Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / mfd / ab8500-gpadc.c
blobf16afb234ff98a250d0ded3a9aac0d1768ab679b
1 /*
2 * Copyright (C) ST-Ericsson SA 2010
4 * License Terms: GNU General Public License v2
5 * Author: Arun R Murthy <arun.murthy@stericsson.com>
6 * Author: Daniel Willerud <daniel.willerud@stericsson.com>
7 * Author: Johan Palsson <johan.palsson@stericsson.com>
8 */
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/platform_device.h>
16 #include <linux/completion.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/list.h>
21 #include <linux/mfd/ab8500.h>
22 #include <linux/mfd/abx500.h>
23 #include <linux/mfd/ab8500/gpadc.h>
26 * GPADC register offsets
27 * Bank : 0x0A
29 #define AB8500_GPADC_CTRL1_REG 0x00
30 #define AB8500_GPADC_CTRL2_REG 0x01
31 #define AB8500_GPADC_CTRL3_REG 0x02
32 #define AB8500_GPADC_AUTO_TIMER_REG 0x03
33 #define AB8500_GPADC_STAT_REG 0x04
34 #define AB8500_GPADC_MANDATAL_REG 0x05
35 #define AB8500_GPADC_MANDATAH_REG 0x06
36 #define AB8500_GPADC_AUTODATAL_REG 0x07
37 #define AB8500_GPADC_AUTODATAH_REG 0x08
38 #define AB8500_GPADC_MUX_CTRL_REG 0x09
41 * OTP register offsets
42 * Bank : 0x15
44 #define AB8500_GPADC_CAL_1 0x0F
45 #define AB8500_GPADC_CAL_2 0x10
46 #define AB8500_GPADC_CAL_3 0x11
47 #define AB8500_GPADC_CAL_4 0x12
48 #define AB8500_GPADC_CAL_5 0x13
49 #define AB8500_GPADC_CAL_6 0x14
50 #define AB8500_GPADC_CAL_7 0x15
52 /* gpadc constants */
53 #define EN_VINTCORE12 0x04
54 #define EN_VTVOUT 0x02
55 #define EN_GPADC 0x01
56 #define DIS_GPADC 0x00
57 #define SW_AVG_16 0x60
58 #define ADC_SW_CONV 0x04
59 #define EN_ICHAR 0x80
60 #define BTEMP_PULL_UP 0x08
61 #define EN_BUF 0x40
62 #define DIS_ZERO 0x00
63 #define GPADC_BUSY 0x01
65 /* GPADC constants from AB8500 spec, UM0836 */
66 #define ADC_RESOLUTION 1024
67 #define ADC_CH_BTEMP_MIN 0
68 #define ADC_CH_BTEMP_MAX 1350
69 #define ADC_CH_DIETEMP_MIN 0
70 #define ADC_CH_DIETEMP_MAX 1350
71 #define ADC_CH_CHG_V_MIN 0
72 #define ADC_CH_CHG_V_MAX 20030
73 #define ADC_CH_ACCDET2_MIN 0
74 #define ADC_CH_ACCDET2_MAX 2500
75 #define ADC_CH_VBAT_MIN 2300
76 #define ADC_CH_VBAT_MAX 4800
77 #define ADC_CH_CHG_I_MIN 0
78 #define ADC_CH_CHG_I_MAX 1500
79 #define ADC_CH_BKBAT_MIN 0
80 #define ADC_CH_BKBAT_MAX 3200
82 /* This is used to not lose precision when dividing to get gain and offset */
83 #define CALIB_SCALE 1000
85 enum cal_channels {
86 ADC_INPUT_VMAIN = 0,
87 ADC_INPUT_BTEMP,
88 ADC_INPUT_VBAT,
89 NBR_CAL_INPUTS,
92 /**
93 * struct adc_cal_data - Table for storing gain and offset for the calibrated
94 * ADC channels
95 * @gain: Gain of the ADC channel
96 * @offset: Offset of the ADC channel
98 struct adc_cal_data {
99 u64 gain;
100 u64 offset;
104 * struct ab8500_gpadc - AB8500 GPADC device information
105 * @chip_id ABB chip id
106 * @dev: pointer to the struct device
107 * @node: a list of AB8500 GPADCs, hence prepared for
108 reentrance
109 * @ab8500_gpadc_complete: pointer to the struct completion, to indicate
110 * the completion of gpadc conversion
111 * @ab8500_gpadc_lock: structure of type mutex
112 * @regu: pointer to the struct regulator
113 * @irq: interrupt number that is used by gpadc
114 * @cal_data array of ADC calibration data structs
116 struct ab8500_gpadc {
117 u8 chip_id;
118 struct device *dev;
119 struct list_head node;
120 struct completion ab8500_gpadc_complete;
121 struct mutex ab8500_gpadc_lock;
122 struct regulator *regu;
123 int irq;
124 struct adc_cal_data cal_data[NBR_CAL_INPUTS];
127 static LIST_HEAD(ab8500_gpadc_list);
130 * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
131 * (i.e. the first GPADC in the instance list)
133 struct ab8500_gpadc *ab8500_gpadc_get(char *name)
135 struct ab8500_gpadc *gpadc;
137 list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
138 if (!strcmp(name, dev_name(gpadc->dev)))
139 return gpadc;
142 return ERR_PTR(-ENOENT);
144 EXPORT_SYMBOL(ab8500_gpadc_get);
146 static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 input,
147 int ad_value)
149 int res;
151 switch (input) {
152 case MAIN_CHARGER_V:
153 /* For some reason we don't have calibrated data */
154 if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
155 res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
156 ADC_CH_CHG_V_MIN) * ad_value /
157 ADC_RESOLUTION;
158 break;
160 /* Here we can use the calibrated data */
161 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
162 gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
163 break;
165 case BAT_CTRL:
166 case BTEMP_BALL:
167 case ACC_DETECT1:
168 case ADC_AUX1:
169 case ADC_AUX2:
170 /* For some reason we don't have calibrated data */
171 if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
172 res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
173 ADC_CH_BTEMP_MIN) * ad_value /
174 ADC_RESOLUTION;
175 break;
177 /* Here we can use the calibrated data */
178 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
179 gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
180 break;
182 case MAIN_BAT_V:
183 /* For some reason we don't have calibrated data */
184 if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
185 res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
186 ADC_CH_VBAT_MIN) * ad_value /
187 ADC_RESOLUTION;
188 break;
190 /* Here we can use the calibrated data */
191 res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
192 gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
193 break;
195 case DIE_TEMP:
196 res = ADC_CH_DIETEMP_MIN +
197 (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
198 ADC_RESOLUTION;
199 break;
201 case ACC_DETECT2:
202 res = ADC_CH_ACCDET2_MIN +
203 (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
204 ADC_RESOLUTION;
205 break;
207 case VBUS_V:
208 res = ADC_CH_CHG_V_MIN +
209 (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
210 ADC_RESOLUTION;
211 break;
213 case MAIN_CHARGER_C:
214 case USB_CHARGER_C:
215 res = ADC_CH_CHG_I_MIN +
216 (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
217 ADC_RESOLUTION;
218 break;
220 case BK_BAT_V:
221 res = ADC_CH_BKBAT_MIN +
222 (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
223 ADC_RESOLUTION;
224 break;
226 default:
227 dev_err(gpadc->dev,
228 "unknown channel, not possible to convert\n");
229 res = -EINVAL;
230 break;
233 return res;
237 * ab8500_gpadc_convert() - gpadc conversion
238 * @input: analog input to be converted to digital data
240 * This function converts the selected analog i/p to digital
241 * data.
243 int ab8500_gpadc_convert(struct ab8500_gpadc *gpadc, u8 input)
245 int ret;
246 u16 data = 0;
247 int looplimit = 0;
248 u8 val, low_data, high_data;
250 if (!gpadc)
251 return -ENODEV;
253 mutex_lock(&gpadc->ab8500_gpadc_lock);
254 /* Enable VTVout LDO this is required for GPADC */
255 regulator_enable(gpadc->regu);
257 /* Check if ADC is not busy, lock and proceed */
258 do {
259 ret = abx500_get_register_interruptible(gpadc->dev,
260 AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
261 if (ret < 0)
262 goto out;
263 if (!(val & GPADC_BUSY))
264 break;
265 msleep(10);
266 } while (++looplimit < 10);
267 if (looplimit >= 10 && (val & GPADC_BUSY)) {
268 dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
269 ret = -EINVAL;
270 goto out;
273 /* Enable GPADC */
274 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
275 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_GPADC, EN_GPADC);
276 if (ret < 0) {
277 dev_err(gpadc->dev, "gpadc_conversion: enable gpadc failed\n");
278 goto out;
281 /* Select the input source and set average samples to 16 */
282 ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
283 AB8500_GPADC_CTRL2_REG, (input | SW_AVG_16));
284 if (ret < 0) {
285 dev_err(gpadc->dev,
286 "gpadc_conversion: set avg samples failed\n");
287 goto out;
291 * Enable ADC, buffering, select rising edge and enable ADC path
292 * charging current sense if it needed, ABB 3.0 needs some special
293 * treatment too.
295 switch (input) {
296 case MAIN_CHARGER_C:
297 case USB_CHARGER_C:
298 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
299 AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
300 EN_BUF | EN_ICHAR,
301 EN_BUF | EN_ICHAR);
302 break;
303 case BTEMP_BALL:
304 if (gpadc->chip_id >= AB8500_CUT3P0) {
305 /* Turn on btemp pull-up on ABB 3.0 */
306 ret = abx500_mask_and_set_register_interruptible(
307 gpadc->dev,
308 AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
309 EN_BUF | BTEMP_PULL_UP,
310 EN_BUF | BTEMP_PULL_UP);
313 * Delay might be needed for ABB8500 cut 3.0, if not, remove
314 * when hardware will be availible
316 msleep(1);
317 break;
319 /* Intentional fallthrough */
320 default:
321 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
322 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, EN_BUF, EN_BUF);
323 break;
325 if (ret < 0) {
326 dev_err(gpadc->dev,
327 "gpadc_conversion: select falling edge failed\n");
328 goto out;
331 ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
332 AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV);
333 if (ret < 0) {
334 dev_err(gpadc->dev,
335 "gpadc_conversion: start s/w conversion failed\n");
336 goto out;
338 /* wait for completion of conversion */
339 if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, 2*HZ)) {
340 dev_err(gpadc->dev,
341 "timeout: didn't receive GPADC conversion interrupt\n");
342 ret = -EINVAL;
343 goto out;
346 /* Read the converted RAW data */
347 ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
348 AB8500_GPADC_MANDATAL_REG, &low_data);
349 if (ret < 0) {
350 dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
351 goto out;
354 ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC,
355 AB8500_GPADC_MANDATAH_REG, &high_data);
356 if (ret < 0) {
357 dev_err(gpadc->dev,
358 "gpadc_conversion: read high data failed\n");
359 goto out;
362 data = (high_data << 8) | low_data;
363 /* Disable GPADC */
364 ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
365 AB8500_GPADC_CTRL1_REG, DIS_GPADC);
366 if (ret < 0) {
367 dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
368 goto out;
370 /* Disable VTVout LDO this is required for GPADC */
371 regulator_disable(gpadc->regu);
372 mutex_unlock(&gpadc->ab8500_gpadc_lock);
373 ret = ab8500_gpadc_ad_to_voltage(gpadc, input, data);
374 return ret;
376 out:
378 * It has shown to be needed to turn off the GPADC if an error occurs,
379 * otherwise we might have problem when waiting for the busy bit in the
380 * GPADC status register to go low. In V1.1 there wait_for_completion
381 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
383 (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
384 AB8500_GPADC_CTRL1_REG, DIS_GPADC);
385 regulator_disable(gpadc->regu);
386 mutex_unlock(&gpadc->ab8500_gpadc_lock);
387 dev_err(gpadc->dev,
388 "gpadc_conversion: Failed to AD convert channel %d\n", input);
389 return ret;
391 EXPORT_SYMBOL(ab8500_gpadc_convert);
394 * ab8500_bm_gpswadcconvend_handler() - isr for s/w gpadc conversion completion
395 * @irq: irq number
396 * @data: pointer to the data passed during request irq
398 * This is a interrupt service routine for s/w gpadc conversion completion.
399 * Notifies the gpadc completion is completed and the converted raw value
400 * can be read from the registers.
401 * Returns IRQ status(IRQ_HANDLED)
403 static irqreturn_t ab8500_bm_gpswadcconvend_handler(int irq, void *_gpadc)
405 struct ab8500_gpadc *gpadc = _gpadc;
407 complete(&gpadc->ab8500_gpadc_complete);
409 return IRQ_HANDLED;
412 static int otp_cal_regs[] = {
413 AB8500_GPADC_CAL_1,
414 AB8500_GPADC_CAL_2,
415 AB8500_GPADC_CAL_3,
416 AB8500_GPADC_CAL_4,
417 AB8500_GPADC_CAL_5,
418 AB8500_GPADC_CAL_6,
419 AB8500_GPADC_CAL_7,
422 static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
424 int i;
425 int ret[ARRAY_SIZE(otp_cal_regs)];
426 u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
428 int vmain_high, vmain_low;
429 int btemp_high, btemp_low;
430 int vbat_high, vbat_low;
432 /* First we read all OTP registers and store the error code */
433 for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
434 ret[i] = abx500_get_register_interruptible(gpadc->dev,
435 AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]);
436 if (ret[i] < 0)
437 dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
438 __func__, otp_cal_regs[i]);
442 * The ADC calibration data is stored in OTP registers.
443 * The layout of the calibration data is outlined below and a more
444 * detailed description can be found in UM0836
446 * vm_h/l = vmain_high/low
447 * bt_h/l = btemp_high/low
448 * vb_h/l = vbat_high/low
450 * Data bits:
451 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
452 * |.......|.......|.......|.......|.......|.......|.......|.......
453 * | | vm_h9 | vm_h8
454 * |.......|.......|.......|.......|.......|.......|.......|.......
455 * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
456 * |.......|.......|.......|.......|.......|.......|.......|.......
457 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
458 * |.......|.......|.......|.......|.......|.......|.......|.......
459 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
460 * |.......|.......|.......|.......|.......|.......|.......|.......
461 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
462 * |.......|.......|.......|.......|.......|.......|.......|.......
463 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
464 * |.......|.......|.......|.......|.......|.......|.......|.......
465 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
466 * |.......|.......|.......|.......|.......|.......|.......|.......
469 * Ideal output ADC codes corresponding to injected input voltages
470 * during manufacturing is:
472 * vmain_high: Vin = 19500mV / ADC ideal code = 997
473 * vmain_low: Vin = 315mV / ADC ideal code = 16
474 * btemp_high: Vin = 1300mV / ADC ideal code = 985
475 * btemp_low: Vin = 21mV / ADC ideal code = 16
476 * vbat_high: Vin = 4700mV / ADC ideal code = 982
477 * vbat_low: Vin = 2380mV / ADC ideal code = 33
480 /* Calculate gain and offset for VMAIN if all reads succeeded */
481 if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
482 vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
483 ((gpadc_cal[1] & 0x3F) << 2) |
484 ((gpadc_cal[2] & 0xC0) >> 6));
486 vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
488 gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
489 (19500 - 315) / (vmain_high - vmain_low);
491 gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 -
492 (CALIB_SCALE * (19500 - 315) /
493 (vmain_high - vmain_low)) * vmain_high;
494 } else {
495 gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
498 /* Calculate gain and offset for BTEMP if all reads succeeded */
499 if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
500 btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
501 (gpadc_cal[3] << 1) |
502 ((gpadc_cal[4] & 0x80) >> 7));
504 btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
506 gpadc->cal_data[ADC_INPUT_BTEMP].gain =
507 CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
509 gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
510 (CALIB_SCALE * (1300 - 21) /
511 (btemp_high - btemp_low)) * btemp_high;
512 } else {
513 gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
516 /* Calculate gain and offset for VBAT if all reads succeeded */
517 if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
518 vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
519 vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
521 gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
522 (4700 - 2380) / (vbat_high - vbat_low);
524 gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
525 (CALIB_SCALE * (4700 - 2380) /
526 (vbat_high - vbat_low)) * vbat_high;
527 } else {
528 gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
531 dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
532 gpadc->cal_data[ADC_INPUT_VMAIN].gain,
533 gpadc->cal_data[ADC_INPUT_VMAIN].offset);
535 dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
536 gpadc->cal_data[ADC_INPUT_BTEMP].gain,
537 gpadc->cal_data[ADC_INPUT_BTEMP].offset);
539 dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
540 gpadc->cal_data[ADC_INPUT_VBAT].gain,
541 gpadc->cal_data[ADC_INPUT_VBAT].offset);
544 static int __devinit ab8500_gpadc_probe(struct platform_device *pdev)
546 int ret = 0;
547 struct ab8500_gpadc *gpadc;
549 gpadc = kzalloc(sizeof(struct ab8500_gpadc), GFP_KERNEL);
550 if (!gpadc) {
551 dev_err(&pdev->dev, "Error: No memory\n");
552 return -ENOMEM;
555 gpadc->irq = platform_get_irq_byname(pdev, "SW_CONV_END");
556 if (gpadc->irq < 0) {
557 dev_err(gpadc->dev, "failed to get platform irq-%d\n",
558 gpadc->irq);
559 ret = gpadc->irq;
560 goto fail;
563 gpadc->dev = &pdev->dev;
564 mutex_init(&gpadc->ab8500_gpadc_lock);
566 /* Initialize completion used to notify completion of conversion */
567 init_completion(&gpadc->ab8500_gpadc_complete);
569 /* Register interrupt - SwAdcComplete */
570 ret = request_threaded_irq(gpadc->irq, NULL,
571 ab8500_bm_gpswadcconvend_handler,
572 IRQF_NO_SUSPEND | IRQF_SHARED, "ab8500-gpadc", gpadc);
573 if (ret < 0) {
574 dev_err(gpadc->dev, "Failed to register interrupt, irq: %d\n",
575 gpadc->irq);
576 goto fail;
579 /* Get Chip ID of the ABB ASIC */
580 ret = abx500_get_chip_id(gpadc->dev);
581 if (ret < 0) {
582 dev_err(gpadc->dev, "failed to get chip ID\n");
583 goto fail_irq;
585 gpadc->chip_id = (u8) ret;
587 /* VTVout LDO used to power up ab8500-GPADC */
588 gpadc->regu = regulator_get(&pdev->dev, "vddadc");
589 if (IS_ERR(gpadc->regu)) {
590 ret = PTR_ERR(gpadc->regu);
591 dev_err(gpadc->dev, "failed to get vtvout LDO\n");
592 goto fail_irq;
594 ab8500_gpadc_read_calibration_data(gpadc);
595 list_add_tail(&gpadc->node, &ab8500_gpadc_list);
596 dev_dbg(gpadc->dev, "probe success\n");
597 return 0;
598 fail_irq:
599 free_irq(gpadc->irq, gpadc);
600 fail:
601 kfree(gpadc);
602 gpadc = NULL;
603 return ret;
606 static int __devexit ab8500_gpadc_remove(struct platform_device *pdev)
608 struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
610 /* remove this gpadc entry from the list */
611 list_del(&gpadc->node);
612 /* remove interrupt - completion of Sw ADC conversion */
613 free_irq(gpadc->irq, gpadc);
614 /* disable VTVout LDO that is being used by GPADC */
615 regulator_put(gpadc->regu);
616 kfree(gpadc);
617 gpadc = NULL;
618 return 0;
621 static struct platform_driver ab8500_gpadc_driver = {
622 .probe = ab8500_gpadc_probe,
623 .remove = __devexit_p(ab8500_gpadc_remove),
624 .driver = {
625 .name = "ab8500-gpadc",
626 .owner = THIS_MODULE,
630 static int __init ab8500_gpadc_init(void)
632 return platform_driver_register(&ab8500_gpadc_driver);
635 static void __exit ab8500_gpadc_exit(void)
637 platform_driver_unregister(&ab8500_gpadc_driver);
640 subsys_initcall_sync(ab8500_gpadc_init);
641 module_exit(ab8500_gpadc_exit);
643 MODULE_LICENSE("GPL v2");
644 MODULE_AUTHOR("Arun R Murthy, Daniel Willerud, Johan Palsson");
645 MODULE_ALIAS("platform:ab8500_gpadc");
646 MODULE_DESCRIPTION("AB8500 GPADC driver");