Merge 3.1-rc1 into usb-linus
[zen-stable.git] / drivers / target / target_core_transport.c
blob89760329d5d0d292c0c8648c8aff16495a1822b4
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized;
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86 unsigned long long starting_lba,
87 enum dma_data_direction data_direction,
88 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
98 int init_se_kmem_caches(void)
100 se_cmd_cache = kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102 if (!se_cmd_cache) {
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
104 goto out;
106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108 0, NULL);
109 if (!se_tmr_req_cache) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
111 " failed\n");
112 goto out;
114 se_sess_cache = kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session), __alignof__(struct se_session),
116 0, NULL);
117 if (!se_sess_cache) {
118 pr_err("kmem_cache_create() for struct se_session"
119 " failed\n");
120 goto out;
122 se_ua_cache = kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua), __alignof__(struct se_ua),
124 0, NULL);
125 if (!se_ua_cache) {
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
127 goto out;
129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration),
131 __alignof__(struct t10_pr_registration), 0, NULL);
132 if (!t10_pr_reg_cache) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
134 " failed\n");
135 goto out;
137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139 0, NULL);
140 if (!t10_alua_lu_gp_cache) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142 " failed\n");
143 goto out;
145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member),
147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148 if (!t10_alua_lu_gp_mem_cache) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150 "cache failed\n");
151 goto out;
153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp),
155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156 if (!t10_alua_tg_pt_gp_cache) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158 "cache failed\n");
159 goto out;
161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member),
164 __alignof__(struct t10_alua_tg_pt_gp_member),
165 0, NULL);
166 if (!t10_alua_tg_pt_gp_mem_cache) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168 "mem_t failed\n");
169 goto out;
172 return 0;
173 out:
174 if (se_cmd_cache)
175 kmem_cache_destroy(se_cmd_cache);
176 if (se_tmr_req_cache)
177 kmem_cache_destroy(se_tmr_req_cache);
178 if (se_sess_cache)
179 kmem_cache_destroy(se_sess_cache);
180 if (se_ua_cache)
181 kmem_cache_destroy(se_ua_cache);
182 if (t10_pr_reg_cache)
183 kmem_cache_destroy(t10_pr_reg_cache);
184 if (t10_alua_lu_gp_cache)
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 if (t10_alua_lu_gp_mem_cache)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 if (t10_alua_tg_pt_gp_cache)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 if (t10_alua_tg_pt_gp_mem_cache)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192 return -ENOMEM;
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
213 * Allocate a new row index for the entry type specified
215 u32 scsi_get_new_index(scsi_index_t type)
217 u32 new_index;
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
225 return new_index;
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
235 EXPORT_SYMBOL(transport_init_queue_obj);
237 static int transport_subsystem_reqmods(void)
239 int ret;
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
257 return 0;
260 int transport_subsystem_check_init(void)
262 int ret;
264 if (sub_api_initialized)
265 return 0;
267 * Request the loading of known TCM subsystem plugins..
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
273 sub_api_initialized = 1;
274 return 0;
277 struct se_session *transport_init_session(void)
279 struct se_session *se_sess;
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
290 return se_sess;
292 EXPORT_SYMBOL(transport_init_session);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
303 unsigned char buf[PR_REG_ISID_LEN];
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
313 if (se_nacl) {
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl->nacl_sess = se_sess;
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
340 EXPORT_SYMBOL(__transport_register_session);
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
352 EXPORT_SYMBOL(transport_register_session);
354 void transport_deregister_session_configfs(struct se_session *se_sess)
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
382 void transport_free_session(struct se_session *se_sess)
384 kmem_cache_free(se_sess_cache, se_sess);
386 EXPORT_SYMBOL(transport_free_session);
388 void transport_deregister_session(struct se_session *se_sess)
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
393 if (!se_tpg) {
394 transport_free_session(se_sess);
395 return;
398 spin_lock_bh(&se_tpg->session_lock);
399 list_del(&se_sess->sess_list);
400 se_sess->se_tpg = NULL;
401 se_sess->fabric_sess_ptr = NULL;
402 spin_unlock_bh(&se_tpg->session_lock);
405 * Determine if we need to do extra work for this initiator node's
406 * struct se_node_acl if it had been previously dynamically generated.
408 se_nacl = se_sess->se_node_acl;
409 if (se_nacl) {
410 spin_lock_bh(&se_tpg->acl_node_lock);
411 if (se_nacl->dynamic_node_acl) {
412 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
413 se_tpg)) {
414 list_del(&se_nacl->acl_list);
415 se_tpg->num_node_acls--;
416 spin_unlock_bh(&se_tpg->acl_node_lock);
418 core_tpg_wait_for_nacl_pr_ref(se_nacl);
419 core_free_device_list_for_node(se_nacl, se_tpg);
420 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
421 se_nacl);
422 spin_lock_bh(&se_tpg->acl_node_lock);
425 spin_unlock_bh(&se_tpg->acl_node_lock);
428 transport_free_session(se_sess);
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg->se_tpg_tfo->get_fabric_name());
433 EXPORT_SYMBOL(transport_deregister_session);
436 * Called with cmd->t_state_lock held.
438 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
440 struct se_device *dev;
441 struct se_task *task;
442 unsigned long flags;
444 list_for_each_entry(task, &cmd->t_task_list, t_list) {
445 dev = task->se_dev;
446 if (!dev)
447 continue;
449 if (atomic_read(&task->task_active))
450 continue;
452 if (!atomic_read(&task->task_state_active))
453 continue;
455 spin_lock_irqsave(&dev->execute_task_lock, flags);
456 list_del(&task->t_state_list);
457 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
458 cmd->se_tfo->get_task_tag(cmd), dev, task);
459 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
461 atomic_set(&task->task_state_active, 0);
462 atomic_dec(&cmd->t_task_cdbs_ex_left);
466 /* transport_cmd_check_stop():
468 * 'transport_off = 1' determines if t_transport_active should be cleared.
469 * 'transport_off = 2' determines if task_dev_state should be removed.
471 * A non-zero u8 t_state sets cmd->t_state.
472 * Returns 1 when command is stopped, else 0.
474 static int transport_cmd_check_stop(
475 struct se_cmd *cmd,
476 int transport_off,
477 u8 t_state)
479 unsigned long flags;
481 spin_lock_irqsave(&cmd->t_state_lock, flags);
483 * Determine if IOCTL context caller in requesting the stopping of this
484 * command for LUN shutdown purposes.
486 if (atomic_read(&cmd->transport_lun_stop)) {
487 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
488 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489 cmd->se_tfo->get_task_tag(cmd));
491 cmd->deferred_t_state = cmd->t_state;
492 cmd->t_state = TRANSPORT_DEFERRED_CMD;
493 atomic_set(&cmd->t_transport_active, 0);
494 if (transport_off == 2)
495 transport_all_task_dev_remove_state(cmd);
496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
498 complete(&cmd->transport_lun_stop_comp);
499 return 1;
502 * Determine if frontend context caller is requesting the stopping of
503 * this command for frontend exceptions.
505 if (atomic_read(&cmd->t_transport_stop)) {
506 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
507 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
508 cmd->se_tfo->get_task_tag(cmd));
510 cmd->deferred_t_state = cmd->t_state;
511 cmd->t_state = TRANSPORT_DEFERRED_CMD;
512 if (transport_off == 2)
513 transport_all_task_dev_remove_state(cmd);
516 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517 * to FE.
519 if (transport_off == 2)
520 cmd->se_lun = NULL;
521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
523 complete(&cmd->t_transport_stop_comp);
524 return 1;
526 if (transport_off) {
527 atomic_set(&cmd->t_transport_active, 0);
528 if (transport_off == 2) {
529 transport_all_task_dev_remove_state(cmd);
531 * Clear struct se_cmd->se_lun before the transport_off == 2
532 * handoff to fabric module.
534 cmd->se_lun = NULL;
536 * Some fabric modules like tcm_loop can release
537 * their internally allocated I/O reference now and
538 * struct se_cmd now.
540 if (cmd->se_tfo->check_stop_free != NULL) {
541 spin_unlock_irqrestore(
542 &cmd->t_state_lock, flags);
544 cmd->se_tfo->check_stop_free(cmd);
545 return 1;
548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550 return 0;
551 } else if (t_state)
552 cmd->t_state = t_state;
553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555 return 0;
558 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
560 return transport_cmd_check_stop(cmd, 2, 0);
563 static void transport_lun_remove_cmd(struct se_cmd *cmd)
565 struct se_lun *lun = cmd->se_lun;
566 unsigned long flags;
568 if (!lun)
569 return;
571 spin_lock_irqsave(&cmd->t_state_lock, flags);
572 if (!atomic_read(&cmd->transport_dev_active)) {
573 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
574 goto check_lun;
576 atomic_set(&cmd->transport_dev_active, 0);
577 transport_all_task_dev_remove_state(cmd);
578 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
581 check_lun:
582 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
583 if (atomic_read(&cmd->transport_lun_active)) {
584 list_del(&cmd->se_lun_node);
585 atomic_set(&cmd->transport_lun_active, 0);
586 #if 0
587 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
588 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
589 #endif
591 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
594 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
596 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
597 transport_lun_remove_cmd(cmd);
599 if (transport_cmd_check_stop_to_fabric(cmd))
600 return;
601 if (remove)
602 transport_generic_remove(cmd, 0);
605 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
607 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
609 if (transport_cmd_check_stop_to_fabric(cmd))
610 return;
612 transport_generic_remove(cmd, 0);
615 static void transport_add_cmd_to_queue(
616 struct se_cmd *cmd,
617 int t_state)
619 struct se_device *dev = cmd->se_dev;
620 struct se_queue_obj *qobj = &dev->dev_queue_obj;
621 unsigned long flags;
623 INIT_LIST_HEAD(&cmd->se_queue_node);
625 if (t_state) {
626 spin_lock_irqsave(&cmd->t_state_lock, flags);
627 cmd->t_state = t_state;
628 atomic_set(&cmd->t_transport_active, 1);
629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
633 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
634 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
635 list_add(&cmd->se_queue_node, &qobj->qobj_list);
636 } else
637 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
638 atomic_inc(&cmd->t_transport_queue_active);
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641 atomic_inc(&qobj->queue_cnt);
642 wake_up_interruptible(&qobj->thread_wq);
645 static struct se_cmd *
646 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
648 struct se_cmd *cmd;
649 unsigned long flags;
651 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
652 if (list_empty(&qobj->qobj_list)) {
653 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654 return NULL;
656 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
658 atomic_dec(&cmd->t_transport_queue_active);
660 list_del(&cmd->se_queue_node);
661 atomic_dec(&qobj->queue_cnt);
662 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 return cmd;
667 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
668 struct se_queue_obj *qobj)
670 struct se_cmd *t;
671 unsigned long flags;
673 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
674 if (!atomic_read(&cmd->t_transport_queue_active)) {
675 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
676 return;
679 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
680 if (t == cmd) {
681 atomic_dec(&cmd->t_transport_queue_active);
682 atomic_dec(&qobj->queue_cnt);
683 list_del(&cmd->se_queue_node);
684 break;
686 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
688 if (atomic_read(&cmd->t_transport_queue_active)) {
689 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
690 cmd->se_tfo->get_task_tag(cmd),
691 atomic_read(&cmd->t_transport_queue_active));
696 * Completion function used by TCM subsystem plugins (such as FILEIO)
697 * for queueing up response from struct se_subsystem_api->do_task()
699 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
701 struct se_task *task = list_entry(cmd->t_task_list.next,
702 struct se_task, t_list);
704 if (good) {
705 cmd->scsi_status = SAM_STAT_GOOD;
706 task->task_scsi_status = GOOD;
707 } else {
708 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
709 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
710 task->task_se_cmd->transport_error_status =
711 PYX_TRANSPORT_ILLEGAL_REQUEST;
714 transport_complete_task(task, good);
716 EXPORT_SYMBOL(transport_complete_sync_cache);
718 /* transport_complete_task():
720 * Called from interrupt and non interrupt context depending
721 * on the transport plugin.
723 void transport_complete_task(struct se_task *task, int success)
725 struct se_cmd *cmd = task->task_se_cmd;
726 struct se_device *dev = task->se_dev;
727 int t_state;
728 unsigned long flags;
729 #if 0
730 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
731 cmd->t_task_cdb[0], dev);
732 #endif
733 if (dev)
734 atomic_inc(&dev->depth_left);
736 spin_lock_irqsave(&cmd->t_state_lock, flags);
737 atomic_set(&task->task_active, 0);
740 * See if any sense data exists, if so set the TASK_SENSE flag.
741 * Also check for any other post completion work that needs to be
742 * done by the plugins.
744 if (dev && dev->transport->transport_complete) {
745 if (dev->transport->transport_complete(task) != 0) {
746 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
747 task->task_sense = 1;
748 success = 1;
753 * See if we are waiting for outstanding struct se_task
754 * to complete for an exception condition
756 if (atomic_read(&task->task_stop)) {
758 * Decrement cmd->t_se_count if this task had
759 * previously thrown its timeout exception handler.
761 if (atomic_read(&task->task_timeout)) {
762 atomic_dec(&cmd->t_se_count);
763 atomic_set(&task->task_timeout, 0);
765 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
767 complete(&task->task_stop_comp);
768 return;
771 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
772 * left counter to determine when the struct se_cmd is ready to be queued to
773 * the processing thread.
775 if (atomic_read(&task->task_timeout)) {
776 if (!atomic_dec_and_test(
777 &cmd->t_task_cdbs_timeout_left)) {
778 spin_unlock_irqrestore(&cmd->t_state_lock,
779 flags);
780 return;
782 t_state = TRANSPORT_COMPLETE_TIMEOUT;
783 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
785 transport_add_cmd_to_queue(cmd, t_state);
786 return;
788 atomic_dec(&cmd->t_task_cdbs_timeout_left);
791 * Decrement the outstanding t_task_cdbs_left count. The last
792 * struct se_task from struct se_cmd will complete itself into the
793 * device queue depending upon int success.
795 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
796 if (!success)
797 cmd->t_tasks_failed = 1;
799 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
800 return;
803 if (!success || cmd->t_tasks_failed) {
804 t_state = TRANSPORT_COMPLETE_FAILURE;
805 if (!task->task_error_status) {
806 task->task_error_status =
807 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
808 cmd->transport_error_status =
809 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
811 } else {
812 atomic_set(&cmd->t_transport_complete, 1);
813 t_state = TRANSPORT_COMPLETE_OK;
815 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
817 transport_add_cmd_to_queue(cmd, t_state);
819 EXPORT_SYMBOL(transport_complete_task);
822 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
823 * struct se_task list are ready to be added to the active execution list
824 * struct se_device
826 * Called with se_dev_t->execute_task_lock called.
828 static inline int transport_add_task_check_sam_attr(
829 struct se_task *task,
830 struct se_task *task_prev,
831 struct se_device *dev)
834 * No SAM Task attribute emulation enabled, add to tail of
835 * execution queue
837 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
838 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
839 return 0;
842 * HEAD_OF_QUEUE attribute for received CDB, which means
843 * the first task that is associated with a struct se_cmd goes to
844 * head of the struct se_device->execute_task_list, and task_prev
845 * after that for each subsequent task
847 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
848 list_add(&task->t_execute_list,
849 (task_prev != NULL) ?
850 &task_prev->t_execute_list :
851 &dev->execute_task_list);
853 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
854 " in execution queue\n",
855 task->task_se_cmd->t_task_cdb[0]);
856 return 1;
859 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
860 * transitioned from Dermant -> Active state, and are added to the end
861 * of the struct se_device->execute_task_list
863 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
864 return 0;
867 /* __transport_add_task_to_execute_queue():
869 * Called with se_dev_t->execute_task_lock called.
871 static void __transport_add_task_to_execute_queue(
872 struct se_task *task,
873 struct se_task *task_prev,
874 struct se_device *dev)
876 int head_of_queue;
878 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
879 atomic_inc(&dev->execute_tasks);
881 if (atomic_read(&task->task_state_active))
882 return;
884 * Determine if this task needs to go to HEAD_OF_QUEUE for the
885 * state list as well. Running with SAM Task Attribute emulation
886 * will always return head_of_queue == 0 here
888 if (head_of_queue)
889 list_add(&task->t_state_list, (task_prev) ?
890 &task_prev->t_state_list :
891 &dev->state_task_list);
892 else
893 list_add_tail(&task->t_state_list, &dev->state_task_list);
895 atomic_set(&task->task_state_active, 1);
897 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
899 task, dev);
902 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
904 struct se_device *dev;
905 struct se_task *task;
906 unsigned long flags;
908 spin_lock_irqsave(&cmd->t_state_lock, flags);
909 list_for_each_entry(task, &cmd->t_task_list, t_list) {
910 dev = task->se_dev;
912 if (atomic_read(&task->task_state_active))
913 continue;
915 spin_lock(&dev->execute_task_lock);
916 list_add_tail(&task->t_state_list, &dev->state_task_list);
917 atomic_set(&task->task_state_active, 1);
919 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
920 task->task_se_cmd->se_tfo->get_task_tag(
921 task->task_se_cmd), task, dev);
923 spin_unlock(&dev->execute_task_lock);
925 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
928 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
930 struct se_device *dev = cmd->se_dev;
931 struct se_task *task, *task_prev = NULL;
932 unsigned long flags;
934 spin_lock_irqsave(&dev->execute_task_lock, flags);
935 list_for_each_entry(task, &cmd->t_task_list, t_list) {
936 if (atomic_read(&task->task_execute_queue))
937 continue;
939 * __transport_add_task_to_execute_queue() handles the
940 * SAM Task Attribute emulation if enabled
942 __transport_add_task_to_execute_queue(task, task_prev, dev);
943 atomic_set(&task->task_execute_queue, 1);
944 task_prev = task;
946 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
949 /* transport_remove_task_from_execute_queue():
953 void transport_remove_task_from_execute_queue(
954 struct se_task *task,
955 struct se_device *dev)
957 unsigned long flags;
959 if (atomic_read(&task->task_execute_queue) == 0) {
960 dump_stack();
961 return;
964 spin_lock_irqsave(&dev->execute_task_lock, flags);
965 list_del(&task->t_execute_list);
966 atomic_set(&task->task_execute_queue, 0);
967 atomic_dec(&dev->execute_tasks);
968 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
972 * Handle QUEUE_FULL / -EAGAIN status
975 static void target_qf_do_work(struct work_struct *work)
977 struct se_device *dev = container_of(work, struct se_device,
978 qf_work_queue);
979 struct se_cmd *cmd, *cmd_tmp;
981 spin_lock_irq(&dev->qf_cmd_lock);
982 list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
984 list_del(&cmd->se_qf_node);
985 atomic_dec(&dev->dev_qf_count);
986 smp_mb__after_atomic_dec();
987 spin_unlock_irq(&dev->qf_cmd_lock);
989 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
990 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
991 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
992 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
993 : "UNKNOWN");
995 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
996 * has been added to head of queue
998 transport_add_cmd_to_queue(cmd, cmd->t_state);
1000 spin_lock_irq(&dev->qf_cmd_lock);
1002 spin_unlock_irq(&dev->qf_cmd_lock);
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1007 switch (cmd->data_direction) {
1008 case DMA_NONE:
1009 return "NONE";
1010 case DMA_FROM_DEVICE:
1011 return "READ";
1012 case DMA_TO_DEVICE:
1013 return "WRITE";
1014 case DMA_BIDIRECTIONAL:
1015 return "BIDI";
1016 default:
1017 break;
1020 return "UNKNOWN";
1023 void transport_dump_dev_state(
1024 struct se_device *dev,
1025 char *b,
1026 int *bl)
1028 *bl += sprintf(b + *bl, "Status: ");
1029 switch (dev->dev_status) {
1030 case TRANSPORT_DEVICE_ACTIVATED:
1031 *bl += sprintf(b + *bl, "ACTIVATED");
1032 break;
1033 case TRANSPORT_DEVICE_DEACTIVATED:
1034 *bl += sprintf(b + *bl, "DEACTIVATED");
1035 break;
1036 case TRANSPORT_DEVICE_SHUTDOWN:
1037 *bl += sprintf(b + *bl, "SHUTDOWN");
1038 break;
1039 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041 *bl += sprintf(b + *bl, "OFFLINE");
1042 break;
1043 default:
1044 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045 break;
1048 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1049 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050 dev->queue_depth);
1051 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1052 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053 *bl += sprintf(b + *bl, " ");
1056 /* transport_release_all_cmds():
1060 static void transport_release_all_cmds(struct se_device *dev)
1062 struct se_cmd *cmd, *tcmd;
1063 int bug_out = 0, t_state;
1064 unsigned long flags;
1066 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1067 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1068 se_queue_node) {
1069 t_state = cmd->t_state;
1070 list_del(&cmd->se_queue_node);
1071 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1072 flags);
1074 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075 " t_state: %u directly\n",
1076 cmd->se_tfo->get_task_tag(cmd),
1077 cmd->se_tfo->get_cmd_state(cmd), t_state);
1079 transport_release_fe_cmd(cmd);
1080 bug_out = 1;
1082 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1084 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085 #if 0
1086 if (bug_out)
1087 BUG();
1088 #endif
1091 void transport_dump_vpd_proto_id(
1092 struct t10_vpd *vpd,
1093 unsigned char *p_buf,
1094 int p_buf_len)
1096 unsigned char buf[VPD_TMP_BUF_SIZE];
1097 int len;
1099 memset(buf, 0, VPD_TMP_BUF_SIZE);
1100 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1102 switch (vpd->protocol_identifier) {
1103 case 0x00:
1104 sprintf(buf+len, "Fibre Channel\n");
1105 break;
1106 case 0x10:
1107 sprintf(buf+len, "Parallel SCSI\n");
1108 break;
1109 case 0x20:
1110 sprintf(buf+len, "SSA\n");
1111 break;
1112 case 0x30:
1113 sprintf(buf+len, "IEEE 1394\n");
1114 break;
1115 case 0x40:
1116 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1117 " Protocol\n");
1118 break;
1119 case 0x50:
1120 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1121 break;
1122 case 0x60:
1123 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1124 break;
1125 case 0x70:
1126 sprintf(buf+len, "Automation/Drive Interface Transport"
1127 " Protocol\n");
1128 break;
1129 case 0x80:
1130 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1131 break;
1132 default:
1133 sprintf(buf+len, "Unknown 0x%02x\n",
1134 vpd->protocol_identifier);
1135 break;
1138 if (p_buf)
1139 strncpy(p_buf, buf, p_buf_len);
1140 else
1141 pr_debug("%s", buf);
1144 void
1145 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1148 * Check if the Protocol Identifier Valid (PIV) bit is set..
1150 * from spc3r23.pdf section 7.5.1
1152 if (page_83[1] & 0x80) {
1153 vpd->protocol_identifier = (page_83[0] & 0xf0);
1154 vpd->protocol_identifier_set = 1;
1155 transport_dump_vpd_proto_id(vpd, NULL, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1160 int transport_dump_vpd_assoc(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1167 int len;
1169 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 len = sprintf(buf, "T10 VPD Identifier Association: ");
1172 switch (vpd->association) {
1173 case 0x00:
1174 sprintf(buf+len, "addressed logical unit\n");
1175 break;
1176 case 0x10:
1177 sprintf(buf+len, "target port\n");
1178 break;
1179 case 0x20:
1180 sprintf(buf+len, "SCSI target device\n");
1181 break;
1182 default:
1183 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1184 ret = -EINVAL;
1185 break;
1188 if (p_buf)
1189 strncpy(p_buf, buf, p_buf_len);
1190 else
1191 pr_debug("%s", buf);
1193 return ret;
1196 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1199 * The VPD identification association..
1201 * from spc3r23.pdf Section 7.6.3.1 Table 297
1203 vpd->association = (page_83[1] & 0x30);
1204 return transport_dump_vpd_assoc(vpd, NULL, 0);
1206 EXPORT_SYMBOL(transport_set_vpd_assoc);
1208 int transport_dump_vpd_ident_type(
1209 struct t10_vpd *vpd,
1210 unsigned char *p_buf,
1211 int p_buf_len)
1213 unsigned char buf[VPD_TMP_BUF_SIZE];
1214 int ret = 0;
1215 int len;
1217 memset(buf, 0, VPD_TMP_BUF_SIZE);
1218 len = sprintf(buf, "T10 VPD Identifier Type: ");
1220 switch (vpd->device_identifier_type) {
1221 case 0x00:
1222 sprintf(buf+len, "Vendor specific\n");
1223 break;
1224 case 0x01:
1225 sprintf(buf+len, "T10 Vendor ID based\n");
1226 break;
1227 case 0x02:
1228 sprintf(buf+len, "EUI-64 based\n");
1229 break;
1230 case 0x03:
1231 sprintf(buf+len, "NAA\n");
1232 break;
1233 case 0x04:
1234 sprintf(buf+len, "Relative target port identifier\n");
1235 break;
1236 case 0x08:
1237 sprintf(buf+len, "SCSI name string\n");
1238 break;
1239 default:
1240 sprintf(buf+len, "Unsupported: 0x%02x\n",
1241 vpd->device_identifier_type);
1242 ret = -EINVAL;
1243 break;
1246 if (p_buf) {
1247 if (p_buf_len < strlen(buf)+1)
1248 return -EINVAL;
1249 strncpy(p_buf, buf, p_buf_len);
1250 } else {
1251 pr_debug("%s", buf);
1254 return ret;
1257 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1260 * The VPD identifier type..
1262 * from spc3r23.pdf Section 7.6.3.1 Table 298
1264 vpd->device_identifier_type = (page_83[1] & 0x0f);
1265 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1267 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1269 int transport_dump_vpd_ident(
1270 struct t10_vpd *vpd,
1271 unsigned char *p_buf,
1272 int p_buf_len)
1274 unsigned char buf[VPD_TMP_BUF_SIZE];
1275 int ret = 0;
1277 memset(buf, 0, VPD_TMP_BUF_SIZE);
1279 switch (vpd->device_identifier_code_set) {
1280 case 0x01: /* Binary */
1281 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1282 &vpd->device_identifier[0]);
1283 break;
1284 case 0x02: /* ASCII */
1285 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1286 &vpd->device_identifier[0]);
1287 break;
1288 case 0x03: /* UTF-8 */
1289 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1290 &vpd->device_identifier[0]);
1291 break;
1292 default:
1293 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1294 " 0x%02x", vpd->device_identifier_code_set);
1295 ret = -EINVAL;
1296 break;
1299 if (p_buf)
1300 strncpy(p_buf, buf, p_buf_len);
1301 else
1302 pr_debug("%s", buf);
1304 return ret;
1308 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1310 static const char hex_str[] = "0123456789abcdef";
1311 int j = 0, i = 4; /* offset to start of the identifer */
1314 * The VPD Code Set (encoding)
1316 * from spc3r23.pdf Section 7.6.3.1 Table 296
1318 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1319 switch (vpd->device_identifier_code_set) {
1320 case 0x01: /* Binary */
1321 vpd->device_identifier[j++] =
1322 hex_str[vpd->device_identifier_type];
1323 while (i < (4 + page_83[3])) {
1324 vpd->device_identifier[j++] =
1325 hex_str[(page_83[i] & 0xf0) >> 4];
1326 vpd->device_identifier[j++] =
1327 hex_str[page_83[i] & 0x0f];
1328 i++;
1330 break;
1331 case 0x02: /* ASCII */
1332 case 0x03: /* UTF-8 */
1333 while (i < (4 + page_83[3]))
1334 vpd->device_identifier[j++] = page_83[i++];
1335 break;
1336 default:
1337 break;
1340 return transport_dump_vpd_ident(vpd, NULL, 0);
1342 EXPORT_SYMBOL(transport_set_vpd_ident);
1344 static void core_setup_task_attr_emulation(struct se_device *dev)
1347 * If this device is from Target_Core_Mod/pSCSI, disable the
1348 * SAM Task Attribute emulation.
1350 * This is currently not available in upsream Linux/SCSI Target
1351 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1353 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1354 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1355 return;
1358 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1359 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360 " device\n", dev->transport->name,
1361 dev->transport->get_device_rev(dev));
1364 static void scsi_dump_inquiry(struct se_device *dev)
1366 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1367 int i, device_type;
1369 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1371 pr_debug(" Vendor: ");
1372 for (i = 0; i < 8; i++)
1373 if (wwn->vendor[i] >= 0x20)
1374 pr_debug("%c", wwn->vendor[i]);
1375 else
1376 pr_debug(" ");
1378 pr_debug(" Model: ");
1379 for (i = 0; i < 16; i++)
1380 if (wwn->model[i] >= 0x20)
1381 pr_debug("%c", wwn->model[i]);
1382 else
1383 pr_debug(" ");
1385 pr_debug(" Revision: ");
1386 for (i = 0; i < 4; i++)
1387 if (wwn->revision[i] >= 0x20)
1388 pr_debug("%c", wwn->revision[i]);
1389 else
1390 pr_debug(" ");
1392 pr_debug("\n");
1394 device_type = dev->transport->get_device_type(dev);
1395 pr_debug(" Type: %s ", scsi_device_type(device_type));
1396 pr_debug(" ANSI SCSI revision: %02x\n",
1397 dev->transport->get_device_rev(dev));
1400 struct se_device *transport_add_device_to_core_hba(
1401 struct se_hba *hba,
1402 struct se_subsystem_api *transport,
1403 struct se_subsystem_dev *se_dev,
1404 u32 device_flags,
1405 void *transport_dev,
1406 struct se_dev_limits *dev_limits,
1407 const char *inquiry_prod,
1408 const char *inquiry_rev)
1410 int force_pt;
1411 struct se_device *dev;
1413 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1414 if (!dev) {
1415 pr_err("Unable to allocate memory for se_dev_t\n");
1416 return NULL;
1419 transport_init_queue_obj(&dev->dev_queue_obj);
1420 dev->dev_flags = device_flags;
1421 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1422 dev->dev_ptr = transport_dev;
1423 dev->se_hba = hba;
1424 dev->se_sub_dev = se_dev;
1425 dev->transport = transport;
1426 atomic_set(&dev->active_cmds, 0);
1427 INIT_LIST_HEAD(&dev->dev_list);
1428 INIT_LIST_HEAD(&dev->dev_sep_list);
1429 INIT_LIST_HEAD(&dev->dev_tmr_list);
1430 INIT_LIST_HEAD(&dev->execute_task_list);
1431 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1432 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1433 INIT_LIST_HEAD(&dev->state_task_list);
1434 INIT_LIST_HEAD(&dev->qf_cmd_list);
1435 spin_lock_init(&dev->execute_task_lock);
1436 spin_lock_init(&dev->delayed_cmd_lock);
1437 spin_lock_init(&dev->ordered_cmd_lock);
1438 spin_lock_init(&dev->state_task_lock);
1439 spin_lock_init(&dev->dev_alua_lock);
1440 spin_lock_init(&dev->dev_reservation_lock);
1441 spin_lock_init(&dev->dev_status_lock);
1442 spin_lock_init(&dev->dev_status_thr_lock);
1443 spin_lock_init(&dev->se_port_lock);
1444 spin_lock_init(&dev->se_tmr_lock);
1445 spin_lock_init(&dev->qf_cmd_lock);
1447 dev->queue_depth = dev_limits->queue_depth;
1448 atomic_set(&dev->depth_left, dev->queue_depth);
1449 atomic_set(&dev->dev_ordered_id, 0);
1451 se_dev_set_default_attribs(dev, dev_limits);
1453 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1454 dev->creation_time = get_jiffies_64();
1455 spin_lock_init(&dev->stats_lock);
1457 spin_lock(&hba->device_lock);
1458 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1459 hba->dev_count++;
1460 spin_unlock(&hba->device_lock);
1462 * Setup the SAM Task Attribute emulation for struct se_device
1464 core_setup_task_attr_emulation(dev);
1466 * Force PR and ALUA passthrough emulation with internal object use.
1468 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1470 * Setup the Reservations infrastructure for struct se_device
1472 core_setup_reservations(dev, force_pt);
1474 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1476 if (core_setup_alua(dev, force_pt) < 0)
1477 goto out;
1480 * Startup the struct se_device processing thread
1482 dev->process_thread = kthread_run(transport_processing_thread, dev,
1483 "LIO_%s", dev->transport->name);
1484 if (IS_ERR(dev->process_thread)) {
1485 pr_err("Unable to create kthread: LIO_%s\n",
1486 dev->transport->name);
1487 goto out;
1490 * Setup work_queue for QUEUE_FULL
1492 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1494 * Preload the initial INQUIRY const values if we are doing
1495 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496 * passthrough because this is being provided by the backend LLD.
1497 * This is required so that transport_get_inquiry() copies these
1498 * originals once back into DEV_T10_WWN(dev) for the virtual device
1499 * setup.
1501 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1502 if (!inquiry_prod || !inquiry_rev) {
1503 pr_err("All non TCM/pSCSI plugins require"
1504 " INQUIRY consts\n");
1505 goto out;
1508 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1509 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1510 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1512 scsi_dump_inquiry(dev);
1514 return dev;
1515 out:
1516 kthread_stop(dev->process_thread);
1518 spin_lock(&hba->device_lock);
1519 list_del(&dev->dev_list);
1520 hba->dev_count--;
1521 spin_unlock(&hba->device_lock);
1523 se_release_vpd_for_dev(dev);
1525 kfree(dev);
1527 return NULL;
1529 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1531 /* transport_generic_prepare_cdb():
1533 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1534 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535 * The point of this is since we are mapping iSCSI LUNs to
1536 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537 * devices and HBAs for a loop.
1539 static inline void transport_generic_prepare_cdb(
1540 unsigned char *cdb)
1542 switch (cdb[0]) {
1543 case READ_10: /* SBC - RDProtect */
1544 case READ_12: /* SBC - RDProtect */
1545 case READ_16: /* SBC - RDProtect */
1546 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1547 case VERIFY: /* SBC - VRProtect */
1548 case VERIFY_16: /* SBC - VRProtect */
1549 case WRITE_VERIFY: /* SBC - VRProtect */
1550 case WRITE_VERIFY_12: /* SBC - VRProtect */
1551 break;
1552 default:
1553 cdb[1] &= 0x1f; /* clear logical unit number */
1554 break;
1558 static struct se_task *
1559 transport_generic_get_task(struct se_cmd *cmd,
1560 enum dma_data_direction data_direction)
1562 struct se_task *task;
1563 struct se_device *dev = cmd->se_dev;
1565 task = dev->transport->alloc_task(cmd->t_task_cdb);
1566 if (!task) {
1567 pr_err("Unable to allocate struct se_task\n");
1568 return NULL;
1571 INIT_LIST_HEAD(&task->t_list);
1572 INIT_LIST_HEAD(&task->t_execute_list);
1573 INIT_LIST_HEAD(&task->t_state_list);
1574 init_completion(&task->task_stop_comp);
1575 task->task_se_cmd = cmd;
1576 task->se_dev = dev;
1577 task->task_data_direction = data_direction;
1579 return task;
1582 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1585 * Used by fabric modules containing a local struct se_cmd within their
1586 * fabric dependent per I/O descriptor.
1588 void transport_init_se_cmd(
1589 struct se_cmd *cmd,
1590 struct target_core_fabric_ops *tfo,
1591 struct se_session *se_sess,
1592 u32 data_length,
1593 int data_direction,
1594 int task_attr,
1595 unsigned char *sense_buffer)
1597 INIT_LIST_HEAD(&cmd->se_lun_node);
1598 INIT_LIST_HEAD(&cmd->se_delayed_node);
1599 INIT_LIST_HEAD(&cmd->se_ordered_node);
1600 INIT_LIST_HEAD(&cmd->se_qf_node);
1602 INIT_LIST_HEAD(&cmd->t_task_list);
1603 init_completion(&cmd->transport_lun_fe_stop_comp);
1604 init_completion(&cmd->transport_lun_stop_comp);
1605 init_completion(&cmd->t_transport_stop_comp);
1606 spin_lock_init(&cmd->t_state_lock);
1607 atomic_set(&cmd->transport_dev_active, 1);
1609 cmd->se_tfo = tfo;
1610 cmd->se_sess = se_sess;
1611 cmd->data_length = data_length;
1612 cmd->data_direction = data_direction;
1613 cmd->sam_task_attr = task_attr;
1614 cmd->sense_buffer = sense_buffer;
1616 EXPORT_SYMBOL(transport_init_se_cmd);
1618 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1621 * Check if SAM Task Attribute emulation is enabled for this
1622 * struct se_device storage object
1624 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625 return 0;
1627 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628 pr_debug("SAM Task Attribute ACA"
1629 " emulation is not supported\n");
1630 return -EINVAL;
1633 * Used to determine when ORDERED commands should go from
1634 * Dormant to Active status.
1636 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637 smp_mb__after_atomic_inc();
1638 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639 cmd->se_ordered_id, cmd->sam_task_attr,
1640 cmd->se_dev->transport->name);
1641 return 0;
1644 void transport_free_se_cmd(
1645 struct se_cmd *se_cmd)
1647 if (se_cmd->se_tmr_req)
1648 core_tmr_release_req(se_cmd->se_tmr_req);
1650 * Check and free any extended CDB buffer that was allocated
1652 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653 kfree(se_cmd->t_task_cdb);
1655 EXPORT_SYMBOL(transport_free_se_cmd);
1657 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1659 /* transport_generic_allocate_tasks():
1661 * Called from fabric RX Thread.
1663 int transport_generic_allocate_tasks(
1664 struct se_cmd *cmd,
1665 unsigned char *cdb)
1667 int ret;
1669 transport_generic_prepare_cdb(cdb);
1672 * This is needed for early exceptions.
1674 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1677 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678 * for VARIABLE_LENGTH_CMD
1680 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681 pr_err("Received SCSI CDB with command_size: %d that"
1682 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684 return -EINVAL;
1687 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688 * allocate the additional extended CDB buffer now.. Otherwise
1689 * setup the pointer from __t_task_cdb to t_task_cdb.
1691 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693 GFP_KERNEL);
1694 if (!cmd->t_task_cdb) {
1695 pr_err("Unable to allocate cmd->t_task_cdb"
1696 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697 scsi_command_size(cdb),
1698 (unsigned long)sizeof(cmd->__t_task_cdb));
1699 return -ENOMEM;
1701 } else
1702 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1704 * Copy the original CDB into cmd->
1706 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1708 * Setup the received CDB based on SCSI defined opcodes and
1709 * perform unit attention, persistent reservations and ALUA
1710 * checks for virtual device backends. The cmd->t_task_cdb
1711 * pointer is expected to be setup before we reach this point.
1713 ret = transport_generic_cmd_sequencer(cmd, cdb);
1714 if (ret < 0)
1715 return ret;
1717 * Check for SAM Task Attribute Emulation
1719 if (transport_check_alloc_task_attr(cmd) < 0) {
1720 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722 return -EINVAL;
1724 spin_lock(&cmd->se_lun->lun_sep_lock);
1725 if (cmd->se_lun->lun_sep)
1726 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727 spin_unlock(&cmd->se_lun->lun_sep_lock);
1728 return 0;
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1736 int transport_generic_handle_cdb(
1737 struct se_cmd *cmd)
1739 if (!cmd->se_lun) {
1740 dump_stack();
1741 pr_err("cmd->se_lun is NULL\n");
1742 return -EINVAL;
1745 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1746 return 0;
1748 EXPORT_SYMBOL(transport_generic_handle_cdb);
1750 static void transport_generic_request_failure(struct se_cmd *,
1751 struct se_device *, int, int);
1753 * Used by fabric module frontends to queue tasks directly.
1754 * Many only be used from process context only
1756 int transport_handle_cdb_direct(
1757 struct se_cmd *cmd)
1759 int ret;
1761 if (!cmd->se_lun) {
1762 dump_stack();
1763 pr_err("cmd->se_lun is NULL\n");
1764 return -EINVAL;
1766 if (in_interrupt()) {
1767 dump_stack();
1768 pr_err("transport_generic_handle_cdb cannot be called"
1769 " from interrupt context\n");
1770 return -EINVAL;
1773 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775 * in existing usage to ensure that outstanding descriptors are handled
1776 * correctly during shutdown via transport_generic_wait_for_tasks()
1778 * Also, we don't take cmd->t_state_lock here as we only expect
1779 * this to be called for initial descriptor submission.
1781 cmd->t_state = TRANSPORT_NEW_CMD;
1782 atomic_set(&cmd->t_transport_active, 1);
1784 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785 * so follow TRANSPORT_NEW_CMD processing thread context usage
1786 * and call transport_generic_request_failure() if necessary..
1788 ret = transport_generic_new_cmd(cmd);
1789 if (ret == -EAGAIN)
1790 return 0;
1791 else if (ret < 0) {
1792 cmd->transport_error_status = ret;
1793 transport_generic_request_failure(cmd, NULL, 0,
1794 (cmd->data_direction != DMA_TO_DEVICE));
1796 return 0;
1798 EXPORT_SYMBOL(transport_handle_cdb_direct);
1801 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803 * complete setup in TCM process context w/ TFO->new_cmd_map().
1805 int transport_generic_handle_cdb_map(
1806 struct se_cmd *cmd)
1808 if (!cmd->se_lun) {
1809 dump_stack();
1810 pr_err("cmd->se_lun is NULL\n");
1811 return -EINVAL;
1814 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1815 return 0;
1817 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1819 /* transport_generic_handle_data():
1823 int transport_generic_handle_data(
1824 struct se_cmd *cmd)
1827 * For the software fabric case, then we assume the nexus is being
1828 * failed/shutdown when signals are pending from the kthread context
1829 * caller, so we return a failure. For the HW target mode case running
1830 * in interrupt code, the signal_pending() check is skipped.
1832 if (!in_interrupt() && signal_pending(current))
1833 return -EPERM;
1835 * If the received CDB has aleady been ABORTED by the generic
1836 * target engine, we now call transport_check_aborted_status()
1837 * to queue any delated TASK_ABORTED status for the received CDB to the
1838 * fabric module as we are expecting no further incoming DATA OUT
1839 * sequences at this point.
1841 if (transport_check_aborted_status(cmd, 1) != 0)
1842 return 0;
1844 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1845 return 0;
1847 EXPORT_SYMBOL(transport_generic_handle_data);
1849 /* transport_generic_handle_tmr():
1853 int transport_generic_handle_tmr(
1854 struct se_cmd *cmd)
1857 * This is needed for early exceptions.
1859 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1861 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1862 return 0;
1864 EXPORT_SYMBOL(transport_generic_handle_tmr);
1866 void transport_generic_free_cmd_intr(
1867 struct se_cmd *cmd)
1869 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1871 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1873 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1875 struct se_task *task, *task_tmp;
1876 unsigned long flags;
1877 int ret = 0;
1879 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880 cmd->se_tfo->get_task_tag(cmd));
1883 * No tasks remain in the execution queue
1885 spin_lock_irqsave(&cmd->t_state_lock, flags);
1886 list_for_each_entry_safe(task, task_tmp,
1887 &cmd->t_task_list, t_list) {
1888 pr_debug("task_no[%d] - Processing task %p\n",
1889 task->task_no, task);
1891 * If the struct se_task has not been sent and is not active,
1892 * remove the struct se_task from the execution queue.
1894 if (!atomic_read(&task->task_sent) &&
1895 !atomic_read(&task->task_active)) {
1896 spin_unlock_irqrestore(&cmd->t_state_lock,
1897 flags);
1898 transport_remove_task_from_execute_queue(task,
1899 task->se_dev);
1901 pr_debug("task_no[%d] - Removed from execute queue\n",
1902 task->task_no);
1903 spin_lock_irqsave(&cmd->t_state_lock, flags);
1904 continue;
1908 * If the struct se_task is active, sleep until it is returned
1909 * from the plugin.
1911 if (atomic_read(&task->task_active)) {
1912 atomic_set(&task->task_stop, 1);
1913 spin_unlock_irqrestore(&cmd->t_state_lock,
1914 flags);
1916 pr_debug("task_no[%d] - Waiting to complete\n",
1917 task->task_no);
1918 wait_for_completion(&task->task_stop_comp);
1919 pr_debug("task_no[%d] - Stopped successfully\n",
1920 task->task_no);
1922 spin_lock_irqsave(&cmd->t_state_lock, flags);
1923 atomic_dec(&cmd->t_task_cdbs_left);
1925 atomic_set(&task->task_active, 0);
1926 atomic_set(&task->task_stop, 0);
1927 } else {
1928 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1929 ret++;
1932 __transport_stop_task_timer(task, &flags);
1934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1936 return ret;
1940 * Handle SAM-esque emulation for generic transport request failures.
1942 static void transport_generic_request_failure(
1943 struct se_cmd *cmd,
1944 struct se_device *dev,
1945 int complete,
1946 int sc)
1948 int ret = 0;
1950 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952 cmd->t_task_cdb[0]);
1953 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954 " %d/%d transport_error_status: %d\n",
1955 cmd->se_tfo->get_cmd_state(cmd),
1956 cmd->t_state, cmd->deferred_t_state,
1957 cmd->transport_error_status);
1958 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960 " t_transport_active: %d t_transport_stop: %d"
1961 " t_transport_sent: %d\n", cmd->t_task_list_num,
1962 atomic_read(&cmd->t_task_cdbs_left),
1963 atomic_read(&cmd->t_task_cdbs_sent),
1964 atomic_read(&cmd->t_task_cdbs_ex_left),
1965 atomic_read(&cmd->t_transport_active),
1966 atomic_read(&cmd->t_transport_stop),
1967 atomic_read(&cmd->t_transport_sent));
1969 transport_stop_all_task_timers(cmd);
1971 if (dev)
1972 atomic_inc(&dev->depth_left);
1974 * For SAM Task Attribute emulation for failed struct se_cmd
1976 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977 transport_complete_task_attr(cmd);
1979 if (complete) {
1980 transport_direct_request_timeout(cmd);
1981 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1984 switch (cmd->transport_error_status) {
1985 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1986 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1987 break;
1988 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1989 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1990 break;
1991 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1992 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1993 break;
1994 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1995 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1996 break;
1997 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1998 if (!sc)
1999 transport_new_cmd_failure(cmd);
2001 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002 * we force this session to fall back to session
2003 * recovery.
2005 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2006 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2008 goto check_stop;
2009 case PYX_TRANSPORT_LU_COMM_FAILURE:
2010 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2011 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2012 break;
2013 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2014 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2015 break;
2016 case PYX_TRANSPORT_WRITE_PROTECTED:
2017 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2018 break;
2019 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2021 * No SENSE Data payload for this case, set SCSI Status
2022 * and queue the response to $FABRIC_MOD.
2024 * Uses linux/include/scsi/scsi.h SAM status codes defs
2026 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2028 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2030 * CONFLICT STATUS.
2032 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2034 if (cmd->se_sess &&
2035 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2036 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2037 cmd->orig_fe_lun, 0x2C,
2038 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2040 ret = cmd->se_tfo->queue_status(cmd);
2041 if (ret == -EAGAIN)
2042 goto queue_full;
2043 goto check_stop;
2044 case PYX_TRANSPORT_USE_SENSE_REASON:
2046 * struct se_cmd->scsi_sense_reason already set
2048 break;
2049 default:
2050 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2051 cmd->t_task_cdb[0],
2052 cmd->transport_error_status);
2053 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2054 break;
2057 if (!sc)
2058 transport_new_cmd_failure(cmd);
2059 else {
2060 ret = transport_send_check_condition_and_sense(cmd,
2061 cmd->scsi_sense_reason, 0);
2062 if (ret == -EAGAIN)
2063 goto queue_full;
2066 check_stop:
2067 transport_lun_remove_cmd(cmd);
2068 if (!transport_cmd_check_stop_to_fabric(cmd))
2070 return;
2072 queue_full:
2073 cmd->t_state = TRANSPORT_COMPLETE_OK;
2074 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2077 static void transport_direct_request_timeout(struct se_cmd *cmd)
2079 unsigned long flags;
2081 spin_lock_irqsave(&cmd->t_state_lock, flags);
2082 if (!atomic_read(&cmd->t_transport_timeout)) {
2083 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2084 return;
2086 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2088 return;
2091 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2092 &cmd->t_se_count);
2093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2096 static void transport_generic_request_timeout(struct se_cmd *cmd)
2098 unsigned long flags;
2101 * Reset cmd->t_se_count to allow transport_generic_remove()
2102 * to allow last call to free memory resources.
2104 spin_lock_irqsave(&cmd->t_state_lock, flags);
2105 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2106 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2108 atomic_sub(tmp, &cmd->t_se_count);
2110 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112 transport_generic_remove(cmd, 0);
2115 static inline u32 transport_lba_21(unsigned char *cdb)
2117 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2120 static inline u32 transport_lba_32(unsigned char *cdb)
2122 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2125 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2127 unsigned int __v1, __v2;
2129 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2130 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2132 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2136 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2138 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2140 unsigned int __v1, __v2;
2142 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2143 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2145 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2148 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2150 unsigned long flags;
2152 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2153 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2154 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2158 * Called from interrupt context.
2160 static void transport_task_timeout_handler(unsigned long data)
2162 struct se_task *task = (struct se_task *)data;
2163 struct se_cmd *cmd = task->task_se_cmd;
2164 unsigned long flags;
2166 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2168 spin_lock_irqsave(&cmd->t_state_lock, flags);
2169 if (task->task_flags & TF_STOP) {
2170 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2171 return;
2173 task->task_flags &= ~TF_RUNNING;
2176 * Determine if transport_complete_task() has already been called.
2178 if (!atomic_read(&task->task_active)) {
2179 pr_debug("transport task: %p cmd: %p timeout task_active"
2180 " == 0\n", task, cmd);
2181 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2182 return;
2185 atomic_inc(&cmd->t_se_count);
2186 atomic_inc(&cmd->t_transport_timeout);
2187 cmd->t_tasks_failed = 1;
2189 atomic_set(&task->task_timeout, 1);
2190 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2191 task->task_scsi_status = 1;
2193 if (atomic_read(&task->task_stop)) {
2194 pr_debug("transport task: %p cmd: %p timeout task_stop"
2195 " == 1\n", task, cmd);
2196 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2197 complete(&task->task_stop_comp);
2198 return;
2201 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2202 pr_debug("transport task: %p cmd: %p timeout non zero"
2203 " t_task_cdbs_left\n", task, cmd);
2204 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2205 return;
2207 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2208 task, cmd);
2210 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2211 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2213 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2217 * Called with cmd->t_state_lock held.
2219 static void transport_start_task_timer(struct se_task *task)
2221 struct se_device *dev = task->se_dev;
2222 int timeout;
2224 if (task->task_flags & TF_RUNNING)
2225 return;
2227 * If the task_timeout is disabled, exit now.
2229 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2230 if (!timeout)
2231 return;
2233 init_timer(&task->task_timer);
2234 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2235 task->task_timer.data = (unsigned long) task;
2236 task->task_timer.function = transport_task_timeout_handler;
2238 task->task_flags |= TF_RUNNING;
2239 add_timer(&task->task_timer);
2240 #if 0
2241 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2242 " %d\n", task->task_se_cmd, task, timeout);
2243 #endif
2247 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2249 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2251 struct se_cmd *cmd = task->task_se_cmd;
2253 if (!task->task_flags & TF_RUNNING)
2254 return;
2256 task->task_flags |= TF_STOP;
2257 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2259 del_timer_sync(&task->task_timer);
2261 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2262 task->task_flags &= ~TF_RUNNING;
2263 task->task_flags &= ~TF_STOP;
2266 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2268 struct se_task *task = NULL, *task_tmp;
2269 unsigned long flags;
2271 spin_lock_irqsave(&cmd->t_state_lock, flags);
2272 list_for_each_entry_safe(task, task_tmp,
2273 &cmd->t_task_list, t_list)
2274 __transport_stop_task_timer(task, &flags);
2275 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2278 static inline int transport_tcq_window_closed(struct se_device *dev)
2280 if (dev->dev_tcq_window_closed++ <
2281 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2282 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2283 } else
2284 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2286 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2287 return 0;
2291 * Called from Fabric Module context from transport_execute_tasks()
2293 * The return of this function determins if the tasks from struct se_cmd
2294 * get added to the execution queue in transport_execute_tasks(),
2295 * or are added to the delayed or ordered lists here.
2297 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2299 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2300 return 1;
2302 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2303 * to allow the passed struct se_cmd list of tasks to the front of the list.
2305 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2306 atomic_inc(&cmd->se_dev->dev_hoq_count);
2307 smp_mb__after_atomic_inc();
2308 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2309 " 0x%02x, se_ordered_id: %u\n",
2310 cmd->t_task_cdb[0],
2311 cmd->se_ordered_id);
2312 return 1;
2313 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2314 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2315 list_add_tail(&cmd->se_ordered_node,
2316 &cmd->se_dev->ordered_cmd_list);
2317 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2319 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2320 smp_mb__after_atomic_inc();
2322 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2323 " list, se_ordered_id: %u\n",
2324 cmd->t_task_cdb[0],
2325 cmd->se_ordered_id);
2327 * Add ORDERED command to tail of execution queue if
2328 * no other older commands exist that need to be
2329 * completed first.
2331 if (!atomic_read(&cmd->se_dev->simple_cmds))
2332 return 1;
2333 } else {
2335 * For SIMPLE and UNTAGGED Task Attribute commands
2337 atomic_inc(&cmd->se_dev->simple_cmds);
2338 smp_mb__after_atomic_inc();
2341 * Otherwise if one or more outstanding ORDERED task attribute exist,
2342 * add the dormant task(s) built for the passed struct se_cmd to the
2343 * execution queue and become in Active state for this struct se_device.
2345 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2347 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2348 * will be drained upon completion of HEAD_OF_QUEUE task.
2350 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2351 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2352 list_add_tail(&cmd->se_delayed_node,
2353 &cmd->se_dev->delayed_cmd_list);
2354 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2356 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2357 " delayed CMD list, se_ordered_id: %u\n",
2358 cmd->t_task_cdb[0], cmd->sam_task_attr,
2359 cmd->se_ordered_id);
2361 * Return zero to let transport_execute_tasks() know
2362 * not to add the delayed tasks to the execution list.
2364 return 0;
2367 * Otherwise, no ORDERED task attributes exist..
2369 return 1;
2373 * Called from fabric module context in transport_generic_new_cmd() and
2374 * transport_generic_process_write()
2376 static int transport_execute_tasks(struct se_cmd *cmd)
2378 int add_tasks;
2380 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2381 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2382 transport_generic_request_failure(cmd, NULL, 0, 1);
2383 return 0;
2387 * Call transport_cmd_check_stop() to see if a fabric exception
2388 * has occurred that prevents execution.
2390 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2392 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2393 * attribute for the tasks of the received struct se_cmd CDB
2395 add_tasks = transport_execute_task_attr(cmd);
2396 if (!add_tasks)
2397 goto execute_tasks;
2399 * This calls transport_add_tasks_from_cmd() to handle
2400 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2401 * (if enabled) in __transport_add_task_to_execute_queue() and
2402 * transport_add_task_check_sam_attr().
2404 transport_add_tasks_from_cmd(cmd);
2407 * Kick the execution queue for the cmd associated struct se_device
2408 * storage object.
2410 execute_tasks:
2411 __transport_execute_tasks(cmd->se_dev);
2412 return 0;
2416 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2417 * from struct se_device->execute_task_list and
2419 * Called from transport_processing_thread()
2421 static int __transport_execute_tasks(struct se_device *dev)
2423 int error;
2424 struct se_cmd *cmd = NULL;
2425 struct se_task *task = NULL;
2426 unsigned long flags;
2429 * Check if there is enough room in the device and HBA queue to send
2430 * struct se_tasks to the selected transport.
2432 check_depth:
2433 if (!atomic_read(&dev->depth_left))
2434 return transport_tcq_window_closed(dev);
2436 dev->dev_tcq_window_closed = 0;
2438 spin_lock_irq(&dev->execute_task_lock);
2439 if (list_empty(&dev->execute_task_list)) {
2440 spin_unlock_irq(&dev->execute_task_lock);
2441 return 0;
2443 task = list_first_entry(&dev->execute_task_list,
2444 struct se_task, t_execute_list);
2445 list_del(&task->t_execute_list);
2446 atomic_set(&task->task_execute_queue, 0);
2447 atomic_dec(&dev->execute_tasks);
2448 spin_unlock_irq(&dev->execute_task_lock);
2450 atomic_dec(&dev->depth_left);
2452 cmd = task->task_se_cmd;
2454 spin_lock_irqsave(&cmd->t_state_lock, flags);
2455 atomic_set(&task->task_active, 1);
2456 atomic_set(&task->task_sent, 1);
2457 atomic_inc(&cmd->t_task_cdbs_sent);
2459 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2460 cmd->t_task_list_num)
2461 atomic_set(&cmd->transport_sent, 1);
2463 transport_start_task_timer(task);
2464 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2466 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2467 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2468 * struct se_subsystem_api->do_task() caller below.
2470 if (cmd->transport_emulate_cdb) {
2471 error = cmd->transport_emulate_cdb(cmd);
2472 if (error != 0) {
2473 cmd->transport_error_status = error;
2474 atomic_set(&task->task_active, 0);
2475 atomic_set(&cmd->transport_sent, 0);
2476 transport_stop_tasks_for_cmd(cmd);
2477 transport_generic_request_failure(cmd, dev, 0, 1);
2478 goto check_depth;
2481 * Handle the successful completion for transport_emulate_cdb()
2482 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2483 * Otherwise the caller is expected to complete the task with
2484 * proper status.
2486 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2487 cmd->scsi_status = SAM_STAT_GOOD;
2488 task->task_scsi_status = GOOD;
2489 transport_complete_task(task, 1);
2491 } else {
2493 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2494 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2495 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2496 * LUN emulation code.
2498 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2499 * call ->do_task() directly and let the underlying TCM subsystem plugin
2500 * code handle the CDB emulation.
2502 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2503 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2504 error = transport_emulate_control_cdb(task);
2505 else
2506 error = dev->transport->do_task(task);
2508 if (error != 0) {
2509 cmd->transport_error_status = error;
2510 atomic_set(&task->task_active, 0);
2511 atomic_set(&cmd->transport_sent, 0);
2512 transport_stop_tasks_for_cmd(cmd);
2513 transport_generic_request_failure(cmd, dev, 0, 1);
2517 goto check_depth;
2519 return 0;
2522 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2524 unsigned long flags;
2526 * Any unsolicited data will get dumped for failed command inside of
2527 * the fabric plugin
2529 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2530 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2531 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2532 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2535 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2537 static inline u32 transport_get_sectors_6(
2538 unsigned char *cdb,
2539 struct se_cmd *cmd,
2540 int *ret)
2542 struct se_device *dev = cmd->se_dev;
2545 * Assume TYPE_DISK for non struct se_device objects.
2546 * Use 8-bit sector value.
2548 if (!dev)
2549 goto type_disk;
2552 * Use 24-bit allocation length for TYPE_TAPE.
2554 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2555 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2558 * Everything else assume TYPE_DISK Sector CDB location.
2559 * Use 8-bit sector value.
2561 type_disk:
2562 return (u32)cdb[4];
2565 static inline u32 transport_get_sectors_10(
2566 unsigned char *cdb,
2567 struct se_cmd *cmd,
2568 int *ret)
2570 struct se_device *dev = cmd->se_dev;
2573 * Assume TYPE_DISK for non struct se_device objects.
2574 * Use 16-bit sector value.
2576 if (!dev)
2577 goto type_disk;
2580 * XXX_10 is not defined in SSC, throw an exception
2582 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2583 *ret = -EINVAL;
2584 return 0;
2588 * Everything else assume TYPE_DISK Sector CDB location.
2589 * Use 16-bit sector value.
2591 type_disk:
2592 return (u32)(cdb[7] << 8) + cdb[8];
2595 static inline u32 transport_get_sectors_12(
2596 unsigned char *cdb,
2597 struct se_cmd *cmd,
2598 int *ret)
2600 struct se_device *dev = cmd->se_dev;
2603 * Assume TYPE_DISK for non struct se_device objects.
2604 * Use 32-bit sector value.
2606 if (!dev)
2607 goto type_disk;
2610 * XXX_12 is not defined in SSC, throw an exception
2612 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2613 *ret = -EINVAL;
2614 return 0;
2618 * Everything else assume TYPE_DISK Sector CDB location.
2619 * Use 32-bit sector value.
2621 type_disk:
2622 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2625 static inline u32 transport_get_sectors_16(
2626 unsigned char *cdb,
2627 struct se_cmd *cmd,
2628 int *ret)
2630 struct se_device *dev = cmd->se_dev;
2633 * Assume TYPE_DISK for non struct se_device objects.
2634 * Use 32-bit sector value.
2636 if (!dev)
2637 goto type_disk;
2640 * Use 24-bit allocation length for TYPE_TAPE.
2642 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2643 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2645 type_disk:
2646 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2647 (cdb[12] << 8) + cdb[13];
2651 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2653 static inline u32 transport_get_sectors_32(
2654 unsigned char *cdb,
2655 struct se_cmd *cmd,
2656 int *ret)
2659 * Assume TYPE_DISK for non struct se_device objects.
2660 * Use 32-bit sector value.
2662 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2663 (cdb[30] << 8) + cdb[31];
2667 static inline u32 transport_get_size(
2668 u32 sectors,
2669 unsigned char *cdb,
2670 struct se_cmd *cmd)
2672 struct se_device *dev = cmd->se_dev;
2674 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2675 if (cdb[1] & 1) { /* sectors */
2676 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2677 } else /* bytes */
2678 return sectors;
2680 #if 0
2681 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2682 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2683 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2684 dev->transport->name);
2685 #endif
2686 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2689 static void transport_xor_callback(struct se_cmd *cmd)
2691 unsigned char *buf, *addr;
2692 struct scatterlist *sg;
2693 unsigned int offset;
2694 int i;
2695 int count;
2697 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2699 * 1) read the specified logical block(s);
2700 * 2) transfer logical blocks from the data-out buffer;
2701 * 3) XOR the logical blocks transferred from the data-out buffer with
2702 * the logical blocks read, storing the resulting XOR data in a buffer;
2703 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2704 * blocks transferred from the data-out buffer; and
2705 * 5) transfer the resulting XOR data to the data-in buffer.
2707 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2708 if (!buf) {
2709 pr_err("Unable to allocate xor_callback buf\n");
2710 return;
2713 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2714 * into the locally allocated *buf
2716 sg_copy_to_buffer(cmd->t_data_sg,
2717 cmd->t_data_nents,
2718 buf,
2719 cmd->data_length);
2722 * Now perform the XOR against the BIDI read memory located at
2723 * cmd->t_mem_bidi_list
2726 offset = 0;
2727 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2728 addr = kmap_atomic(sg_page(sg), KM_USER0);
2729 if (!addr)
2730 goto out;
2732 for (i = 0; i < sg->length; i++)
2733 *(addr + sg->offset + i) ^= *(buf + offset + i);
2735 offset += sg->length;
2736 kunmap_atomic(addr, KM_USER0);
2739 out:
2740 kfree(buf);
2744 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2746 static int transport_get_sense_data(struct se_cmd *cmd)
2748 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2749 struct se_device *dev;
2750 struct se_task *task = NULL, *task_tmp;
2751 unsigned long flags;
2752 u32 offset = 0;
2754 WARN_ON(!cmd->se_lun);
2756 spin_lock_irqsave(&cmd->t_state_lock, flags);
2757 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2758 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2759 return 0;
2762 list_for_each_entry_safe(task, task_tmp,
2763 &cmd->t_task_list, t_list) {
2765 if (!task->task_sense)
2766 continue;
2768 dev = task->se_dev;
2769 if (!dev)
2770 continue;
2772 if (!dev->transport->get_sense_buffer) {
2773 pr_err("dev->transport->get_sense_buffer"
2774 " is NULL\n");
2775 continue;
2778 sense_buffer = dev->transport->get_sense_buffer(task);
2779 if (!sense_buffer) {
2780 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2781 " sense buffer for task with sense\n",
2782 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2783 continue;
2785 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2787 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2788 TRANSPORT_SENSE_BUFFER);
2790 memcpy(&buffer[offset], sense_buffer,
2791 TRANSPORT_SENSE_BUFFER);
2792 cmd->scsi_status = task->task_scsi_status;
2793 /* Automatically padded */
2794 cmd->scsi_sense_length =
2795 (TRANSPORT_SENSE_BUFFER + offset);
2797 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2798 " and sense\n",
2799 dev->se_hba->hba_id, dev->transport->name,
2800 cmd->scsi_status);
2801 return 0;
2803 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2805 return -1;
2808 static int
2809 transport_handle_reservation_conflict(struct se_cmd *cmd)
2811 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2812 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2813 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2814 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2816 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2817 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2818 * CONFLICT STATUS.
2820 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2822 if (cmd->se_sess &&
2823 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2824 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2825 cmd->orig_fe_lun, 0x2C,
2826 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2827 return -EINVAL;
2830 static inline long long transport_dev_end_lba(struct se_device *dev)
2832 return dev->transport->get_blocks(dev) + 1;
2835 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2837 struct se_device *dev = cmd->se_dev;
2838 u32 sectors;
2840 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2841 return 0;
2843 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2845 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2846 pr_err("LBA: %llu Sectors: %u exceeds"
2847 " transport_dev_end_lba(): %llu\n",
2848 cmd->t_task_lba, sectors,
2849 transport_dev_end_lba(dev));
2850 pr_err(" We should return CHECK_CONDITION"
2851 " but we don't yet\n");
2852 return 0;
2855 return sectors;
2858 /* transport_generic_cmd_sequencer():
2860 * Generic Command Sequencer that should work for most DAS transport
2861 * drivers.
2863 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2864 * RX Thread.
2866 * FIXME: Need to support other SCSI OPCODES where as well.
2868 static int transport_generic_cmd_sequencer(
2869 struct se_cmd *cmd,
2870 unsigned char *cdb)
2872 struct se_device *dev = cmd->se_dev;
2873 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2874 int ret = 0, sector_ret = 0, passthrough;
2875 u32 sectors = 0, size = 0, pr_reg_type = 0;
2876 u16 service_action;
2877 u8 alua_ascq = 0;
2879 * Check for an existing UNIT ATTENTION condition
2881 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2882 cmd->transport_wait_for_tasks =
2883 &transport_nop_wait_for_tasks;
2884 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2885 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2886 return -EINVAL;
2889 * Check status of Asymmetric Logical Unit Assignment port
2891 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2892 if (ret != 0) {
2893 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2895 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2896 * The ALUA additional sense code qualifier (ASCQ) is determined
2897 * by the ALUA primary or secondary access state..
2899 if (ret > 0) {
2900 #if 0
2901 pr_debug("[%s]: ALUA TG Port not available,"
2902 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2903 cmd->se_tfo->get_fabric_name(), alua_ascq);
2904 #endif
2905 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2906 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2907 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2908 return -EINVAL;
2910 goto out_invalid_cdb_field;
2913 * Check status for SPC-3 Persistent Reservations
2915 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2916 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2917 cmd, cdb, pr_reg_type) != 0)
2918 return transport_handle_reservation_conflict(cmd);
2920 * This means the CDB is allowed for the SCSI Initiator port
2921 * when said port is *NOT* holding the legacy SPC-2 or
2922 * SPC-3 Persistent Reservation.
2926 switch (cdb[0]) {
2927 case READ_6:
2928 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2929 if (sector_ret)
2930 goto out_unsupported_cdb;
2931 size = transport_get_size(sectors, cdb, cmd);
2932 cmd->transport_split_cdb = &split_cdb_XX_6;
2933 cmd->t_task_lba = transport_lba_21(cdb);
2934 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2935 break;
2936 case READ_10:
2937 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2938 if (sector_ret)
2939 goto out_unsupported_cdb;
2940 size = transport_get_size(sectors, cdb, cmd);
2941 cmd->transport_split_cdb = &split_cdb_XX_10;
2942 cmd->t_task_lba = transport_lba_32(cdb);
2943 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2944 break;
2945 case READ_12:
2946 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2947 if (sector_ret)
2948 goto out_unsupported_cdb;
2949 size = transport_get_size(sectors, cdb, cmd);
2950 cmd->transport_split_cdb = &split_cdb_XX_12;
2951 cmd->t_task_lba = transport_lba_32(cdb);
2952 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2953 break;
2954 case READ_16:
2955 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2956 if (sector_ret)
2957 goto out_unsupported_cdb;
2958 size = transport_get_size(sectors, cdb, cmd);
2959 cmd->transport_split_cdb = &split_cdb_XX_16;
2960 cmd->t_task_lba = transport_lba_64(cdb);
2961 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2962 break;
2963 case WRITE_6:
2964 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2965 if (sector_ret)
2966 goto out_unsupported_cdb;
2967 size = transport_get_size(sectors, cdb, cmd);
2968 cmd->transport_split_cdb = &split_cdb_XX_6;
2969 cmd->t_task_lba = transport_lba_21(cdb);
2970 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2971 break;
2972 case WRITE_10:
2973 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2974 if (sector_ret)
2975 goto out_unsupported_cdb;
2976 size = transport_get_size(sectors, cdb, cmd);
2977 cmd->transport_split_cdb = &split_cdb_XX_10;
2978 cmd->t_task_lba = transport_lba_32(cdb);
2979 cmd->t_tasks_fua = (cdb[1] & 0x8);
2980 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2981 break;
2982 case WRITE_12:
2983 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2984 if (sector_ret)
2985 goto out_unsupported_cdb;
2986 size = transport_get_size(sectors, cdb, cmd);
2987 cmd->transport_split_cdb = &split_cdb_XX_12;
2988 cmd->t_task_lba = transport_lba_32(cdb);
2989 cmd->t_tasks_fua = (cdb[1] & 0x8);
2990 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2991 break;
2992 case WRITE_16:
2993 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2994 if (sector_ret)
2995 goto out_unsupported_cdb;
2996 size = transport_get_size(sectors, cdb, cmd);
2997 cmd->transport_split_cdb = &split_cdb_XX_16;
2998 cmd->t_task_lba = transport_lba_64(cdb);
2999 cmd->t_tasks_fua = (cdb[1] & 0x8);
3000 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3001 break;
3002 case XDWRITEREAD_10:
3003 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3004 !(cmd->t_tasks_bidi))
3005 goto out_invalid_cdb_field;
3006 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3007 if (sector_ret)
3008 goto out_unsupported_cdb;
3009 size = transport_get_size(sectors, cdb, cmd);
3010 cmd->transport_split_cdb = &split_cdb_XX_10;
3011 cmd->t_task_lba = transport_lba_32(cdb);
3012 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3013 passthrough = (dev->transport->transport_type ==
3014 TRANSPORT_PLUGIN_PHBA_PDEV);
3016 * Skip the remaining assignments for TCM/PSCSI passthrough
3018 if (passthrough)
3019 break;
3021 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3023 cmd->transport_complete_callback = &transport_xor_callback;
3024 cmd->t_tasks_fua = (cdb[1] & 0x8);
3025 break;
3026 case VARIABLE_LENGTH_CMD:
3027 service_action = get_unaligned_be16(&cdb[8]);
3029 * Determine if this is TCM/PSCSI device and we should disable
3030 * internal emulation for this CDB.
3032 passthrough = (dev->transport->transport_type ==
3033 TRANSPORT_PLUGIN_PHBA_PDEV);
3035 switch (service_action) {
3036 case XDWRITEREAD_32:
3037 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3038 if (sector_ret)
3039 goto out_unsupported_cdb;
3040 size = transport_get_size(sectors, cdb, cmd);
3042 * Use WRITE_32 and READ_32 opcodes for the emulated
3043 * XDWRITE_READ_32 logic.
3045 cmd->transport_split_cdb = &split_cdb_XX_32;
3046 cmd->t_task_lba = transport_lba_64_ext(cdb);
3047 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3050 * Skip the remaining assignments for TCM/PSCSI passthrough
3052 if (passthrough)
3053 break;
3056 * Setup BIDI XOR callback to be run during
3057 * transport_generic_complete_ok()
3059 cmd->transport_complete_callback = &transport_xor_callback;
3060 cmd->t_tasks_fua = (cdb[10] & 0x8);
3061 break;
3062 case WRITE_SAME_32:
3063 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3064 if (sector_ret)
3065 goto out_unsupported_cdb;
3067 if (sectors)
3068 size = transport_get_size(sectors, cdb, cmd);
3069 else {
3070 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3071 " supported\n");
3072 goto out_invalid_cdb_field;
3075 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3076 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3079 * Skip the remaining assignments for TCM/PSCSI passthrough
3081 if (passthrough)
3082 break;
3084 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3085 pr_err("WRITE_SAME PBDATA and LBDATA"
3086 " bits not supported for Block Discard"
3087 " Emulation\n");
3088 goto out_invalid_cdb_field;
3091 * Currently for the emulated case we only accept
3092 * tpws with the UNMAP=1 bit set.
3094 if (!(cdb[10] & 0x08)) {
3095 pr_err("WRITE_SAME w/o UNMAP bit not"
3096 " supported for Block Discard Emulation\n");
3097 goto out_invalid_cdb_field;
3099 break;
3100 default:
3101 pr_err("VARIABLE_LENGTH_CMD service action"
3102 " 0x%04x not supported\n", service_action);
3103 goto out_unsupported_cdb;
3105 break;
3106 case MAINTENANCE_IN:
3107 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3108 /* MAINTENANCE_IN from SCC-2 */
3110 * Check for emulated MI_REPORT_TARGET_PGS.
3112 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3113 cmd->transport_emulate_cdb =
3114 (su_dev->t10_alua.alua_type ==
3115 SPC3_ALUA_EMULATED) ?
3116 core_emulate_report_target_port_groups :
3117 NULL;
3119 size = (cdb[6] << 24) | (cdb[7] << 16) |
3120 (cdb[8] << 8) | cdb[9];
3121 } else {
3122 /* GPCMD_SEND_KEY from multi media commands */
3123 size = (cdb[8] << 8) + cdb[9];
3125 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3126 break;
3127 case MODE_SELECT:
3128 size = cdb[4];
3129 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3130 break;
3131 case MODE_SELECT_10:
3132 size = (cdb[7] << 8) + cdb[8];
3133 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3134 break;
3135 case MODE_SENSE:
3136 size = cdb[4];
3137 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3138 break;
3139 case MODE_SENSE_10:
3140 case GPCMD_READ_BUFFER_CAPACITY:
3141 case GPCMD_SEND_OPC:
3142 case LOG_SELECT:
3143 case LOG_SENSE:
3144 size = (cdb[7] << 8) + cdb[8];
3145 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3146 break;
3147 case READ_BLOCK_LIMITS:
3148 size = READ_BLOCK_LEN;
3149 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150 break;
3151 case GPCMD_GET_CONFIGURATION:
3152 case GPCMD_READ_FORMAT_CAPACITIES:
3153 case GPCMD_READ_DISC_INFO:
3154 case GPCMD_READ_TRACK_RZONE_INFO:
3155 size = (cdb[7] << 8) + cdb[8];
3156 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3157 break;
3158 case PERSISTENT_RESERVE_IN:
3159 case PERSISTENT_RESERVE_OUT:
3160 cmd->transport_emulate_cdb =
3161 (su_dev->t10_pr.res_type ==
3162 SPC3_PERSISTENT_RESERVATIONS) ?
3163 core_scsi3_emulate_pr : NULL;
3164 size = (cdb[7] << 8) + cdb[8];
3165 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3166 break;
3167 case GPCMD_MECHANISM_STATUS:
3168 case GPCMD_READ_DVD_STRUCTURE:
3169 size = (cdb[8] << 8) + cdb[9];
3170 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3171 break;
3172 case READ_POSITION:
3173 size = READ_POSITION_LEN;
3174 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3175 break;
3176 case MAINTENANCE_OUT:
3177 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3178 /* MAINTENANCE_OUT from SCC-2
3180 * Check for emulated MO_SET_TARGET_PGS.
3182 if (cdb[1] == MO_SET_TARGET_PGS) {
3183 cmd->transport_emulate_cdb =
3184 (su_dev->t10_alua.alua_type ==
3185 SPC3_ALUA_EMULATED) ?
3186 core_emulate_set_target_port_groups :
3187 NULL;
3190 size = (cdb[6] << 24) | (cdb[7] << 16) |
3191 (cdb[8] << 8) | cdb[9];
3192 } else {
3193 /* GPCMD_REPORT_KEY from multi media commands */
3194 size = (cdb[8] << 8) + cdb[9];
3196 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3197 break;
3198 case INQUIRY:
3199 size = (cdb[3] << 8) + cdb[4];
3201 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3202 * See spc4r17 section 5.3
3204 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3205 cmd->sam_task_attr = MSG_HEAD_TAG;
3206 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3207 break;
3208 case READ_BUFFER:
3209 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3210 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3211 break;
3212 case READ_CAPACITY:
3213 size = READ_CAP_LEN;
3214 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3215 break;
3216 case READ_MEDIA_SERIAL_NUMBER:
3217 case SECURITY_PROTOCOL_IN:
3218 case SECURITY_PROTOCOL_OUT:
3219 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3220 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3221 break;
3222 case SERVICE_ACTION_IN:
3223 case ACCESS_CONTROL_IN:
3224 case ACCESS_CONTROL_OUT:
3225 case EXTENDED_COPY:
3226 case READ_ATTRIBUTE:
3227 case RECEIVE_COPY_RESULTS:
3228 case WRITE_ATTRIBUTE:
3229 size = (cdb[10] << 24) | (cdb[11] << 16) |
3230 (cdb[12] << 8) | cdb[13];
3231 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3232 break;
3233 case RECEIVE_DIAGNOSTIC:
3234 case SEND_DIAGNOSTIC:
3235 size = (cdb[3] << 8) | cdb[4];
3236 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3237 break;
3238 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3239 #if 0
3240 case GPCMD_READ_CD:
3241 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3242 size = (2336 * sectors);
3243 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3244 break;
3245 #endif
3246 case READ_TOC:
3247 size = cdb[8];
3248 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3249 break;
3250 case REQUEST_SENSE:
3251 size = cdb[4];
3252 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3253 break;
3254 case READ_ELEMENT_STATUS:
3255 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3256 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3257 break;
3258 case WRITE_BUFFER:
3259 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3260 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3261 break;
3262 case RESERVE:
3263 case RESERVE_10:
3265 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3266 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3268 if (cdb[0] == RESERVE_10)
3269 size = (cdb[7] << 8) | cdb[8];
3270 else
3271 size = cmd->data_length;
3274 * Setup the legacy emulated handler for SPC-2 and
3275 * >= SPC-3 compatible reservation handling (CRH=1)
3276 * Otherwise, we assume the underlying SCSI logic is
3277 * is running in SPC_PASSTHROUGH, and wants reservations
3278 * emulation disabled.
3280 cmd->transport_emulate_cdb =
3281 (su_dev->t10_pr.res_type !=
3282 SPC_PASSTHROUGH) ?
3283 core_scsi2_emulate_crh : NULL;
3284 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3285 break;
3286 case RELEASE:
3287 case RELEASE_10:
3289 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3290 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3292 if (cdb[0] == RELEASE_10)
3293 size = (cdb[7] << 8) | cdb[8];
3294 else
3295 size = cmd->data_length;
3297 cmd->transport_emulate_cdb =
3298 (su_dev->t10_pr.res_type !=
3299 SPC_PASSTHROUGH) ?
3300 core_scsi2_emulate_crh : NULL;
3301 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3302 break;
3303 case SYNCHRONIZE_CACHE:
3304 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3306 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3308 if (cdb[0] == SYNCHRONIZE_CACHE) {
3309 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3310 cmd->t_task_lba = transport_lba_32(cdb);
3311 } else {
3312 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3313 cmd->t_task_lba = transport_lba_64(cdb);
3315 if (sector_ret)
3316 goto out_unsupported_cdb;
3318 size = transport_get_size(sectors, cdb, cmd);
3319 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3322 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3324 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3325 break;
3327 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3328 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3330 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3332 * Check to ensure that LBA + Range does not exceed past end of
3333 * device.
3335 if (!transport_cmd_get_valid_sectors(cmd))
3336 goto out_invalid_cdb_field;
3337 break;
3338 case UNMAP:
3339 size = get_unaligned_be16(&cdb[7]);
3340 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3341 break;
3342 case WRITE_SAME_16:
3343 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3344 if (sector_ret)
3345 goto out_unsupported_cdb;
3347 if (sectors)
3348 size = transport_get_size(sectors, cdb, cmd);
3349 else {
3350 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3351 goto out_invalid_cdb_field;
3354 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3355 passthrough = (dev->transport->transport_type ==
3356 TRANSPORT_PLUGIN_PHBA_PDEV);
3358 * Determine if the received WRITE_SAME_16 is used to for direct
3359 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3360 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3361 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3362 * TCM/FILEIO subsystem plugin backstores.
3364 if (!passthrough) {
3365 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3366 pr_err("WRITE_SAME PBDATA and LBDATA"
3367 " bits not supported for Block Discard"
3368 " Emulation\n");
3369 goto out_invalid_cdb_field;
3372 * Currently for the emulated case we only accept
3373 * tpws with the UNMAP=1 bit set.
3375 if (!(cdb[1] & 0x08)) {
3376 pr_err("WRITE_SAME w/o UNMAP bit not "
3377 " supported for Block Discard Emulation\n");
3378 goto out_invalid_cdb_field;
3381 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3382 break;
3383 case ALLOW_MEDIUM_REMOVAL:
3384 case GPCMD_CLOSE_TRACK:
3385 case ERASE:
3386 case INITIALIZE_ELEMENT_STATUS:
3387 case GPCMD_LOAD_UNLOAD:
3388 case REZERO_UNIT:
3389 case SEEK_10:
3390 case GPCMD_SET_SPEED:
3391 case SPACE:
3392 case START_STOP:
3393 case TEST_UNIT_READY:
3394 case VERIFY:
3395 case WRITE_FILEMARKS:
3396 case MOVE_MEDIUM:
3397 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3398 break;
3399 case REPORT_LUNS:
3400 cmd->transport_emulate_cdb =
3401 transport_core_report_lun_response;
3402 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3404 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3405 * See spc4r17 section 5.3
3407 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3408 cmd->sam_task_attr = MSG_HEAD_TAG;
3409 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3410 break;
3411 default:
3412 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3413 " 0x%02x, sending CHECK_CONDITION.\n",
3414 cmd->se_tfo->get_fabric_name(), cdb[0]);
3415 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3416 goto out_unsupported_cdb;
3419 if (size != cmd->data_length) {
3420 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3421 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3422 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3423 cmd->data_length, size, cdb[0]);
3425 cmd->cmd_spdtl = size;
3427 if (cmd->data_direction == DMA_TO_DEVICE) {
3428 pr_err("Rejecting underflow/overflow"
3429 " WRITE data\n");
3430 goto out_invalid_cdb_field;
3433 * Reject READ_* or WRITE_* with overflow/underflow for
3434 * type SCF_SCSI_DATA_SG_IO_CDB.
3436 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3437 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3438 " CDB on non 512-byte sector setup subsystem"
3439 " plugin: %s\n", dev->transport->name);
3440 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3441 goto out_invalid_cdb_field;
3444 if (size > cmd->data_length) {
3445 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3446 cmd->residual_count = (size - cmd->data_length);
3447 } else {
3448 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3449 cmd->residual_count = (cmd->data_length - size);
3451 cmd->data_length = size;
3454 /* Let's limit control cdbs to a page, for simplicity's sake. */
3455 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3456 size > PAGE_SIZE)
3457 goto out_invalid_cdb_field;
3459 transport_set_supported_SAM_opcode(cmd);
3460 return ret;
3462 out_unsupported_cdb:
3463 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3464 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3465 return -EINVAL;
3466 out_invalid_cdb_field:
3467 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3468 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3469 return -EINVAL;
3473 * Called from transport_generic_complete_ok() and
3474 * transport_generic_request_failure() to determine which dormant/delayed
3475 * and ordered cmds need to have their tasks added to the execution queue.
3477 static void transport_complete_task_attr(struct se_cmd *cmd)
3479 struct se_device *dev = cmd->se_dev;
3480 struct se_cmd *cmd_p, *cmd_tmp;
3481 int new_active_tasks = 0;
3483 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3484 atomic_dec(&dev->simple_cmds);
3485 smp_mb__after_atomic_dec();
3486 dev->dev_cur_ordered_id++;
3487 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3488 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3489 cmd->se_ordered_id);
3490 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3491 atomic_dec(&dev->dev_hoq_count);
3492 smp_mb__after_atomic_dec();
3493 dev->dev_cur_ordered_id++;
3494 pr_debug("Incremented dev_cur_ordered_id: %u for"
3495 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3496 cmd->se_ordered_id);
3497 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3498 spin_lock(&dev->ordered_cmd_lock);
3499 list_del(&cmd->se_ordered_node);
3500 atomic_dec(&dev->dev_ordered_sync);
3501 smp_mb__after_atomic_dec();
3502 spin_unlock(&dev->ordered_cmd_lock);
3504 dev->dev_cur_ordered_id++;
3505 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3506 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3509 * Process all commands up to the last received
3510 * ORDERED task attribute which requires another blocking
3511 * boundary
3513 spin_lock(&dev->delayed_cmd_lock);
3514 list_for_each_entry_safe(cmd_p, cmd_tmp,
3515 &dev->delayed_cmd_list, se_delayed_node) {
3517 list_del(&cmd_p->se_delayed_node);
3518 spin_unlock(&dev->delayed_cmd_lock);
3520 pr_debug("Calling add_tasks() for"
3521 " cmd_p: 0x%02x Task Attr: 0x%02x"
3522 " Dormant -> Active, se_ordered_id: %u\n",
3523 cmd_p->t_task_cdb[0],
3524 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3526 transport_add_tasks_from_cmd(cmd_p);
3527 new_active_tasks++;
3529 spin_lock(&dev->delayed_cmd_lock);
3530 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3531 break;
3533 spin_unlock(&dev->delayed_cmd_lock);
3535 * If new tasks have become active, wake up the transport thread
3536 * to do the processing of the Active tasks.
3538 if (new_active_tasks != 0)
3539 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3542 static int transport_complete_qf(struct se_cmd *cmd)
3544 int ret = 0;
3546 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3547 return cmd->se_tfo->queue_status(cmd);
3549 switch (cmd->data_direction) {
3550 case DMA_FROM_DEVICE:
3551 ret = cmd->se_tfo->queue_data_in(cmd);
3552 break;
3553 case DMA_TO_DEVICE:
3554 if (cmd->t_bidi_data_sg) {
3555 ret = cmd->se_tfo->queue_data_in(cmd);
3556 if (ret < 0)
3557 return ret;
3559 /* Fall through for DMA_TO_DEVICE */
3560 case DMA_NONE:
3561 ret = cmd->se_tfo->queue_status(cmd);
3562 break;
3563 default:
3564 break;
3567 return ret;
3570 static void transport_handle_queue_full(
3571 struct se_cmd *cmd,
3572 struct se_device *dev,
3573 int (*qf_callback)(struct se_cmd *))
3575 spin_lock_irq(&dev->qf_cmd_lock);
3576 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3577 cmd->transport_qf_callback = qf_callback;
3578 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3579 atomic_inc(&dev->dev_qf_count);
3580 smp_mb__after_atomic_inc();
3581 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3583 schedule_work(&cmd->se_dev->qf_work_queue);
3586 static void transport_generic_complete_ok(struct se_cmd *cmd)
3588 int reason = 0, ret;
3590 * Check if we need to move delayed/dormant tasks from cmds on the
3591 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3592 * Attribute.
3594 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3595 transport_complete_task_attr(cmd);
3597 * Check to schedule QUEUE_FULL work, or execute an existing
3598 * cmd->transport_qf_callback()
3600 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3601 schedule_work(&cmd->se_dev->qf_work_queue);
3603 if (cmd->transport_qf_callback) {
3604 ret = cmd->transport_qf_callback(cmd);
3605 if (ret < 0)
3606 goto queue_full;
3608 cmd->transport_qf_callback = NULL;
3609 goto done;
3612 * Check if we need to retrieve a sense buffer from
3613 * the struct se_cmd in question.
3615 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3616 if (transport_get_sense_data(cmd) < 0)
3617 reason = TCM_NON_EXISTENT_LUN;
3620 * Only set when an struct se_task->task_scsi_status returned
3621 * a non GOOD status.
3623 if (cmd->scsi_status) {
3624 ret = transport_send_check_condition_and_sense(
3625 cmd, reason, 1);
3626 if (ret == -EAGAIN)
3627 goto queue_full;
3629 transport_lun_remove_cmd(cmd);
3630 transport_cmd_check_stop_to_fabric(cmd);
3631 return;
3635 * Check for a callback, used by amongst other things
3636 * XDWRITE_READ_10 emulation.
3638 if (cmd->transport_complete_callback)
3639 cmd->transport_complete_callback(cmd);
3641 switch (cmd->data_direction) {
3642 case DMA_FROM_DEVICE:
3643 spin_lock(&cmd->se_lun->lun_sep_lock);
3644 if (cmd->se_lun->lun_sep) {
3645 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3646 cmd->data_length;
3648 spin_unlock(&cmd->se_lun->lun_sep_lock);
3650 ret = cmd->se_tfo->queue_data_in(cmd);
3651 if (ret == -EAGAIN)
3652 goto queue_full;
3653 break;
3654 case DMA_TO_DEVICE:
3655 spin_lock(&cmd->se_lun->lun_sep_lock);
3656 if (cmd->se_lun->lun_sep) {
3657 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3658 cmd->data_length;
3660 spin_unlock(&cmd->se_lun->lun_sep_lock);
3662 * Check if we need to send READ payload for BIDI-COMMAND
3664 if (cmd->t_bidi_data_sg) {
3665 spin_lock(&cmd->se_lun->lun_sep_lock);
3666 if (cmd->se_lun->lun_sep) {
3667 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3668 cmd->data_length;
3670 spin_unlock(&cmd->se_lun->lun_sep_lock);
3671 ret = cmd->se_tfo->queue_data_in(cmd);
3672 if (ret == -EAGAIN)
3673 goto queue_full;
3674 break;
3676 /* Fall through for DMA_TO_DEVICE */
3677 case DMA_NONE:
3678 ret = cmd->se_tfo->queue_status(cmd);
3679 if (ret == -EAGAIN)
3680 goto queue_full;
3681 break;
3682 default:
3683 break;
3686 done:
3687 transport_lun_remove_cmd(cmd);
3688 transport_cmd_check_stop_to_fabric(cmd);
3689 return;
3691 queue_full:
3692 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3693 " data_direction: %d\n", cmd, cmd->data_direction);
3694 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3697 static void transport_free_dev_tasks(struct se_cmd *cmd)
3699 struct se_task *task, *task_tmp;
3700 unsigned long flags;
3702 spin_lock_irqsave(&cmd->t_state_lock, flags);
3703 list_for_each_entry_safe(task, task_tmp,
3704 &cmd->t_task_list, t_list) {
3705 if (atomic_read(&task->task_active))
3706 continue;
3708 kfree(task->task_sg_bidi);
3709 kfree(task->task_sg);
3711 list_del(&task->t_list);
3713 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3714 if (task->se_dev)
3715 task->se_dev->transport->free_task(task);
3716 else
3717 pr_err("task[%u] - task->se_dev is NULL\n",
3718 task->task_no);
3719 spin_lock_irqsave(&cmd->t_state_lock, flags);
3721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3724 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3726 struct scatterlist *sg;
3727 int count;
3729 for_each_sg(sgl, sg, nents, count)
3730 __free_page(sg_page(sg));
3732 kfree(sgl);
3735 static inline void transport_free_pages(struct se_cmd *cmd)
3737 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3738 return;
3740 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3741 cmd->t_data_sg = NULL;
3742 cmd->t_data_nents = 0;
3744 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3745 cmd->t_bidi_data_sg = NULL;
3746 cmd->t_bidi_data_nents = 0;
3749 static inline void transport_release_tasks(struct se_cmd *cmd)
3751 transport_free_dev_tasks(cmd);
3754 static inline int transport_dec_and_check(struct se_cmd *cmd)
3756 unsigned long flags;
3758 spin_lock_irqsave(&cmd->t_state_lock, flags);
3759 if (atomic_read(&cmd->t_fe_count)) {
3760 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3761 spin_unlock_irqrestore(&cmd->t_state_lock,
3762 flags);
3763 return 1;
3767 if (atomic_read(&cmd->t_se_count)) {
3768 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3769 spin_unlock_irqrestore(&cmd->t_state_lock,
3770 flags);
3771 return 1;
3774 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3776 return 0;
3779 static void transport_release_fe_cmd(struct se_cmd *cmd)
3781 unsigned long flags;
3783 if (transport_dec_and_check(cmd))
3784 return;
3786 spin_lock_irqsave(&cmd->t_state_lock, flags);
3787 if (!atomic_read(&cmd->transport_dev_active)) {
3788 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3789 goto free_pages;
3791 atomic_set(&cmd->transport_dev_active, 0);
3792 transport_all_task_dev_remove_state(cmd);
3793 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3795 transport_release_tasks(cmd);
3796 free_pages:
3797 transport_free_pages(cmd);
3798 transport_free_se_cmd(cmd);
3799 cmd->se_tfo->release_cmd(cmd);
3802 static int
3803 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3805 unsigned long flags;
3807 if (transport_dec_and_check(cmd)) {
3808 if (session_reinstatement) {
3809 spin_lock_irqsave(&cmd->t_state_lock, flags);
3810 transport_all_task_dev_remove_state(cmd);
3811 spin_unlock_irqrestore(&cmd->t_state_lock,
3812 flags);
3814 return 1;
3817 spin_lock_irqsave(&cmd->t_state_lock, flags);
3818 if (!atomic_read(&cmd->transport_dev_active)) {
3819 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3820 goto free_pages;
3822 atomic_set(&cmd->transport_dev_active, 0);
3823 transport_all_task_dev_remove_state(cmd);
3824 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3826 transport_release_tasks(cmd);
3828 free_pages:
3829 transport_free_pages(cmd);
3830 transport_release_cmd(cmd);
3831 return 0;
3835 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3836 * allocating in the core.
3837 * @cmd: Associated se_cmd descriptor
3838 * @mem: SGL style memory for TCM WRITE / READ
3839 * @sg_mem_num: Number of SGL elements
3840 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3841 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3843 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3844 * of parameters.
3846 int transport_generic_map_mem_to_cmd(
3847 struct se_cmd *cmd,
3848 struct scatterlist *sgl,
3849 u32 sgl_count,
3850 struct scatterlist *sgl_bidi,
3851 u32 sgl_bidi_count)
3853 if (!sgl || !sgl_count)
3854 return 0;
3856 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3857 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3859 cmd->t_data_sg = sgl;
3860 cmd->t_data_nents = sgl_count;
3862 if (sgl_bidi && sgl_bidi_count) {
3863 cmd->t_bidi_data_sg = sgl_bidi;
3864 cmd->t_bidi_data_nents = sgl_bidi_count;
3866 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3869 return 0;
3871 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3873 static int transport_new_cmd_obj(struct se_cmd *cmd)
3875 struct se_device *dev = cmd->se_dev;
3876 u32 task_cdbs;
3877 u32 rc;
3878 int set_counts = 1;
3881 * Setup any BIDI READ tasks and memory from
3882 * cmd->t_mem_bidi_list so the READ struct se_tasks
3883 * are queued first for the non pSCSI passthrough case.
3885 if (cmd->t_bidi_data_sg &&
3886 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3887 rc = transport_allocate_tasks(cmd,
3888 cmd->t_task_lba,
3889 DMA_FROM_DEVICE,
3890 cmd->t_bidi_data_sg,
3891 cmd->t_bidi_data_nents);
3892 if (rc <= 0) {
3893 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3894 cmd->scsi_sense_reason =
3895 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3896 return PYX_TRANSPORT_LU_COMM_FAILURE;
3898 atomic_inc(&cmd->t_fe_count);
3899 atomic_inc(&cmd->t_se_count);
3900 set_counts = 0;
3903 * Setup the tasks and memory from cmd->t_mem_list
3904 * Note for BIDI transfers this will contain the WRITE payload
3906 task_cdbs = transport_allocate_tasks(cmd,
3907 cmd->t_task_lba,
3908 cmd->data_direction,
3909 cmd->t_data_sg,
3910 cmd->t_data_nents);
3911 if (task_cdbs <= 0) {
3912 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3913 cmd->scsi_sense_reason =
3914 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3915 return PYX_TRANSPORT_LU_COMM_FAILURE;
3918 if (set_counts) {
3919 atomic_inc(&cmd->t_fe_count);
3920 atomic_inc(&cmd->t_se_count);
3923 cmd->t_task_list_num = task_cdbs;
3925 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3926 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3927 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3928 return 0;
3931 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3933 struct scatterlist *sg = cmd->t_data_sg;
3935 BUG_ON(!sg);
3937 * We need to take into account a possible offset here for fabrics like
3938 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3939 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3941 return kmap(sg_page(sg)) + sg->offset;
3943 EXPORT_SYMBOL(transport_kmap_first_data_page);
3945 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3947 kunmap(sg_page(cmd->t_data_sg));
3949 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3951 static int
3952 transport_generic_get_mem(struct se_cmd *cmd)
3954 u32 length = cmd->data_length;
3955 unsigned int nents;
3956 struct page *page;
3957 int i = 0;
3959 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3960 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3961 if (!cmd->t_data_sg)
3962 return -ENOMEM;
3964 cmd->t_data_nents = nents;
3965 sg_init_table(cmd->t_data_sg, nents);
3967 while (length) {
3968 u32 page_len = min_t(u32, length, PAGE_SIZE);
3969 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3970 if (!page)
3971 goto out;
3973 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3974 length -= page_len;
3975 i++;
3977 return 0;
3979 out:
3980 while (i >= 0) {
3981 __free_page(sg_page(&cmd->t_data_sg[i]));
3982 i--;
3984 kfree(cmd->t_data_sg);
3985 cmd->t_data_sg = NULL;
3986 return -ENOMEM;
3989 /* Reduce sectors if they are too long for the device */
3990 static inline sector_t transport_limit_task_sectors(
3991 struct se_device *dev,
3992 unsigned long long lba,
3993 sector_t sectors)
3995 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3997 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3998 if ((lba + sectors) > transport_dev_end_lba(dev))
3999 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4001 return sectors;
4006 * This function can be used by HW target mode drivers to create a linked
4007 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4008 * This is intended to be called during the completion path by TCM Core
4009 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4011 void transport_do_task_sg_chain(struct se_cmd *cmd)
4013 struct scatterlist *sg_first = NULL;
4014 struct scatterlist *sg_prev = NULL;
4015 int sg_prev_nents = 0;
4016 struct scatterlist *sg;
4017 struct se_task *task;
4018 u32 chained_nents = 0;
4019 int i;
4021 BUG_ON(!cmd->se_tfo->task_sg_chaining);
4024 * Walk the struct se_task list and setup scatterlist chains
4025 * for each contiguously allocated struct se_task->task_sg[].
4027 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4028 if (!task->task_sg)
4029 continue;
4031 BUG_ON(!task->task_padded_sg);
4033 if (!sg_first) {
4034 sg_first = task->task_sg;
4035 chained_nents = task->task_sg_nents;
4036 } else {
4037 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4038 chained_nents += task->task_sg_nents;
4041 sg_prev = task->task_sg;
4042 sg_prev_nents = task->task_sg_nents;
4045 * Setup the starting pointer and total t_tasks_sg_linked_no including
4046 * padding SGs for linking and to mark the end.
4048 cmd->t_tasks_sg_chained = sg_first;
4049 cmd->t_tasks_sg_chained_no = chained_nents;
4051 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4052 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4053 cmd->t_tasks_sg_chained_no);
4055 for_each_sg(cmd->t_tasks_sg_chained, sg,
4056 cmd->t_tasks_sg_chained_no, i) {
4058 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4059 i, sg, sg_page(sg), sg->length, sg->offset);
4060 if (sg_is_chain(sg))
4061 pr_debug("SG: %p sg_is_chain=1\n", sg);
4062 if (sg_is_last(sg))
4063 pr_debug("SG: %p sg_is_last=1\n", sg);
4066 EXPORT_SYMBOL(transport_do_task_sg_chain);
4069 * Break up cmd into chunks transport can handle
4071 static int transport_allocate_data_tasks(
4072 struct se_cmd *cmd,
4073 unsigned long long lba,
4074 enum dma_data_direction data_direction,
4075 struct scatterlist *sgl,
4076 unsigned int sgl_nents)
4078 unsigned char *cdb = NULL;
4079 struct se_task *task;
4080 struct se_device *dev = cmd->se_dev;
4081 unsigned long flags;
4082 int task_count, i, ret;
4083 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4084 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4085 struct scatterlist *sg;
4086 struct scatterlist *cmd_sg;
4088 WARN_ON(cmd->data_length % sector_size);
4089 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4090 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4092 cmd_sg = sgl;
4093 for (i = 0; i < task_count; i++) {
4094 unsigned int task_size;
4095 int count;
4097 task = transport_generic_get_task(cmd, data_direction);
4098 if (!task)
4099 return -ENOMEM;
4101 task->task_lba = lba;
4102 task->task_sectors = min(sectors, dev_max_sectors);
4103 task->task_size = task->task_sectors * sector_size;
4105 cdb = dev->transport->get_cdb(task);
4106 BUG_ON(!cdb);
4108 memcpy(cdb, cmd->t_task_cdb,
4109 scsi_command_size(cmd->t_task_cdb));
4111 /* Update new cdb with updated lba/sectors */
4112 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4115 * Check if the fabric module driver is requesting that all
4116 * struct se_task->task_sg[] be chained together.. If so,
4117 * then allocate an extra padding SG entry for linking and
4118 * marking the end of the chained SGL.
4119 * Possibly over-allocate task sgl size by using cmd sgl size.
4120 * It's so much easier and only a waste when task_count > 1.
4121 * That is extremely rare.
4123 task->task_sg_nents = sgl_nents;
4124 if (cmd->se_tfo->task_sg_chaining) {
4125 task->task_sg_nents++;
4126 task->task_padded_sg = 1;
4129 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4130 task->task_sg_nents, GFP_KERNEL);
4131 if (!task->task_sg) {
4132 cmd->se_dev->transport->free_task(task);
4133 return -ENOMEM;
4136 sg_init_table(task->task_sg, task->task_sg_nents);
4138 task_size = task->task_size;
4140 /* Build new sgl, only up to task_size */
4141 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4142 if (cmd_sg->length > task_size)
4143 break;
4145 *sg = *cmd_sg;
4146 task_size -= cmd_sg->length;
4147 cmd_sg = sg_next(cmd_sg);
4150 lba += task->task_sectors;
4151 sectors -= task->task_sectors;
4153 spin_lock_irqsave(&cmd->t_state_lock, flags);
4154 list_add_tail(&task->t_list, &cmd->t_task_list);
4155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4158 * Now perform the memory map of task->task_sg[] into backend
4159 * subsystem memory..
4161 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4162 if (atomic_read(&task->task_sent))
4163 continue;
4164 if (!dev->transport->map_data_SG)
4165 continue;
4167 ret = dev->transport->map_data_SG(task);
4168 if (ret < 0)
4169 return 0;
4172 return task_count;
4175 static int
4176 transport_allocate_control_task(struct se_cmd *cmd)
4178 struct se_device *dev = cmd->se_dev;
4179 unsigned char *cdb;
4180 struct se_task *task;
4181 unsigned long flags;
4182 int ret = 0;
4184 task = transport_generic_get_task(cmd, cmd->data_direction);
4185 if (!task)
4186 return -ENOMEM;
4188 cdb = dev->transport->get_cdb(task);
4189 BUG_ON(!cdb);
4190 memcpy(cdb, cmd->t_task_cdb,
4191 scsi_command_size(cmd->t_task_cdb));
4193 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4194 GFP_KERNEL);
4195 if (!task->task_sg) {
4196 cmd->se_dev->transport->free_task(task);
4197 return -ENOMEM;
4200 memcpy(task->task_sg, cmd->t_data_sg,
4201 sizeof(struct scatterlist) * cmd->t_data_nents);
4202 task->task_size = cmd->data_length;
4203 task->task_sg_nents = cmd->t_data_nents;
4205 spin_lock_irqsave(&cmd->t_state_lock, flags);
4206 list_add_tail(&task->t_list, &cmd->t_task_list);
4207 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4209 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4210 if (dev->transport->map_control_SG)
4211 ret = dev->transport->map_control_SG(task);
4212 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4213 if (dev->transport->cdb_none)
4214 ret = dev->transport->cdb_none(task);
4215 } else {
4216 pr_err("target: Unknown control cmd type!\n");
4217 BUG();
4220 /* Success! Return number of tasks allocated */
4221 if (ret == 0)
4222 return 1;
4223 return ret;
4226 static u32 transport_allocate_tasks(
4227 struct se_cmd *cmd,
4228 unsigned long long lba,
4229 enum dma_data_direction data_direction,
4230 struct scatterlist *sgl,
4231 unsigned int sgl_nents)
4233 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)
4234 return transport_allocate_data_tasks(cmd, lba, data_direction,
4235 sgl, sgl_nents);
4236 else
4237 return transport_allocate_control_task(cmd);
4242 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4244 * Allocate storage transport resources from a set of values predefined
4245 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4246 * Any non zero return here is treated as an "out of resource' op here.
4249 * Generate struct se_task(s) and/or their payloads for this CDB.
4251 int transport_generic_new_cmd(struct se_cmd *cmd)
4253 int ret = 0;
4256 * Determine is the TCM fabric module has already allocated physical
4257 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4258 * beforehand.
4260 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4261 cmd->data_length) {
4262 ret = transport_generic_get_mem(cmd);
4263 if (ret < 0)
4264 return ret;
4267 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4268 * control or data CDB types, and perform the map to backend subsystem
4269 * code from SGL memory allocated here by transport_generic_get_mem(), or
4270 * via pre-existing SGL memory setup explictly by fabric module code with
4271 * transport_generic_map_mem_to_cmd().
4273 ret = transport_new_cmd_obj(cmd);
4274 if (ret < 0)
4275 return ret;
4277 * For WRITEs, let the fabric know its buffer is ready..
4278 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4279 * will be added to the struct se_device execution queue after its WRITE
4280 * data has arrived. (ie: It gets handled by the transport processing
4281 * thread a second time)
4283 if (cmd->data_direction == DMA_TO_DEVICE) {
4284 transport_add_tasks_to_state_queue(cmd);
4285 return transport_generic_write_pending(cmd);
4288 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4289 * to the execution queue.
4291 transport_execute_tasks(cmd);
4292 return 0;
4294 EXPORT_SYMBOL(transport_generic_new_cmd);
4296 /* transport_generic_process_write():
4300 void transport_generic_process_write(struct se_cmd *cmd)
4302 transport_execute_tasks(cmd);
4304 EXPORT_SYMBOL(transport_generic_process_write);
4306 static int transport_write_pending_qf(struct se_cmd *cmd)
4308 return cmd->se_tfo->write_pending(cmd);
4311 /* transport_generic_write_pending():
4315 static int transport_generic_write_pending(struct se_cmd *cmd)
4317 unsigned long flags;
4318 int ret;
4320 spin_lock_irqsave(&cmd->t_state_lock, flags);
4321 cmd->t_state = TRANSPORT_WRITE_PENDING;
4322 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4324 if (cmd->transport_qf_callback) {
4325 ret = cmd->transport_qf_callback(cmd);
4326 if (ret == -EAGAIN)
4327 goto queue_full;
4328 else if (ret < 0)
4329 return ret;
4331 cmd->transport_qf_callback = NULL;
4332 return 0;
4336 * Clear the se_cmd for WRITE_PENDING status in order to set
4337 * cmd->t_transport_active=0 so that transport_generic_handle_data
4338 * can be called from HW target mode interrupt code. This is safe
4339 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4340 * because the se_cmd->se_lun pointer is not being cleared.
4342 transport_cmd_check_stop(cmd, 1, 0);
4345 * Call the fabric write_pending function here to let the
4346 * frontend know that WRITE buffers are ready.
4348 ret = cmd->se_tfo->write_pending(cmd);
4349 if (ret == -EAGAIN)
4350 goto queue_full;
4351 else if (ret < 0)
4352 return ret;
4354 return PYX_TRANSPORT_WRITE_PENDING;
4356 queue_full:
4357 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4358 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4359 transport_handle_queue_full(cmd, cmd->se_dev,
4360 transport_write_pending_qf);
4361 return ret;
4364 void transport_release_cmd(struct se_cmd *cmd)
4366 BUG_ON(!cmd->se_tfo);
4368 transport_free_se_cmd(cmd);
4369 cmd->se_tfo->release_cmd(cmd);
4371 EXPORT_SYMBOL(transport_release_cmd);
4373 /* transport_generic_free_cmd():
4375 * Called from processing frontend to release storage engine resources
4377 void transport_generic_free_cmd(
4378 struct se_cmd *cmd,
4379 int wait_for_tasks,
4380 int session_reinstatement)
4382 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4383 transport_release_cmd(cmd);
4384 else {
4385 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4387 if (cmd->se_lun) {
4388 #if 0
4389 pr_debug("cmd: %p ITT: 0x%08x contains"
4390 " cmd->se_lun\n", cmd,
4391 cmd->se_tfo->get_task_tag(cmd));
4392 #endif
4393 transport_lun_remove_cmd(cmd);
4396 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4397 cmd->transport_wait_for_tasks(cmd, 0, 0);
4399 transport_free_dev_tasks(cmd);
4401 transport_generic_remove(cmd, session_reinstatement);
4404 EXPORT_SYMBOL(transport_generic_free_cmd);
4406 static void transport_nop_wait_for_tasks(
4407 struct se_cmd *cmd,
4408 int remove_cmd,
4409 int session_reinstatement)
4411 return;
4414 /* transport_lun_wait_for_tasks():
4416 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4417 * an struct se_lun to be successfully shutdown.
4419 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4421 unsigned long flags;
4422 int ret;
4424 * If the frontend has already requested this struct se_cmd to
4425 * be stopped, we can safely ignore this struct se_cmd.
4427 spin_lock_irqsave(&cmd->t_state_lock, flags);
4428 if (atomic_read(&cmd->t_transport_stop)) {
4429 atomic_set(&cmd->transport_lun_stop, 0);
4430 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4431 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4432 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4433 transport_cmd_check_stop(cmd, 1, 0);
4434 return -EPERM;
4436 atomic_set(&cmd->transport_lun_fe_stop, 1);
4437 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4439 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4441 ret = transport_stop_tasks_for_cmd(cmd);
4443 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4444 " %d\n", cmd, cmd->t_task_list_num, ret);
4445 if (!ret) {
4446 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4447 cmd->se_tfo->get_task_tag(cmd));
4448 wait_for_completion(&cmd->transport_lun_stop_comp);
4449 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4450 cmd->se_tfo->get_task_tag(cmd));
4452 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4454 return 0;
4457 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4459 struct se_cmd *cmd = NULL;
4460 unsigned long lun_flags, cmd_flags;
4462 * Do exception processing and return CHECK_CONDITION status to the
4463 * Initiator Port.
4465 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4466 while (!list_empty(&lun->lun_cmd_list)) {
4467 cmd = list_first_entry(&lun->lun_cmd_list,
4468 struct se_cmd, se_lun_node);
4469 list_del(&cmd->se_lun_node);
4471 atomic_set(&cmd->transport_lun_active, 0);
4473 * This will notify iscsi_target_transport.c:
4474 * transport_cmd_check_stop() that a LUN shutdown is in
4475 * progress for the iscsi_cmd_t.
4477 spin_lock(&cmd->t_state_lock);
4478 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4479 "_lun_stop for ITT: 0x%08x\n",
4480 cmd->se_lun->unpacked_lun,
4481 cmd->se_tfo->get_task_tag(cmd));
4482 atomic_set(&cmd->transport_lun_stop, 1);
4483 spin_unlock(&cmd->t_state_lock);
4485 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4487 if (!cmd->se_lun) {
4488 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4489 cmd->se_tfo->get_task_tag(cmd),
4490 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4491 BUG();
4494 * If the Storage engine still owns the iscsi_cmd_t, determine
4495 * and/or stop its context.
4497 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4498 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4499 cmd->se_tfo->get_task_tag(cmd));
4501 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4502 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4503 continue;
4506 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4507 "_wait_for_tasks(): SUCCESS\n",
4508 cmd->se_lun->unpacked_lun,
4509 cmd->se_tfo->get_task_tag(cmd));
4511 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4512 if (!atomic_read(&cmd->transport_dev_active)) {
4513 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4514 goto check_cond;
4516 atomic_set(&cmd->transport_dev_active, 0);
4517 transport_all_task_dev_remove_state(cmd);
4518 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4520 transport_free_dev_tasks(cmd);
4522 * The Storage engine stopped this struct se_cmd before it was
4523 * send to the fabric frontend for delivery back to the
4524 * Initiator Node. Return this SCSI CDB back with an
4525 * CHECK_CONDITION status.
4527 check_cond:
4528 transport_send_check_condition_and_sense(cmd,
4529 TCM_NON_EXISTENT_LUN, 0);
4531 * If the fabric frontend is waiting for this iscsi_cmd_t to
4532 * be released, notify the waiting thread now that LU has
4533 * finished accessing it.
4535 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4536 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4537 pr_debug("SE_LUN[%d] - Detected FE stop for"
4538 " struct se_cmd: %p ITT: 0x%08x\n",
4539 lun->unpacked_lun,
4540 cmd, cmd->se_tfo->get_task_tag(cmd));
4542 spin_unlock_irqrestore(&cmd->t_state_lock,
4543 cmd_flags);
4544 transport_cmd_check_stop(cmd, 1, 0);
4545 complete(&cmd->transport_lun_fe_stop_comp);
4546 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4547 continue;
4549 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4550 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4552 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4553 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4555 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4558 static int transport_clear_lun_thread(void *p)
4560 struct se_lun *lun = (struct se_lun *)p;
4562 __transport_clear_lun_from_sessions(lun);
4563 complete(&lun->lun_shutdown_comp);
4565 return 0;
4568 int transport_clear_lun_from_sessions(struct se_lun *lun)
4570 struct task_struct *kt;
4572 kt = kthread_run(transport_clear_lun_thread, lun,
4573 "tcm_cl_%u", lun->unpacked_lun);
4574 if (IS_ERR(kt)) {
4575 pr_err("Unable to start clear_lun thread\n");
4576 return PTR_ERR(kt);
4578 wait_for_completion(&lun->lun_shutdown_comp);
4580 return 0;
4583 /* transport_generic_wait_for_tasks():
4585 * Called from frontend or passthrough context to wait for storage engine
4586 * to pause and/or release frontend generated struct se_cmd.
4588 static void transport_generic_wait_for_tasks(
4589 struct se_cmd *cmd,
4590 int remove_cmd,
4591 int session_reinstatement)
4593 unsigned long flags;
4595 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4596 return;
4598 spin_lock_irqsave(&cmd->t_state_lock, flags);
4600 * If we are already stopped due to an external event (ie: LUN shutdown)
4601 * sleep until the connection can have the passed struct se_cmd back.
4602 * The cmd->transport_lun_stopped_sem will be upped by
4603 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4604 * has completed its operation on the struct se_cmd.
4606 if (atomic_read(&cmd->transport_lun_stop)) {
4608 pr_debug("wait_for_tasks: Stopping"
4609 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4610 "_stop_comp); for ITT: 0x%08x\n",
4611 cmd->se_tfo->get_task_tag(cmd));
4613 * There is a special case for WRITES where a FE exception +
4614 * LUN shutdown means ConfigFS context is still sleeping on
4615 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4616 * We go ahead and up transport_lun_stop_comp just to be sure
4617 * here.
4619 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4620 complete(&cmd->transport_lun_stop_comp);
4621 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4622 spin_lock_irqsave(&cmd->t_state_lock, flags);
4624 transport_all_task_dev_remove_state(cmd);
4626 * At this point, the frontend who was the originator of this
4627 * struct se_cmd, now owns the structure and can be released through
4628 * normal means below.
4630 pr_debug("wait_for_tasks: Stopped"
4631 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4632 "stop_comp); for ITT: 0x%08x\n",
4633 cmd->se_tfo->get_task_tag(cmd));
4635 atomic_set(&cmd->transport_lun_stop, 0);
4637 if (!atomic_read(&cmd->t_transport_active) ||
4638 atomic_read(&cmd->t_transport_aborted))
4639 goto remove;
4641 atomic_set(&cmd->t_transport_stop, 1);
4643 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4644 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4645 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4646 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4647 cmd->deferred_t_state);
4649 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4651 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4653 wait_for_completion(&cmd->t_transport_stop_comp);
4655 spin_lock_irqsave(&cmd->t_state_lock, flags);
4656 atomic_set(&cmd->t_transport_active, 0);
4657 atomic_set(&cmd->t_transport_stop, 0);
4659 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4660 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4661 cmd->se_tfo->get_task_tag(cmd));
4662 remove:
4663 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4664 if (!remove_cmd)
4665 return;
4667 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4670 static int transport_get_sense_codes(
4671 struct se_cmd *cmd,
4672 u8 *asc,
4673 u8 *ascq)
4675 *asc = cmd->scsi_asc;
4676 *ascq = cmd->scsi_ascq;
4678 return 0;
4681 static int transport_set_sense_codes(
4682 struct se_cmd *cmd,
4683 u8 asc,
4684 u8 ascq)
4686 cmd->scsi_asc = asc;
4687 cmd->scsi_ascq = ascq;
4689 return 0;
4692 int transport_send_check_condition_and_sense(
4693 struct se_cmd *cmd,
4694 u8 reason,
4695 int from_transport)
4697 unsigned char *buffer = cmd->sense_buffer;
4698 unsigned long flags;
4699 int offset;
4700 u8 asc = 0, ascq = 0;
4702 spin_lock_irqsave(&cmd->t_state_lock, flags);
4703 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4704 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4705 return 0;
4707 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4708 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4710 if (!reason && from_transport)
4711 goto after_reason;
4713 if (!from_transport)
4714 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4716 * Data Segment and SenseLength of the fabric response PDU.
4718 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4719 * from include/scsi/scsi_cmnd.h
4721 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4722 TRANSPORT_SENSE_BUFFER);
4724 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4725 * SENSE KEY values from include/scsi/scsi.h
4727 switch (reason) {
4728 case TCM_NON_EXISTENT_LUN:
4729 case TCM_UNSUPPORTED_SCSI_OPCODE:
4730 case TCM_SECTOR_COUNT_TOO_MANY:
4731 /* CURRENT ERROR */
4732 buffer[offset] = 0x70;
4733 /* ILLEGAL REQUEST */
4734 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4735 /* INVALID COMMAND OPERATION CODE */
4736 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4737 break;
4738 case TCM_UNKNOWN_MODE_PAGE:
4739 /* CURRENT ERROR */
4740 buffer[offset] = 0x70;
4741 /* ILLEGAL REQUEST */
4742 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4743 /* INVALID FIELD IN CDB */
4744 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4745 break;
4746 case TCM_CHECK_CONDITION_ABORT_CMD:
4747 /* CURRENT ERROR */
4748 buffer[offset] = 0x70;
4749 /* ABORTED COMMAND */
4750 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4751 /* BUS DEVICE RESET FUNCTION OCCURRED */
4752 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4753 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4754 break;
4755 case TCM_INCORRECT_AMOUNT_OF_DATA:
4756 /* CURRENT ERROR */
4757 buffer[offset] = 0x70;
4758 /* ABORTED COMMAND */
4759 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4760 /* WRITE ERROR */
4761 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4762 /* NOT ENOUGH UNSOLICITED DATA */
4763 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4764 break;
4765 case TCM_INVALID_CDB_FIELD:
4766 /* CURRENT ERROR */
4767 buffer[offset] = 0x70;
4768 /* ABORTED COMMAND */
4769 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4770 /* INVALID FIELD IN CDB */
4771 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4772 break;
4773 case TCM_INVALID_PARAMETER_LIST:
4774 /* CURRENT ERROR */
4775 buffer[offset] = 0x70;
4776 /* ABORTED COMMAND */
4777 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4778 /* INVALID FIELD IN PARAMETER LIST */
4779 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4780 break;
4781 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4782 /* CURRENT ERROR */
4783 buffer[offset] = 0x70;
4784 /* ABORTED COMMAND */
4785 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4786 /* WRITE ERROR */
4787 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4788 /* UNEXPECTED_UNSOLICITED_DATA */
4789 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4790 break;
4791 case TCM_SERVICE_CRC_ERROR:
4792 /* CURRENT ERROR */
4793 buffer[offset] = 0x70;
4794 /* ABORTED COMMAND */
4795 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4796 /* PROTOCOL SERVICE CRC ERROR */
4797 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4798 /* N/A */
4799 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4800 break;
4801 case TCM_SNACK_REJECTED:
4802 /* CURRENT ERROR */
4803 buffer[offset] = 0x70;
4804 /* ABORTED COMMAND */
4805 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4806 /* READ ERROR */
4807 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4808 /* FAILED RETRANSMISSION REQUEST */
4809 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4810 break;
4811 case TCM_WRITE_PROTECTED:
4812 /* CURRENT ERROR */
4813 buffer[offset] = 0x70;
4814 /* DATA PROTECT */
4815 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4816 /* WRITE PROTECTED */
4817 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4818 break;
4819 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4820 /* CURRENT ERROR */
4821 buffer[offset] = 0x70;
4822 /* UNIT ATTENTION */
4823 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4824 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4825 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4826 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4827 break;
4828 case TCM_CHECK_CONDITION_NOT_READY:
4829 /* CURRENT ERROR */
4830 buffer[offset] = 0x70;
4831 /* Not Ready */
4832 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4833 transport_get_sense_codes(cmd, &asc, &ascq);
4834 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4835 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4836 break;
4837 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4838 default:
4839 /* CURRENT ERROR */
4840 buffer[offset] = 0x70;
4841 /* ILLEGAL REQUEST */
4842 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4843 /* LOGICAL UNIT COMMUNICATION FAILURE */
4844 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4845 break;
4848 * This code uses linux/include/scsi/scsi.h SAM status codes!
4850 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4852 * Automatically padded, this value is encoded in the fabric's
4853 * data_length response PDU containing the SCSI defined sense data.
4855 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4857 after_reason:
4858 return cmd->se_tfo->queue_status(cmd);
4860 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4862 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4864 int ret = 0;
4866 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4867 if (!send_status ||
4868 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4869 return 1;
4870 #if 0
4871 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4872 " status for CDB: 0x%02x ITT: 0x%08x\n",
4873 cmd->t_task_cdb[0],
4874 cmd->se_tfo->get_task_tag(cmd));
4875 #endif
4876 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4877 cmd->se_tfo->queue_status(cmd);
4878 ret = 1;
4880 return ret;
4882 EXPORT_SYMBOL(transport_check_aborted_status);
4884 void transport_send_task_abort(struct se_cmd *cmd)
4887 * If there are still expected incoming fabric WRITEs, we wait
4888 * until until they have completed before sending a TASK_ABORTED
4889 * response. This response with TASK_ABORTED status will be
4890 * queued back to fabric module by transport_check_aborted_status().
4892 if (cmd->data_direction == DMA_TO_DEVICE) {
4893 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4894 atomic_inc(&cmd->t_transport_aborted);
4895 smp_mb__after_atomic_inc();
4896 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4897 transport_new_cmd_failure(cmd);
4898 return;
4901 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4902 #if 0
4903 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4904 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4905 cmd->se_tfo->get_task_tag(cmd));
4906 #endif
4907 cmd->se_tfo->queue_status(cmd);
4910 /* transport_generic_do_tmr():
4914 int transport_generic_do_tmr(struct se_cmd *cmd)
4916 struct se_device *dev = cmd->se_dev;
4917 struct se_tmr_req *tmr = cmd->se_tmr_req;
4918 int ret;
4920 switch (tmr->function) {
4921 case TMR_ABORT_TASK:
4922 tmr->response = TMR_FUNCTION_REJECTED;
4923 break;
4924 case TMR_ABORT_TASK_SET:
4925 case TMR_CLEAR_ACA:
4926 case TMR_CLEAR_TASK_SET:
4927 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4928 break;
4929 case TMR_LUN_RESET:
4930 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4931 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4932 TMR_FUNCTION_REJECTED;
4933 break;
4934 case TMR_TARGET_WARM_RESET:
4935 tmr->response = TMR_FUNCTION_REJECTED;
4936 break;
4937 case TMR_TARGET_COLD_RESET:
4938 tmr->response = TMR_FUNCTION_REJECTED;
4939 break;
4940 default:
4941 pr_err("Uknown TMR function: 0x%02x.\n",
4942 tmr->function);
4943 tmr->response = TMR_FUNCTION_REJECTED;
4944 break;
4947 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4948 cmd->se_tfo->queue_tm_rsp(cmd);
4950 transport_cmd_check_stop(cmd, 2, 0);
4951 return 0;
4955 * Called with spin_lock_irq(&dev->execute_task_lock); held
4958 static struct se_task *
4959 transport_get_task_from_state_list(struct se_device *dev)
4961 struct se_task *task;
4963 if (list_empty(&dev->state_task_list))
4964 return NULL;
4966 list_for_each_entry(task, &dev->state_task_list, t_state_list)
4967 break;
4969 list_del(&task->t_state_list);
4970 atomic_set(&task->task_state_active, 0);
4972 return task;
4975 static void transport_processing_shutdown(struct se_device *dev)
4977 struct se_cmd *cmd;
4978 struct se_task *task;
4979 unsigned long flags;
4981 * Empty the struct se_device's struct se_task state list.
4983 spin_lock_irqsave(&dev->execute_task_lock, flags);
4984 while ((task = transport_get_task_from_state_list(dev))) {
4985 if (!task->task_se_cmd) {
4986 pr_err("task->task_se_cmd is NULL!\n");
4987 continue;
4989 cmd = task->task_se_cmd;
4991 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
4993 spin_lock_irqsave(&cmd->t_state_lock, flags);
4995 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
4996 " i_state: %d, t_state/def_t_state:"
4997 " %d/%d cdb: 0x%02x\n", cmd, task,
4998 cmd->se_tfo->get_task_tag(cmd),
4999 cmd->se_tfo->get_cmd_state(cmd),
5000 cmd->t_state, cmd->deferred_t_state,
5001 cmd->t_task_cdb[0]);
5002 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5003 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5004 " t_transport_stop: %d t_transport_sent: %d\n",
5005 cmd->se_tfo->get_task_tag(cmd),
5006 cmd->t_task_list_num,
5007 atomic_read(&cmd->t_task_cdbs_left),
5008 atomic_read(&cmd->t_task_cdbs_sent),
5009 atomic_read(&cmd->t_transport_active),
5010 atomic_read(&cmd->t_transport_stop),
5011 atomic_read(&cmd->t_transport_sent));
5013 if (atomic_read(&task->task_active)) {
5014 atomic_set(&task->task_stop, 1);
5015 spin_unlock_irqrestore(
5016 &cmd->t_state_lock, flags);
5018 pr_debug("Waiting for task: %p to shutdown for dev:"
5019 " %p\n", task, dev);
5020 wait_for_completion(&task->task_stop_comp);
5021 pr_debug("Completed task: %p shutdown for dev: %p\n",
5022 task, dev);
5024 spin_lock_irqsave(&cmd->t_state_lock, flags);
5025 atomic_dec(&cmd->t_task_cdbs_left);
5027 atomic_set(&task->task_active, 0);
5028 atomic_set(&task->task_stop, 0);
5029 } else {
5030 if (atomic_read(&task->task_execute_queue) != 0)
5031 transport_remove_task_from_execute_queue(task, dev);
5033 __transport_stop_task_timer(task, &flags);
5035 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5036 spin_unlock_irqrestore(
5037 &cmd->t_state_lock, flags);
5039 pr_debug("Skipping task: %p, dev: %p for"
5040 " t_task_cdbs_ex_left: %d\n", task, dev,
5041 atomic_read(&cmd->t_task_cdbs_ex_left));
5043 spin_lock_irqsave(&dev->execute_task_lock, flags);
5044 continue;
5047 if (atomic_read(&cmd->t_transport_active)) {
5048 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5049 " %p\n", task, dev);
5051 if (atomic_read(&cmd->t_fe_count)) {
5052 spin_unlock_irqrestore(
5053 &cmd->t_state_lock, flags);
5054 transport_send_check_condition_and_sense(
5055 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5057 transport_remove_cmd_from_queue(cmd,
5058 &cmd->se_dev->dev_queue_obj);
5060 transport_lun_remove_cmd(cmd);
5061 transport_cmd_check_stop(cmd, 1, 0);
5062 } else {
5063 spin_unlock_irqrestore(
5064 &cmd->t_state_lock, flags);
5066 transport_remove_cmd_from_queue(cmd,
5067 &cmd->se_dev->dev_queue_obj);
5069 transport_lun_remove_cmd(cmd);
5071 if (transport_cmd_check_stop(cmd, 1, 0))
5072 transport_generic_remove(cmd, 0);
5075 spin_lock_irqsave(&dev->execute_task_lock, flags);
5076 continue;
5078 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5079 task, dev);
5081 if (atomic_read(&cmd->t_fe_count)) {
5082 spin_unlock_irqrestore(
5083 &cmd->t_state_lock, flags);
5084 transport_send_check_condition_and_sense(cmd,
5085 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5086 transport_remove_cmd_from_queue(cmd,
5087 &cmd->se_dev->dev_queue_obj);
5089 transport_lun_remove_cmd(cmd);
5090 transport_cmd_check_stop(cmd, 1, 0);
5091 } else {
5092 spin_unlock_irqrestore(
5093 &cmd->t_state_lock, flags);
5095 transport_remove_cmd_from_queue(cmd,
5096 &cmd->se_dev->dev_queue_obj);
5097 transport_lun_remove_cmd(cmd);
5099 if (transport_cmd_check_stop(cmd, 1, 0))
5100 transport_generic_remove(cmd, 0);
5103 spin_lock_irqsave(&dev->execute_task_lock, flags);
5105 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5107 * Empty the struct se_device's struct se_cmd list.
5109 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5111 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5112 cmd, cmd->t_state);
5114 if (atomic_read(&cmd->t_fe_count)) {
5115 transport_send_check_condition_and_sense(cmd,
5116 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5118 transport_lun_remove_cmd(cmd);
5119 transport_cmd_check_stop(cmd, 1, 0);
5120 } else {
5121 transport_lun_remove_cmd(cmd);
5122 if (transport_cmd_check_stop(cmd, 1, 0))
5123 transport_generic_remove(cmd, 0);
5128 /* transport_processing_thread():
5132 static int transport_processing_thread(void *param)
5134 int ret;
5135 struct se_cmd *cmd;
5136 struct se_device *dev = (struct se_device *) param;
5138 set_user_nice(current, -20);
5140 while (!kthread_should_stop()) {
5141 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5142 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5143 kthread_should_stop());
5144 if (ret < 0)
5145 goto out;
5147 spin_lock_irq(&dev->dev_status_lock);
5148 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5149 spin_unlock_irq(&dev->dev_status_lock);
5150 transport_processing_shutdown(dev);
5151 continue;
5153 spin_unlock_irq(&dev->dev_status_lock);
5155 get_cmd:
5156 __transport_execute_tasks(dev);
5158 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5159 if (!cmd)
5160 continue;
5162 switch (cmd->t_state) {
5163 case TRANSPORT_NEW_CMD_MAP:
5164 if (!cmd->se_tfo->new_cmd_map) {
5165 pr_err("cmd->se_tfo->new_cmd_map is"
5166 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5167 BUG();
5169 ret = cmd->se_tfo->new_cmd_map(cmd);
5170 if (ret < 0) {
5171 cmd->transport_error_status = ret;
5172 transport_generic_request_failure(cmd, NULL,
5173 0, (cmd->data_direction !=
5174 DMA_TO_DEVICE));
5175 break;
5177 /* Fall through */
5178 case TRANSPORT_NEW_CMD:
5179 ret = transport_generic_new_cmd(cmd);
5180 if (ret == -EAGAIN)
5181 break;
5182 else if (ret < 0) {
5183 cmd->transport_error_status = ret;
5184 transport_generic_request_failure(cmd, NULL,
5185 0, (cmd->data_direction !=
5186 DMA_TO_DEVICE));
5188 break;
5189 case TRANSPORT_PROCESS_WRITE:
5190 transport_generic_process_write(cmd);
5191 break;
5192 case TRANSPORT_COMPLETE_OK:
5193 transport_stop_all_task_timers(cmd);
5194 transport_generic_complete_ok(cmd);
5195 break;
5196 case TRANSPORT_REMOVE:
5197 transport_generic_remove(cmd, 0);
5198 break;
5199 case TRANSPORT_FREE_CMD_INTR:
5200 transport_generic_free_cmd(cmd, 0, 0);
5201 break;
5202 case TRANSPORT_PROCESS_TMR:
5203 transport_generic_do_tmr(cmd);
5204 break;
5205 case TRANSPORT_COMPLETE_FAILURE:
5206 transport_generic_request_failure(cmd, NULL, 1, 1);
5207 break;
5208 case TRANSPORT_COMPLETE_TIMEOUT:
5209 transport_stop_all_task_timers(cmd);
5210 transport_generic_request_timeout(cmd);
5211 break;
5212 case TRANSPORT_COMPLETE_QF_WP:
5213 transport_generic_write_pending(cmd);
5214 break;
5215 default:
5216 pr_err("Unknown t_state: %d deferred_t_state:"
5217 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5218 " %u\n", cmd->t_state, cmd->deferred_t_state,
5219 cmd->se_tfo->get_task_tag(cmd),
5220 cmd->se_tfo->get_cmd_state(cmd),
5221 cmd->se_lun->unpacked_lun);
5222 BUG();
5225 goto get_cmd;
5228 out:
5229 transport_release_all_cmds(dev);
5230 dev->process_thread = NULL;
5231 return 0;