Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / net / hamradio / dmascc.c
blobce555d9ac02ceadb2d69697c3312b2774a9c0cc8
1 /*
2 * Driver for high-speed SCC boards (those with DMA support)
3 * Copyright (C) 1997-2000 Klaus Kudielka
5 * S5SCC/DMA support by Janko Koleznik S52HI
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/bitops.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/if_arp.h>
28 #include <linux/in.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/netdevice.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/sockios.h>
38 #include <linux/workqueue.h>
39 #include <linux/atomic.h>
40 #include <asm/dma.h>
41 #include <asm/io.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44 #include <net/ax25.h>
45 #include "z8530.h"
48 /* Number of buffers per channel */
50 #define NUM_TX_BUF 2 /* NUM_TX_BUF >= 1 (min. 2 recommended) */
51 #define NUM_RX_BUF 6 /* NUM_RX_BUF >= 1 (min. 2 recommended) */
52 #define BUF_SIZE 1576 /* BUF_SIZE >= mtu + hard_header_len */
55 /* Cards supported */
57 #define HW_PI { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
58 0, 8, 1843200, 3686400 }
59 #define HW_PI2 { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
60 0, 8, 3686400, 7372800 }
61 #define HW_TWIN { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
62 0, 4, 6144000, 6144000 }
63 #define HW_S5 { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
64 0, 8, 4915200, 9830400 }
66 #define HARDWARE { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
68 #define TMR_0_HZ 25600 /* Frequency of timer 0 */
70 #define TYPE_PI 0
71 #define TYPE_PI2 1
72 #define TYPE_TWIN 2
73 #define TYPE_S5 3
74 #define NUM_TYPES 4
76 #define MAX_NUM_DEVS 32
79 /* SCC chips supported */
81 #define Z8530 0
82 #define Z85C30 1
83 #define Z85230 2
85 #define CHIPNAMES { "Z8530", "Z85C30", "Z85230" }
88 /* I/O registers */
90 /* 8530 registers relative to card base */
91 #define SCCB_CMD 0x00
92 #define SCCB_DATA 0x01
93 #define SCCA_CMD 0x02
94 #define SCCA_DATA 0x03
96 /* 8253/8254 registers relative to card base */
97 #define TMR_CNT0 0x00
98 #define TMR_CNT1 0x01
99 #define TMR_CNT2 0x02
100 #define TMR_CTRL 0x03
102 /* Additional PI/PI2 registers relative to card base */
103 #define PI_DREQ_MASK 0x04
105 /* Additional PackeTwin registers relative to card base */
106 #define TWIN_INT_REG 0x08
107 #define TWIN_CLR_TMR1 0x09
108 #define TWIN_CLR_TMR2 0x0a
109 #define TWIN_SPARE_1 0x0b
110 #define TWIN_DMA_CFG 0x08
111 #define TWIN_SERIAL_CFG 0x09
112 #define TWIN_DMA_CLR_FF 0x0a
113 #define TWIN_SPARE_2 0x0b
116 /* PackeTwin I/O register values */
118 /* INT_REG */
119 #define TWIN_SCC_MSK 0x01
120 #define TWIN_TMR1_MSK 0x02
121 #define TWIN_TMR2_MSK 0x04
122 #define TWIN_INT_MSK 0x07
124 /* SERIAL_CFG */
125 #define TWIN_DTRA_ON 0x01
126 #define TWIN_DTRB_ON 0x02
127 #define TWIN_EXTCLKA 0x04
128 #define TWIN_EXTCLKB 0x08
129 #define TWIN_LOOPA_ON 0x10
130 #define TWIN_LOOPB_ON 0x20
131 #define TWIN_EI 0x80
133 /* DMA_CFG */
134 #define TWIN_DMA_HDX_T1 0x08
135 #define TWIN_DMA_HDX_R1 0x0a
136 #define TWIN_DMA_HDX_T3 0x14
137 #define TWIN_DMA_HDX_R3 0x16
138 #define TWIN_DMA_FDX_T3R1 0x1b
139 #define TWIN_DMA_FDX_T1R3 0x1d
142 /* Status values */
144 #define IDLE 0
145 #define TX_HEAD 1
146 #define TX_DATA 2
147 #define TX_PAUSE 3
148 #define TX_TAIL 4
149 #define RTS_OFF 5
150 #define WAIT 6
151 #define DCD_ON 7
152 #define RX_ON 8
153 #define DCD_OFF 9
156 /* Ioctls */
158 #define SIOCGSCCPARAM SIOCDEVPRIVATE
159 #define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
162 /* Data types */
164 struct scc_param {
165 int pclk_hz; /* frequency of BRG input (don't change) */
166 int brg_tc; /* BRG terminal count; BRG disabled if < 0 */
167 int nrzi; /* 0 (nrz), 1 (nrzi) */
168 int clocks; /* see dmascc_cfg documentation */
169 int txdelay; /* [1/TMR_0_HZ] */
170 int txtimeout; /* [1/HZ] */
171 int txtail; /* [1/TMR_0_HZ] */
172 int waittime; /* [1/TMR_0_HZ] */
173 int slottime; /* [1/TMR_0_HZ] */
174 int persist; /* 1 ... 256 */
175 int dma; /* -1 (disable), 0, 1, 3 */
176 int txpause; /* [1/TMR_0_HZ] */
177 int rtsoff; /* [1/TMR_0_HZ] */
178 int dcdon; /* [1/TMR_0_HZ] */
179 int dcdoff; /* [1/TMR_0_HZ] */
182 struct scc_hardware {
183 char *name;
184 int io_region;
185 int io_delta;
186 int io_size;
187 int num_devs;
188 int scc_offset;
189 int tmr_offset;
190 int tmr_hz;
191 int pclk_hz;
194 struct scc_priv {
195 int type;
196 int chip;
197 struct net_device *dev;
198 struct scc_info *info;
200 int channel;
201 int card_base, scc_cmd, scc_data;
202 int tmr_cnt, tmr_ctrl, tmr_mode;
203 struct scc_param param;
204 char rx_buf[NUM_RX_BUF][BUF_SIZE];
205 int rx_len[NUM_RX_BUF];
206 int rx_ptr;
207 struct work_struct rx_work;
208 int rx_head, rx_tail, rx_count;
209 int rx_over;
210 char tx_buf[NUM_TX_BUF][BUF_SIZE];
211 int tx_len[NUM_TX_BUF];
212 int tx_ptr;
213 int tx_head, tx_tail, tx_count;
214 int state;
215 unsigned long tx_start;
216 int rr0;
217 spinlock_t *register_lock; /* Per scc_info */
218 spinlock_t ring_lock;
221 struct scc_info {
222 int irq_used;
223 int twin_serial_cfg;
224 struct net_device *dev[2];
225 struct scc_priv priv[2];
226 struct scc_info *next;
227 spinlock_t register_lock; /* Per device register lock */
231 /* Function declarations */
232 static int setup_adapter(int card_base, int type, int n) __init;
234 static void write_scc(struct scc_priv *priv, int reg, int val);
235 static void write_scc_data(struct scc_priv *priv, int val, int fast);
236 static int read_scc(struct scc_priv *priv, int reg);
237 static int read_scc_data(struct scc_priv *priv);
239 static int scc_open(struct net_device *dev);
240 static int scc_close(struct net_device *dev);
241 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
242 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
243 static int scc_set_mac_address(struct net_device *dev, void *sa);
245 static inline void tx_on(struct scc_priv *priv);
246 static inline void rx_on(struct scc_priv *priv);
247 static inline void rx_off(struct scc_priv *priv);
248 static void start_timer(struct scc_priv *priv, int t, int r15);
249 static inline unsigned char random(void);
251 static inline void z8530_isr(struct scc_info *info);
252 static irqreturn_t scc_isr(int irq, void *dev_id);
253 static void rx_isr(struct scc_priv *priv);
254 static void special_condition(struct scc_priv *priv, int rc);
255 static void rx_bh(struct work_struct *);
256 static void tx_isr(struct scc_priv *priv);
257 static void es_isr(struct scc_priv *priv);
258 static void tm_isr(struct scc_priv *priv);
261 /* Initialization variables */
263 static int io[MAX_NUM_DEVS] __initdata = { 0, };
265 /* Beware! hw[] is also used in dmascc_exit(). */
266 static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
269 /* Global variables */
271 static struct scc_info *first;
272 static unsigned long rand;
275 MODULE_AUTHOR("Klaus Kudielka");
276 MODULE_DESCRIPTION("Driver for high-speed SCC boards");
277 module_param_array(io, int, NULL, 0);
278 MODULE_LICENSE("GPL");
280 static void __exit dmascc_exit(void)
282 int i;
283 struct scc_info *info;
285 while (first) {
286 info = first;
288 /* Unregister devices */
289 for (i = 0; i < 2; i++)
290 unregister_netdev(info->dev[i]);
292 /* Reset board */
293 if (info->priv[0].type == TYPE_TWIN)
294 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
295 write_scc(&info->priv[0], R9, FHWRES);
296 release_region(info->dev[0]->base_addr,
297 hw[info->priv[0].type].io_size);
299 for (i = 0; i < 2; i++)
300 free_netdev(info->dev[i]);
302 /* Free memory */
303 first = info->next;
304 kfree(info);
308 static int __init dmascc_init(void)
310 int h, i, j, n;
311 int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
312 t1[MAX_NUM_DEVS];
313 unsigned t_val;
314 unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
315 counting[MAX_NUM_DEVS];
317 /* Initialize random number generator */
318 rand = jiffies;
319 /* Cards found = 0 */
320 n = 0;
321 /* Warning message */
322 if (!io[0])
323 printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
325 /* Run autodetection for each card type */
326 for (h = 0; h < NUM_TYPES; h++) {
328 if (io[0]) {
329 /* User-specified I/O address regions */
330 for (i = 0; i < hw[h].num_devs; i++)
331 base[i] = 0;
332 for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
333 j = (io[i] -
334 hw[h].io_region) / hw[h].io_delta;
335 if (j >= 0 && j < hw[h].num_devs &&
336 hw[h].io_region +
337 j * hw[h].io_delta == io[i]) {
338 base[j] = io[i];
341 } else {
342 /* Default I/O address regions */
343 for (i = 0; i < hw[h].num_devs; i++) {
344 base[i] =
345 hw[h].io_region + i * hw[h].io_delta;
349 /* Check valid I/O address regions */
350 for (i = 0; i < hw[h].num_devs; i++)
351 if (base[i]) {
352 if (!request_region
353 (base[i], hw[h].io_size, "dmascc"))
354 base[i] = 0;
355 else {
356 tcmd[i] =
357 base[i] + hw[h].tmr_offset +
358 TMR_CTRL;
359 t0[i] =
360 base[i] + hw[h].tmr_offset +
361 TMR_CNT0;
362 t1[i] =
363 base[i] + hw[h].tmr_offset +
364 TMR_CNT1;
368 /* Start timers */
369 for (i = 0; i < hw[h].num_devs; i++)
370 if (base[i]) {
371 /* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
372 outb(0x36, tcmd[i]);
373 outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
374 t0[i]);
375 outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
376 t0[i]);
377 /* Timer 1: LSB+MSB, Mode 0, HZ/10 */
378 outb(0x70, tcmd[i]);
379 outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
380 outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
381 start[i] = jiffies;
382 delay[i] = 0;
383 counting[i] = 1;
384 /* Timer 2: LSB+MSB, Mode 0 */
385 outb(0xb0, tcmd[i]);
387 time = jiffies;
388 /* Wait until counter registers are loaded */
389 udelay(2000000 / TMR_0_HZ);
391 /* Timing loop */
392 while (jiffies - time < 13) {
393 for (i = 0; i < hw[h].num_devs; i++)
394 if (base[i] && counting[i]) {
395 /* Read back Timer 1: latch; read LSB; read MSB */
396 outb(0x40, tcmd[i]);
397 t_val =
398 inb(t1[i]) + (inb(t1[i]) << 8);
399 /* Also check whether counter did wrap */
400 if (t_val == 0 ||
401 t_val > TMR_0_HZ / HZ * 10)
402 counting[i] = 0;
403 delay[i] = jiffies - start[i];
407 /* Evaluate measurements */
408 for (i = 0; i < hw[h].num_devs; i++)
409 if (base[i]) {
410 if ((delay[i] >= 9 && delay[i] <= 11) &&
411 /* Ok, we have found an adapter */
412 (setup_adapter(base[i], h, n) == 0))
413 n++;
414 else
415 release_region(base[i],
416 hw[h].io_size);
419 } /* NUM_TYPES */
421 /* If any adapter was successfully initialized, return ok */
422 if (n)
423 return 0;
425 /* If no adapter found, return error */
426 printk(KERN_INFO "dmascc: no adapters found\n");
427 return -EIO;
430 module_init(dmascc_init);
431 module_exit(dmascc_exit);
433 static void __init dev_setup(struct net_device *dev)
435 dev->type = ARPHRD_AX25;
436 dev->hard_header_len = AX25_MAX_HEADER_LEN;
437 dev->mtu = 1500;
438 dev->addr_len = AX25_ADDR_LEN;
439 dev->tx_queue_len = 64;
440 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
441 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
444 static const struct net_device_ops scc_netdev_ops = {
445 .ndo_open = scc_open,
446 .ndo_stop = scc_close,
447 .ndo_start_xmit = scc_send_packet,
448 .ndo_do_ioctl = scc_ioctl,
449 .ndo_set_mac_address = scc_set_mac_address,
452 static int __init setup_adapter(int card_base, int type, int n)
454 int i, irq, chip;
455 struct scc_info *info;
456 struct net_device *dev;
457 struct scc_priv *priv;
458 unsigned long time;
459 unsigned int irqs;
460 int tmr_base = card_base + hw[type].tmr_offset;
461 int scc_base = card_base + hw[type].scc_offset;
462 char *chipnames[] = CHIPNAMES;
464 /* Initialize what is necessary for write_scc and write_scc_data */
465 info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
466 if (!info) {
467 printk(KERN_ERR "dmascc: "
468 "could not allocate memory for %s at %#3x\n",
469 hw[type].name, card_base);
470 goto out;
474 info->dev[0] = alloc_netdev(0, "", dev_setup);
475 if (!info->dev[0]) {
476 printk(KERN_ERR "dmascc: "
477 "could not allocate memory for %s at %#3x\n",
478 hw[type].name, card_base);
479 goto out1;
482 info->dev[1] = alloc_netdev(0, "", dev_setup);
483 if (!info->dev[1]) {
484 printk(KERN_ERR "dmascc: "
485 "could not allocate memory for %s at %#3x\n",
486 hw[type].name, card_base);
487 goto out2;
489 spin_lock_init(&info->register_lock);
491 priv = &info->priv[0];
492 priv->type = type;
493 priv->card_base = card_base;
494 priv->scc_cmd = scc_base + SCCA_CMD;
495 priv->scc_data = scc_base + SCCA_DATA;
496 priv->register_lock = &info->register_lock;
498 /* Reset SCC */
499 write_scc(priv, R9, FHWRES | MIE | NV);
501 /* Determine type of chip by enabling SDLC/HDLC enhancements */
502 write_scc(priv, R15, SHDLCE);
503 if (!read_scc(priv, R15)) {
504 /* WR7' not present. This is an ordinary Z8530 SCC. */
505 chip = Z8530;
506 } else {
507 /* Put one character in TX FIFO */
508 write_scc_data(priv, 0, 0);
509 if (read_scc(priv, R0) & Tx_BUF_EMP) {
510 /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
511 chip = Z85230;
512 } else {
513 /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
514 chip = Z85C30;
517 write_scc(priv, R15, 0);
519 /* Start IRQ auto-detection */
520 irqs = probe_irq_on();
522 /* Enable interrupts */
523 if (type == TYPE_TWIN) {
524 outb(0, card_base + TWIN_DMA_CFG);
525 inb(card_base + TWIN_CLR_TMR1);
526 inb(card_base + TWIN_CLR_TMR2);
527 info->twin_serial_cfg = TWIN_EI;
528 outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
529 } else {
530 write_scc(priv, R15, CTSIE);
531 write_scc(priv, R0, RES_EXT_INT);
532 write_scc(priv, R1, EXT_INT_ENAB);
535 /* Start timer */
536 outb(1, tmr_base + TMR_CNT1);
537 outb(0, tmr_base + TMR_CNT1);
539 /* Wait and detect IRQ */
540 time = jiffies;
541 while (jiffies - time < 2 + HZ / TMR_0_HZ);
542 irq = probe_irq_off(irqs);
544 /* Clear pending interrupt, disable interrupts */
545 if (type == TYPE_TWIN) {
546 inb(card_base + TWIN_CLR_TMR1);
547 } else {
548 write_scc(priv, R1, 0);
549 write_scc(priv, R15, 0);
550 write_scc(priv, R0, RES_EXT_INT);
553 if (irq <= 0) {
554 printk(KERN_ERR
555 "dmascc: could not find irq of %s at %#3x (irq=%d)\n",
556 hw[type].name, card_base, irq);
557 goto out3;
560 /* Set up data structures */
561 for (i = 0; i < 2; i++) {
562 dev = info->dev[i];
563 priv = &info->priv[i];
564 priv->type = type;
565 priv->chip = chip;
566 priv->dev = dev;
567 priv->info = info;
568 priv->channel = i;
569 spin_lock_init(&priv->ring_lock);
570 priv->register_lock = &info->register_lock;
571 priv->card_base = card_base;
572 priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
573 priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
574 priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
575 priv->tmr_ctrl = tmr_base + TMR_CTRL;
576 priv->tmr_mode = i ? 0xb0 : 0x70;
577 priv->param.pclk_hz = hw[type].pclk_hz;
578 priv->param.brg_tc = -1;
579 priv->param.clocks = TCTRxCP | RCRTxCP;
580 priv->param.persist = 256;
581 priv->param.dma = -1;
582 INIT_WORK(&priv->rx_work, rx_bh);
583 dev->ml_priv = priv;
584 sprintf(dev->name, "dmascc%i", 2 * n + i);
585 dev->base_addr = card_base;
586 dev->irq = irq;
587 dev->netdev_ops = &scc_netdev_ops;
588 dev->header_ops = &ax25_header_ops;
590 if (register_netdev(info->dev[0])) {
591 printk(KERN_ERR "dmascc: could not register %s\n",
592 info->dev[0]->name);
593 goto out3;
595 if (register_netdev(info->dev[1])) {
596 printk(KERN_ERR "dmascc: could not register %s\n",
597 info->dev[1]->name);
598 goto out4;
602 info->next = first;
603 first = info;
604 printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
605 hw[type].name, chipnames[chip], card_base, irq);
606 return 0;
608 out4:
609 unregister_netdev(info->dev[0]);
610 out3:
611 if (info->priv[0].type == TYPE_TWIN)
612 outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
613 write_scc(&info->priv[0], R9, FHWRES);
614 free_netdev(info->dev[1]);
615 out2:
616 free_netdev(info->dev[0]);
617 out1:
618 kfree(info);
619 out:
620 return -1;
624 /* Driver functions */
626 static void write_scc(struct scc_priv *priv, int reg, int val)
628 unsigned long flags;
629 switch (priv->type) {
630 case TYPE_S5:
631 if (reg)
632 outb(reg, priv->scc_cmd);
633 outb(val, priv->scc_cmd);
634 return;
635 case TYPE_TWIN:
636 if (reg)
637 outb_p(reg, priv->scc_cmd);
638 outb_p(val, priv->scc_cmd);
639 return;
640 default:
641 spin_lock_irqsave(priv->register_lock, flags);
642 outb_p(0, priv->card_base + PI_DREQ_MASK);
643 if (reg)
644 outb_p(reg, priv->scc_cmd);
645 outb_p(val, priv->scc_cmd);
646 outb(1, priv->card_base + PI_DREQ_MASK);
647 spin_unlock_irqrestore(priv->register_lock, flags);
648 return;
653 static void write_scc_data(struct scc_priv *priv, int val, int fast)
655 unsigned long flags;
656 switch (priv->type) {
657 case TYPE_S5:
658 outb(val, priv->scc_data);
659 return;
660 case TYPE_TWIN:
661 outb_p(val, priv->scc_data);
662 return;
663 default:
664 if (fast)
665 outb_p(val, priv->scc_data);
666 else {
667 spin_lock_irqsave(priv->register_lock, flags);
668 outb_p(0, priv->card_base + PI_DREQ_MASK);
669 outb_p(val, priv->scc_data);
670 outb(1, priv->card_base + PI_DREQ_MASK);
671 spin_unlock_irqrestore(priv->register_lock, flags);
673 return;
678 static int read_scc(struct scc_priv *priv, int reg)
680 int rc;
681 unsigned long flags;
682 switch (priv->type) {
683 case TYPE_S5:
684 if (reg)
685 outb(reg, priv->scc_cmd);
686 return inb(priv->scc_cmd);
687 case TYPE_TWIN:
688 if (reg)
689 outb_p(reg, priv->scc_cmd);
690 return inb_p(priv->scc_cmd);
691 default:
692 spin_lock_irqsave(priv->register_lock, flags);
693 outb_p(0, priv->card_base + PI_DREQ_MASK);
694 if (reg)
695 outb_p(reg, priv->scc_cmd);
696 rc = inb_p(priv->scc_cmd);
697 outb(1, priv->card_base + PI_DREQ_MASK);
698 spin_unlock_irqrestore(priv->register_lock, flags);
699 return rc;
704 static int read_scc_data(struct scc_priv *priv)
706 int rc;
707 unsigned long flags;
708 switch (priv->type) {
709 case TYPE_S5:
710 return inb(priv->scc_data);
711 case TYPE_TWIN:
712 return inb_p(priv->scc_data);
713 default:
714 spin_lock_irqsave(priv->register_lock, flags);
715 outb_p(0, priv->card_base + PI_DREQ_MASK);
716 rc = inb_p(priv->scc_data);
717 outb(1, priv->card_base + PI_DREQ_MASK);
718 spin_unlock_irqrestore(priv->register_lock, flags);
719 return rc;
724 static int scc_open(struct net_device *dev)
726 struct scc_priv *priv = dev->ml_priv;
727 struct scc_info *info = priv->info;
728 int card_base = priv->card_base;
730 /* Request IRQ if not already used by other channel */
731 if (!info->irq_used) {
732 if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
733 return -EAGAIN;
736 info->irq_used++;
738 /* Request DMA if required */
739 if (priv->param.dma >= 0) {
740 if (request_dma(priv->param.dma, "dmascc")) {
741 if (--info->irq_used == 0)
742 free_irq(dev->irq, info);
743 return -EAGAIN;
744 } else {
745 unsigned long flags = claim_dma_lock();
746 clear_dma_ff(priv->param.dma);
747 release_dma_lock(flags);
751 /* Initialize local variables */
752 priv->rx_ptr = 0;
753 priv->rx_over = 0;
754 priv->rx_head = priv->rx_tail = priv->rx_count = 0;
755 priv->state = IDLE;
756 priv->tx_head = priv->tx_tail = priv->tx_count = 0;
757 priv->tx_ptr = 0;
759 /* Reset channel */
760 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
761 /* X1 clock, SDLC mode */
762 write_scc(priv, R4, SDLC | X1CLK);
763 /* DMA */
764 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
765 /* 8 bit RX char, RX disable */
766 write_scc(priv, R3, Rx8);
767 /* 8 bit TX char, TX disable */
768 write_scc(priv, R5, Tx8);
769 /* SDLC address field */
770 write_scc(priv, R6, 0);
771 /* SDLC flag */
772 write_scc(priv, R7, FLAG);
773 switch (priv->chip) {
774 case Z85C30:
775 /* Select WR7' */
776 write_scc(priv, R15, SHDLCE);
777 /* Auto EOM reset */
778 write_scc(priv, R7, AUTOEOM);
779 write_scc(priv, R15, 0);
780 break;
781 case Z85230:
782 /* Select WR7' */
783 write_scc(priv, R15, SHDLCE);
784 /* The following bits are set (see 2.5.2.1):
785 - Automatic EOM reset
786 - Interrupt request if RX FIFO is half full
787 This bit should be ignored in DMA mode (according to the
788 documentation), but actually isn't. The receiver doesn't work if
789 it is set. Thus, we have to clear it in DMA mode.
790 - Interrupt/DMA request if TX FIFO is completely empty
791 a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
792 compatibility).
793 b) If cleared, DMA requests may follow each other very quickly,
794 filling up the TX FIFO.
795 Advantage: TX works even in case of high bus latency.
796 Disadvantage: Edge-triggered DMA request circuitry may miss
797 a request. No more data is delivered, resulting
798 in a TX FIFO underrun.
799 Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
800 The PackeTwin doesn't. I don't know about the PI, but let's
801 assume it behaves like the PI2.
803 if (priv->param.dma >= 0) {
804 if (priv->type == TYPE_TWIN)
805 write_scc(priv, R7, AUTOEOM | TXFIFOE);
806 else
807 write_scc(priv, R7, AUTOEOM);
808 } else {
809 write_scc(priv, R7, AUTOEOM | RXFIFOH);
811 write_scc(priv, R15, 0);
812 break;
814 /* Preset CRC, NRZ(I) encoding */
815 write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
817 /* Configure baud rate generator */
818 if (priv->param.brg_tc >= 0) {
819 /* Program BR generator */
820 write_scc(priv, R12, priv->param.brg_tc & 0xFF);
821 write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
822 /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
823 PackeTwin, not connected on the PI2); set DPLL source to BRG */
824 write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
825 /* Enable DPLL */
826 write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
827 } else {
828 /* Disable BR generator */
829 write_scc(priv, R14, DTRREQ | BRSRC);
832 /* Configure clocks */
833 if (priv->type == TYPE_TWIN) {
834 /* Disable external TX clock receiver */
835 outb((info->twin_serial_cfg &=
836 ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
837 card_base + TWIN_SERIAL_CFG);
839 write_scc(priv, R11, priv->param.clocks);
840 if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
841 /* Enable external TX clock receiver */
842 outb((info->twin_serial_cfg |=
843 (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
844 card_base + TWIN_SERIAL_CFG);
847 /* Configure PackeTwin */
848 if (priv->type == TYPE_TWIN) {
849 /* Assert DTR, enable interrupts */
850 outb((info->twin_serial_cfg |= TWIN_EI |
851 (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
852 card_base + TWIN_SERIAL_CFG);
855 /* Read current status */
856 priv->rr0 = read_scc(priv, R0);
857 /* Enable DCD interrupt */
858 write_scc(priv, R15, DCDIE);
860 netif_start_queue(dev);
862 return 0;
866 static int scc_close(struct net_device *dev)
868 struct scc_priv *priv = dev->ml_priv;
869 struct scc_info *info = priv->info;
870 int card_base = priv->card_base;
872 netif_stop_queue(dev);
874 if (priv->type == TYPE_TWIN) {
875 /* Drop DTR */
876 outb((info->twin_serial_cfg &=
877 (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
878 card_base + TWIN_SERIAL_CFG);
881 /* Reset channel, free DMA and IRQ */
882 write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
883 if (priv->param.dma >= 0) {
884 if (priv->type == TYPE_TWIN)
885 outb(0, card_base + TWIN_DMA_CFG);
886 free_dma(priv->param.dma);
888 if (--info->irq_used == 0)
889 free_irq(dev->irq, info);
891 return 0;
895 static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
897 struct scc_priv *priv = dev->ml_priv;
899 switch (cmd) {
900 case SIOCGSCCPARAM:
901 if (copy_to_user
902 (ifr->ifr_data, &priv->param,
903 sizeof(struct scc_param)))
904 return -EFAULT;
905 return 0;
906 case SIOCSSCCPARAM:
907 if (!capable(CAP_NET_ADMIN))
908 return -EPERM;
909 if (netif_running(dev))
910 return -EAGAIN;
911 if (copy_from_user
912 (&priv->param, ifr->ifr_data,
913 sizeof(struct scc_param)))
914 return -EFAULT;
915 return 0;
916 default:
917 return -EINVAL;
922 static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
924 struct scc_priv *priv = dev->ml_priv;
925 unsigned long flags;
926 int i;
928 /* Temporarily stop the scheduler feeding us packets */
929 netif_stop_queue(dev);
931 /* Transfer data to DMA buffer */
932 i = priv->tx_head;
933 skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
934 priv->tx_len[i] = skb->len - 1;
936 /* Clear interrupts while we touch our circular buffers */
938 spin_lock_irqsave(&priv->ring_lock, flags);
939 /* Move the ring buffer's head */
940 priv->tx_head = (i + 1) % NUM_TX_BUF;
941 priv->tx_count++;
943 /* If we just filled up the last buffer, leave queue stopped.
944 The higher layers must wait until we have a DMA buffer
945 to accept the data. */
946 if (priv->tx_count < NUM_TX_BUF)
947 netif_wake_queue(dev);
949 /* Set new TX state */
950 if (priv->state == IDLE) {
951 /* Assert RTS, start timer */
952 priv->state = TX_HEAD;
953 priv->tx_start = jiffies;
954 write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
955 write_scc(priv, R15, 0);
956 start_timer(priv, priv->param.txdelay, 0);
959 /* Turn interrupts back on and free buffer */
960 spin_unlock_irqrestore(&priv->ring_lock, flags);
961 dev_kfree_skb(skb);
963 return NETDEV_TX_OK;
967 static int scc_set_mac_address(struct net_device *dev, void *sa)
969 memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
970 dev->addr_len);
971 return 0;
975 static inline void tx_on(struct scc_priv *priv)
977 int i, n;
978 unsigned long flags;
980 if (priv->param.dma >= 0) {
981 n = (priv->chip == Z85230) ? 3 : 1;
982 /* Program DMA controller */
983 flags = claim_dma_lock();
984 set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
985 set_dma_addr(priv->param.dma,
986 (int) priv->tx_buf[priv->tx_tail] + n);
987 set_dma_count(priv->param.dma,
988 priv->tx_len[priv->tx_tail] - n);
989 release_dma_lock(flags);
990 /* Enable TX underrun interrupt */
991 write_scc(priv, R15, TxUIE);
992 /* Configure DREQ */
993 if (priv->type == TYPE_TWIN)
994 outb((priv->param.dma ==
995 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
996 priv->card_base + TWIN_DMA_CFG);
997 else
998 write_scc(priv, R1,
999 EXT_INT_ENAB | WT_FN_RDYFN |
1000 WT_RDY_ENAB);
1001 /* Write first byte(s) */
1002 spin_lock_irqsave(priv->register_lock, flags);
1003 for (i = 0; i < n; i++)
1004 write_scc_data(priv,
1005 priv->tx_buf[priv->tx_tail][i], 1);
1006 enable_dma(priv->param.dma);
1007 spin_unlock_irqrestore(priv->register_lock, flags);
1008 } else {
1009 write_scc(priv, R15, TxUIE);
1010 write_scc(priv, R1,
1011 EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
1012 tx_isr(priv);
1014 /* Reset EOM latch if we do not have the AUTOEOM feature */
1015 if (priv->chip == Z8530)
1016 write_scc(priv, R0, RES_EOM_L);
1020 static inline void rx_on(struct scc_priv *priv)
1022 unsigned long flags;
1024 /* Clear RX FIFO */
1025 while (read_scc(priv, R0) & Rx_CH_AV)
1026 read_scc_data(priv);
1027 priv->rx_over = 0;
1028 if (priv->param.dma >= 0) {
1029 /* Program DMA controller */
1030 flags = claim_dma_lock();
1031 set_dma_mode(priv->param.dma, DMA_MODE_READ);
1032 set_dma_addr(priv->param.dma,
1033 (int) priv->rx_buf[priv->rx_head]);
1034 set_dma_count(priv->param.dma, BUF_SIZE);
1035 release_dma_lock(flags);
1036 enable_dma(priv->param.dma);
1037 /* Configure PackeTwin DMA */
1038 if (priv->type == TYPE_TWIN) {
1039 outb((priv->param.dma ==
1040 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
1041 priv->card_base + TWIN_DMA_CFG);
1043 /* Sp. cond. intr. only, ext int enable, RX DMA enable */
1044 write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
1045 WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
1046 } else {
1047 /* Reset current frame */
1048 priv->rx_ptr = 0;
1049 /* Intr. on all Rx characters and Sp. cond., ext int enable */
1050 write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
1051 WT_FN_RDYFN);
1053 write_scc(priv, R0, ERR_RES);
1054 write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
1058 static inline void rx_off(struct scc_priv *priv)
1060 /* Disable receiver */
1061 write_scc(priv, R3, Rx8);
1062 /* Disable DREQ / RX interrupt */
1063 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1064 outb(0, priv->card_base + TWIN_DMA_CFG);
1065 else
1066 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1067 /* Disable DMA */
1068 if (priv->param.dma >= 0)
1069 disable_dma(priv->param.dma);
1073 static void start_timer(struct scc_priv *priv, int t, int r15)
1075 outb(priv->tmr_mode, priv->tmr_ctrl);
1076 if (t == 0) {
1077 tm_isr(priv);
1078 } else if (t > 0) {
1079 outb(t & 0xFF, priv->tmr_cnt);
1080 outb((t >> 8) & 0xFF, priv->tmr_cnt);
1081 if (priv->type != TYPE_TWIN) {
1082 write_scc(priv, R15, r15 | CTSIE);
1083 priv->rr0 |= CTS;
1089 static inline unsigned char random(void)
1091 /* See "Numerical Recipes in C", second edition, p. 284 */
1092 rand = rand * 1664525L + 1013904223L;
1093 return (unsigned char) (rand >> 24);
1096 static inline void z8530_isr(struct scc_info *info)
1098 int is, i = 100;
1100 while ((is = read_scc(&info->priv[0], R3)) && i--) {
1101 if (is & CHARxIP) {
1102 rx_isr(&info->priv[0]);
1103 } else if (is & CHATxIP) {
1104 tx_isr(&info->priv[0]);
1105 } else if (is & CHAEXT) {
1106 es_isr(&info->priv[0]);
1107 } else if (is & CHBRxIP) {
1108 rx_isr(&info->priv[1]);
1109 } else if (is & CHBTxIP) {
1110 tx_isr(&info->priv[1]);
1111 } else {
1112 es_isr(&info->priv[1]);
1114 write_scc(&info->priv[0], R0, RES_H_IUS);
1115 i++;
1117 if (i < 0) {
1118 printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
1119 is);
1121 /* Ok, no interrupts pending from this 8530. The INT line should
1122 be inactive now. */
1126 static irqreturn_t scc_isr(int irq, void *dev_id)
1128 struct scc_info *info = dev_id;
1130 spin_lock(info->priv[0].register_lock);
1131 /* At this point interrupts are enabled, and the interrupt under service
1132 is already acknowledged, but masked off.
1134 Interrupt processing: We loop until we know that the IRQ line is
1135 low. If another positive edge occurs afterwards during the ISR,
1136 another interrupt will be triggered by the interrupt controller
1137 as soon as the IRQ level is enabled again (see asm/irq.h).
1139 Bottom-half handlers will be processed after scc_isr(). This is
1140 important, since we only have small ringbuffers and want new data
1141 to be fetched/delivered immediately. */
1143 if (info->priv[0].type == TYPE_TWIN) {
1144 int is, card_base = info->priv[0].card_base;
1145 while ((is = ~inb(card_base + TWIN_INT_REG)) &
1146 TWIN_INT_MSK) {
1147 if (is & TWIN_SCC_MSK) {
1148 z8530_isr(info);
1149 } else if (is & TWIN_TMR1_MSK) {
1150 inb(card_base + TWIN_CLR_TMR1);
1151 tm_isr(&info->priv[0]);
1152 } else {
1153 inb(card_base + TWIN_CLR_TMR2);
1154 tm_isr(&info->priv[1]);
1157 } else
1158 z8530_isr(info);
1159 spin_unlock(info->priv[0].register_lock);
1160 return IRQ_HANDLED;
1164 static void rx_isr(struct scc_priv *priv)
1166 if (priv->param.dma >= 0) {
1167 /* Check special condition and perform error reset. See 2.4.7.5. */
1168 special_condition(priv, read_scc(priv, R1));
1169 write_scc(priv, R0, ERR_RES);
1170 } else {
1171 /* Check special condition for each character. Error reset not necessary.
1172 Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
1173 int rc;
1174 while (read_scc(priv, R0) & Rx_CH_AV) {
1175 rc = read_scc(priv, R1);
1176 if (priv->rx_ptr < BUF_SIZE)
1177 priv->rx_buf[priv->rx_head][priv->
1178 rx_ptr++] =
1179 read_scc_data(priv);
1180 else {
1181 priv->rx_over = 2;
1182 read_scc_data(priv);
1184 special_condition(priv, rc);
1190 static void special_condition(struct scc_priv *priv, int rc)
1192 int cb;
1193 unsigned long flags;
1195 /* See Figure 2-15. Only overrun and EOF need to be checked. */
1197 if (rc & Rx_OVR) {
1198 /* Receiver overrun */
1199 priv->rx_over = 1;
1200 if (priv->param.dma < 0)
1201 write_scc(priv, R0, ERR_RES);
1202 } else if (rc & END_FR) {
1203 /* End of frame. Get byte count */
1204 if (priv->param.dma >= 0) {
1205 flags = claim_dma_lock();
1206 cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
1208 release_dma_lock(flags);
1209 } else {
1210 cb = priv->rx_ptr - 2;
1212 if (priv->rx_over) {
1213 /* We had an overrun */
1214 priv->dev->stats.rx_errors++;
1215 if (priv->rx_over == 2)
1216 priv->dev->stats.rx_length_errors++;
1217 else
1218 priv->dev->stats.rx_fifo_errors++;
1219 priv->rx_over = 0;
1220 } else if (rc & CRC_ERR) {
1221 /* Count invalid CRC only if packet length >= minimum */
1222 if (cb >= 15) {
1223 priv->dev->stats.rx_errors++;
1224 priv->dev->stats.rx_crc_errors++;
1226 } else {
1227 if (cb >= 15) {
1228 if (priv->rx_count < NUM_RX_BUF - 1) {
1229 /* Put good frame in FIFO */
1230 priv->rx_len[priv->rx_head] = cb;
1231 priv->rx_head =
1232 (priv->rx_head +
1233 1) % NUM_RX_BUF;
1234 priv->rx_count++;
1235 schedule_work(&priv->rx_work);
1236 } else {
1237 priv->dev->stats.rx_errors++;
1238 priv->dev->stats.rx_over_errors++;
1242 /* Get ready for new frame */
1243 if (priv->param.dma >= 0) {
1244 flags = claim_dma_lock();
1245 set_dma_addr(priv->param.dma,
1246 (int) priv->rx_buf[priv->rx_head]);
1247 set_dma_count(priv->param.dma, BUF_SIZE);
1248 release_dma_lock(flags);
1249 } else {
1250 priv->rx_ptr = 0;
1256 static void rx_bh(struct work_struct *ugli_api)
1258 struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
1259 int i = priv->rx_tail;
1260 int cb;
1261 unsigned long flags;
1262 struct sk_buff *skb;
1263 unsigned char *data;
1265 spin_lock_irqsave(&priv->ring_lock, flags);
1266 while (priv->rx_count) {
1267 spin_unlock_irqrestore(&priv->ring_lock, flags);
1268 cb = priv->rx_len[i];
1269 /* Allocate buffer */
1270 skb = dev_alloc_skb(cb + 1);
1271 if (skb == NULL) {
1272 /* Drop packet */
1273 priv->dev->stats.rx_dropped++;
1274 } else {
1275 /* Fill buffer */
1276 data = skb_put(skb, cb + 1);
1277 data[0] = 0;
1278 memcpy(&data[1], priv->rx_buf[i], cb);
1279 skb->protocol = ax25_type_trans(skb, priv->dev);
1280 netif_rx(skb);
1281 priv->dev->stats.rx_packets++;
1282 priv->dev->stats.rx_bytes += cb;
1284 spin_lock_irqsave(&priv->ring_lock, flags);
1285 /* Move tail */
1286 priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
1287 priv->rx_count--;
1289 spin_unlock_irqrestore(&priv->ring_lock, flags);
1293 static void tx_isr(struct scc_priv *priv)
1295 int i = priv->tx_tail, p = priv->tx_ptr;
1297 /* Suspend TX interrupts if we don't want to send anything.
1298 See Figure 2-22. */
1299 if (p == priv->tx_len[i]) {
1300 write_scc(priv, R0, RES_Tx_P);
1301 return;
1304 /* Write characters */
1305 while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
1306 write_scc_data(priv, priv->tx_buf[i][p++], 0);
1309 /* Reset EOM latch of Z8530 */
1310 if (!priv->tx_ptr && p && priv->chip == Z8530)
1311 write_scc(priv, R0, RES_EOM_L);
1313 priv->tx_ptr = p;
1317 static void es_isr(struct scc_priv *priv)
1319 int i, rr0, drr0, res;
1320 unsigned long flags;
1322 /* Read status, reset interrupt bit (open latches) */
1323 rr0 = read_scc(priv, R0);
1324 write_scc(priv, R0, RES_EXT_INT);
1325 drr0 = priv->rr0 ^ rr0;
1326 priv->rr0 = rr0;
1328 /* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
1329 it might have already been cleared again by AUTOEOM. */
1330 if (priv->state == TX_DATA) {
1331 /* Get remaining bytes */
1332 i = priv->tx_tail;
1333 if (priv->param.dma >= 0) {
1334 disable_dma(priv->param.dma);
1335 flags = claim_dma_lock();
1336 res = get_dma_residue(priv->param.dma);
1337 release_dma_lock(flags);
1338 } else {
1339 res = priv->tx_len[i] - priv->tx_ptr;
1340 priv->tx_ptr = 0;
1342 /* Disable DREQ / TX interrupt */
1343 if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
1344 outb(0, priv->card_base + TWIN_DMA_CFG);
1345 else
1346 write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
1347 if (res) {
1348 /* Update packet statistics */
1349 priv->dev->stats.tx_errors++;
1350 priv->dev->stats.tx_fifo_errors++;
1351 /* Other underrun interrupts may already be waiting */
1352 write_scc(priv, R0, RES_EXT_INT);
1353 write_scc(priv, R0, RES_EXT_INT);
1354 } else {
1355 /* Update packet statistics */
1356 priv->dev->stats.tx_packets++;
1357 priv->dev->stats.tx_bytes += priv->tx_len[i];
1358 /* Remove frame from FIFO */
1359 priv->tx_tail = (i + 1) % NUM_TX_BUF;
1360 priv->tx_count--;
1361 /* Inform upper layers */
1362 netif_wake_queue(priv->dev);
1364 /* Switch state */
1365 write_scc(priv, R15, 0);
1366 if (priv->tx_count &&
1367 (jiffies - priv->tx_start) < priv->param.txtimeout) {
1368 priv->state = TX_PAUSE;
1369 start_timer(priv, priv->param.txpause, 0);
1370 } else {
1371 priv->state = TX_TAIL;
1372 start_timer(priv, priv->param.txtail, 0);
1376 /* DCD transition */
1377 if (drr0 & DCD) {
1378 if (rr0 & DCD) {
1379 switch (priv->state) {
1380 case IDLE:
1381 case WAIT:
1382 priv->state = DCD_ON;
1383 write_scc(priv, R15, 0);
1384 start_timer(priv, priv->param.dcdon, 0);
1386 } else {
1387 switch (priv->state) {
1388 case RX_ON:
1389 rx_off(priv);
1390 priv->state = DCD_OFF;
1391 write_scc(priv, R15, 0);
1392 start_timer(priv, priv->param.dcdoff, 0);
1397 /* CTS transition */
1398 if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
1399 tm_isr(priv);
1404 static void tm_isr(struct scc_priv *priv)
1406 switch (priv->state) {
1407 case TX_HEAD:
1408 case TX_PAUSE:
1409 tx_on(priv);
1410 priv->state = TX_DATA;
1411 break;
1412 case TX_TAIL:
1413 write_scc(priv, R5, TxCRC_ENAB | Tx8);
1414 priv->state = RTS_OFF;
1415 if (priv->type != TYPE_TWIN)
1416 write_scc(priv, R15, 0);
1417 start_timer(priv, priv->param.rtsoff, 0);
1418 break;
1419 case RTS_OFF:
1420 write_scc(priv, R15, DCDIE);
1421 priv->rr0 = read_scc(priv, R0);
1422 if (priv->rr0 & DCD) {
1423 priv->dev->stats.collisions++;
1424 rx_on(priv);
1425 priv->state = RX_ON;
1426 } else {
1427 priv->state = WAIT;
1428 start_timer(priv, priv->param.waittime, DCDIE);
1430 break;
1431 case WAIT:
1432 if (priv->tx_count) {
1433 priv->state = TX_HEAD;
1434 priv->tx_start = jiffies;
1435 write_scc(priv, R5,
1436 TxCRC_ENAB | RTS | TxENAB | Tx8);
1437 write_scc(priv, R15, 0);
1438 start_timer(priv, priv->param.txdelay, 0);
1439 } else {
1440 priv->state = IDLE;
1441 if (priv->type != TYPE_TWIN)
1442 write_scc(priv, R15, DCDIE);
1444 break;
1445 case DCD_ON:
1446 case DCD_OFF:
1447 write_scc(priv, R15, DCDIE);
1448 priv->rr0 = read_scc(priv, R0);
1449 if (priv->rr0 & DCD) {
1450 rx_on(priv);
1451 priv->state = RX_ON;
1452 } else {
1453 priv->state = WAIT;
1454 start_timer(priv,
1455 random() / priv->param.persist *
1456 priv->param.slottime, DCDIE);
1458 break;