2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
14 * This file contains the functions and defines necessary to modify and use
15 * the TILE page table tree.
18 #ifndef _ASM_TILE_PGTABLE_H
19 #define _ASM_TILE_PGTABLE_H
21 #include <hv/hypervisor.h>
25 #include <linux/bitops.h>
26 #include <linux/threads.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/spinlock.h>
30 #include <asm/processor.h>
31 #include <asm/fixmap.h>
32 #include <asm/system.h>
35 struct vm_area_struct
;
38 * ZERO_PAGE is a global shared page that is always zero: used
39 * for zero-mapped memory areas etc..
41 extern unsigned long empty_zero_page
[PAGE_SIZE
/sizeof(unsigned long)];
42 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
44 extern pgd_t swapper_pg_dir
[];
45 extern pgprot_t swapper_pgprot
;
46 extern struct kmem_cache
*pgd_cache
;
47 extern spinlock_t pgd_lock
;
48 extern struct list_head pgd_list
;
51 * The very last slots in the pgd_t are for addresses unusable by Linux
52 * (pgd_addr_invalid() returns true). So we use them for the list structure.
53 * The x86 code we are modelled on uses the page->private/index fields
54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
55 * our pgds are so much smaller than a page, it seems a waste to
56 * spend a whole page on each pgd.
58 #define PGD_LIST_OFFSET \
59 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
60 #define pgd_to_list(pgd) \
61 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
62 #define list_to_pgd(list) \
63 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
65 extern void pgtable_cache_init(void);
66 extern void paging_init(void);
67 extern void set_page_homes(void);
69 #define FIRST_USER_ADDRESS 0
71 #define _PAGE_PRESENT HV_PTE_PRESENT
72 #define _PAGE_HUGE_PAGE HV_PTE_PAGE
73 #define _PAGE_READABLE HV_PTE_READABLE
74 #define _PAGE_WRITABLE HV_PTE_WRITABLE
75 #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
76 #define _PAGE_ACCESSED HV_PTE_ACCESSED
77 #define _PAGE_DIRTY HV_PTE_DIRTY
78 #define _PAGE_GLOBAL HV_PTE_GLOBAL
79 #define _PAGE_USER HV_PTE_USER
82 * All the "standard" bits. Cache-control bits are managed elsewhere.
83 * This is used to test for valid level-2 page table pointers by checking
84 * all the bits, and to mask away the cache control bits for mprotect.
99 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
100 #define PAGE_SHARED \
101 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
102 _PAGE_USER | _PAGE_ACCESSED)
104 #define PAGE_SHARED_EXEC \
105 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
106 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
107 #define PAGE_COPY_NOEXEC \
108 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
109 #define PAGE_COPY_EXEC \
110 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
111 _PAGE_READABLE | _PAGE_EXECUTABLE)
114 #define PAGE_READONLY \
115 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
116 #define PAGE_READONLY_EXEC \
117 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
118 _PAGE_READABLE | _PAGE_EXECUTABLE)
120 #define _PAGE_KERNEL_RO \
121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
122 #define _PAGE_KERNEL \
123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
124 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
126 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
127 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
128 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
130 #define page_to_kpgprot(p) PAGE_KERNEL
133 * We could tighten these up, but for now writable or executable
136 #define __P000 PAGE_NONE
137 #define __P001 PAGE_READONLY
138 #define __P010 PAGE_COPY /* this is write-only, which we won't support */
139 #define __P011 PAGE_COPY
140 #define __P100 PAGE_READONLY_EXEC
141 #define __P101 PAGE_READONLY_EXEC
142 #define __P110 PAGE_COPY_EXEC
143 #define __P111 PAGE_COPY_EXEC
145 #define __S000 PAGE_NONE
146 #define __S001 PAGE_READONLY
147 #define __S010 PAGE_SHARED
148 #define __S011 PAGE_SHARED
149 #define __S100 PAGE_READONLY_EXEC
150 #define __S101 PAGE_READONLY_EXEC
151 #define __S110 PAGE_SHARED_EXEC
152 #define __S111 PAGE_SHARED_EXEC
155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
157 * We set the ignored bits to zero.
159 #define _PAGE_TABLE _PAGE_PRESENT
161 /* Inherit the caching flags from the old protection bits. */
162 #define pgprot_modify(oldprot, newprot) \
163 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
165 /* Just setting the PFN to zero suffices. */
166 #define pte_pgprot(x) hv_pte_set_pfn((x), 0)
169 * For PTEs and PDEs, we must clear the Present bit first when
170 * clearing a page table entry, so clear the bottom half first and
171 * enforce ordering with a barrier.
173 static inline void __pte_clear(pte_t
*ptep
)
178 u32
*tmp
= (u32
*)ptep
;
184 #define pte_clear(mm, addr, ptep) __pte_clear(ptep)
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
190 #define pte_present hv_pte_get_present
191 #define pte_user hv_pte_get_user
192 #define pte_read hv_pte_get_readable
193 #define pte_dirty hv_pte_get_dirty
194 #define pte_young hv_pte_get_accessed
195 #define pte_write hv_pte_get_writable
196 #define pte_exec hv_pte_get_executable
197 #define pte_huge hv_pte_get_page
198 #define pte_rdprotect hv_pte_clear_readable
199 #define pte_exprotect hv_pte_clear_executable
200 #define pte_mkclean hv_pte_clear_dirty
201 #define pte_mkold hv_pte_clear_accessed
202 #define pte_wrprotect hv_pte_clear_writable
203 #define pte_mksmall hv_pte_clear_page
204 #define pte_mkread hv_pte_set_readable
205 #define pte_mkexec hv_pte_set_executable
206 #define pte_mkdirty hv_pte_set_dirty
207 #define pte_mkyoung hv_pte_set_accessed
208 #define pte_mkwrite hv_pte_set_writable
209 #define pte_mkhuge hv_pte_set_page
211 #define pte_special(pte) 0
212 #define pte_mkspecial(pte) (pte)
215 * Use some spare bits in the PTE for user-caching tags.
217 #define pte_set_forcecache hv_pte_set_client0
218 #define pte_get_forcecache hv_pte_get_client0
219 #define pte_clear_forcecache hv_pte_clear_client0
220 #define pte_set_anyhome hv_pte_set_client1
221 #define pte_get_anyhome hv_pte_get_client1
222 #define pte_clear_anyhome hv_pte_clear_client1
225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
227 #define pte_migrating hv_pte_get_migrating
228 #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
229 #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
231 #define pte_ERROR(e) \
232 pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
233 #define pgd_ERROR(e) \
234 pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
236 /* Return PA and protection info for a given kernel VA. */
237 int va_to_cpa_and_pte(void *va
, phys_addr_t
*cpa
, pte_t
*pte
);
240 * __set_pte() ensures we write the 64-bit PTE with 32-bit words in
241 * the right order on 32-bit platforms and also allows us to write
242 * hooks to check valid PTEs, etc., if we want.
244 void __set_pte(pte_t
*ptep
, pte_t pte
);
247 * set_pte() sets the given PTE and also sanity-checks the
248 * requested PTE against the page homecaching. Unspecified parts
249 * of the PTE are filled in when it is written to memory, i.e. all
250 * caching attributes if "!forcecache", or the home cpu if "anyhome".
252 extern void set_pte(pte_t
*ptep
, pte_t pte
);
253 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
254 #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
256 #define pte_page(x) pfn_to_page(pte_pfn(x))
258 static inline int pte_none(pte_t pte
)
263 static inline unsigned long pte_pfn(pte_t pte
)
265 return hv_pte_get_pfn(pte
);
268 /* Set or get the remote cache cpu in a pgprot with remote caching. */
269 extern pgprot_t
set_remote_cache_cpu(pgprot_t prot
, int cpu
);
270 extern int get_remote_cache_cpu(pgprot_t prot
);
272 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t prot
)
274 return hv_pte_set_pfn(prot
, pfn
);
277 /* Support for priority mappings. */
278 extern void start_mm_caching(struct mm_struct
*mm
);
279 extern void check_mm_caching(struct mm_struct
*prev
, struct mm_struct
*next
);
282 * Support non-linear file mappings (see sys_remap_file_pages).
283 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
284 * file offset in the 32 high bits.
286 #define _PAGE_FILE HV_PTE_CLIENT1
287 #define PTE_FILE_MAX_BITS 32
288 #define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
289 #define pte_to_pgoff(pte) ((pte).val >> 32)
290 #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
293 * Encode and de-code a swap entry (see <linux/swapops.h>).
294 * We put the swap file type+offset in the 32 high bits;
295 * I believe we can just leave the low bits clear.
297 #define __swp_type(swp) ((swp).val & 0x1f)
298 #define __swp_offset(swp) ((swp).val >> 5)
299 #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
300 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
301 #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
304 * Conversion functions: convert a page and protection to a page entry,
305 * and a page entry and page directory to the page they refer to.
308 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
311 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
312 * value and combine it with the PFN from the old PTE to get a new PTE.
314 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
316 return pfn_pte(hv_pte_get_pfn(pte
), newprot
);
320 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
322 * This macro returns the index of the entry in the pgd page which would
323 * control the given virtual address.
325 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
328 * pgd_offset() returns a (pgd_t *)
329 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
331 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
334 * A shortcut which implies the use of the kernel's pgd, instead
337 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
339 #if defined(CONFIG_HIGHPTE)
340 extern pte_t
*pte_offset_map(pmd_t
*, unsigned long address
);
341 #define pte_unmap(pte) kunmap_atomic(pte)
343 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
344 #define pte_unmap(pte) do { } while (0)
347 /* Clear a non-executable kernel PTE and flush it from the TLB. */
348 #define kpte_clear_flush(ptep, vaddr) \
350 pte_clear(&init_mm, (vaddr), (ptep)); \
351 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
355 * The kernel page tables contain what we need, and we flush when we
356 * change specific page table entries.
358 #define update_mmu_cache(vma, address, pte) do { } while (0)
360 #ifdef CONFIG_FLATMEM
361 #define kern_addr_valid(addr) (1)
362 #endif /* CONFIG_FLATMEM */
364 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
365 remap_pfn_range(vma, vaddr, pfn, size, prot)
367 extern void vmalloc_sync_all(void);
369 #endif /* !__ASSEMBLY__ */
372 #include <asm/pgtable_64.h>
374 #include <asm/pgtable_32.h>
379 static inline int pmd_none(pmd_t pmd
)
382 * Only check low word on 32-bit platforms, since it might be
383 * out of sync with upper half.
385 return (unsigned long)pmd_val(pmd
) == 0;
388 static inline int pmd_present(pmd_t pmd
)
390 return pmd_val(pmd
) & _PAGE_PRESENT
;
393 static inline int pmd_bad(pmd_t pmd
)
395 return ((pmd_val(pmd
) & _PAGE_ALL
) != _PAGE_TABLE
);
398 static inline unsigned long pages_to_mb(unsigned long npg
)
400 return npg
>> (20 - PAGE_SHIFT
);
404 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
406 * This function returns the index of the entry in the pmd which would
407 * control the given virtual address.
409 static inline unsigned long pmd_index(unsigned long address
)
411 return (address
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1);
415 * A given kernel pmd_t maps to a specific virtual address (either a
416 * kernel huge page or a kernel pte_t table). Since kernel pte_t
417 * tables can be aligned at sub-page granularity, this function can
418 * return non-page-aligned pointers, despite its name.
420 static inline unsigned long pmd_page_vaddr(pmd_t pmd
)
423 (phys_addr_t
)pmd_ptfn(pmd
) << HV_LOG2_PAGE_TABLE_ALIGN
;
424 return (unsigned long)__va(pa
);
428 * A pmd_t points to the base of a huge page or to a pte_t array.
429 * If a pte_t array, since we can have multiple per page, we don't
430 * have a one-to-one mapping of pmd_t's to pages. However, this is
431 * OK for pte_lockptr(), since we just end up with potentially one
432 * lock being used for several pte_t arrays.
434 #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
437 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
439 * This macro returns the index of the entry in the pte page which would
440 * control the given virtual address.
442 static inline unsigned long pte_index(unsigned long address
)
444 return (address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
447 static inline pte_t
*pte_offset_kernel(pmd_t
*pmd
, unsigned long address
)
449 return (pte_t
*)pmd_page_vaddr(*pmd
) + pte_index(address
);
452 static inline int pmd_huge_page(pmd_t pmd
)
454 return pmd_val(pmd
) & _PAGE_HUGE_PAGE
;
457 #include <asm-generic/pgtable.h>
459 /* Support /proc/NN/pgtable API. */
461 int arch_proc_pgtable_show(struct seq_file
*m
, struct mm_struct
*mm
,
462 unsigned long vaddr
, pte_t
*ptep
, void **datap
);
464 #endif /* !__ASSEMBLY__ */
466 #endif /* _ASM_TILE_PGTABLE_H */