 OHCI1394_RQPkt | OHCI1394_RSPkt |
2189 OHCI1394_isochTx | OHCI1394_isochRx |
2190 OHCI1394_postedWriteErr |
2191 OHCI1394_selfIDComplete |
2192 OHCI1394_regAccessFail |
2193 OHCI1394_cycle64Seconds |
2194 OHCI1394_cycleInconsistent |
2195 OHCI1394_unrecoverableError |
2196 OHCI1394_cycleTooLong |
2197 OHCI1394_masterIntEnable;
2198 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2199 irqs |= OHCI1394_busReset;
2200 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2202 reg_write(ohci, OHCI1394_HCControlSet,
2203 OHCI1394_HCControl_linkEnable |
2204 OHCI1394_HCControl_BIBimageValid);
2206 reg_write(ohci, OHCI1394_LinkControlSet,
2207 OHCI1394_LinkControl_rcvSelfID |
2208 OHCI1394_LinkControl_rcvPhyPkt);
2210 ar_context_run(&ohci->ar_request_ctx);
2211 ar_context_run(&ohci->ar_response_ctx);
2213 flush_writes(ohci);
2215 /* We are ready to go, reset bus to finish initialization. */
2216 fw_schedule_bus_reset(&ohci->card, false, true);
2218 return 0;
2221 static int ohci_set_config_rom(struct fw_card *card,
2222 const __be32 *config_rom, size_t length)
2224 struct fw_ohci *ohci;
2225 unsigned long flags;
2226 __be32 *next_config_rom;
2227 dma_addr_t uninitialized_var(next_config_rom_bus);
2229 ohci = fw_ohci(card);
2232 * When the OHCI controller is enabled, the config rom update
2233 * mechanism is a bit tricky, but easy enough to use. See
2234 * section 5.5.6 in the OHCI specification.
2236 * The OHCI controller caches the new config rom address in a
2237 * shadow register (ConfigROMmapNext) and needs a bus reset
2238 * for the changes to take place. When the bus reset is
2239 * detected, the controller loads the new values for the
2240 * ConfigRomHeader and BusOptions registers from the specified
2241 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2242 * shadow register. All automatically and atomically.
2244 * Now, there's a twist to this story. The automatic load of
2245 * ConfigRomHeader and BusOptions doesn't honor the
2246 * noByteSwapData bit, so with a be32 config rom, the
2247 * controller will load be32 values in to these registers
2248 * during the atomic update, even on litte endian
2249 * architectures. The workaround we use is to put a 0 in the
2250 * header quadlet; 0 is endian agnostic and means that the
2251 * config rom isn't ready yet. In the bus reset tasklet we
2252 * then set up the real values for the two registers.
2254 * We use ohci->lock to avoid racing with the code that sets
2255 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2258 next_config_rom =
2259 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2260 &next_config_rom_bus, GFP_KERNEL);
2261 if (next_config_rom == NULL)
2262 return -ENOMEM;
2264 spin_lock_irqsave(&ohci->lock, flags);
2267 * If there is not an already pending config_rom update,
2268 * push our new allocation into the ohci->next_config_rom
2269 * and then mark the local variable as null so that we
2270 * won't deallocate the new buffer.
2272 * OTOH, if there is a pending config_rom update, just
2273 * use that buffer with the new config_rom data, and
2274 * let this routine free the unused DMA allocation.
2277 if (ohci->next_config_rom == NULL) {
2278 ohci->next_config_rom = next_config_rom;
2279 ohci->next_config_rom_bus = next_config_rom_bus;
2280 next_config_rom = NULL;
2283 copy_config_rom(ohci->next_config_rom, config_rom, length);
2285 ohci->next_header = config_rom[0];
2286 ohci->next_config_rom[0] = 0;
2288 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2290 spin_unlock_irqrestore(&ohci->lock, flags);
2292 /* If we didn't use the DMA allocation, delete it. */
2293 if (next_config_rom != NULL)
2294 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2295 next_config_rom, next_config_rom_bus);
2298 * Now initiate a bus reset to have the changes take
2299 * effect. We clean up the old config rom memory and DMA
2300 * mappings in the bus reset tasklet, since the OHCI
2301 * controller could need to access it before the bus reset
2302 * takes effect.
2305 fw_schedule_bus_reset(&ohci->card, true, true);
2307 return 0;
2310 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2312 struct fw_ohci *ohci = fw_ohci(card);
2314 at_context_transmit(&ohci->at_request_ctx, packet);
2317 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2319 struct fw_ohci *ohci = fw_ohci(card);
2321 at_context_transmit(&ohci->at_response_ctx, packet);
2324 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2326 struct fw_ohci *ohci = fw_ohci(card);
2327 struct context *ctx = &ohci->at_request_ctx;
2328 struct driver_data *driver_data = packet->driver_data;
2329 int ret = -ENOENT;
2331 tasklet_disable(&ctx->tasklet);
2333 if (packet->ack != 0)
2334 goto out;
2336 if (packet->payload_mapped)
2337 dma_unmap_single(ohci->card.device, packet->payload_bus,
2338 packet->payload_length, DMA_TO_DEVICE);
2340 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2341 driver_data->packet = NULL;
2342 packet->ack = RCODE_CANCELLED;
2343 packet->callback(packet, &ohci->card, packet->ack);
2344 ret = 0;
2345 out:
2346 tasklet_enable(&ctx->tasklet);
2348 return ret;
2351 static int ohci_enable_phys_dma(struct fw_card *card,
2352 int node_id, int generation)
2354 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2355 return 0;
2356 #else
2357 struct fw_ohci *ohci = fw_ohci(card);
2358 unsigned long flags;
2359 int n, ret = 0;
2362 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2363 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2366 spin_lock_irqsave(&ohci->lock, flags);
2368 if (ohci->generation != generation) {
2369 ret = -ESTALE;
2370 goto out;
2374 * Note, if the node ID contains a non-local bus ID, physical DMA is
2375 * enabled for _all_ nodes on remote buses.
2378 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2379 if (n < 32)
2380 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2381 else
2382 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2384 flush_writes(ohci);
2385 out:
2386 spin_unlock_irqrestore(&ohci->lock, flags);
2388 return ret;
2389 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2392 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2394 struct fw_ohci *ohci = fw_ohci(card);
2395 unsigned long flags;
2396 u32 value;
2398 switch (csr_offset) {
2399 case CSR_STATE_CLEAR:
2400 case CSR_STATE_SET:
2401 if (ohci->is_root &&
2402 (reg_read(ohci, OHCI1394_LinkControlSet) &
2403 OHCI1394_LinkControl_cycleMaster))
2404 value = CSR_STATE_BIT_CMSTR;
2405 else
2406 value = 0;
2407 if (ohci->csr_state_setclear_abdicate)
2408 value |= CSR_STATE_BIT_ABDICATE;
2410 return value;
2412 case CSR_NODE_IDS:
2413 return reg_read(ohci, OHCI1394_NodeID) << 16;
2415 case CSR_CYCLE_TIME:
2416 return get_cycle_time(ohci);
2418 case CSR_BUS_TIME:
2420 * We might be called just after the cycle timer has wrapped
2421 * around but just before the cycle64Seconds handler, so we
2422 * better check here, too, if the bus time needs to be updated.
2424 spin_lock_irqsave(&ohci->lock, flags);
2425 value = update_bus_time(ohci);
2426 spin_unlock_irqrestore(&ohci->lock, flags);
2427 return value;
2429 case CSR_BUSY_TIMEOUT:
2430 value = reg_read(ohci, OHCI1394_ATRetries);
2431 return (value >> 4) & 0x0ffff00f;
2433 case CSR_PRIORITY_BUDGET:
2434 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2435 (ohci->pri_req_max << 8);
2437 default:
2438 WARN_ON(1);
2439 return 0;
2443 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2445 struct fw_ohci *ohci = fw_ohci(card);
2446 unsigned long flags;
2448 switch (csr_offset) {
2449 case CSR_STATE_CLEAR:
2450 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2451 reg_write(ohci, OHCI1394_LinkControlClear,
2452 OHCI1394_LinkControl_cycleMaster);
2453 flush_writes(ohci);
2455 if (value & CSR_STATE_BIT_ABDICATE)
2456 ohci->csr_state_setclear_abdicate = false;
2457 break;
2459 case CSR_STATE_SET:
2460 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2461 reg_write(ohci, OHCI1394_LinkControlSet,
2462 OHCI1394_LinkControl_cycleMaster);
2463 flush_writes(ohci);
2465 if (value & CSR_STATE_BIT_ABDICATE)
2466 ohci->csr_state_setclear_abdicate = true;
2467 break;
2469 case CSR_NODE_IDS:
2470 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2471 flush_writes(ohci);
2472 break;
2474 case CSR_CYCLE_TIME:
2475 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2476 reg_write(ohci, OHCI1394_IntEventSet,
2477 OHCI1394_cycleInconsistent);
2478 flush_writes(ohci);
2479 break;
2481 case CSR_BUS_TIME:
2482 spin_lock_irqsave(&ohci->lock, flags);
2483 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2484 spin_unlock_irqrestore(&ohci->lock, flags);
2485 break;
2487 case CSR_BUSY_TIMEOUT:
2488 value = (value & 0xf) | ((value & 0xf) << 4) |
2489 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2490 reg_write(ohci, OHCI1394_ATRetries, value);
2491 flush_writes(ohci);
2492 break;
2494 case CSR_PRIORITY_BUDGET:
2495 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2496 flush_writes(ohci);
2497 break;
2499 default:
2500 WARN_ON(1);
2501 break;
2505 static void copy_iso_headers(struct iso_context *ctx, void *p)
2507 int i = ctx->header_length;
2509 if (i + ctx->base.header_size > PAGE_SIZE)
2510 return;
2513 * The iso header is byteswapped to little endian by
2514 * the controller, but the remaining header quadlets
2515 * are big endian. We want to present all the headers
2516 * as big endian, so we have to swap the first quadlet.
2518 if (ctx->base.header_size > 0)
2519 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2520 if (ctx->base.header_size > 4)
2521 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2522 if (ctx->base.header_size > 8)
2523 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2524 ctx->header_length += ctx->base.header_size;
2527 static int handle_ir_packet_per_buffer(struct context *context,
2528 struct descriptor *d,
2529 struct descriptor *last)
2531 struct iso_context *ctx =
2532 container_of(context, struct iso_context, context);
2533 struct descriptor *pd;
2534 __le32 *ir_header;
2535 void *p;
2537 for (pd = d; pd <= last; pd++)
2538 if (pd->transfer_status)
2539 break;
2540 if (pd > last)
2541 /* Descriptor(s) not done yet, stop iteration */
2542 return 0;
2544 p = last + 1;
2545 copy_iso_headers(ctx, p);
2547 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2548 ir_header = (__le32 *) p;
2549 ctx->base.callback.sc(&ctx->base,
2550 le32_to_cpu(ir_header[0]) & 0xffff,
2551 ctx->header_length, ctx->header,
2552 ctx->base.callback_data);
2553 ctx->header_length = 0;
2556 return 1;
2559 /* d == last because each descriptor block is only a single descriptor. */
2560 static int handle_ir_buffer_fill(struct context *context,
2561 struct descriptor *d,
2562 struct descriptor *last)
2564 struct iso_context *ctx =
2565 container_of(context, struct iso_context, context);
2567 if (!last->transfer_status)
2568 /* Descriptor(s) not done yet, stop iteration */
2569 return 0;
2571 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2572 ctx->base.callback.mc(&ctx->base,
2573 le32_to_cpu(last->data_address) +
2574 le16_to_cpu(last->req_count) -
2575 le16_to_cpu(last->res_count),
2576 ctx->base.callback_data);
2578 return 1;
2581 static int handle_it_packet(struct context *context,
2582 struct descriptor *d,
2583 struct descriptor *last)
2585 struct iso_context *ctx =
2586 container_of(context, struct iso_context, context);
2587 int i;
2588 struct descriptor *pd;
2590 for (pd = d; pd <= last; pd++)
2591 if (pd->transfer_status)
2592 break;
2593 if (pd > last)
2594 /* Descriptor(s) not done yet, stop iteration */
2595 return 0;
2597 i = ctx->header_length;
2598 if (i + 4 < PAGE_SIZE) {
2599 /* Present this value as big-endian to match the receive code */
2600 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2601 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2602 le16_to_cpu(pd->res_count));
2603 ctx->header_length += 4;
2605 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2606 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2607 ctx->header_length, ctx->header,
2608 ctx->base.callback_data);
2609 ctx->header_length = 0;
2611 return 1;
2614 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2616 u32 hi = channels >> 32, lo = channels;
2618 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2619 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2620 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2621 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2622 mmiowb();
2623 ohci->mc_channels = channels;
2626 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2627 int type, int channel, size_t header_size)
2629 struct fw_ohci *ohci = fw_ohci(card);
2630 struct iso_context *uninitialized_var(ctx);
2631 descriptor_callback_t uninitialized_var(callback);
2632 u64 *uninitialized_var(channels);
2633 u32 *uninitialized_var(mask), uninitialized_var(regs);
2634 unsigned long flags;
2635 int index, ret = -EBUSY;
2637 spin_lock_irqsave(&ohci->lock, flags);
2639 switch (type) {
2640 case FW_ISO_CONTEXT_TRANSMIT:
2641 mask = &ohci->it_context_mask;
2642 callback = handle_it_packet;
2643 index = ffs(*mask) - 1;
2644 if (index >= 0) {
2645 *mask &= ~(1 << index);
2646 regs = OHCI1394_IsoXmitContextBase(index);
2647 ctx = &ohci->it_context_list[index];
2649 break;
2651 case FW_ISO_CONTEXT_RECEIVE:
2652 channels = &ohci->ir_context_channels;
2653 mask = &ohci->ir_context_mask;
2654 callback = handle_ir_packet_per_buffer;
2655 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2656 if (index >= 0) {
2657 *channels &= ~(1ULL << channel);
2658 *mask &= ~(1 << index);
2659 regs = OHCI1394_IsoRcvContextBase(index);
2660 ctx = &ohci->ir_context_list[index];
2662 break;
2664 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2665 mask = &ohci->ir_context_mask;
2666 callback = handle_ir_buffer_fill;
2667 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2668 if (index >= 0) {
2669 ohci->mc_allocated = true;
2670 *mask &= ~(1 << index);
2671 regs = OHCI1394_IsoRcvContextBase(index);
2672 ctx = &ohci->ir_context_list[index];
2674 break;
2676 default:
2677 index = -1;
2678 ret = -ENOSYS;
2681 spin_unlock_irqrestore(&ohci->lock, flags);
2683 if (index < 0)
2684 return ERR_PTR(ret);
2686 memset(ctx, 0, sizeof(*ctx));
2687 ctx->header_length = 0;
2688 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2689 if (ctx->header == NULL) {
2690 ret = -ENOMEM;
2691 goto out;
2693 ret = context_init(&ctx->context, ohci, regs, callback);
2694 if (ret < 0)
2695 goto out_with_header;
2697 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2698 set_multichannel_mask(ohci, 0);
2700 return &ctx->base;
2702 out_with_header:
2703 free_page((unsigned long)ctx->header);
2704 out:
2705 spin_lock_irqsave(&ohci->lock, flags);
2707 switch (type) {
2708 case FW_ISO_CONTEXT_RECEIVE:
2709 *channels |= 1ULL << channel;
2710 break;
2712 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2713 ohci->mc_allocated = false;
2714 break;
2716 *mask |= 1 << index;
2718 spin_unlock_irqrestore(&ohci->lock, flags);
2720 return ERR_PTR(ret);
2723 static int ohci_start_iso(struct fw_iso_context *base,
2724 s32 cycle, u32 sync, u32 tags)
2726 struct iso_context *ctx = container_of(base, struct iso_context, base);
2727 struct fw_ohci *ohci = ctx->context.ohci;
2728 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2729 int index;
2731 /* the controller cannot start without any queued packets */
2732 if (ctx->context.last->branch_address == 0)
2733 return -ENODATA;
2735 switch (ctx->base.type) {
2736 case FW_ISO_CONTEXT_TRANSMIT:
2737 index = ctx - ohci->it_context_list;
2738 match = 0;
2739 if (cycle >= 0)
2740 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2741 (cycle & 0x7fff) << 16;
2743 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2744 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2745 context_run(&ctx->context, match);
2746 break;
2748 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2749 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2750 /* fall through */
2751 case FW_ISO_CONTEXT_RECEIVE:
2752 index = ctx - ohci->ir_context_list;
2753 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2754 if (cycle >= 0) {
2755 match |= (cycle & 0x07fff) << 12;
2756 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2759 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2760 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2761 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2762 context_run(&ctx->context, control);
2764 ctx->sync = sync;
2765 ctx->tags = tags;
2767 break;
2770 return 0;
2773 static int ohci_stop_iso(struct fw_iso_context *base)
2775 struct fw_ohci *ohci = fw_ohci(base->card);
2776 struct iso_context *ctx = container_of(base, struct iso_context, base);
2777 int index;
2779 switch (ctx->base.type) {
2780 case FW_ISO_CONTEXT_TRANSMIT:
2781 index = ctx - ohci->it_context_list;
2782 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2783 break;
2785 case FW_ISO_CONTEXT_RECEIVE:
2786 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2787 index = ctx - ohci->ir_context_list;
2788 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2789 break;
2791 flush_writes(ohci);
2792 context_stop(&ctx->context);
2793 tasklet_kill(&ctx->context.tasklet);
2795 return 0;
2798 static void ohci_free_iso_context(struct fw_iso_context *base)
2800 struct fw_ohci *ohci = fw_ohci(base->card);
2801 struct iso_context *ctx = container_of(base, struct iso_context, base);
2802 unsigned long flags;
2803 int index;
2805 ohci_stop_iso(base);
2806 context_release(&ctx->context);
2807 free_page((unsigned long)ctx->header);
2809 spin_lock_irqsave(&ohci->lock, flags);
2811 switch (base->type) {
2812 case FW_ISO_CONTEXT_TRANSMIT:
2813 index = ctx - ohci->it_context_list;
2814 ohci->it_context_mask |= 1 << index;
2815 break;
2817 case FW_ISO_CONTEXT_RECEIVE:
2818 index = ctx - ohci->ir_context_list;
2819 ohci->ir_context_mask |= 1 << index;
2820 ohci->ir_context_channels |= 1ULL << base->channel;
2821 break;
2823 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2824 index = ctx - ohci->ir_context_list;
2825 ohci->ir_context_mask |= 1 << index;
2826 ohci->ir_context_channels |= ohci->mc_channels;
2827 ohci->mc_channels = 0;
2828 ohci->mc_allocated = false;
2829 break;
2832 spin_unlock_irqrestore(&ohci->lock, flags);
2835 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2837 struct fw_ohci *ohci = fw_ohci(base->card);
2838 unsigned long flags;
2839 int ret;
2841 switch (base->type) {
2842 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2844 spin_lock_irqsave(&ohci->lock, flags);
2846 /* Don't allow multichannel to grab other contexts' channels. */
2847 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2848 *channels = ohci->ir_context_channels;
2849 ret = -EBUSY;
2850 } else {
2851 set_multichannel_mask(ohci, *channels);
2852 ret = 0;
2855 spin_unlock_irqrestore(&ohci->lock, flags);
2857 break;
2858 default:
2859 ret = -EINVAL;
2862 return ret;
2865 #ifdef CONFIG_PM
2866 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2868 int i;
2869 struct iso_context *ctx;
2871 for (i = 0 ; i < ohci->n_ir ; i++) {
2872 ctx = &ohci->ir_context_list[i];
2873 if (ctx->context.running)
2874 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2877 for (i = 0 ; i < ohci->n_it ; i++) {
2878 ctx = &ohci->it_context_list[i];
2879 if (ctx->context.running)
2880 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2883 #endif
2885 static int queue_iso_transmit(struct iso_context *ctx,
2886 struct fw_iso_packet *packet,
2887 struct fw_iso_buffer *buffer,
2888 unsigned long payload)
2890 struct descriptor *d, *last, *pd;
2891 struct fw_iso_packet *p;
2892 __le32 *header;
2893 dma_addr_t d_bus, page_bus;
2894 u32 z, header_z, payload_z, irq;
2895 u32 payload_index, payload_end_index, next_page_index;
2896 int page, end_page, i, length, offset;
2898 p = packet;
2899 payload_index = payload;
2901 if (p->skip)
2902 z = 1;
2903 else
2904 z = 2;
2905 if (p->header_length > 0)
2906 z++;
2908 /* Determine the first page the payload isn't contained in. */
2909 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2910 if (p->payload_length > 0)
2911 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2912 else
2913 payload_z = 0;
2915 z += payload_z;
2917 /* Get header size in number of descriptors. */
2918 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2920 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2921 if (d == NULL)
2922 return -ENOMEM;
2924 if (!p->skip) {
2925 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2926 d[0].req_count = cpu_to_le16(8);
2928 * Link the skip address to this descriptor itself. This causes
2929 * a context to skip a cycle whenever lost cycles or FIFO
2930 * overruns occur, without dropping the data. The application
2931 * should then decide whether this is an error condition or not.
2932 * FIXME: Make the context's cycle-lost behaviour configurable?
2934 d[0].branch_address = cpu_to_le32(d_bus | z);
2936 header = (__le32 *) &d[1];
2937 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2938 IT_HEADER_TAG(p->tag) |
2939 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2940 IT_HEADER_CHANNEL(ctx->base.channel) |
2941 IT_HEADER_SPEED(ctx->base.speed));
2942 header[1] =
2943 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2944 p->payload_length));
2947 if (p->header_length > 0) {
2948 d[2].req_count = cpu_to_le16(p->header_length);
2949 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2950 memcpy(&d[z], p->header, p->header_length);
2953 pd = d + z - payload_z;
2954 payload_end_index = payload_index + p->payload_length;
2955 for (i = 0; i < payload_z; i++) {
2956 page = payload_index >> PAGE_SHIFT;
2957 offset = payload_index & ~PAGE_MASK;
2958 next_page_index = (page + 1) << PAGE_SHIFT;
2959 length =
2960 min(next_page_index, payload_end_index) - payload_index;
2961 pd[i].req_count = cpu_to_le16(length);
2963 page_bus = page_private(buffer->pages[page]);
2964 pd[i].data_address = cpu_to_le32(page_bus + offset);
2966 payload_index += length;
2969 if (p->interrupt)
2970 irq = DESCRIPTOR_IRQ_ALWAYS;
2971 else
2972 irq = DESCRIPTOR_NO_IRQ;
2974 last = z == 2 ? d : d + z - 1;
2975 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2976 DESCRIPTOR_STATUS |
2977 DESCRIPTOR_BRANCH_ALWAYS |
2978 irq);
2980 context_append(&ctx->context, d, z, header_z);
2982 return 0;
2985 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2986 struct fw_iso_packet *packet,
2987 struct fw_iso_buffer *buffer,
2988 unsigned long payload)
2990 struct descriptor *d, *pd;
2991 dma_addr_t d_bus, page_bus;
2992 u32 z, header_z, rest;
2993 int i, j, length;
2994 int page, offset, packet_count, header_size, payload_per_buffer;
2997 * The OHCI controller puts the isochronous header and trailer in the
2998 * buffer, so we need at least 8 bytes.
3000 packet_count = packet->header_length / ctx->base.header_size;
3001 header_size = max(ctx->base.header_size, (size_t)8);
3003 /* Get header size in number of descriptors. */
3004 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3005 page = payload >> PAGE_SHIFT;
3006 offset = payload & ~PAGE_MASK;
3007 payload_per_buffer = packet->payload_length / packet_count;
3009 for (i = 0; i < packet_count; i++) {
3010 /* d points to the header descriptor */
3011 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3012 d = context_get_descriptors(&ctx->context,
3013 z + header_z, &d_bus);
3014 if (d == NULL)
3015 return -ENOMEM;
3017 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3018 DESCRIPTOR_INPUT_MORE);
3019 if (packet->skip && i == 0)
3020 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3021 d->req_count = cpu_to_le16(header_size);
3022 d->res_count = d->req_count;
3023 d->transfer_status = 0;
3024 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3026 rest = payload_per_buffer;
3027 pd = d;
3028 for (j = 1; j < z; j++) {
3029 pd++;
3030 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3031 DESCRIPTOR_INPUT_MORE);
3033 if (offset + rest < PAGE_SIZE)
3034 length = rest;
3035 else
3036 length = PAGE_SIZE - offset;
3037 pd->req_count = cpu_to_le16(length);
3038 pd->res_count = pd->req_count;
3039 pd->transfer_status = 0;
3041 page_bus = page_private(buffer->pages[page]);
3042 pd->data_address = cpu_to_le32(page_bus + offset);
3044 offset = (offset + length) & ~PAGE_MASK;
3045 rest -= length;
3046 if (offset == 0)
3047 page++;
3049 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3050 DESCRIPTOR_INPUT_LAST |
3051 DESCRIPTOR_BRANCH_ALWAYS);
3052 if (packet->interrupt && i == packet_count - 1)
3053 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3055 context_append(&ctx->context, d, z, header_z);
3058 return 0;
3061 static int queue_iso_buffer_fill(struct iso_context *ctx,
3062 struct fw_iso_packet *packet,
3063 struct fw_iso_buffer *buffer,
3064 unsigned long payload)
3066 struct descriptor *d;
3067 dma_addr_t d_bus, page_bus;
3068 int page, offset, rest, z, i, length;
3070 page = payload >> PAGE_SHIFT;
3071 offset = payload & ~PAGE_MASK;
3072 rest = packet->payload_length;
3074 /* We need one descriptor for each page in the buffer. */
3075 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3077 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3078 return -EFAULT;
3080 for (i = 0; i < z; i++) {
3081 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3082 if (d == NULL)
3083 return -ENOMEM;
3085 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3086 DESCRIPTOR_BRANCH_ALWAYS);
3087 if (packet->skip && i == 0)
3088 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3089 if (packet->interrupt && i == z - 1)
3090 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3092 if (offset + rest < PAGE_SIZE)
3093 length = rest;
3094 else
3095 length = PAGE_SIZE - offset;
3096 d->req_count = cpu_to_le16(length);
3097 d->res_count = d->req_count;
3098 d->transfer_status = 0;
3100 page_bus = page_private(buffer->pages[page]);
3101 d->data_address = cpu_to_le32(page_bus + offset);
3103 rest -= length;
3104 offset = 0;
3105 page++;
3107 context_append(&ctx->context, d, 1, 0);
3110 return 0;
3113 static int ohci_queue_iso(struct fw_iso_context *base,
3114 struct fw_iso_packet *packet,
3115 struct fw_iso_buffer *buffer,
3116 unsigned long payload)
3118 struct iso_context *ctx = container_of(base, struct iso_context, base);
3119 unsigned long flags;
3120 int ret = -ENOSYS;
3122 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3123 switch (base->type) {
3124 case FW_ISO_CONTEXT_TRANSMIT:
3125 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3126 break;
3127 case FW_ISO_CONTEXT_RECEIVE:
3128 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3129 break;
3130 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3131 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3132 break;
3134 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3136 return ret;
3139 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3141 struct context *ctx =
3142 &container_of(base, struct iso_context, base)->context;
3144 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3147 static const struct fw_card_driver ohci_driver = {
3148 .enable = ohci_enable,
3149 .read_phy_reg = ohci_read_phy_reg,
3150 .update_phy_reg = ohci_update_phy_reg,
3151 .set_config_rom = ohci_set_config_rom,
3152 .send_request = ohci_send_request,
3153 .send_response = ohci_send_response,
3154 .cancel_packet = ohci_cancel_packet,
3155 .enable_phys_dma = ohci_enable_phys_dma,
3156 .read_csr = ohci_read_csr,
3157 .write_csr = ohci_write_csr,
3159 .allocate_iso_context = ohci_allocate_iso_context,
3160 .free_iso_context = ohci_free_iso_context,
3161 .set_iso_channels = ohci_set_iso_channels,
3162 .queue_iso = ohci_queue_iso,
3163 .flush_queue_iso = ohci_flush_queue_iso,
3164 .start_iso = ohci_start_iso,
3165 .stop_iso = ohci_stop_iso,
3168 #ifdef CONFIG_PPC_PMAC
3169 static void pmac_ohci_on(struct pci_dev *dev)
3171 if (machine_is(powermac)) {
3172 struct device_node *ofn = pci_device_to_OF_node(dev);
3174 if (ofn) {
3175 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3176 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3181 static void pmac_ohci_off(struct pci_dev *dev)
3183 if (machine_is(powermac)) {
3184 struct device_node *ofn = pci_device_to_OF_node(dev);
3186 if (ofn) {
3187 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3188 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3192 #else
3193 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3194 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3195 #endif /* CONFIG_PPC_PMAC */
3197 static int __devinit pci_probe(struct pci_dev *dev,
3198 const struct pci_device_id *ent)
3200 struct fw_ohci *ohci;
3201 u32 bus_options, max_receive, link_speed, version;
3202 u64 guid;
3203 int i, err;
3204 size_t size;
3206 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3207 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3208 return -ENOSYS;
3211 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3212 if (ohci == NULL) {
3213 err = -ENOMEM;
3214 goto fail;
3217 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3219 pmac_ohci_on(dev);
3221 err = pci_enable_device(dev);
3222 if (err) {
3223 fw_error("Failed to enable OHCI hardware\n");
3224 goto fail_free;
3227 pci_set_master(dev);
3228 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3229 pci_set_drvdata(dev, ohci);
3231 spin_lock_init(&ohci->lock);
3232 mutex_init(&ohci->phy_reg_mutex);
3234 tasklet_init(&ohci->bus_reset_tasklet,
3235 bus_reset_tasklet, (unsigned long)ohci);
3237 err = pci_request_region(dev, 0, ohci_driver_name);
3238 if (err) {
3239 fw_error("MMIO resource unavailable\n");
3240 goto fail_disable;
3243 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3244 if (ohci->registers == NULL) {
3245 fw_error("Failed to remap registers\n");
3246 err = -ENXIO;
3247 goto fail_iomem;
3250 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3251 if ((ohci_quirks[i].vendor == dev->vendor) &&
3252 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3253 ohci_quirks[i].device == dev->device) &&
3254 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3255 ohci_quirks[i].revision >= dev->revision)) {
3256 ohci->quirks = ohci_quirks[i].flags;
3257 break;
3259 if (param_quirks)
3260 ohci->quirks = param_quirks;
3263 * Because dma_alloc_coherent() allocates at least one page,
3264 * we save space by using a common buffer for the AR request/
3265 * response descriptors and the self IDs buffer.
3267 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3268 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3269 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3270 PAGE_SIZE,
3271 &ohci->misc_buffer_bus,
3272 GFP_KERNEL);
3273 if (!ohci->misc_buffer) {
3274 err = -ENOMEM;
3275 goto fail_iounmap;
3278 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3279 OHCI1394_AsReqRcvContextControlSet);
3280 if (err < 0)
3281 goto fail_misc_buf;
3283 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3284 OHCI1394_AsRspRcvContextControlSet);
3285 if (err < 0)
3286 goto fail_arreq_ctx;
3288 err = context_init(&ohci->at_request_ctx, ohci,
3289 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3290 if (err < 0)
3291 goto fail_arrsp_ctx;
3293 err = context_init(&ohci->at_response_ctx, ohci,
3294 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3295 if (err < 0)
3296 goto fail_atreq_ctx;
3298 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3299 ohci->ir_context_channels = ~0ULL;
3300 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3301 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3302 ohci->ir_context_mask = ohci->ir_context_support;
3303 ohci->n_ir = hweight32(ohci->ir_context_mask);
3304 size = sizeof(struct iso_context) * ohci->n_ir;
3305 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3307 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3308 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3309 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3310 ohci->it_context_mask = ohci->it_context_support;
3311 ohci->n_it = hweight32(ohci->it_context_mask);
3312 size = sizeof(struct iso_context) * ohci->n_it;
3313 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3315 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3316 err = -ENOMEM;
3317 goto fail_contexts;
3320 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3321 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3323 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3324 max_receive = (bus_options >> 12) & 0xf;
3325 link_speed = bus_options & 0x7;
3326 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3327 reg_read(ohci, OHCI1394_GUIDLo);
3329 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3330 if (err)
3331 goto fail_contexts;
3333 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3334 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3335 "%d IR + %d IT contexts, quirks 0x%x\n",
3336 dev_name(&dev->dev), version >> 16, version & 0xff,
3337 ohci->n_ir, ohci->n_it, ohci->quirks);
3339 return 0;
3341 fail_contexts:
3342 kfree(ohci->ir_context_list);
3343 kfree(ohci->it_context_list);
3344 context_release(&ohci->at_response_ctx);
3345 fail_atreq_ctx:
3346 context_release(&ohci->at_request_ctx);
3347 fail_arrsp_ctx:
3348 ar_context_release(&ohci->ar_response_ctx);
3349 fail_arreq_ctx:
3350 ar_context_release(&ohci->ar_request_ctx);
3351 fail_misc_buf:
3352 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3353 ohci->misc_buffer, ohci->misc_buffer_bus);
3354 fail_iounmap:
3355 pci_iounmap(dev, ohci->registers);
3356 fail_iomem:
3357 pci_release_region(dev, 0);
3358 fail_disable:
3359 pci_disable_device(dev);
3360 fail_free:
3361 kfree(ohci);
3362 pmac_ohci_off(dev);
3363 fail:
3364 if (err == -ENOMEM)
3365 fw_error("Out of memory\n");
3367 return err;
3370 static void pci_remove(struct pci_dev *dev)
3372 struct fw_ohci *ohci;
3374 ohci = pci_get_drvdata(dev);
3375 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3376 flush_writes(ohci);
3377 fw_core_remove_card(&ohci->card);
3380 * FIXME: Fail all pending packets here, now that the upper
3381 * layers can't queue any more.
3384 software_reset(ohci);
3385 free_irq(dev->irq, ohci);
3387 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3388 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3389 ohci->next_config_rom, ohci->next_config_rom_bus);
3390 if (ohci->config_rom)
3391 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3392 ohci->config_rom, ohci->config_rom_bus);
3393 ar_context_release(&ohci->ar_request_ctx);
3394 ar_context_release(&ohci->ar_response_ctx);
3395 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3396 ohci->misc_buffer, ohci->misc_buffer_bus);
3397 context_release(&ohci->at_request_ctx);
3398 context_release(&ohci->at_response_ctx);
3399 kfree(ohci->it_context_list);
3400 kfree(ohci->ir_context_list);
3401 pci_disable_msi(dev);
3402 pci_iounmap(dev, ohci->registers);
3403 pci_release_region(dev, 0);
3404 pci_disable_device(dev);
3405 kfree(ohci);
3406 pmac_ohci_off(dev);
3408 fw_notify("Removed fw-ohci device.\n");
3411 #ifdef CONFIG_PM
3412 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3414 struct fw_ohci *ohci = pci_get_drvdata(dev);
3415 int err;
3417 software_reset(ohci);
3418 free_irq(dev->irq, ohci);
3419 pci_disable_msi(dev);
3420 err = pci_save_state(dev);
3421 if (err) {
3422 fw_error("pci_save_state failed\n");
3423 return err;
3425 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3426 if (err)
3427 fw_error("pci_set_power_state failed with %d\n", err);
3428 pmac_ohci_off(dev);
3430 return 0;
3433 static int pci_resume(struct pci_dev *dev)
3435 struct fw_ohci *ohci = pci_get_drvdata(dev);
3436 int err;
3438 pmac_ohci_on(dev);
3439 pci_set_power_state(dev, PCI_D0);
3440 pci_restore_state(dev);
3441 err = pci_enable_device(dev);
3442 if (err) {
3443 fw_error("pci_enable_device failed\n");
3444 return err;
3447 /* Some systems don't setup GUID register on resume from ram */
3448 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3449 !reg_read(ohci, OHCI1394_GUIDHi)) {
3450 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3451 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3454 err = ohci_enable(&ohci->card, NULL, 0);
3455 if (err)
3456 return err;
3458 ohci_resume_iso_dma(ohci);
3460 return 0;
3462 #endif
3464 static const struct pci_device_id pci_table[] = {
3465 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3469 MODULE_DEVICE_TABLE(pci, pci_table);
3471 static struct pci_driver fw_ohci_pci_driver = {
3472 .name = ohci_driver_name,
3473 .id_table = pci_table,
3474 .probe = pci_probe,
3475 .remove = pci_remove,
3476 #ifdef CONFIG_PM
3477 .resume = pci_resume,
3478 .suspend = pci_suspend,
3479 #endif
3482 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3483 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3484 MODULE_LICENSE("GPL");
3486 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3487 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3488 MODULE_ALIAS("ohci1394");
3489 #endif
3491 static int __init fw_ohci_init(void)
3493 return pci_register_driver(&fw_ohci_pci_driver);
3496 static void __exit fw_ohci_cleanup(void)
3498 pci_unregister_driver(&fw_ohci_pci_driver);
3501 module_init(fw_ohci_init);
3502 module_exit(fw_ohci_cleanup);