Staging: hv: mousevsc: Cleanup alloc_input_device()
[zen-stable.git] / arch / tile / kernel / pci.c
blob2a8014cb1ff52f0ef3e24a58a5e20ddcfeb3c8cc
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
36 * Initialization flow and process
37 * -------------------------------
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
55 * This flag tells if the platform is TILEmpower that needs
56 * special configuration for the PLX switch chip.
58 int __write_once tile_plx_gen1;
60 static struct pci_controller controllers[TILE_NUM_PCIE];
61 static int num_controllers;
62 static int pci_scan_flags[TILE_NUM_PCIE];
64 static struct pci_ops tile_cfg_ops;
68 * We don't need to worry about the alignment of resources.
70 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
71 resource_size_t size, resource_size_t align)
73 return res->start;
75 EXPORT_SYMBOL(pcibios_align_resource);
78 * Open a FD to the hypervisor PCI device.
80 * controller_id is the controller number, config type is 0 or 1 for
81 * config0 or config1 operations.
83 static int __devinit tile_pcie_open(int controller_id, int config_type)
85 char filename[32];
86 int fd;
88 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
90 fd = hv_dev_open((HV_VirtAddr)filename, 0);
92 return fd;
97 * Get the IRQ numbers from the HV and set up the handlers for them.
99 static int __devinit tile_init_irqs(int controller_id,
100 struct pci_controller *controller)
102 char filename[32];
103 int fd;
104 int ret;
105 int x;
106 struct pcie_rc_config rc_config;
108 sprintf(filename, "pcie/%d/ctl", controller_id);
109 fd = hv_dev_open((HV_VirtAddr)filename, 0);
110 if (fd < 0) {
111 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
112 return -1;
114 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
115 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
116 hv_dev_close(fd);
117 if (ret != sizeof(rc_config)) {
118 pr_err("PCI: wanted %zd bytes, got %d\n",
119 sizeof(rc_config), ret);
120 return -1;
122 /* Record irq_base so that we can map INTx to IRQ # later. */
123 controller->irq_base = rc_config.intr;
125 for (x = 0; x < 4; x++)
126 tile_irq_activate(rc_config.intr + x,
127 TILE_IRQ_HW_CLEAR);
129 if (rc_config.plx_gen1)
130 controller->plx_gen1 = 1;
132 return 0;
136 * First initialization entry point, called from setup_arch().
138 * Find valid controllers and fill in pci_controller structs for each
139 * of them.
141 * Returns the number of controllers discovered.
143 int __devinit tile_pci_init(void)
145 int i;
147 pr_info("PCI: Searching for controllers...\n");
149 /* Re-init number of PCIe controllers to support hot-plug feature. */
150 num_controllers = 0;
152 /* Do any configuration we need before using the PCIe */
154 for (i = 0; i < TILE_NUM_PCIE; i++) {
156 * To see whether we need a real config op based on
157 * the results of pcibios_init(), to support PCIe hot-plug.
159 if (pci_scan_flags[i] == 0) {
160 int hv_cfg_fd0 = -1;
161 int hv_cfg_fd1 = -1;
162 int hv_mem_fd = -1;
163 char name[32];
164 struct pci_controller *controller;
167 * Open the fd to the HV. If it fails then this
168 * device doesn't exist.
170 hv_cfg_fd0 = tile_pcie_open(i, 0);
171 if (hv_cfg_fd0 < 0)
172 continue;
173 hv_cfg_fd1 = tile_pcie_open(i, 1);
174 if (hv_cfg_fd1 < 0) {
175 pr_err("PCI: Couldn't open config fd to HV "
176 "for controller %d\n", i);
177 goto err_cont;
180 sprintf(name, "pcie/%d/mem", i);
181 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
182 if (hv_mem_fd < 0) {
183 pr_err("PCI: Could not open mem fd to HV!\n");
184 goto err_cont;
187 pr_info("PCI: Found PCI controller #%d\n", i);
189 controller = &controllers[i];
191 controller->index = i;
192 controller->hv_cfg_fd[0] = hv_cfg_fd0;
193 controller->hv_cfg_fd[1] = hv_cfg_fd1;
194 controller->hv_mem_fd = hv_mem_fd;
195 controller->first_busno = 0;
196 controller->last_busno = 0xff;
197 controller->ops = &tile_cfg_ops;
199 num_controllers++;
200 continue;
202 err_cont:
203 if (hv_cfg_fd0 >= 0)
204 hv_dev_close(hv_cfg_fd0);
205 if (hv_cfg_fd1 >= 0)
206 hv_dev_close(hv_cfg_fd1);
207 if (hv_mem_fd >= 0)
208 hv_dev_close(hv_mem_fd);
209 continue;
214 * Before using the PCIe, see if we need to do any platform-specific
215 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217 for (i = 0; i < num_controllers; i++) {
218 struct pci_controller *controller = &controllers[i];
220 if (controller->plx_gen1)
221 tile_plx_gen1 = 1;
224 return num_controllers;
228 * (pin - 1) converts from the PCI standard's [1:4] convention to
229 * a normal [0:3] range.
231 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
233 struct pci_controller *controller =
234 (struct pci_controller *)dev->sysdata;
235 return (pin - 1) + controller->irq_base;
239 static void __devinit fixup_read_and_payload_sizes(void)
241 struct pci_dev *dev = NULL;
242 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
243 int max_read_size = 0x2; /* Limit to 512 byte reads. */
244 u16 new_values;
246 /* Scan for the smallest maximum payload size. */
247 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
248 int pcie_caps_offset;
249 u32 devcap;
250 int max_payload;
252 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
253 if (pcie_caps_offset == 0)
254 continue;
256 pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
257 &devcap);
258 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
259 if (max_payload < smallest_max_payload)
260 smallest_max_payload = max_payload;
263 /* Now, set the max_payload_size for all devices to that value. */
264 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
265 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
266 int pcie_caps_offset;
267 u16 devctl;
269 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
270 if (pcie_caps_offset == 0)
271 continue;
273 pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
274 &devctl);
275 devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
276 devctl |= new_values;
277 pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
278 devctl);
284 * Second PCI initialization entry point, called by subsys_initcall.
286 * The controllers have been set up by the time we get here, by a call to
287 * tile_pci_init.
289 int __devinit pcibios_init(void)
291 int i;
293 pr_info("PCI: Probing PCI hardware\n");
296 * Delay a bit in case devices aren't ready. Some devices are
297 * known to require at least 20ms here, but we use a more
298 * conservative value.
300 mdelay(250);
302 /* Scan all of the recorded PCI controllers. */
303 for (i = 0; i < TILE_NUM_PCIE; i++) {
305 * Do real pcibios init ops if the controller is initialized
306 * by tile_pci_init() successfully and not initialized by
307 * pcibios_init() yet to support PCIe hot-plug.
309 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
310 struct pci_controller *controller = &controllers[i];
311 struct pci_bus *bus;
313 if (tile_init_irqs(i, controller)) {
314 pr_err("PCI: Could not initialize IRQs\n");
315 continue;
318 pr_info("PCI: initializing controller #%d\n", i);
321 * This comes from the generic Linux PCI driver.
323 * It reads the PCI tree for this bus into the Linux
324 * data structures.
326 * This is inlined in linux/pci.h and calls into
327 * pci_scan_bus_parented() in probe.c.
329 bus = pci_scan_bus(0, controller->ops, controller);
330 controller->root_bus = bus;
331 controller->last_busno = bus->subordinate;
335 /* Do machine dependent PCI interrupt routing */
336 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
339 * This comes from the generic Linux PCI driver.
341 * It allocates all of the resources (I/O memory, etc)
342 * associated with the devices read in above.
344 pci_assign_unassigned_resources();
346 /* Configure the max_read_size and max_payload_size values. */
347 fixup_read_and_payload_sizes();
349 /* Record the I/O resources in the PCI controller structure. */
350 for (i = 0; i < TILE_NUM_PCIE; i++) {
352 * Do real pcibios init ops if the controller is initialized
353 * by tile_pci_init() successfully and not initialized by
354 * pcibios_init() yet to support PCIe hot-plug.
356 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
357 struct pci_bus *root_bus = controllers[i].root_bus;
358 struct pci_bus *next_bus;
359 struct pci_dev *dev;
361 list_for_each_entry(dev, &root_bus->devices, bus_list) {
363 * Find the PCI host controller, ie. the 1st
364 * bridge.
366 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
367 (PCI_SLOT(dev->devfn) == 0)) {
368 next_bus = dev->subordinate;
369 controllers[i].mem_resources[0] =
370 *next_bus->resource[0];
371 controllers[i].mem_resources[1] =
372 *next_bus->resource[1];
373 controllers[i].mem_resources[2] =
374 *next_bus->resource[2];
376 /* Setup flags. */
377 pci_scan_flags[i] = 1;
379 break;
385 return 0;
387 subsys_initcall(pcibios_init);
390 * No bus fixups needed.
392 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
394 /* Nothing needs to be done. */
398 * This can be called from the generic PCI layer, but doesn't need to
399 * do anything.
401 char __devinit *pcibios_setup(char *str)
403 /* Nothing needs to be done. */
404 return str;
408 * This is called from the generic Linux layer.
410 void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
412 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
416 * Enable memory and/or address decoding, as appropriate, for the
417 * device described by the 'dev' struct.
419 * This is called from the generic PCI layer, and can be called
420 * for bridges or endpoints.
422 int pcibios_enable_device(struct pci_dev *dev, int mask)
424 u16 cmd, old_cmd;
425 u8 header_type;
426 int i;
427 struct resource *r;
429 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
431 pci_read_config_word(dev, PCI_COMMAND, &cmd);
432 old_cmd = cmd;
433 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
435 * For bridges, we enable both memory and I/O decoding
436 * in call cases.
438 cmd |= PCI_COMMAND_IO;
439 cmd |= PCI_COMMAND_MEMORY;
440 } else {
442 * For endpoints, we enable memory and/or I/O decoding
443 * only if they have a memory resource of that type.
445 for (i = 0; i < 6; i++) {
446 r = &dev->resource[i];
447 if (r->flags & IORESOURCE_UNSET) {
448 pr_err("PCI: Device %s not available "
449 "because of resource collisions\n",
450 pci_name(dev));
451 return -EINVAL;
453 if (r->flags & IORESOURCE_IO)
454 cmd |= PCI_COMMAND_IO;
455 if (r->flags & IORESOURCE_MEM)
456 cmd |= PCI_COMMAND_MEMORY;
461 * We only write the command if it changed.
463 if (cmd != old_cmd)
464 pci_write_config_word(dev, PCI_COMMAND, cmd);
465 return 0;
468 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
470 unsigned long start = pci_resource_start(dev, bar);
471 unsigned long len = pci_resource_len(dev, bar);
472 unsigned long flags = pci_resource_flags(dev, bar);
474 if (!len)
475 return NULL;
476 if (max && len > max)
477 len = max;
479 if (!(flags & IORESOURCE_MEM)) {
480 pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
481 start = 0;
484 return (void __iomem *)start;
486 EXPORT_SYMBOL(pci_iomap);
489 /****************************************************************
491 * Tile PCI config space read/write routines
493 ****************************************************************/
496 * These are the normal read and write ops
497 * These are expanded with macros from pci_bus_read_config_byte() etc.
499 * devfn is the combined PCI slot & function.
501 * offset is in bytes, from the start of config space for the
502 * specified bus & slot.
505 static int __devinit tile_cfg_read(struct pci_bus *bus,
506 unsigned int devfn,
507 int offset,
508 int size,
509 u32 *val)
511 struct pci_controller *controller = bus->sysdata;
512 int busnum = bus->number & 0xff;
513 int slot = (devfn >> 3) & 0x1f;
514 int function = devfn & 0x7;
515 u32 addr;
516 int config_mode = 1;
519 * There is no bridge between the Tile and bus 0, so we
520 * use config0 to talk to bus 0.
522 * If we're talking to a bus other than zero then we
523 * must have found a bridge.
525 if (busnum == 0) {
527 * We fake an empty slot for (busnum == 0) && (slot > 0),
528 * since there is only one slot on bus 0.
530 if (slot) {
531 *val = 0xFFFFFFFF;
532 return 0;
534 config_mode = 0;
537 addr = busnum << 20; /* Bus in 27:20 */
538 addr |= slot << 15; /* Slot (device) in 19:15 */
539 addr |= function << 12; /* Function is in 14:12 */
540 addr |= (offset & 0xFFF); /* byte address in 0:11 */
542 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
543 (HV_VirtAddr)(val), size, addr);
548 * See tile_cfg_read() for relevant comments.
549 * Note that "val" is the value to write, not a pointer to that value.
551 static int __devinit tile_cfg_write(struct pci_bus *bus,
552 unsigned int devfn,
553 int offset,
554 int size,
555 u32 val)
557 struct pci_controller *controller = bus->sysdata;
558 int busnum = bus->number & 0xff;
559 int slot = (devfn >> 3) & 0x1f;
560 int function = devfn & 0x7;
561 u32 addr;
562 int config_mode = 1;
563 HV_VirtAddr valp = (HV_VirtAddr)&val;
566 * For bus 0 slot 0 we use config 0 accesses.
568 if (busnum == 0) {
570 * We fake an empty slot for (busnum == 0) && (slot > 0),
571 * since there is only one slot on bus 0.
573 if (slot)
574 return 0;
575 config_mode = 0;
578 addr = busnum << 20; /* Bus in 27:20 */
579 addr |= slot << 15; /* Slot (device) in 19:15 */
580 addr |= function << 12; /* Function is in 14:12 */
581 addr |= (offset & 0xFFF); /* byte address in 0:11 */
583 #ifdef __BIG_ENDIAN
584 /* Point to the correct part of the 32-bit "val". */
585 valp += 4 - size;
586 #endif
588 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
589 valp, size, addr);
593 static struct pci_ops tile_cfg_ops = {
594 .read = tile_cfg_read,
595 .write = tile_cfg_write,
600 * In the following, each PCI controller's mem_resources[1]
601 * represents its (non-prefetchable) PCI memory resource.
602 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
603 * prefetchable PCI memory resources, respectively.
604 * For more details, see pci_setup_bridge() in setup-bus.c.
605 * By comparing the target PCI memory address against the
606 * end address of controller 0, we can determine the controller
607 * that should accept the PCI memory access.
609 #define TILE_READ(size, type) \
610 type _tile_read##size(unsigned long addr) \
612 type val; \
613 int idx = 0; \
614 if (addr > controllers[0].mem_resources[1].end && \
615 addr > controllers[0].mem_resources[2].end) \
616 idx = 1; \
617 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
618 (HV_VirtAddr)(&val), sizeof(type), addr)) \
619 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
620 sizeof(type), addr); \
621 return val; \
623 EXPORT_SYMBOL(_tile_read##size)
625 TILE_READ(b, u8);
626 TILE_READ(w, u16);
627 TILE_READ(l, u32);
628 TILE_READ(q, u64);
630 #define TILE_WRITE(size, type) \
631 void _tile_write##size(type val, unsigned long addr) \
633 int idx = 0; \
634 if (addr > controllers[0].mem_resources[1].end && \
635 addr > controllers[0].mem_resources[2].end) \
636 idx = 1; \
637 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
638 (HV_VirtAddr)(&val), sizeof(type), addr)) \
639 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
640 sizeof(type), addr); \
642 EXPORT_SYMBOL(_tile_write##size)
644 TILE_WRITE(b, u8);
645 TILE_WRITE(w, u16);
646 TILE_WRITE(l, u32);
647 TILE_WRITE(q, u64);