block: mtip32xx: remove HOTPLUG_PCI_PCIE dependancy
[zen-stable.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blobfd356b7c0476effaa6ae99dce025e9b7178e6225
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
36 * Utility functions.
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
52 * Radio control handlers.
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
56 int status;
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
66 * Initialize all data queues.
68 rt2x00queue_init_queues(rt2x00dev);
71 * Enable radio.
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
86 * Enable queues.
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
93 * Start watchdog monitoring.
95 rt2x00link_start_watchdog(rt2x00dev);
97 return 0;
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 return;
106 * Stop watchdog monitoring.
108 rt2x00link_stop_watchdog(rt2x00dev);
111 * Stop all queues
113 rt2x00link_stop_agc(rt2x00dev);
114 rt2x00link_stop_tuner(rt2x00dev);
115 rt2x00queue_stop_queues(rt2x00dev);
116 rt2x00queue_flush_queues(rt2x00dev, true);
119 * Disable radio.
121 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123 rt2x00led_led_activity(rt2x00dev, false);
124 rt2x00leds_led_radio(rt2x00dev, false);
127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128 struct ieee80211_vif *vif)
130 struct rt2x00_dev *rt2x00dev = data;
131 struct rt2x00_intf *intf = vif_to_intf(vif);
134 * It is possible the radio was disabled while the work had been
135 * scheduled. If that happens we should return here immediately,
136 * note that in the spinlock protected area above the delayed_flags
137 * have been cleared correctly.
139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140 return;
142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143 rt2x00queue_update_beacon(rt2x00dev, vif);
146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 struct rt2x00_dev *rt2x00dev =
149 container_of(work, struct rt2x00_dev, intf_work);
152 * Iterate over each interface and perform the
153 * requested configurations.
155 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156 rt2x00lib_intf_scheduled_iter,
157 rt2x00dev);
160 static void rt2x00lib_autowakeup(struct work_struct *work)
162 struct rt2x00_dev *rt2x00dev =
163 container_of(work, struct rt2x00_dev, autowakeup_work.work);
165 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166 return;
168 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
174 * Interrupt context handlers.
176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177 struct ieee80211_vif *vif)
179 struct rt2x00_dev *rt2x00dev = data;
180 struct sk_buff *skb;
183 * Only AP mode interfaces do broad- and multicast buffering
185 if (vif->type != NL80211_IFTYPE_AP)
186 return;
189 * Send out buffered broad- and multicast frames
191 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192 while (skb) {
193 rt2x00mac_tx(rt2x00dev->hw, skb);
194 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199 struct ieee80211_vif *vif)
201 struct rt2x00_dev *rt2x00dev = data;
203 if (vif->type != NL80211_IFTYPE_AP &&
204 vif->type != NL80211_IFTYPE_ADHOC &&
205 vif->type != NL80211_IFTYPE_MESH_POINT &&
206 vif->type != NL80211_IFTYPE_WDS)
207 return;
210 * Update the beacon without locking. This is safe on PCI devices
211 * as they only update the beacon periodically here. This should
212 * never be called for USB devices.
214 WARN_ON(rt2x00_is_usb(rt2x00dev));
215 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221 return;
223 /* send buffered bc/mc frames out for every bssid */
224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225 rt2x00lib_bc_buffer_iter,
226 rt2x00dev);
228 * Devices with pre tbtt interrupt don't need to update the beacon
229 * here as they will fetch the next beacon directly prior to
230 * transmission.
232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233 return;
235 /* fetch next beacon */
236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237 rt2x00lib_beaconupdate_iter,
238 rt2x00dev);
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245 return;
247 /* fetch next beacon */
248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249 rt2x00lib_beaconupdate_iter,
250 rt2x00dev);
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
254 void rt2x00lib_dmastart(struct queue_entry *entry)
256 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 rt2x00queue_index_inc(entry, Q_INDEX);
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
261 void rt2x00lib_dmadone(struct queue_entry *entry)
263 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
269 void rt2x00lib_txdone(struct queue_entry *entry,
270 struct txdone_entry_desc *txdesc)
272 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275 unsigned int header_length, i;
276 u8 rate_idx, rate_flags, retry_rates;
277 u8 skbdesc_flags = skbdesc->flags;
278 bool success;
281 * Unmap the skb.
283 rt2x00queue_unmap_skb(entry);
286 * Remove the extra tx headroom from the skb.
288 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
291 * Signal that the TX descriptor is no longer in the skb.
293 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
296 * Determine the length of 802.11 header.
298 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
301 * Remove L2 padding which was added during
303 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304 rt2x00queue_remove_l2pad(entry->skb, header_length);
307 * If the IV/EIV data was stripped from the frame before it was
308 * passed to the hardware, we should now reinsert it again because
309 * mac80211 will expect the same data to be present it the
310 * frame as it was passed to us.
312 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
316 * Send frame to debugfs immediately, after this call is completed
317 * we are going to overwrite the skb->cb array.
319 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
322 * Determine if the frame has been successfully transmitted.
324 success =
325 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
329 * Update TX statistics.
331 rt2x00dev->link.qual.tx_success += success;
332 rt2x00dev->link.qual.tx_failed += !success;
334 rate_idx = skbdesc->tx_rate_idx;
335 rate_flags = skbdesc->tx_rate_flags;
336 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337 (txdesc->retry + 1) : 1;
340 * Initialize TX status
342 memset(&tx_info->status, 0, sizeof(tx_info->status));
343 tx_info->status.ack_signal = 0;
346 * Frame was send with retries, hardware tried
347 * different rates to send out the frame, at each
348 * retry it lowered the rate 1 step except when the
349 * lowest rate was used.
351 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352 tx_info->status.rates[i].idx = rate_idx - i;
353 tx_info->status.rates[i].flags = rate_flags;
355 if (rate_idx - i == 0) {
357 * The lowest rate (index 0) was used until the
358 * number of max retries was reached.
360 tx_info->status.rates[i].count = retry_rates - i;
361 i++;
362 break;
364 tx_info->status.rates[i].count = 1;
366 if (i < (IEEE80211_TX_MAX_RATES - 1))
367 tx_info->status.rates[i].idx = -1; /* terminate */
369 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370 if (success)
371 tx_info->flags |= IEEE80211_TX_STAT_ACK;
372 else
373 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
377 * Every single frame has it's own tx status, hence report
378 * every frame as ampdu of size 1.
380 * TODO: if we can find out how many frames were aggregated
381 * by the hw we could provide the real ampdu_len to mac80211
382 * which would allow the rc algorithm to better decide on
383 * which rates are suitable.
385 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388 tx_info->status.ampdu_len = 1;
389 tx_info->status.ampdu_ack_len = success ? 1 : 0;
391 if (!success)
392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
395 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396 if (success)
397 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398 else
399 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
403 * Only send the status report to mac80211 when it's a frame
404 * that originated in mac80211. If this was a extra frame coming
405 * through a mac80211 library call (RTS/CTS) then we should not
406 * send the status report back.
408 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411 else
412 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413 } else
414 dev_kfree_skb_any(entry->skb);
417 * Make this entry available for reuse.
419 entry->skb = NULL;
420 entry->flags = 0;
422 rt2x00dev->ops->lib->clear_entry(entry);
424 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
427 * If the data queue was below the threshold before the txdone
428 * handler we must make sure the packet queue in the mac80211 stack
429 * is reenabled when the txdone handler has finished. This has to be
430 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
431 * before it was stopped.
433 spin_lock_bh(&entry->queue->tx_lock);
434 if (!rt2x00queue_threshold(entry->queue))
435 rt2x00queue_unpause_queue(entry->queue);
436 spin_unlock_bh(&entry->queue->tx_lock);
438 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
440 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
442 struct txdone_entry_desc txdesc;
444 txdesc.flags = 0;
445 __set_bit(status, &txdesc.flags);
446 txdesc.retry = 0;
448 rt2x00lib_txdone(entry, &txdesc);
450 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
452 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
454 struct ieee80211_mgmt *mgmt = (void *)data;
455 u8 *pos, *end;
457 pos = (u8 *)mgmt->u.beacon.variable;
458 end = data + len;
459 while (pos < end) {
460 if (pos + 2 + pos[1] > end)
461 return NULL;
463 if (pos[0] == ie)
464 return pos;
466 pos += 2 + pos[1];
469 return NULL;
472 static void rt2x00lib_sleep(struct work_struct *work)
474 struct rt2x00_dev *rt2x00dev =
475 container_of(work, struct rt2x00_dev, sleep_work);
477 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
478 return;
481 * Check again is powersaving is enabled, to prevent races from delayed
482 * work execution.
484 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
485 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
486 IEEE80211_CONF_CHANGE_PS);
489 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
490 struct sk_buff *skb,
491 struct rxdone_entry_desc *rxdesc)
493 struct ieee80211_hdr *hdr = (void *) skb->data;
494 struct ieee80211_tim_ie *tim_ie;
495 u8 *tim;
496 u8 tim_len;
497 bool cam;
499 /* If this is not a beacon, or if mac80211 has no powersaving
500 * configured, or if the device is already in powersaving mode
501 * we can exit now. */
502 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
503 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
504 return;
506 /* min. beacon length + FCS_LEN */
507 if (skb->len <= 40 + FCS_LEN)
508 return;
510 /* and only beacons from the associated BSSID, please */
511 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
512 !rt2x00dev->aid)
513 return;
515 rt2x00dev->last_beacon = jiffies;
517 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
518 if (!tim)
519 return;
521 if (tim[1] < sizeof(*tim_ie))
522 return;
524 tim_len = tim[1];
525 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
527 /* Check whenever the PHY can be turned off again. */
529 /* 1. What about buffered unicast traffic for our AID? */
530 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
532 /* 2. Maybe the AP wants to send multicast/broadcast data? */
533 cam |= (tim_ie->bitmap_ctrl & 0x01);
535 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
539 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
540 struct rxdone_entry_desc *rxdesc)
542 struct ieee80211_supported_band *sband;
543 const struct rt2x00_rate *rate;
544 unsigned int i;
545 int signal = rxdesc->signal;
546 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
548 switch (rxdesc->rate_mode) {
549 case RATE_MODE_CCK:
550 case RATE_MODE_OFDM:
552 * For non-HT rates the MCS value needs to contain the
553 * actually used rate modulation (CCK or OFDM).
555 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
556 signal = RATE_MCS(rxdesc->rate_mode, signal);
558 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
559 for (i = 0; i < sband->n_bitrates; i++) {
560 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
561 if (((type == RXDONE_SIGNAL_PLCP) &&
562 (rate->plcp == signal)) ||
563 ((type == RXDONE_SIGNAL_BITRATE) &&
564 (rate->bitrate == signal)) ||
565 ((type == RXDONE_SIGNAL_MCS) &&
566 (rate->mcs == signal))) {
567 return i;
570 break;
571 case RATE_MODE_HT_MIX:
572 case RATE_MODE_HT_GREENFIELD:
573 if (signal >= 0 && signal <= 76)
574 return signal;
575 break;
576 default:
577 break;
580 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
581 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
582 rxdesc->rate_mode, signal, type);
583 return 0;
586 void rt2x00lib_rxdone(struct queue_entry *entry)
588 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
589 struct rxdone_entry_desc rxdesc;
590 struct sk_buff *skb;
591 struct ieee80211_rx_status *rx_status;
592 unsigned int header_length;
593 int rate_idx;
595 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
596 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
597 goto submit_entry;
599 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
600 goto submit_entry;
603 * Allocate a new sk_buffer. If no new buffer available, drop the
604 * received frame and reuse the existing buffer.
606 skb = rt2x00queue_alloc_rxskb(entry);
607 if (!skb)
608 goto submit_entry;
611 * Unmap the skb.
613 rt2x00queue_unmap_skb(entry);
616 * Extract the RXD details.
618 memset(&rxdesc, 0, sizeof(rxdesc));
619 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
622 * Check for valid size in case we get corrupted descriptor from
623 * hardware.
625 if (unlikely(rxdesc.size == 0 ||
626 rxdesc.size > entry->queue->data_size)) {
627 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
628 rxdesc.size, entry->queue->data_size);
629 dev_kfree_skb(entry->skb);
630 goto renew_skb;
634 * The data behind the ieee80211 header must be
635 * aligned on a 4 byte boundary.
637 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
640 * Hardware might have stripped the IV/EIV/ICV data,
641 * in that case it is possible that the data was
642 * provided separately (through hardware descriptor)
643 * in which case we should reinsert the data into the frame.
645 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
646 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
647 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
648 &rxdesc);
649 else if (header_length &&
650 (rxdesc.size > header_length) &&
651 (rxdesc.dev_flags & RXDONE_L2PAD))
652 rt2x00queue_remove_l2pad(entry->skb, header_length);
654 /* Trim buffer to correct size */
655 skb_trim(entry->skb, rxdesc.size);
658 * Translate the signal to the correct bitrate index.
660 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
661 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
662 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
663 rxdesc.flags |= RX_FLAG_HT;
666 * Check if this is a beacon, and more frames have been
667 * buffered while we were in powersaving mode.
669 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
672 * Update extra components
674 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
675 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
676 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
679 * Initialize RX status information, and send frame
680 * to mac80211.
682 rx_status = IEEE80211_SKB_RXCB(entry->skb);
683 rx_status->mactime = rxdesc.timestamp;
684 rx_status->band = rt2x00dev->curr_band;
685 rx_status->freq = rt2x00dev->curr_freq;
686 rx_status->rate_idx = rate_idx;
687 rx_status->signal = rxdesc.rssi;
688 rx_status->flag = rxdesc.flags;
689 rx_status->antenna = rt2x00dev->link.ant.active.rx;
691 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
693 renew_skb:
695 * Replace the skb with the freshly allocated one.
697 entry->skb = skb;
699 submit_entry:
700 entry->flags = 0;
701 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
702 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
703 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
704 rt2x00dev->ops->lib->clear_entry(entry);
706 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
709 * Driver initialization handlers.
711 const struct rt2x00_rate rt2x00_supported_rates[12] = {
713 .flags = DEV_RATE_CCK,
714 .bitrate = 10,
715 .ratemask = BIT(0),
716 .plcp = 0x00,
717 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
720 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
721 .bitrate = 20,
722 .ratemask = BIT(1),
723 .plcp = 0x01,
724 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
727 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728 .bitrate = 55,
729 .ratemask = BIT(2),
730 .plcp = 0x02,
731 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
734 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735 .bitrate = 110,
736 .ratemask = BIT(3),
737 .plcp = 0x03,
738 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
741 .flags = DEV_RATE_OFDM,
742 .bitrate = 60,
743 .ratemask = BIT(4),
744 .plcp = 0x0b,
745 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
748 .flags = DEV_RATE_OFDM,
749 .bitrate = 90,
750 .ratemask = BIT(5),
751 .plcp = 0x0f,
752 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
755 .flags = DEV_RATE_OFDM,
756 .bitrate = 120,
757 .ratemask = BIT(6),
758 .plcp = 0x0a,
759 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
762 .flags = DEV_RATE_OFDM,
763 .bitrate = 180,
764 .ratemask = BIT(7),
765 .plcp = 0x0e,
766 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
769 .flags = DEV_RATE_OFDM,
770 .bitrate = 240,
771 .ratemask = BIT(8),
772 .plcp = 0x09,
773 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
776 .flags = DEV_RATE_OFDM,
777 .bitrate = 360,
778 .ratemask = BIT(9),
779 .plcp = 0x0d,
780 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
783 .flags = DEV_RATE_OFDM,
784 .bitrate = 480,
785 .ratemask = BIT(10),
786 .plcp = 0x08,
787 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
790 .flags = DEV_RATE_OFDM,
791 .bitrate = 540,
792 .ratemask = BIT(11),
793 .plcp = 0x0c,
794 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
798 static void rt2x00lib_channel(struct ieee80211_channel *entry,
799 const int channel, const int tx_power,
800 const int value)
802 /* XXX: this assumption about the band is wrong for 802.11j */
803 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
804 entry->center_freq = ieee80211_channel_to_frequency(channel,
805 entry->band);
806 entry->hw_value = value;
807 entry->max_power = tx_power;
808 entry->max_antenna_gain = 0xff;
811 static void rt2x00lib_rate(struct ieee80211_rate *entry,
812 const u16 index, const struct rt2x00_rate *rate)
814 entry->flags = 0;
815 entry->bitrate = rate->bitrate;
816 entry->hw_value = index;
817 entry->hw_value_short = index;
819 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
820 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
823 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
824 struct hw_mode_spec *spec)
826 struct ieee80211_hw *hw = rt2x00dev->hw;
827 struct ieee80211_channel *channels;
828 struct ieee80211_rate *rates;
829 unsigned int num_rates;
830 unsigned int i;
832 num_rates = 0;
833 if (spec->supported_rates & SUPPORT_RATE_CCK)
834 num_rates += 4;
835 if (spec->supported_rates & SUPPORT_RATE_OFDM)
836 num_rates += 8;
838 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
839 if (!channels)
840 return -ENOMEM;
842 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
843 if (!rates)
844 goto exit_free_channels;
847 * Initialize Rate list.
849 for (i = 0; i < num_rates; i++)
850 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
853 * Initialize Channel list.
855 for (i = 0; i < spec->num_channels; i++) {
856 rt2x00lib_channel(&channels[i],
857 spec->channels[i].channel,
858 spec->channels_info[i].max_power, i);
862 * Intitialize 802.11b, 802.11g
863 * Rates: CCK, OFDM.
864 * Channels: 2.4 GHz
866 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
867 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
868 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
869 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
870 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
871 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
872 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
873 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
874 &spec->ht, sizeof(spec->ht));
878 * Intitialize 802.11a
879 * Rates: OFDM.
880 * Channels: OFDM, UNII, HiperLAN2.
882 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
883 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
884 spec->num_channels - 14;
885 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
886 num_rates - 4;
887 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
888 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
889 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
890 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
891 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
892 &spec->ht, sizeof(spec->ht));
895 return 0;
897 exit_free_channels:
898 kfree(channels);
899 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
900 return -ENOMEM;
903 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
905 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
906 ieee80211_unregister_hw(rt2x00dev->hw);
908 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
909 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
910 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
911 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
912 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
915 kfree(rt2x00dev->spec.channels_info);
918 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
920 struct hw_mode_spec *spec = &rt2x00dev->spec;
921 int status;
923 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
924 return 0;
927 * Initialize HW modes.
929 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
930 if (status)
931 return status;
934 * Initialize HW fields.
936 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
939 * Initialize extra TX headroom required.
941 rt2x00dev->hw->extra_tx_headroom =
942 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
943 rt2x00dev->ops->extra_tx_headroom);
946 * Take TX headroom required for alignment into account.
948 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
949 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
950 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
951 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
954 * Tell mac80211 about the size of our private STA structure.
956 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
959 * Allocate tx status FIFO for driver use.
961 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
963 * Allocate the txstatus fifo. In the worst case the tx
964 * status fifo has to hold the tx status of all entries
965 * in all tx queues. Hence, calculate the kfifo size as
966 * tx_queues * entry_num and round up to the nearest
967 * power of 2.
969 int kfifo_size =
970 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
971 rt2x00dev->ops->tx->entry_num *
972 sizeof(u32));
974 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
975 GFP_KERNEL);
976 if (status)
977 return status;
981 * Initialize tasklets if used by the driver. Tasklets are
982 * disabled until the interrupts are turned on. The driver
983 * has to handle that.
985 #define RT2X00_TASKLET_INIT(taskletname) \
986 if (rt2x00dev->ops->lib->taskletname) { \
987 tasklet_init(&rt2x00dev->taskletname, \
988 rt2x00dev->ops->lib->taskletname, \
989 (unsigned long)rt2x00dev); \
992 RT2X00_TASKLET_INIT(txstatus_tasklet);
993 RT2X00_TASKLET_INIT(pretbtt_tasklet);
994 RT2X00_TASKLET_INIT(tbtt_tasklet);
995 RT2X00_TASKLET_INIT(rxdone_tasklet);
996 RT2X00_TASKLET_INIT(autowake_tasklet);
998 #undef RT2X00_TASKLET_INIT
1001 * Register HW.
1003 status = ieee80211_register_hw(rt2x00dev->hw);
1004 if (status)
1005 return status;
1007 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1009 return 0;
1013 * Initialization/uninitialization handlers.
1015 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1017 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1018 return;
1021 * Unregister extra components.
1023 rt2x00rfkill_unregister(rt2x00dev);
1026 * Allow the HW to uninitialize.
1028 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1031 * Free allocated queue entries.
1033 rt2x00queue_uninitialize(rt2x00dev);
1036 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1038 int status;
1040 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1041 return 0;
1044 * Allocate all queue entries.
1046 status = rt2x00queue_initialize(rt2x00dev);
1047 if (status)
1048 return status;
1051 * Initialize the device.
1053 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1054 if (status) {
1055 rt2x00queue_uninitialize(rt2x00dev);
1056 return status;
1059 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1062 * Register the extra components.
1064 rt2x00rfkill_register(rt2x00dev);
1066 return 0;
1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1071 int retval;
1073 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074 return 0;
1077 * If this is the first interface which is added,
1078 * we should load the firmware now.
1080 retval = rt2x00lib_load_firmware(rt2x00dev);
1081 if (retval)
1082 return retval;
1085 * Initialize the device.
1087 retval = rt2x00lib_initialize(rt2x00dev);
1088 if (retval)
1089 return retval;
1091 rt2x00dev->intf_ap_count = 0;
1092 rt2x00dev->intf_sta_count = 0;
1093 rt2x00dev->intf_associated = 0;
1095 /* Enable the radio */
1096 retval = rt2x00lib_enable_radio(rt2x00dev);
1097 if (retval)
1098 return retval;
1100 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1102 return 0;
1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108 return;
1111 * Perhaps we can add something smarter here,
1112 * but for now just disabling the radio should do.
1114 rt2x00lib_disable_radio(rt2x00dev);
1116 rt2x00dev->intf_ap_count = 0;
1117 rt2x00dev->intf_sta_count = 0;
1118 rt2x00dev->intf_associated = 0;
1122 * driver allocation handlers.
1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1126 int retval = -ENOMEM;
1128 spin_lock_init(&rt2x00dev->irqmask_lock);
1129 mutex_init(&rt2x00dev->csr_mutex);
1131 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1134 * Make room for rt2x00_intf inside the per-interface
1135 * structure ieee80211_vif.
1137 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1140 * Determine which operating modes are supported, all modes
1141 * which require beaconing, depend on the availability of
1142 * beacon entries.
1144 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1145 if (rt2x00dev->ops->bcn->entry_num > 0)
1146 rt2x00dev->hw->wiphy->interface_modes |=
1147 BIT(NL80211_IFTYPE_ADHOC) |
1148 BIT(NL80211_IFTYPE_AP) |
1149 BIT(NL80211_IFTYPE_MESH_POINT) |
1150 BIT(NL80211_IFTYPE_WDS);
1153 * Initialize work.
1155 rt2x00dev->workqueue =
1156 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1157 if (!rt2x00dev->workqueue) {
1158 retval = -ENOMEM;
1159 goto exit;
1162 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1163 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1164 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1167 * Let the driver probe the device to detect the capabilities.
1169 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1170 if (retval) {
1171 ERROR(rt2x00dev, "Failed to allocate device.\n");
1172 goto exit;
1176 * Allocate queue array.
1178 retval = rt2x00queue_allocate(rt2x00dev);
1179 if (retval)
1180 goto exit;
1183 * Initialize ieee80211 structure.
1185 retval = rt2x00lib_probe_hw(rt2x00dev);
1186 if (retval) {
1187 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1188 goto exit;
1192 * Register extra components.
1194 rt2x00link_register(rt2x00dev);
1195 rt2x00leds_register(rt2x00dev);
1196 rt2x00debug_register(rt2x00dev);
1198 return 0;
1200 exit:
1201 rt2x00lib_remove_dev(rt2x00dev);
1203 return retval;
1205 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1207 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1209 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1212 * Disable radio.
1214 rt2x00lib_disable_radio(rt2x00dev);
1217 * Stop all work.
1219 cancel_work_sync(&rt2x00dev->intf_work);
1220 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1221 cancel_work_sync(&rt2x00dev->sleep_work);
1222 if (rt2x00_is_usb(rt2x00dev)) {
1223 del_timer_sync(&rt2x00dev->txstatus_timer);
1224 cancel_work_sync(&rt2x00dev->rxdone_work);
1225 cancel_work_sync(&rt2x00dev->txdone_work);
1227 if (rt2x00dev->workqueue)
1228 destroy_workqueue(rt2x00dev->workqueue);
1231 * Free the tx status fifo.
1233 kfifo_free(&rt2x00dev->txstatus_fifo);
1236 * Kill the tx status tasklet.
1238 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1239 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1240 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1241 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1242 tasklet_kill(&rt2x00dev->autowake_tasklet);
1245 * Uninitialize device.
1247 rt2x00lib_uninitialize(rt2x00dev);
1250 * Free extra components
1252 rt2x00debug_deregister(rt2x00dev);
1253 rt2x00leds_unregister(rt2x00dev);
1256 * Free ieee80211_hw memory.
1258 rt2x00lib_remove_hw(rt2x00dev);
1261 * Free firmware image.
1263 rt2x00lib_free_firmware(rt2x00dev);
1266 * Free queue structures.
1268 rt2x00queue_free(rt2x00dev);
1270 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1273 * Device state handlers
1275 #ifdef CONFIG_PM
1276 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1278 NOTICE(rt2x00dev, "Going to sleep.\n");
1281 * Prevent mac80211 from accessing driver while suspended.
1283 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1284 return 0;
1287 * Cleanup as much as possible.
1289 rt2x00lib_uninitialize(rt2x00dev);
1292 * Suspend/disable extra components.
1294 rt2x00leds_suspend(rt2x00dev);
1295 rt2x00debug_deregister(rt2x00dev);
1298 * Set device mode to sleep for power management,
1299 * on some hardware this call seems to consistently fail.
1300 * From the specifications it is hard to tell why it fails,
1301 * and if this is a "bad thing".
1302 * Overall it is safe to just ignore the failure and
1303 * continue suspending. The only downside is that the
1304 * device will not be in optimal power save mode, but with
1305 * the radio and the other components already disabled the
1306 * device is as good as disabled.
1308 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1309 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1310 "continue suspending.\n");
1312 return 0;
1314 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1316 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1318 NOTICE(rt2x00dev, "Waking up.\n");
1321 * Restore/enable extra components.
1323 rt2x00debug_register(rt2x00dev);
1324 rt2x00leds_resume(rt2x00dev);
1327 * We are ready again to receive requests from mac80211.
1329 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1331 return 0;
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1334 #endif /* CONFIG_PM */
1337 * rt2x00lib module information.
1339 MODULE_AUTHOR(DRV_PROJECT);
1340 MODULE_VERSION(DRV_VERSION);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");