2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
52 #include <asm/debugreg.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66 #define emul_to_vcpu(ctxt) \
67 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
75 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
77 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
85 struct kvm_cpuid_entry2 __user
*entries
);
87 struct kvm_x86_ops
*kvm_x86_ops
;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
91 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
93 bool kvm_has_tsc_control
;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
95 u32 kvm_max_guest_tsc_khz
;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
98 #define KVM_NR_SHARED_MSRS 16
100 struct kvm_shared_msrs_global
{
102 u32 msrs
[KVM_NR_SHARED_MSRS
];
105 struct kvm_shared_msrs
{
106 struct user_return_notifier urn
;
108 struct kvm_shared_msr_values
{
111 } values
[KVM_NR_SHARED_MSRS
];
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
117 struct kvm_stats_debugfs_item debugfs_entries
[] = {
118 { "pf_fixed", VCPU_STAT(pf_fixed
) },
119 { "pf_guest", VCPU_STAT(pf_guest
) },
120 { "tlb_flush", VCPU_STAT(tlb_flush
) },
121 { "invlpg", VCPU_STAT(invlpg
) },
122 { "exits", VCPU_STAT(exits
) },
123 { "io_exits", VCPU_STAT(io_exits
) },
124 { "mmio_exits", VCPU_STAT(mmio_exits
) },
125 { "signal_exits", VCPU_STAT(signal_exits
) },
126 { "irq_window", VCPU_STAT(irq_window_exits
) },
127 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
128 { "halt_exits", VCPU_STAT(halt_exits
) },
129 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
130 { "hypercalls", VCPU_STAT(hypercalls
) },
131 { "request_irq", VCPU_STAT(request_irq_exits
) },
132 { "irq_exits", VCPU_STAT(irq_exits
) },
133 { "host_state_reload", VCPU_STAT(host_state_reload
) },
134 { "efer_reload", VCPU_STAT(efer_reload
) },
135 { "fpu_reload", VCPU_STAT(fpu_reload
) },
136 { "insn_emulation", VCPU_STAT(insn_emulation
) },
137 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
138 { "irq_injections", VCPU_STAT(irq_injections
) },
139 { "nmi_injections", VCPU_STAT(nmi_injections
) },
140 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
141 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
142 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
143 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
144 { "mmu_flooded", VM_STAT(mmu_flooded
) },
145 { "mmu_recycled", VM_STAT(mmu_recycled
) },
146 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
147 { "mmu_unsync", VM_STAT(mmu_unsync
) },
148 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
149 { "largepages", VM_STAT(lpages
) },
153 u64 __read_mostly host_xcr0
;
155 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
160 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
161 vcpu
->arch
.apf
.gfns
[i
] = ~0;
164 static void kvm_on_user_return(struct user_return_notifier
*urn
)
167 struct kvm_shared_msrs
*locals
168 = container_of(urn
, struct kvm_shared_msrs
, urn
);
169 struct kvm_shared_msr_values
*values
;
171 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
172 values
= &locals
->values
[slot
];
173 if (values
->host
!= values
->curr
) {
174 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
175 values
->curr
= values
->host
;
178 locals
->registered
= false;
179 user_return_notifier_unregister(urn
);
182 static void shared_msr_update(unsigned slot
, u32 msr
)
184 struct kvm_shared_msrs
*smsr
;
187 smsr
= &__get_cpu_var(shared_msrs
);
188 /* only read, and nobody should modify it at this time,
189 * so don't need lock */
190 if (slot
>= shared_msrs_global
.nr
) {
191 printk(KERN_ERR
"kvm: invalid MSR slot!");
194 rdmsrl_safe(msr
, &value
);
195 smsr
->values
[slot
].host
= value
;
196 smsr
->values
[slot
].curr
= value
;
199 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
201 if (slot
>= shared_msrs_global
.nr
)
202 shared_msrs_global
.nr
= slot
+ 1;
203 shared_msrs_global
.msrs
[slot
] = msr
;
204 /* we need ensured the shared_msr_global have been updated */
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
209 static void kvm_shared_msr_cpu_online(void)
213 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
214 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
217 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
219 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
221 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
223 smsr
->values
[slot
].curr
= value
;
224 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
225 if (!smsr
->registered
) {
226 smsr
->urn
.on_user_return
= kvm_on_user_return
;
227 user_return_notifier_register(&smsr
->urn
);
228 smsr
->registered
= true;
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
233 static void drop_user_return_notifiers(void *ignore
)
235 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
237 if (smsr
->registered
)
238 kvm_on_user_return(&smsr
->urn
);
241 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
243 if (irqchip_in_kernel(vcpu
->kvm
))
244 return vcpu
->arch
.apic_base
;
246 return vcpu
->arch
.apic_base
;
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
250 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu
->kvm
))
254 kvm_lapic_set_base(vcpu
, data
);
256 vcpu
->arch
.apic_base
= data
;
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
264 static int exception_class(int vector
)
274 return EXCPT_CONTRIBUTORY
;
281 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
282 unsigned nr
, bool has_error
, u32 error_code
,
288 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
290 if (!vcpu
->arch
.exception
.pending
) {
292 vcpu
->arch
.exception
.pending
= true;
293 vcpu
->arch
.exception
.has_error_code
= has_error
;
294 vcpu
->arch
.exception
.nr
= nr
;
295 vcpu
->arch
.exception
.error_code
= error_code
;
296 vcpu
->arch
.exception
.reinject
= reinject
;
300 /* to check exception */
301 prev_nr
= vcpu
->arch
.exception
.nr
;
302 if (prev_nr
== DF_VECTOR
) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
307 class1
= exception_class(prev_nr
);
308 class2
= exception_class(nr
);
309 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
310 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu
->arch
.exception
.pending
= true;
313 vcpu
->arch
.exception
.has_error_code
= true;
314 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
315 vcpu
->arch
.exception
.error_code
= 0;
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
323 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
325 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
329 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
331 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
335 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
338 kvm_inject_gp(vcpu
, 0);
340 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
344 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
346 ++vcpu
->stat
.pf_guest
;
347 vcpu
->arch
.cr2
= fault
->address
;
348 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
352 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
354 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
355 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
357 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
360 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
362 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
363 vcpu
->arch
.nmi_pending
= 1;
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
367 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
369 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
373 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
375 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
385 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
387 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
390 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
398 gfn_t ngfn
, void *data
, int offset
, int len
,
404 ngpa
= gfn_to_gpa(ngfn
);
405 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
406 if (real_gfn
== UNMAPPED_GVA
)
409 real_gfn
= gpa_to_gfn(real_gfn
);
411 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
415 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
416 void *data
, int offset
, int len
, u32 access
)
418 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
419 data
, offset
, len
, access
);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
427 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
428 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
431 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
433 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
434 offset
* sizeof(u64
), sizeof(pdpte
),
435 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
440 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
441 if (is_present_gpte(pdpte
[i
]) &&
442 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
449 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
450 __set_bit(VCPU_EXREG_PDPTR
,
451 (unsigned long *)&vcpu
->arch
.regs_avail
);
452 __set_bit(VCPU_EXREG_PDPTR
,
453 (unsigned long *)&vcpu
->arch
.regs_dirty
);
458 EXPORT_SYMBOL_GPL(load_pdptrs
);
460 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
462 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
468 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
471 if (!test_bit(VCPU_EXREG_PDPTR
,
472 (unsigned long *)&vcpu
->arch
.regs_avail
))
475 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
476 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
477 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
478 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
481 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
487 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
489 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
490 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
491 X86_CR0_CD
| X86_CR0_NW
;
496 if (cr0
& 0xffffffff00000000UL
)
500 cr0
&= ~CR0_RESERVED_BITS
;
502 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
505 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
508 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
510 if ((vcpu
->arch
.efer
& EFER_LME
)) {
515 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
520 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
525 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
527 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
528 kvm_clear_async_pf_completion_queue(vcpu
);
529 kvm_async_pf_hash_reset(vcpu
);
532 if ((cr0
^ old_cr0
) & update_bits
)
533 kvm_mmu_reset_context(vcpu
);
536 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
538 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
540 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
542 EXPORT_SYMBOL_GPL(kvm_lmsw
);
544 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
548 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
549 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
552 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
554 if (!(xcr0
& XSTATE_FP
))
556 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
558 if (xcr0
& ~host_xcr0
)
560 vcpu
->arch
.xcr0
= xcr0
;
561 vcpu
->guest_xcr0_loaded
= 0;
565 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
567 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
568 kvm_inject_gp(vcpu
, 0);
573 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
577 struct kvm_cpuid_entry2
*best
;
579 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
580 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
583 static bool guest_cpuid_has_smep(struct kvm_vcpu
*vcpu
)
585 struct kvm_cpuid_entry2
*best
;
587 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
588 return best
&& (best
->ebx
& bit(X86_FEATURE_SMEP
));
591 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu
*vcpu
)
593 struct kvm_cpuid_entry2
*best
;
595 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
596 return best
&& (best
->ebx
& bit(X86_FEATURE_FSGSBASE
));
599 static void update_cpuid(struct kvm_vcpu
*vcpu
)
601 struct kvm_cpuid_entry2
*best
;
603 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
607 /* Update OSXSAVE bit */
608 if (cpu_has_xsave
&& best
->function
== 0x1) {
609 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
610 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
611 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
615 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
617 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
618 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
619 X86_CR4_PAE
| X86_CR4_SMEP
;
620 if (cr4
& CR4_RESERVED_BITS
)
623 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
626 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
629 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
632 if (is_long_mode(vcpu
)) {
633 if (!(cr4
& X86_CR4_PAE
))
635 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
636 && ((cr4
^ old_cr4
) & pdptr_bits
)
637 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
641 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
644 if ((cr4
^ old_cr4
) & pdptr_bits
)
645 kvm_mmu_reset_context(vcpu
);
647 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
652 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
654 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
656 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
657 kvm_mmu_sync_roots(vcpu
);
658 kvm_mmu_flush_tlb(vcpu
);
662 if (is_long_mode(vcpu
)) {
663 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
667 if (cr3
& CR3_PAE_RESERVED_BITS
)
669 if (is_paging(vcpu
) &&
670 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
674 * We don't check reserved bits in nonpae mode, because
675 * this isn't enforced, and VMware depends on this.
680 * Does the new cr3 value map to physical memory? (Note, we
681 * catch an invalid cr3 even in real-mode, because it would
682 * cause trouble later on when we turn on paging anyway.)
684 * A real CPU would silently accept an invalid cr3 and would
685 * attempt to use it - with largely undefined (and often hard
686 * to debug) behavior on the guest side.
688 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
690 vcpu
->arch
.cr3
= cr3
;
691 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
692 vcpu
->arch
.mmu
.new_cr3(vcpu
);
695 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
697 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
699 if (cr8
& CR8_RESERVED_BITS
)
701 if (irqchip_in_kernel(vcpu
->kvm
))
702 kvm_lapic_set_tpr(vcpu
, cr8
);
704 vcpu
->arch
.cr8
= cr8
;
707 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
709 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
711 if (irqchip_in_kernel(vcpu
->kvm
))
712 return kvm_lapic_get_cr8(vcpu
);
714 return vcpu
->arch
.cr8
;
716 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
718 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
722 vcpu
->arch
.db
[dr
] = val
;
723 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
724 vcpu
->arch
.eff_db
[dr
] = val
;
727 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
731 if (val
& 0xffffffff00000000ULL
)
733 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
736 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
740 if (val
& 0xffffffff00000000ULL
)
742 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
743 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
744 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
745 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
753 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
757 res
= __kvm_set_dr(vcpu
, dr
, val
);
759 kvm_queue_exception(vcpu
, UD_VECTOR
);
761 kvm_inject_gp(vcpu
, 0);
765 EXPORT_SYMBOL_GPL(kvm_set_dr
);
767 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
771 *val
= vcpu
->arch
.db
[dr
];
774 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
778 *val
= vcpu
->arch
.dr6
;
781 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
785 *val
= vcpu
->arch
.dr7
;
792 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
794 if (_kvm_get_dr(vcpu
, dr
, val
)) {
795 kvm_queue_exception(vcpu
, UD_VECTOR
);
800 EXPORT_SYMBOL_GPL(kvm_get_dr
);
803 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
804 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
806 * This list is modified at module load time to reflect the
807 * capabilities of the host cpu. This capabilities test skips MSRs that are
808 * kvm-specific. Those are put in the beginning of the list.
811 #define KVM_SAVE_MSRS_BEGIN 9
812 static u32 msrs_to_save
[] = {
813 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
814 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
815 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
816 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
817 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
820 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
822 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
825 static unsigned num_msrs_to_save
;
827 static u32 emulated_msrs
[] = {
828 MSR_IA32_MISC_ENABLE
,
833 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
835 u64 old_efer
= vcpu
->arch
.efer
;
837 if (efer
& efer_reserved_bits
)
841 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
844 if (efer
& EFER_FFXSR
) {
845 struct kvm_cpuid_entry2
*feat
;
847 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
848 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
852 if (efer
& EFER_SVME
) {
853 struct kvm_cpuid_entry2
*feat
;
855 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
856 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
861 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
863 kvm_x86_ops
->set_efer(vcpu
, efer
);
865 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
867 /* Update reserved bits */
868 if ((efer
^ old_efer
) & EFER_NX
)
869 kvm_mmu_reset_context(vcpu
);
874 void kvm_enable_efer_bits(u64 mask
)
876 efer_reserved_bits
&= ~mask
;
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
886 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
888 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
892 * Adapt set_msr() to msr_io()'s calling convention
894 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
896 return kvm_set_msr(vcpu
, index
, *data
);
899 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
903 struct pvclock_wall_clock wc
;
904 struct timespec boot
;
909 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
914 ++version
; /* first time write, random junk */
918 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
928 wc
.sec
= boot
.tv_sec
;
929 wc
.nsec
= boot
.tv_nsec
;
930 wc
.version
= version
;
932 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
935 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
938 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
940 uint32_t quotient
, remainder
;
942 /* Don't try to replace with do_div(), this one calculates
943 * "(dividend << 32) / divisor" */
945 : "=a" (quotient
), "=d" (remainder
)
946 : "0" (0), "1" (dividend
), "r" (divisor
) );
950 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
951 s8
*pshift
, u32
*pmultiplier
)
958 tps64
= base_khz
* 1000LL;
959 scaled64
= scaled_khz
* 1000LL;
960 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
965 tps32
= (uint32_t)tps64
;
966 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
967 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
975 *pmultiplier
= div_frac(scaled64
, tps32
);
977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
981 static inline u64
get_kernel_ns(void)
985 WARN_ON(preemptible());
987 monotonic_to_bootbased(&ts
);
988 return timespec_to_ns(&ts
);
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
992 unsigned long max_tsc_khz
;
994 static inline int kvm_tsc_changes_freq(void)
997 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
998 cpufreq_quick_get(cpu
) != 0;
1003 static u64
vcpu_tsc_khz(struct kvm_vcpu
*vcpu
)
1005 if (vcpu
->arch
.virtual_tsc_khz
)
1006 return vcpu
->arch
.virtual_tsc_khz
;
1008 return __this_cpu_read(cpu_tsc_khz
);
1011 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1015 WARN_ON(preemptible());
1016 if (kvm_tsc_changes_freq())
1017 printk_once(KERN_WARNING
1018 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1019 ret
= nsec
* vcpu_tsc_khz(vcpu
);
1020 do_div(ret
, USEC_PER_SEC
);
1024 static void kvm_init_tsc_catchup(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1026 /* Compute a scale to convert nanoseconds in TSC cycles */
1027 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1028 &vcpu
->arch
.tsc_catchup_shift
,
1029 &vcpu
->arch
.tsc_catchup_mult
);
1032 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1034 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1035 vcpu
->arch
.tsc_catchup_mult
,
1036 vcpu
->arch
.tsc_catchup_shift
);
1037 tsc
+= vcpu
->arch
.last_tsc_write
;
1041 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1043 struct kvm
*kvm
= vcpu
->kvm
;
1044 u64 offset
, ns
, elapsed
;
1045 unsigned long flags
;
1048 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1049 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1050 ns
= get_kernel_ns();
1051 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1052 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1057 * Special case: close write to TSC within 5 seconds of
1058 * another CPU is interpreted as an attempt to synchronize
1059 * The 5 seconds is to accommodate host load / swapping as
1060 * well as any reset of TSC during the boot process.
1062 * In that case, for a reliable TSC, we can match TSC offsets,
1063 * or make a best guest using elapsed value.
1065 if (sdiff
< nsec_to_cycles(vcpu
, 5ULL * NSEC_PER_SEC
) &&
1066 elapsed
< 5ULL * NSEC_PER_SEC
) {
1067 if (!check_tsc_unstable()) {
1068 offset
= kvm
->arch
.last_tsc_offset
;
1069 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1071 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1073 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1075 ns
= kvm
->arch
.last_tsc_nsec
;
1077 kvm
->arch
.last_tsc_nsec
= ns
;
1078 kvm
->arch
.last_tsc_write
= data
;
1079 kvm
->arch
.last_tsc_offset
= offset
;
1080 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1081 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1083 /* Reset of TSC must disable overshoot protection below */
1084 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1085 vcpu
->arch
.last_tsc_write
= data
;
1086 vcpu
->arch
.last_tsc_nsec
= ns
;
1088 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1090 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1092 unsigned long flags
;
1093 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1095 unsigned long this_tsc_khz
;
1096 s64 kernel_ns
, max_kernel_ns
;
1099 /* Keep irq disabled to prevent changes to the clock */
1100 local_irq_save(flags
);
1101 kvm_get_msr(v
, MSR_IA32_TSC
, &tsc_timestamp
);
1102 kernel_ns
= get_kernel_ns();
1103 this_tsc_khz
= vcpu_tsc_khz(v
);
1104 if (unlikely(this_tsc_khz
== 0)) {
1105 local_irq_restore(flags
);
1106 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1111 * We may have to catch up the TSC to match elapsed wall clock
1112 * time for two reasons, even if kvmclock is used.
1113 * 1) CPU could have been running below the maximum TSC rate
1114 * 2) Broken TSC compensation resets the base at each VCPU
1115 * entry to avoid unknown leaps of TSC even when running
1116 * again on the same CPU. This may cause apparent elapsed
1117 * time to disappear, and the guest to stand still or run
1120 if (vcpu
->tsc_catchup
) {
1121 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1122 if (tsc
> tsc_timestamp
) {
1123 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1124 tsc_timestamp
= tsc
;
1128 local_irq_restore(flags
);
1130 if (!vcpu
->time_page
)
1134 * Time as measured by the TSC may go backwards when resetting the base
1135 * tsc_timestamp. The reason for this is that the TSC resolution is
1136 * higher than the resolution of the other clock scales. Thus, many
1137 * possible measurments of the TSC correspond to one measurement of any
1138 * other clock, and so a spread of values is possible. This is not a
1139 * problem for the computation of the nanosecond clock; with TSC rates
1140 * around 1GHZ, there can only be a few cycles which correspond to one
1141 * nanosecond value, and any path through this code will inevitably
1142 * take longer than that. However, with the kernel_ns value itself,
1143 * the precision may be much lower, down to HZ granularity. If the
1144 * first sampling of TSC against kernel_ns ends in the low part of the
1145 * range, and the second in the high end of the range, we can get:
1147 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1149 * As the sampling errors potentially range in the thousands of cycles,
1150 * it is possible such a time value has already been observed by the
1151 * guest. To protect against this, we must compute the system time as
1152 * observed by the guest and ensure the new system time is greater.
1155 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1156 max_kernel_ns
= vcpu
->last_guest_tsc
-
1157 vcpu
->hv_clock
.tsc_timestamp
;
1158 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1159 vcpu
->hv_clock
.tsc_to_system_mul
,
1160 vcpu
->hv_clock
.tsc_shift
);
1161 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1164 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1165 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1166 &vcpu
->hv_clock
.tsc_shift
,
1167 &vcpu
->hv_clock
.tsc_to_system_mul
);
1168 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1171 if (max_kernel_ns
> kernel_ns
)
1172 kernel_ns
= max_kernel_ns
;
1174 /* With all the info we got, fill in the values */
1175 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1176 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1177 vcpu
->last_kernel_ns
= kernel_ns
;
1178 vcpu
->last_guest_tsc
= tsc_timestamp
;
1179 vcpu
->hv_clock
.flags
= 0;
1182 * The interface expects us to write an even number signaling that the
1183 * update is finished. Since the guest won't see the intermediate
1184 * state, we just increase by 2 at the end.
1186 vcpu
->hv_clock
.version
+= 2;
1188 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1190 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1191 sizeof(vcpu
->hv_clock
));
1193 kunmap_atomic(shared_kaddr
, KM_USER0
);
1195 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1199 static bool msr_mtrr_valid(unsigned msr
)
1202 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1203 case MSR_MTRRfix64K_00000
:
1204 case MSR_MTRRfix16K_80000
:
1205 case MSR_MTRRfix16K_A0000
:
1206 case MSR_MTRRfix4K_C0000
:
1207 case MSR_MTRRfix4K_C8000
:
1208 case MSR_MTRRfix4K_D0000
:
1209 case MSR_MTRRfix4K_D8000
:
1210 case MSR_MTRRfix4K_E0000
:
1211 case MSR_MTRRfix4K_E8000
:
1212 case MSR_MTRRfix4K_F0000
:
1213 case MSR_MTRRfix4K_F8000
:
1214 case MSR_MTRRdefType
:
1215 case MSR_IA32_CR_PAT
:
1223 static bool valid_pat_type(unsigned t
)
1225 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1228 static bool valid_mtrr_type(unsigned t
)
1230 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1233 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1237 if (!msr_mtrr_valid(msr
))
1240 if (msr
== MSR_IA32_CR_PAT
) {
1241 for (i
= 0; i
< 8; i
++)
1242 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1245 } else if (msr
== MSR_MTRRdefType
) {
1248 return valid_mtrr_type(data
& 0xff);
1249 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1250 for (i
= 0; i
< 8 ; i
++)
1251 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1256 /* variable MTRRs */
1257 return valid_mtrr_type(data
& 0xff);
1260 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1262 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1264 if (!mtrr_valid(vcpu
, msr
, data
))
1267 if (msr
== MSR_MTRRdefType
) {
1268 vcpu
->arch
.mtrr_state
.def_type
= data
;
1269 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1270 } else if (msr
== MSR_MTRRfix64K_00000
)
1272 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1273 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1274 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1275 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1276 else if (msr
== MSR_IA32_CR_PAT
)
1277 vcpu
->arch
.pat
= data
;
1278 else { /* Variable MTRRs */
1279 int idx
, is_mtrr_mask
;
1282 idx
= (msr
- 0x200) / 2;
1283 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1286 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1289 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1293 kvm_mmu_reset_context(vcpu
);
1297 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1299 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1300 unsigned bank_num
= mcg_cap
& 0xff;
1303 case MSR_IA32_MCG_STATUS
:
1304 vcpu
->arch
.mcg_status
= data
;
1306 case MSR_IA32_MCG_CTL
:
1307 if (!(mcg_cap
& MCG_CTL_P
))
1309 if (data
!= 0 && data
!= ~(u64
)0)
1311 vcpu
->arch
.mcg_ctl
= data
;
1314 if (msr
>= MSR_IA32_MC0_CTL
&&
1315 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1316 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1317 /* only 0 or all 1s can be written to IA32_MCi_CTL
1318 * some Linux kernels though clear bit 10 in bank 4 to
1319 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1320 * this to avoid an uncatched #GP in the guest
1322 if ((offset
& 0x3) == 0 &&
1323 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1325 vcpu
->arch
.mce_banks
[offset
] = data
;
1333 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1335 struct kvm
*kvm
= vcpu
->kvm
;
1336 int lm
= is_long_mode(vcpu
);
1337 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1338 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1339 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1340 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1341 u32 page_num
= data
& ~PAGE_MASK
;
1342 u64 page_addr
= data
& PAGE_MASK
;
1347 if (page_num
>= blob_size
)
1350 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1354 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1356 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1365 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1367 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1370 static bool kvm_hv_msr_partition_wide(u32 msr
)
1374 case HV_X64_MSR_GUEST_OS_ID
:
1375 case HV_X64_MSR_HYPERCALL
:
1383 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1385 struct kvm
*kvm
= vcpu
->kvm
;
1388 case HV_X64_MSR_GUEST_OS_ID
:
1389 kvm
->arch
.hv_guest_os_id
= data
;
1390 /* setting guest os id to zero disables hypercall page */
1391 if (!kvm
->arch
.hv_guest_os_id
)
1392 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1394 case HV_X64_MSR_HYPERCALL
: {
1399 /* if guest os id is not set hypercall should remain disabled */
1400 if (!kvm
->arch
.hv_guest_os_id
)
1402 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1403 kvm
->arch
.hv_hypercall
= data
;
1406 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1407 addr
= gfn_to_hva(kvm
, gfn
);
1408 if (kvm_is_error_hva(addr
))
1410 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1411 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1412 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1414 kvm
->arch
.hv_hypercall
= data
;
1418 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1419 "data 0x%llx\n", msr
, data
);
1425 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1428 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1431 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1432 vcpu
->arch
.hv_vapic
= data
;
1435 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1436 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1437 if (kvm_is_error_hva(addr
))
1439 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1441 vcpu
->arch
.hv_vapic
= data
;
1444 case HV_X64_MSR_EOI
:
1445 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1446 case HV_X64_MSR_ICR
:
1447 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1448 case HV_X64_MSR_TPR
:
1449 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1451 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1452 "data 0x%llx\n", msr
, data
);
1459 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1461 gpa_t gpa
= data
& ~0x3f;
1463 /* Bits 2:5 are resrved, Should be zero */
1467 vcpu
->arch
.apf
.msr_val
= data
;
1469 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1470 kvm_clear_async_pf_completion_queue(vcpu
);
1471 kvm_async_pf_hash_reset(vcpu
);
1475 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1478 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1479 kvm_async_pf_wakeup_all(vcpu
);
1483 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1485 if (vcpu
->arch
.time_page
) {
1486 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1487 vcpu
->arch
.time_page
= NULL
;
1491 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1495 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1498 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1499 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1500 vcpu
->arch
.st
.accum_steal
= delta
;
1503 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1505 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1508 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1509 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1512 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1513 vcpu
->arch
.st
.steal
.version
+= 2;
1514 vcpu
->arch
.st
.accum_steal
= 0;
1516 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1517 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1520 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1524 return set_efer(vcpu
, data
);
1526 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1527 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1529 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1534 case MSR_FAM10H_MMIO_CONF_BASE
:
1536 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1541 case MSR_AMD64_NB_CFG
:
1543 case MSR_IA32_DEBUGCTLMSR
:
1545 /* We support the non-activated case already */
1547 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1548 /* Values other than LBR and BTF are vendor-specific,
1549 thus reserved and should throw a #GP */
1552 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1555 case MSR_IA32_UCODE_REV
:
1556 case MSR_IA32_UCODE_WRITE
:
1557 case MSR_VM_HSAVE_PA
:
1558 case MSR_AMD64_PATCH_LOADER
:
1560 case 0x200 ... 0x2ff:
1561 return set_msr_mtrr(vcpu
, msr
, data
);
1562 case MSR_IA32_APICBASE
:
1563 kvm_set_apic_base(vcpu
, data
);
1565 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1566 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1567 case MSR_IA32_MISC_ENABLE
:
1568 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1570 case MSR_KVM_WALL_CLOCK_NEW
:
1571 case MSR_KVM_WALL_CLOCK
:
1572 vcpu
->kvm
->arch
.wall_clock
= data
;
1573 kvm_write_wall_clock(vcpu
->kvm
, data
);
1575 case MSR_KVM_SYSTEM_TIME_NEW
:
1576 case MSR_KVM_SYSTEM_TIME
: {
1577 kvmclock_reset(vcpu
);
1579 vcpu
->arch
.time
= data
;
1580 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1582 /* we verify if the enable bit is set... */
1586 /* ...but clean it before doing the actual write */
1587 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1589 vcpu
->arch
.time_page
=
1590 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1592 if (is_error_page(vcpu
->arch
.time_page
)) {
1593 kvm_release_page_clean(vcpu
->arch
.time_page
);
1594 vcpu
->arch
.time_page
= NULL
;
1598 case MSR_KVM_ASYNC_PF_EN
:
1599 if (kvm_pv_enable_async_pf(vcpu
, data
))
1602 case MSR_KVM_STEAL_TIME
:
1604 if (unlikely(!sched_info_on()))
1607 if (data
& KVM_STEAL_RESERVED_MASK
)
1610 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1611 data
& KVM_STEAL_VALID_BITS
))
1614 vcpu
->arch
.st
.msr_val
= data
;
1616 if (!(data
& KVM_MSR_ENABLED
))
1619 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1622 accumulate_steal_time(vcpu
);
1625 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1629 case MSR_IA32_MCG_CTL
:
1630 case MSR_IA32_MCG_STATUS
:
1631 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1632 return set_msr_mce(vcpu
, msr
, data
);
1634 /* Performance counters are not protected by a CPUID bit,
1635 * so we should check all of them in the generic path for the sake of
1636 * cross vendor migration.
1637 * Writing a zero into the event select MSRs disables them,
1638 * which we perfectly emulate ;-). Any other value should be at least
1639 * reported, some guests depend on them.
1641 case MSR_P6_EVNTSEL0
:
1642 case MSR_P6_EVNTSEL1
:
1643 case MSR_K7_EVNTSEL0
:
1644 case MSR_K7_EVNTSEL1
:
1645 case MSR_K7_EVNTSEL2
:
1646 case MSR_K7_EVNTSEL3
:
1648 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1649 "0x%x data 0x%llx\n", msr
, data
);
1651 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1652 * so we ignore writes to make it happy.
1654 case MSR_P6_PERFCTR0
:
1655 case MSR_P6_PERFCTR1
:
1656 case MSR_K7_PERFCTR0
:
1657 case MSR_K7_PERFCTR1
:
1658 case MSR_K7_PERFCTR2
:
1659 case MSR_K7_PERFCTR3
:
1660 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1661 "0x%x data 0x%llx\n", msr
, data
);
1663 case MSR_K7_CLK_CTL
:
1665 * Ignore all writes to this no longer documented MSR.
1666 * Writes are only relevant for old K7 processors,
1667 * all pre-dating SVM, but a recommended workaround from
1668 * AMD for these chips. It is possible to speicify the
1669 * affected processor models on the command line, hence
1670 * the need to ignore the workaround.
1673 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1674 if (kvm_hv_msr_partition_wide(msr
)) {
1676 mutex_lock(&vcpu
->kvm
->lock
);
1677 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1678 mutex_unlock(&vcpu
->kvm
->lock
);
1681 return set_msr_hyperv(vcpu
, msr
, data
);
1683 case MSR_IA32_BBL_CR_CTL3
:
1684 /* Drop writes to this legacy MSR -- see rdmsr
1685 * counterpart for further detail.
1687 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1690 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1691 return xen_hvm_config(vcpu
, data
);
1693 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1697 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1704 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1708 * Reads an msr value (of 'msr_index') into 'pdata'.
1709 * Returns 0 on success, non-0 otherwise.
1710 * Assumes vcpu_load() was already called.
1712 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1714 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1717 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1719 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1721 if (!msr_mtrr_valid(msr
))
1724 if (msr
== MSR_MTRRdefType
)
1725 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1726 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1727 else if (msr
== MSR_MTRRfix64K_00000
)
1729 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1730 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1731 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1732 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1733 else if (msr
== MSR_IA32_CR_PAT
)
1734 *pdata
= vcpu
->arch
.pat
;
1735 else { /* Variable MTRRs */
1736 int idx
, is_mtrr_mask
;
1739 idx
= (msr
- 0x200) / 2;
1740 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1743 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1746 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1753 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1756 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1757 unsigned bank_num
= mcg_cap
& 0xff;
1760 case MSR_IA32_P5_MC_ADDR
:
1761 case MSR_IA32_P5_MC_TYPE
:
1764 case MSR_IA32_MCG_CAP
:
1765 data
= vcpu
->arch
.mcg_cap
;
1767 case MSR_IA32_MCG_CTL
:
1768 if (!(mcg_cap
& MCG_CTL_P
))
1770 data
= vcpu
->arch
.mcg_ctl
;
1772 case MSR_IA32_MCG_STATUS
:
1773 data
= vcpu
->arch
.mcg_status
;
1776 if (msr
>= MSR_IA32_MC0_CTL
&&
1777 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1778 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1779 data
= vcpu
->arch
.mce_banks
[offset
];
1788 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1791 struct kvm
*kvm
= vcpu
->kvm
;
1794 case HV_X64_MSR_GUEST_OS_ID
:
1795 data
= kvm
->arch
.hv_guest_os_id
;
1797 case HV_X64_MSR_HYPERCALL
:
1798 data
= kvm
->arch
.hv_hypercall
;
1801 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1809 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1814 case HV_X64_MSR_VP_INDEX
: {
1817 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1822 case HV_X64_MSR_EOI
:
1823 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1824 case HV_X64_MSR_ICR
:
1825 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1826 case HV_X64_MSR_TPR
:
1827 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1829 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1836 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1841 case MSR_IA32_PLATFORM_ID
:
1842 case MSR_IA32_UCODE_REV
:
1843 case MSR_IA32_EBL_CR_POWERON
:
1844 case MSR_IA32_DEBUGCTLMSR
:
1845 case MSR_IA32_LASTBRANCHFROMIP
:
1846 case MSR_IA32_LASTBRANCHTOIP
:
1847 case MSR_IA32_LASTINTFROMIP
:
1848 case MSR_IA32_LASTINTTOIP
:
1851 case MSR_VM_HSAVE_PA
:
1852 case MSR_P6_PERFCTR0
:
1853 case MSR_P6_PERFCTR1
:
1854 case MSR_P6_EVNTSEL0
:
1855 case MSR_P6_EVNTSEL1
:
1856 case MSR_K7_EVNTSEL0
:
1857 case MSR_K7_PERFCTR0
:
1858 case MSR_K8_INT_PENDING_MSG
:
1859 case MSR_AMD64_NB_CFG
:
1860 case MSR_FAM10H_MMIO_CONF_BASE
:
1864 data
= 0x500 | KVM_NR_VAR_MTRR
;
1866 case 0x200 ... 0x2ff:
1867 return get_msr_mtrr(vcpu
, msr
, pdata
);
1868 case 0xcd: /* fsb frequency */
1872 * MSR_EBC_FREQUENCY_ID
1873 * Conservative value valid for even the basic CPU models.
1874 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876 * and 266MHz for model 3, or 4. Set Core Clock
1877 * Frequency to System Bus Frequency Ratio to 1 (bits
1878 * 31:24) even though these are only valid for CPU
1879 * models > 2, however guests may end up dividing or
1880 * multiplying by zero otherwise.
1882 case MSR_EBC_FREQUENCY_ID
:
1885 case MSR_IA32_APICBASE
:
1886 data
= kvm_get_apic_base(vcpu
);
1888 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1889 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1891 case MSR_IA32_MISC_ENABLE
:
1892 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1894 case MSR_IA32_PERF_STATUS
:
1895 /* TSC increment by tick */
1897 /* CPU multiplier */
1898 data
|= (((uint64_t)4ULL) << 40);
1901 data
= vcpu
->arch
.efer
;
1903 case MSR_KVM_WALL_CLOCK
:
1904 case MSR_KVM_WALL_CLOCK_NEW
:
1905 data
= vcpu
->kvm
->arch
.wall_clock
;
1907 case MSR_KVM_SYSTEM_TIME
:
1908 case MSR_KVM_SYSTEM_TIME_NEW
:
1909 data
= vcpu
->arch
.time
;
1911 case MSR_KVM_ASYNC_PF_EN
:
1912 data
= vcpu
->arch
.apf
.msr_val
;
1914 case MSR_KVM_STEAL_TIME
:
1915 data
= vcpu
->arch
.st
.msr_val
;
1917 case MSR_IA32_P5_MC_ADDR
:
1918 case MSR_IA32_P5_MC_TYPE
:
1919 case MSR_IA32_MCG_CAP
:
1920 case MSR_IA32_MCG_CTL
:
1921 case MSR_IA32_MCG_STATUS
:
1922 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1923 return get_msr_mce(vcpu
, msr
, pdata
);
1924 case MSR_K7_CLK_CTL
:
1926 * Provide expected ramp-up count for K7. All other
1927 * are set to zero, indicating minimum divisors for
1930 * This prevents guest kernels on AMD host with CPU
1931 * type 6, model 8 and higher from exploding due to
1932 * the rdmsr failing.
1936 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1937 if (kvm_hv_msr_partition_wide(msr
)) {
1939 mutex_lock(&vcpu
->kvm
->lock
);
1940 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1941 mutex_unlock(&vcpu
->kvm
->lock
);
1944 return get_msr_hyperv(vcpu
, msr
, pdata
);
1946 case MSR_IA32_BBL_CR_CTL3
:
1947 /* This legacy MSR exists but isn't fully documented in current
1948 * silicon. It is however accessed by winxp in very narrow
1949 * scenarios where it sets bit #19, itself documented as
1950 * a "reserved" bit. Best effort attempt to source coherent
1951 * read data here should the balance of the register be
1952 * interpreted by the guest:
1954 * L2 cache control register 3: 64GB range, 256KB size,
1955 * enabled, latency 0x1, configured
1961 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1964 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1972 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1975 * Read or write a bunch of msrs. All parameters are kernel addresses.
1977 * @return number of msrs set successfully.
1979 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1980 struct kvm_msr_entry
*entries
,
1981 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1982 unsigned index
, u64
*data
))
1986 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1987 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1988 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1990 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1996 * Read or write a bunch of msrs. Parameters are user addresses.
1998 * @return number of msrs set successfully.
2000 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2001 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2002 unsigned index
, u64
*data
),
2005 struct kvm_msrs msrs
;
2006 struct kvm_msr_entry
*entries
;
2011 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2015 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2019 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2020 entries
= kmalloc(size
, GFP_KERNEL
);
2025 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2028 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2033 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2044 int kvm_dev_ioctl_check_extension(long ext
)
2049 case KVM_CAP_IRQCHIP
:
2051 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2052 case KVM_CAP_SET_TSS_ADDR
:
2053 case KVM_CAP_EXT_CPUID
:
2054 case KVM_CAP_CLOCKSOURCE
:
2056 case KVM_CAP_NOP_IO_DELAY
:
2057 case KVM_CAP_MP_STATE
:
2058 case KVM_CAP_SYNC_MMU
:
2059 case KVM_CAP_USER_NMI
:
2060 case KVM_CAP_REINJECT_CONTROL
:
2061 case KVM_CAP_IRQ_INJECT_STATUS
:
2062 case KVM_CAP_ASSIGN_DEV_IRQ
:
2064 case KVM_CAP_IOEVENTFD
:
2066 case KVM_CAP_PIT_STATE2
:
2067 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2068 case KVM_CAP_XEN_HVM
:
2069 case KVM_CAP_ADJUST_CLOCK
:
2070 case KVM_CAP_VCPU_EVENTS
:
2071 case KVM_CAP_HYPERV
:
2072 case KVM_CAP_HYPERV_VAPIC
:
2073 case KVM_CAP_HYPERV_SPIN
:
2074 case KVM_CAP_PCI_SEGMENT
:
2075 case KVM_CAP_DEBUGREGS
:
2076 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2078 case KVM_CAP_ASYNC_PF
:
2079 case KVM_CAP_GET_TSC_KHZ
:
2082 case KVM_CAP_COALESCED_MMIO
:
2083 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2086 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2088 case KVM_CAP_NR_VCPUS
:
2091 case KVM_CAP_NR_MEMSLOTS
:
2092 r
= KVM_MEMORY_SLOTS
;
2094 case KVM_CAP_PV_MMU
: /* obsolete */
2101 r
= KVM_MAX_MCE_BANKS
;
2106 case KVM_CAP_TSC_CONTROL
:
2107 r
= kvm_has_tsc_control
;
2117 long kvm_arch_dev_ioctl(struct file
*filp
,
2118 unsigned int ioctl
, unsigned long arg
)
2120 void __user
*argp
= (void __user
*)arg
;
2124 case KVM_GET_MSR_INDEX_LIST
: {
2125 struct kvm_msr_list __user
*user_msr_list
= argp
;
2126 struct kvm_msr_list msr_list
;
2130 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2133 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2134 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2137 if (n
< msr_list
.nmsrs
)
2140 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2141 num_msrs_to_save
* sizeof(u32
)))
2143 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2145 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2150 case KVM_GET_SUPPORTED_CPUID
: {
2151 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2152 struct kvm_cpuid2 cpuid
;
2155 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2157 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2158 cpuid_arg
->entries
);
2163 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2168 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2171 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2173 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2185 static void wbinvd_ipi(void *garbage
)
2190 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2192 return vcpu
->kvm
->arch
.iommu_domain
&&
2193 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2196 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2198 /* Address WBINVD may be executed by guest */
2199 if (need_emulate_wbinvd(vcpu
)) {
2200 if (kvm_x86_ops
->has_wbinvd_exit())
2201 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2202 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2203 smp_call_function_single(vcpu
->cpu
,
2204 wbinvd_ipi
, NULL
, 1);
2207 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2208 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2209 /* Make sure TSC doesn't go backwards */
2213 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &tsc
);
2214 tsc_delta
= !vcpu
->arch
.last_guest_tsc
? 0 :
2215 tsc
- vcpu
->arch
.last_guest_tsc
;
2218 mark_tsc_unstable("KVM discovered backwards TSC");
2219 if (check_tsc_unstable()) {
2220 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2221 vcpu
->arch
.tsc_catchup
= 1;
2223 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2224 if (vcpu
->cpu
!= cpu
)
2225 kvm_migrate_timers(vcpu
);
2229 accumulate_steal_time(vcpu
);
2230 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2233 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2235 kvm_x86_ops
->vcpu_put(vcpu
);
2236 kvm_put_guest_fpu(vcpu
);
2237 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &vcpu
->arch
.last_guest_tsc
);
2240 static int is_efer_nx(void)
2242 unsigned long long efer
= 0;
2244 rdmsrl_safe(MSR_EFER
, &efer
);
2245 return efer
& EFER_NX
;
2248 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2251 struct kvm_cpuid_entry2
*e
, *entry
;
2254 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2255 e
= &vcpu
->arch
.cpuid_entries
[i
];
2256 if (e
->function
== 0x80000001) {
2261 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
2262 entry
->edx
&= ~(1 << 20);
2263 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2267 /* when an old userspace process fills a new kernel module */
2268 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2269 struct kvm_cpuid
*cpuid
,
2270 struct kvm_cpuid_entry __user
*entries
)
2273 struct kvm_cpuid_entry
*cpuid_entries
;
2276 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2279 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
2283 if (copy_from_user(cpuid_entries
, entries
,
2284 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2286 for (i
= 0; i
< cpuid
->nent
; i
++) {
2287 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
2288 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
2289 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
2290 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
2291 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
2292 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
2293 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
2294 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
2295 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
2296 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
2298 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2299 cpuid_fix_nx_cap(vcpu
);
2301 kvm_apic_set_version(vcpu
);
2302 kvm_x86_ops
->cpuid_update(vcpu
);
2306 vfree(cpuid_entries
);
2311 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
2312 struct kvm_cpuid2
*cpuid
,
2313 struct kvm_cpuid_entry2 __user
*entries
)
2318 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2321 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
2322 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
2324 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2325 kvm_apic_set_version(vcpu
);
2326 kvm_x86_ops
->cpuid_update(vcpu
);
2334 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
2335 struct kvm_cpuid2
*cpuid
,
2336 struct kvm_cpuid_entry2 __user
*entries
)
2341 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
2344 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
2345 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
2350 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
2354 static void cpuid_mask(u32
*word
, int wordnum
)
2356 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
2359 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2362 entry
->function
= function
;
2363 entry
->index
= index
;
2364 cpuid_count(entry
->function
, entry
->index
,
2365 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
2369 static bool supported_xcr0_bit(unsigned bit
)
2371 u64 mask
= ((u64
)1 << bit
);
2373 return mask
& (XSTATE_FP
| XSTATE_SSE
| XSTATE_YMM
) & host_xcr0
;
2376 #define F(x) bit(X86_FEATURE_##x)
2378 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2379 u32 index
, int *nent
, int maxnent
)
2381 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
2382 #ifdef CONFIG_X86_64
2383 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
2385 unsigned f_lm
= F(LM
);
2387 unsigned f_gbpages
= 0;
2390 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
2393 const u32 kvm_supported_word0_x86_features
=
2394 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2395 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2396 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
2397 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2398 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
2399 0 /* Reserved, DS, ACPI */ | F(MMX
) |
2400 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
2401 0 /* HTT, TM, Reserved, PBE */;
2402 /* cpuid 0x80000001.edx */
2403 const u32 kvm_supported_word1_x86_features
=
2404 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2405 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2406 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
2407 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2408 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
2409 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
2410 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
2411 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
2413 const u32 kvm_supported_word4_x86_features
=
2414 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
2415 0 /* DS-CPL, VMX, SMX, EST */ |
2416 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2417 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
2418 0 /* Reserved, DCA */ | F(XMM4_1
) |
2419 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
2420 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
2421 F(F16C
) | F(RDRAND
);
2422 /* cpuid 0x80000001.ecx */
2423 const u32 kvm_supported_word6_x86_features
=
2424 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2425 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
2426 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
2427 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
2429 /* cpuid 0xC0000001.edx */
2430 const u32 kvm_supported_word5_x86_features
=
2431 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
2432 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
2436 const u32 kvm_supported_word9_x86_features
=
2437 F(SMEP
) | F(FSGSBASE
) | F(ERMS
);
2439 /* all calls to cpuid_count() should be made on the same cpu */
2441 do_cpuid_1_ent(entry
, function
, index
);
2446 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2449 entry
->edx
&= kvm_supported_word0_x86_features
;
2450 cpuid_mask(&entry
->edx
, 0);
2451 entry
->ecx
&= kvm_supported_word4_x86_features
;
2452 cpuid_mask(&entry
->ecx
, 4);
2453 /* we support x2apic emulation even if host does not support
2454 * it since we emulate x2apic in software */
2455 entry
->ecx
|= F(X2APIC
);
2457 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2458 * may return different values. This forces us to get_cpu() before
2459 * issuing the first command, and also to emulate this annoying behavior
2460 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2462 int t
, times
= entry
->eax
& 0xff;
2464 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2465 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2466 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2467 do_cpuid_1_ent(&entry
[t
], function
, 0);
2468 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2473 /* function 4 has additional index. */
2477 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2478 /* read more entries until cache_type is zero */
2479 for (i
= 1; *nent
< maxnent
; ++i
) {
2480 cache_type
= entry
[i
- 1].eax
& 0x1f;
2483 do_cpuid_1_ent(&entry
[i
], function
, i
);
2485 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2491 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2492 /* Mask ebx against host capbability word 9 */
2494 entry
->ebx
&= kvm_supported_word9_x86_features
;
2495 cpuid_mask(&entry
->ebx
, 9);
2505 /* function 0xb has additional index. */
2509 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2510 /* read more entries until level_type is zero */
2511 for (i
= 1; *nent
< maxnent
; ++i
) {
2512 level_type
= entry
[i
- 1].ecx
& 0xff00;
2515 do_cpuid_1_ent(&entry
[i
], function
, i
);
2517 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2525 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2526 for (idx
= 1, i
= 1; *nent
< maxnent
&& idx
< 64; ++idx
) {
2527 do_cpuid_1_ent(&entry
[i
], function
, idx
);
2528 if (entry
[i
].eax
== 0 || !supported_xcr0_bit(idx
))
2531 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2537 case KVM_CPUID_SIGNATURE
: {
2538 char signature
[12] = "KVMKVMKVM\0\0";
2539 u32
*sigptr
= (u32
*)signature
;
2541 entry
->ebx
= sigptr
[0];
2542 entry
->ecx
= sigptr
[1];
2543 entry
->edx
= sigptr
[2];
2546 case KVM_CPUID_FEATURES
:
2547 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2548 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2549 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2550 (1 << KVM_FEATURE_ASYNC_PF
) |
2551 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2553 if (sched_info_on())
2554 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
2561 entry
->eax
= min(entry
->eax
, 0x8000001a);
2564 entry
->edx
&= kvm_supported_word1_x86_features
;
2565 cpuid_mask(&entry
->edx
, 1);
2566 entry
->ecx
&= kvm_supported_word6_x86_features
;
2567 cpuid_mask(&entry
->ecx
, 6);
2570 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
2571 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
2572 unsigned phys_as
= entry
->eax
& 0xff;
2575 g_phys_as
= phys_as
;
2576 entry
->eax
= g_phys_as
| (virt_as
<< 8);
2577 entry
->ebx
= entry
->edx
= 0;
2581 entry
->ecx
= entry
->edx
= 0;
2587 /*Add support for Centaur's CPUID instruction*/
2589 /*Just support up to 0xC0000004 now*/
2590 entry
->eax
= min(entry
->eax
, 0xC0000004);
2593 entry
->edx
&= kvm_supported_word5_x86_features
;
2594 cpuid_mask(&entry
->edx
, 5);
2596 case 3: /* Processor serial number */
2597 case 5: /* MONITOR/MWAIT */
2598 case 6: /* Thermal management */
2599 case 0xA: /* Architectural Performance Monitoring */
2600 case 0x80000007: /* Advanced power management */
2605 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
2609 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2616 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2617 struct kvm_cpuid_entry2 __user
*entries
)
2619 struct kvm_cpuid_entry2
*cpuid_entries
;
2620 int limit
, nent
= 0, r
= -E2BIG
;
2623 if (cpuid
->nent
< 1)
2625 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2626 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2628 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2632 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2633 limit
= cpuid_entries
[0].eax
;
2634 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2635 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2636 &nent
, cpuid
->nent
);
2638 if (nent
>= cpuid
->nent
)
2641 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2642 limit
= cpuid_entries
[nent
- 1].eax
;
2643 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2644 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2645 &nent
, cpuid
->nent
);
2650 if (nent
>= cpuid
->nent
)
2653 /* Add support for Centaur's CPUID instruction. */
2654 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
) {
2655 do_cpuid_ent(&cpuid_entries
[nent
], 0xC0000000, 0,
2656 &nent
, cpuid
->nent
);
2659 if (nent
>= cpuid
->nent
)
2662 limit
= cpuid_entries
[nent
- 1].eax
;
2663 for (func
= 0xC0000001;
2664 func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2665 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2666 &nent
, cpuid
->nent
);
2669 if (nent
>= cpuid
->nent
)
2673 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2677 if (nent
>= cpuid
->nent
)
2680 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2684 if (nent
>= cpuid
->nent
)
2688 if (copy_to_user(entries
, cpuid_entries
,
2689 nent
* sizeof(struct kvm_cpuid_entry2
)))
2695 vfree(cpuid_entries
);
2700 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2701 struct kvm_lapic_state
*s
)
2703 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2708 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2709 struct kvm_lapic_state
*s
)
2711 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2712 kvm_apic_post_state_restore(vcpu
);
2713 update_cr8_intercept(vcpu
);
2718 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2719 struct kvm_interrupt
*irq
)
2721 if (irq
->irq
< 0 || irq
->irq
>= 256)
2723 if (irqchip_in_kernel(vcpu
->kvm
))
2726 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2727 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2732 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2734 kvm_inject_nmi(vcpu
);
2739 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2740 struct kvm_tpr_access_ctl
*tac
)
2744 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2748 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2752 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2755 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2757 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2760 vcpu
->arch
.mcg_cap
= mcg_cap
;
2761 /* Init IA32_MCG_CTL to all 1s */
2762 if (mcg_cap
& MCG_CTL_P
)
2763 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2764 /* Init IA32_MCi_CTL to all 1s */
2765 for (bank
= 0; bank
< bank_num
; bank
++)
2766 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2771 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2772 struct kvm_x86_mce
*mce
)
2774 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2775 unsigned bank_num
= mcg_cap
& 0xff;
2776 u64
*banks
= vcpu
->arch
.mce_banks
;
2778 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2781 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2782 * reporting is disabled
2784 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2785 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2787 banks
+= 4 * mce
->bank
;
2789 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2790 * reporting is disabled for the bank
2792 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2794 if (mce
->status
& MCI_STATUS_UC
) {
2795 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2796 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2797 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2800 if (banks
[1] & MCI_STATUS_VAL
)
2801 mce
->status
|= MCI_STATUS_OVER
;
2802 banks
[2] = mce
->addr
;
2803 banks
[3] = mce
->misc
;
2804 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2805 banks
[1] = mce
->status
;
2806 kvm_queue_exception(vcpu
, MC_VECTOR
);
2807 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2808 || !(banks
[1] & MCI_STATUS_UC
)) {
2809 if (banks
[1] & MCI_STATUS_VAL
)
2810 mce
->status
|= MCI_STATUS_OVER
;
2811 banks
[2] = mce
->addr
;
2812 banks
[3] = mce
->misc
;
2813 banks
[1] = mce
->status
;
2815 banks
[1] |= MCI_STATUS_OVER
;
2819 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2820 struct kvm_vcpu_events
*events
)
2822 events
->exception
.injected
=
2823 vcpu
->arch
.exception
.pending
&&
2824 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2825 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2826 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2827 events
->exception
.pad
= 0;
2828 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2830 events
->interrupt
.injected
=
2831 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2832 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2833 events
->interrupt
.soft
= 0;
2834 events
->interrupt
.shadow
=
2835 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2836 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2838 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2839 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
;
2840 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2841 events
->nmi
.pad
= 0;
2843 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2845 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2846 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2847 | KVM_VCPUEVENT_VALID_SHADOW
);
2848 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2851 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2852 struct kvm_vcpu_events
*events
)
2854 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2855 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2856 | KVM_VCPUEVENT_VALID_SHADOW
))
2859 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2860 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2861 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2862 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2864 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2865 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2866 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2867 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2868 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2869 events
->interrupt
.shadow
);
2871 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2872 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2873 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2874 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2876 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2877 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2879 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2884 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2885 struct kvm_debugregs
*dbgregs
)
2887 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2888 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2889 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2891 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2894 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2895 struct kvm_debugregs
*dbgregs
)
2900 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2901 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2902 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2907 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2908 struct kvm_xsave
*guest_xsave
)
2911 memcpy(guest_xsave
->region
,
2912 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2915 memcpy(guest_xsave
->region
,
2916 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2917 sizeof(struct i387_fxsave_struct
));
2918 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2923 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2924 struct kvm_xsave
*guest_xsave
)
2927 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2930 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2931 guest_xsave
->region
, xstate_size
);
2933 if (xstate_bv
& ~XSTATE_FPSSE
)
2935 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2936 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2941 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2942 struct kvm_xcrs
*guest_xcrs
)
2944 if (!cpu_has_xsave
) {
2945 guest_xcrs
->nr_xcrs
= 0;
2949 guest_xcrs
->nr_xcrs
= 1;
2950 guest_xcrs
->flags
= 0;
2951 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2952 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2955 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2956 struct kvm_xcrs
*guest_xcrs
)
2963 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2966 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2967 /* Only support XCR0 currently */
2968 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2969 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2970 guest_xcrs
->xcrs
[0].value
);
2978 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2979 unsigned int ioctl
, unsigned long arg
)
2981 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2982 void __user
*argp
= (void __user
*)arg
;
2985 struct kvm_lapic_state
*lapic
;
2986 struct kvm_xsave
*xsave
;
2987 struct kvm_xcrs
*xcrs
;
2993 case KVM_GET_LAPIC
: {
2995 if (!vcpu
->arch
.apic
)
2997 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3002 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3006 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3011 case KVM_SET_LAPIC
: {
3013 if (!vcpu
->arch
.apic
)
3015 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3020 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
3022 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3028 case KVM_INTERRUPT
: {
3029 struct kvm_interrupt irq
;
3032 if (copy_from_user(&irq
, argp
, sizeof irq
))
3034 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3041 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3047 case KVM_SET_CPUID
: {
3048 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3049 struct kvm_cpuid cpuid
;
3052 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3054 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3059 case KVM_SET_CPUID2
: {
3060 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3061 struct kvm_cpuid2 cpuid
;
3064 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3066 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3067 cpuid_arg
->entries
);
3072 case KVM_GET_CPUID2
: {
3073 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3074 struct kvm_cpuid2 cpuid
;
3077 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3079 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3080 cpuid_arg
->entries
);
3084 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3090 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3093 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3095 case KVM_TPR_ACCESS_REPORTING
: {
3096 struct kvm_tpr_access_ctl tac
;
3099 if (copy_from_user(&tac
, argp
, sizeof tac
))
3101 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3105 if (copy_to_user(argp
, &tac
, sizeof tac
))
3110 case KVM_SET_VAPIC_ADDR
: {
3111 struct kvm_vapic_addr va
;
3114 if (!irqchip_in_kernel(vcpu
->kvm
))
3117 if (copy_from_user(&va
, argp
, sizeof va
))
3120 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3123 case KVM_X86_SETUP_MCE
: {
3127 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3129 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3132 case KVM_X86_SET_MCE
: {
3133 struct kvm_x86_mce mce
;
3136 if (copy_from_user(&mce
, argp
, sizeof mce
))
3138 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3141 case KVM_GET_VCPU_EVENTS
: {
3142 struct kvm_vcpu_events events
;
3144 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3147 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3152 case KVM_SET_VCPU_EVENTS
: {
3153 struct kvm_vcpu_events events
;
3156 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3159 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3162 case KVM_GET_DEBUGREGS
: {
3163 struct kvm_debugregs dbgregs
;
3165 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3168 if (copy_to_user(argp
, &dbgregs
,
3169 sizeof(struct kvm_debugregs
)))
3174 case KVM_SET_DEBUGREGS
: {
3175 struct kvm_debugregs dbgregs
;
3178 if (copy_from_user(&dbgregs
, argp
,
3179 sizeof(struct kvm_debugregs
)))
3182 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3185 case KVM_GET_XSAVE
: {
3186 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3191 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3194 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3199 case KVM_SET_XSAVE
: {
3200 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3206 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
3209 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3212 case KVM_GET_XCRS
: {
3213 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3218 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3221 if (copy_to_user(argp
, u
.xcrs
,
3222 sizeof(struct kvm_xcrs
)))
3227 case KVM_SET_XCRS
: {
3228 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3234 if (copy_from_user(u
.xcrs
, argp
,
3235 sizeof(struct kvm_xcrs
)))
3238 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3241 case KVM_SET_TSC_KHZ
: {
3245 if (!kvm_has_tsc_control
)
3248 user_tsc_khz
= (u32
)arg
;
3250 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3253 kvm_x86_ops
->set_tsc_khz(vcpu
, user_tsc_khz
);
3258 case KVM_GET_TSC_KHZ
: {
3260 if (check_tsc_unstable())
3263 r
= vcpu_tsc_khz(vcpu
);
3275 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3279 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3281 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3285 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3288 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3292 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3293 u32 kvm_nr_mmu_pages
)
3295 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3298 mutex_lock(&kvm
->slots_lock
);
3299 spin_lock(&kvm
->mmu_lock
);
3301 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3302 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3304 spin_unlock(&kvm
->mmu_lock
);
3305 mutex_unlock(&kvm
->slots_lock
);
3309 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3311 return kvm
->arch
.n_max_mmu_pages
;
3314 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3319 switch (chip
->chip_id
) {
3320 case KVM_IRQCHIP_PIC_MASTER
:
3321 memcpy(&chip
->chip
.pic
,
3322 &pic_irqchip(kvm
)->pics
[0],
3323 sizeof(struct kvm_pic_state
));
3325 case KVM_IRQCHIP_PIC_SLAVE
:
3326 memcpy(&chip
->chip
.pic
,
3327 &pic_irqchip(kvm
)->pics
[1],
3328 sizeof(struct kvm_pic_state
));
3330 case KVM_IRQCHIP_IOAPIC
:
3331 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3340 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3345 switch (chip
->chip_id
) {
3346 case KVM_IRQCHIP_PIC_MASTER
:
3347 spin_lock(&pic_irqchip(kvm
)->lock
);
3348 memcpy(&pic_irqchip(kvm
)->pics
[0],
3350 sizeof(struct kvm_pic_state
));
3351 spin_unlock(&pic_irqchip(kvm
)->lock
);
3353 case KVM_IRQCHIP_PIC_SLAVE
:
3354 spin_lock(&pic_irqchip(kvm
)->lock
);
3355 memcpy(&pic_irqchip(kvm
)->pics
[1],
3357 sizeof(struct kvm_pic_state
));
3358 spin_unlock(&pic_irqchip(kvm
)->lock
);
3360 case KVM_IRQCHIP_IOAPIC
:
3361 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3367 kvm_pic_update_irq(pic_irqchip(kvm
));
3371 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3375 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3376 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3377 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3381 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3385 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3386 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3387 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3388 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3392 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3396 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3397 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3398 sizeof(ps
->channels
));
3399 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3400 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3401 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3405 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3407 int r
= 0, start
= 0;
3408 u32 prev_legacy
, cur_legacy
;
3409 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3410 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3411 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3412 if (!prev_legacy
&& cur_legacy
)
3414 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3415 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3416 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3417 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3418 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3422 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3423 struct kvm_reinject_control
*control
)
3425 if (!kvm
->arch
.vpit
)
3427 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3428 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
3429 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3434 * Get (and clear) the dirty memory log for a memory slot.
3436 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3437 struct kvm_dirty_log
*log
)
3440 struct kvm_memory_slot
*memslot
;
3442 unsigned long is_dirty
= 0;
3444 mutex_lock(&kvm
->slots_lock
);
3447 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3450 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
3452 if (!memslot
->dirty_bitmap
)
3455 n
= kvm_dirty_bitmap_bytes(memslot
);
3457 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
3458 is_dirty
= memslot
->dirty_bitmap
[i
];
3460 /* If nothing is dirty, don't bother messing with page tables. */
3462 struct kvm_memslots
*slots
, *old_slots
;
3463 unsigned long *dirty_bitmap
;
3465 dirty_bitmap
= memslot
->dirty_bitmap_head
;
3466 if (memslot
->dirty_bitmap
== dirty_bitmap
)
3467 dirty_bitmap
+= n
/ sizeof(long);
3468 memset(dirty_bitmap
, 0, n
);
3471 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
3474 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
3475 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
3476 slots
->generation
++;
3478 old_slots
= kvm
->memslots
;
3479 rcu_assign_pointer(kvm
->memslots
, slots
);
3480 synchronize_srcu_expedited(&kvm
->srcu
);
3481 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
3484 spin_lock(&kvm
->mmu_lock
);
3485 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
3486 spin_unlock(&kvm
->mmu_lock
);
3489 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3493 if (clear_user(log
->dirty_bitmap
, n
))
3499 mutex_unlock(&kvm
->slots_lock
);
3503 long kvm_arch_vm_ioctl(struct file
*filp
,
3504 unsigned int ioctl
, unsigned long arg
)
3506 struct kvm
*kvm
= filp
->private_data
;
3507 void __user
*argp
= (void __user
*)arg
;
3510 * This union makes it completely explicit to gcc-3.x
3511 * that these two variables' stack usage should be
3512 * combined, not added together.
3515 struct kvm_pit_state ps
;
3516 struct kvm_pit_state2 ps2
;
3517 struct kvm_pit_config pit_config
;
3521 case KVM_SET_TSS_ADDR
:
3522 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3526 case KVM_SET_IDENTITY_MAP_ADDR
: {
3530 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3532 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3537 case KVM_SET_NR_MMU_PAGES
:
3538 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3542 case KVM_GET_NR_MMU_PAGES
:
3543 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3545 case KVM_CREATE_IRQCHIP
: {
3546 struct kvm_pic
*vpic
;
3548 mutex_lock(&kvm
->lock
);
3551 goto create_irqchip_unlock
;
3553 vpic
= kvm_create_pic(kvm
);
3555 r
= kvm_ioapic_init(kvm
);
3557 mutex_lock(&kvm
->slots_lock
);
3558 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3560 mutex_unlock(&kvm
->slots_lock
);
3562 goto create_irqchip_unlock
;
3565 goto create_irqchip_unlock
;
3567 kvm
->arch
.vpic
= vpic
;
3569 r
= kvm_setup_default_irq_routing(kvm
);
3571 mutex_lock(&kvm
->slots_lock
);
3572 mutex_lock(&kvm
->irq_lock
);
3573 kvm_ioapic_destroy(kvm
);
3574 kvm_destroy_pic(kvm
);
3575 mutex_unlock(&kvm
->irq_lock
);
3576 mutex_unlock(&kvm
->slots_lock
);
3578 create_irqchip_unlock
:
3579 mutex_unlock(&kvm
->lock
);
3582 case KVM_CREATE_PIT
:
3583 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3585 case KVM_CREATE_PIT2
:
3587 if (copy_from_user(&u
.pit_config
, argp
,
3588 sizeof(struct kvm_pit_config
)))
3591 mutex_lock(&kvm
->slots_lock
);
3594 goto create_pit_unlock
;
3596 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3600 mutex_unlock(&kvm
->slots_lock
);
3602 case KVM_IRQ_LINE_STATUS
:
3603 case KVM_IRQ_LINE
: {
3604 struct kvm_irq_level irq_event
;
3607 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3610 if (irqchip_in_kernel(kvm
)) {
3612 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3613 irq_event
.irq
, irq_event
.level
);
3614 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3616 irq_event
.status
= status
;
3617 if (copy_to_user(argp
, &irq_event
,
3625 case KVM_GET_IRQCHIP
: {
3626 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3627 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3633 if (copy_from_user(chip
, argp
, sizeof *chip
))
3634 goto get_irqchip_out
;
3636 if (!irqchip_in_kernel(kvm
))
3637 goto get_irqchip_out
;
3638 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3640 goto get_irqchip_out
;
3642 if (copy_to_user(argp
, chip
, sizeof *chip
))
3643 goto get_irqchip_out
;
3651 case KVM_SET_IRQCHIP
: {
3652 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3653 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3659 if (copy_from_user(chip
, argp
, sizeof *chip
))
3660 goto set_irqchip_out
;
3662 if (!irqchip_in_kernel(kvm
))
3663 goto set_irqchip_out
;
3664 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3666 goto set_irqchip_out
;
3676 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3679 if (!kvm
->arch
.vpit
)
3681 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3685 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3692 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3695 if (!kvm
->arch
.vpit
)
3697 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3703 case KVM_GET_PIT2
: {
3705 if (!kvm
->arch
.vpit
)
3707 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3711 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3716 case KVM_SET_PIT2
: {
3718 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3721 if (!kvm
->arch
.vpit
)
3723 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3729 case KVM_REINJECT_CONTROL
: {
3730 struct kvm_reinject_control control
;
3732 if (copy_from_user(&control
, argp
, sizeof(control
)))
3734 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3740 case KVM_XEN_HVM_CONFIG
: {
3742 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3743 sizeof(struct kvm_xen_hvm_config
)))
3746 if (kvm
->arch
.xen_hvm_config
.flags
)
3751 case KVM_SET_CLOCK
: {
3752 struct kvm_clock_data user_ns
;
3757 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3765 local_irq_disable();
3766 now_ns
= get_kernel_ns();
3767 delta
= user_ns
.clock
- now_ns
;
3769 kvm
->arch
.kvmclock_offset
= delta
;
3772 case KVM_GET_CLOCK
: {
3773 struct kvm_clock_data user_ns
;
3776 local_irq_disable();
3777 now_ns
= get_kernel_ns();
3778 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3781 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3784 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3797 static void kvm_init_msr_list(void)
3802 /* skip the first msrs in the list. KVM-specific */
3803 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3804 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3807 msrs_to_save
[j
] = msrs_to_save
[i
];
3810 num_msrs_to_save
= j
;
3813 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3821 if (!(vcpu
->arch
.apic
&&
3822 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3823 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3834 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3841 if (!(vcpu
->arch
.apic
&&
3842 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3843 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3845 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3855 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3856 struct kvm_segment
*var
, int seg
)
3858 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3861 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3862 struct kvm_segment
*var
, int seg
)
3864 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3867 static gpa_t
translate_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3872 static gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3875 struct x86_exception exception
;
3877 BUG_ON(!mmu_is_nested(vcpu
));
3879 /* NPT walks are always user-walks */
3880 access
|= PFERR_USER_MASK
;
3881 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3886 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3887 struct x86_exception
*exception
)
3889 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3890 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3893 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3894 struct x86_exception
*exception
)
3896 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3897 access
|= PFERR_FETCH_MASK
;
3898 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3901 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3902 struct x86_exception
*exception
)
3904 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3905 access
|= PFERR_WRITE_MASK
;
3906 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3909 /* uses this to access any guest's mapped memory without checking CPL */
3910 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3911 struct x86_exception
*exception
)
3913 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3916 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3917 struct kvm_vcpu
*vcpu
, u32 access
,
3918 struct x86_exception
*exception
)
3921 int r
= X86EMUL_CONTINUE
;
3924 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3926 unsigned offset
= addr
& (PAGE_SIZE
-1);
3927 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3930 if (gpa
== UNMAPPED_GVA
)
3931 return X86EMUL_PROPAGATE_FAULT
;
3932 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3934 r
= X86EMUL_IO_NEEDED
;
3946 /* used for instruction fetching */
3947 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3948 gva_t addr
, void *val
, unsigned int bytes
,
3949 struct x86_exception
*exception
)
3951 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3952 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3954 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3955 access
| PFERR_FETCH_MASK
,
3959 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3960 gva_t addr
, void *val
, unsigned int bytes
,
3961 struct x86_exception
*exception
)
3963 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3964 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3966 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3971 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3972 gva_t addr
, void *val
, unsigned int bytes
,
3973 struct x86_exception
*exception
)
3975 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3976 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3979 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3980 gva_t addr
, void *val
,
3982 struct x86_exception
*exception
)
3984 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3986 int r
= X86EMUL_CONTINUE
;
3989 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3992 unsigned offset
= addr
& (PAGE_SIZE
-1);
3993 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3996 if (gpa
== UNMAPPED_GVA
)
3997 return X86EMUL_PROPAGATE_FAULT
;
3998 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4000 r
= X86EMUL_IO_NEEDED
;
4011 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4013 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4014 gpa_t
*gpa
, struct x86_exception
*exception
,
4017 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4019 if (vcpu_match_mmio_gva(vcpu
, gva
) &&
4020 check_write_user_access(vcpu
, write
, access
,
4021 vcpu
->arch
.access
)) {
4022 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4023 (gva
& (PAGE_SIZE
- 1));
4024 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4029 access
|= PFERR_WRITE_MASK
;
4031 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4033 if (*gpa
== UNMAPPED_GVA
)
4036 /* For APIC access vmexit */
4037 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4040 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4041 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4048 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4052 struct x86_exception
*exception
)
4054 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4058 if (vcpu
->mmio_read_completed
) {
4059 memcpy(val
, vcpu
->mmio_data
, bytes
);
4060 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4061 vcpu
->mmio_phys_addr
, *(u64
*)val
);
4062 vcpu
->mmio_read_completed
= 0;
4063 return X86EMUL_CONTINUE
;
4066 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, false);
4069 return X86EMUL_PROPAGATE_FAULT
;
4074 if (kvm_read_guest_virt(ctxt
, addr
, val
, bytes
, exception
)
4075 == X86EMUL_CONTINUE
)
4076 return X86EMUL_CONTINUE
;
4080 * Is this MMIO handled locally?
4082 handled
= vcpu_mmio_read(vcpu
, gpa
, bytes
, val
);
4084 if (handled
== bytes
)
4085 return X86EMUL_CONTINUE
;
4091 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4093 vcpu
->mmio_needed
= 1;
4094 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4095 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
4096 vcpu
->mmio_size
= bytes
;
4097 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
4098 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 0;
4099 vcpu
->mmio_index
= 0;
4101 return X86EMUL_IO_NEEDED
;
4104 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4105 const void *val
, int bytes
)
4109 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4112 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
4116 static int emulator_write_emulated_onepage(unsigned long addr
,
4119 struct x86_exception
*exception
,
4120 struct kvm_vcpu
*vcpu
)
4125 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, true);
4128 return X86EMUL_PROPAGATE_FAULT
;
4130 /* For APIC access vmexit */
4134 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
4135 return X86EMUL_CONTINUE
;
4138 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4140 * Is this MMIO handled locally?
4142 handled
= vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4143 if (handled
== bytes
)
4144 return X86EMUL_CONTINUE
;
4150 vcpu
->mmio_needed
= 1;
4151 memcpy(vcpu
->mmio_data
, val
, bytes
);
4152 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4153 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
4154 vcpu
->mmio_size
= bytes
;
4155 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
4156 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= 1;
4157 memcpy(vcpu
->run
->mmio
.data
, vcpu
->mmio_data
, 8);
4158 vcpu
->mmio_index
= 0;
4160 return X86EMUL_CONTINUE
;
4163 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4167 struct x86_exception
*exception
)
4169 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4171 /* Crossing a page boundary? */
4172 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4175 now
= -addr
& ~PAGE_MASK
;
4176 rc
= emulator_write_emulated_onepage(addr
, val
, now
, exception
,
4178 if (rc
!= X86EMUL_CONTINUE
)
4184 return emulator_write_emulated_onepage(addr
, val
, bytes
, exception
,
4188 #define CMPXCHG_TYPE(t, ptr, old, new) \
4189 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4191 #ifdef CONFIG_X86_64
4192 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4194 # define CMPXCHG64(ptr, old, new) \
4195 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4198 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4203 struct x86_exception
*exception
)
4205 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4211 /* guests cmpxchg8b have to be emulated atomically */
4212 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4215 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4217 if (gpa
== UNMAPPED_GVA
||
4218 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4221 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4224 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4225 if (is_error_page(page
)) {
4226 kvm_release_page_clean(page
);
4230 kaddr
= kmap_atomic(page
, KM_USER0
);
4231 kaddr
+= offset_in_page(gpa
);
4234 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4237 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4240 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4243 exchanged
= CMPXCHG64(kaddr
, old
, new);
4248 kunmap_atomic(kaddr
, KM_USER0
);
4249 kvm_release_page_dirty(page
);
4252 return X86EMUL_CMPXCHG_FAILED
;
4254 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
4256 return X86EMUL_CONTINUE
;
4259 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4261 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4264 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4266 /* TODO: String I/O for in kernel device */
4269 if (vcpu
->arch
.pio
.in
)
4270 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4271 vcpu
->arch
.pio
.size
, pd
);
4273 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4274 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4280 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4281 int size
, unsigned short port
, void *val
,
4284 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4286 if (vcpu
->arch
.pio
.count
)
4289 trace_kvm_pio(0, port
, size
, count
);
4291 vcpu
->arch
.pio
.port
= port
;
4292 vcpu
->arch
.pio
.in
= 1;
4293 vcpu
->arch
.pio
.count
= count
;
4294 vcpu
->arch
.pio
.size
= size
;
4296 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4298 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4299 vcpu
->arch
.pio
.count
= 0;
4303 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4304 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
4305 vcpu
->run
->io
.size
= size
;
4306 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4307 vcpu
->run
->io
.count
= count
;
4308 vcpu
->run
->io
.port
= port
;
4313 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4314 int size
, unsigned short port
,
4315 const void *val
, unsigned int count
)
4317 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4319 trace_kvm_pio(1, port
, size
, count
);
4321 vcpu
->arch
.pio
.port
= port
;
4322 vcpu
->arch
.pio
.in
= 0;
4323 vcpu
->arch
.pio
.count
= count
;
4324 vcpu
->arch
.pio
.size
= size
;
4326 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4328 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4329 vcpu
->arch
.pio
.count
= 0;
4333 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4334 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
4335 vcpu
->run
->io
.size
= size
;
4336 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4337 vcpu
->run
->io
.count
= count
;
4338 vcpu
->run
->io
.port
= port
;
4343 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4345 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4348 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4350 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4353 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4355 if (!need_emulate_wbinvd(vcpu
))
4356 return X86EMUL_CONTINUE
;
4358 if (kvm_x86_ops
->has_wbinvd_exit()) {
4359 int cpu
= get_cpu();
4361 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4362 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4363 wbinvd_ipi
, NULL
, 1);
4365 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4368 return X86EMUL_CONTINUE
;
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4372 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4374 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4377 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4379 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4382 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4385 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4388 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4390 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4395 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4396 unsigned long value
;
4400 value
= kvm_read_cr0(vcpu
);
4403 value
= vcpu
->arch
.cr2
;
4406 value
= kvm_read_cr3(vcpu
);
4409 value
= kvm_read_cr4(vcpu
);
4412 value
= kvm_get_cr8(vcpu
);
4415 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4422 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4424 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4429 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4432 vcpu
->arch
.cr2
= val
;
4435 res
= kvm_set_cr3(vcpu
, val
);
4438 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4441 res
= kvm_set_cr8(vcpu
, val
);
4444 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4451 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4453 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4456 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4458 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4461 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4463 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4466 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4468 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4471 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4473 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4476 static unsigned long emulator_get_cached_segment_base(
4477 struct x86_emulate_ctxt
*ctxt
, int seg
)
4479 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4482 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4483 struct desc_struct
*desc
, u32
*base3
,
4486 struct kvm_segment var
;
4488 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4489 *selector
= var
.selector
;
4496 set_desc_limit(desc
, var
.limit
);
4497 set_desc_base(desc
, (unsigned long)var
.base
);
4498 #ifdef CONFIG_X86_64
4500 *base3
= var
.base
>> 32;
4502 desc
->type
= var
.type
;
4504 desc
->dpl
= var
.dpl
;
4505 desc
->p
= var
.present
;
4506 desc
->avl
= var
.avl
;
4514 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4515 struct desc_struct
*desc
, u32 base3
,
4518 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4519 struct kvm_segment var
;
4521 var
.selector
= selector
;
4522 var
.base
= get_desc_base(desc
);
4523 #ifdef CONFIG_X86_64
4524 var
.base
|= ((u64
)base3
) << 32;
4526 var
.limit
= get_desc_limit(desc
);
4528 var
.limit
= (var
.limit
<< 12) | 0xfff;
4529 var
.type
= desc
->type
;
4530 var
.present
= desc
->p
;
4531 var
.dpl
= desc
->dpl
;
4536 var
.avl
= desc
->avl
;
4537 var
.present
= desc
->p
;
4538 var
.unusable
= !var
.present
;
4541 kvm_set_segment(vcpu
, &var
, seg
);
4545 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4546 u32 msr_index
, u64
*pdata
)
4548 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4551 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4552 u32 msr_index
, u64 data
)
4554 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4557 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4559 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4562 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4565 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4567 * CR0.TS may reference the host fpu state, not the guest fpu state,
4568 * so it may be clear at this point.
4573 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4578 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4579 struct x86_instruction_info
*info
,
4580 enum x86_intercept_stage stage
)
4582 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4585 static struct x86_emulate_ops emulate_ops
= {
4586 .read_std
= kvm_read_guest_virt_system
,
4587 .write_std
= kvm_write_guest_virt_system
,
4588 .fetch
= kvm_fetch_guest_virt
,
4589 .read_emulated
= emulator_read_emulated
,
4590 .write_emulated
= emulator_write_emulated
,
4591 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4592 .invlpg
= emulator_invlpg
,
4593 .pio_in_emulated
= emulator_pio_in_emulated
,
4594 .pio_out_emulated
= emulator_pio_out_emulated
,
4595 .get_segment
= emulator_get_segment
,
4596 .set_segment
= emulator_set_segment
,
4597 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4598 .get_gdt
= emulator_get_gdt
,
4599 .get_idt
= emulator_get_idt
,
4600 .set_gdt
= emulator_set_gdt
,
4601 .set_idt
= emulator_set_idt
,
4602 .get_cr
= emulator_get_cr
,
4603 .set_cr
= emulator_set_cr
,
4604 .cpl
= emulator_get_cpl
,
4605 .get_dr
= emulator_get_dr
,
4606 .set_dr
= emulator_set_dr
,
4607 .set_msr
= emulator_set_msr
,
4608 .get_msr
= emulator_get_msr
,
4609 .halt
= emulator_halt
,
4610 .wbinvd
= emulator_wbinvd
,
4611 .fix_hypercall
= emulator_fix_hypercall
,
4612 .get_fpu
= emulator_get_fpu
,
4613 .put_fpu
= emulator_put_fpu
,
4614 .intercept
= emulator_intercept
,
4617 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4619 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4620 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4621 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4622 vcpu
->arch
.regs_dirty
= ~0;
4625 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4627 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4629 * an sti; sti; sequence only disable interrupts for the first
4630 * instruction. So, if the last instruction, be it emulated or
4631 * not, left the system with the INT_STI flag enabled, it
4632 * means that the last instruction is an sti. We should not
4633 * leave the flag on in this case. The same goes for mov ss
4635 if (!(int_shadow
& mask
))
4636 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4639 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4641 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4642 if (ctxt
->exception
.vector
== PF_VECTOR
)
4643 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4644 else if (ctxt
->exception
.error_code_valid
)
4645 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4646 ctxt
->exception
.error_code
);
4648 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4651 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
,
4652 const unsigned long *regs
)
4654 memset(&ctxt
->twobyte
, 0,
4655 (void *)&ctxt
->regs
- (void *)&ctxt
->twobyte
);
4656 memcpy(ctxt
->regs
, regs
, sizeof(ctxt
->regs
));
4658 ctxt
->fetch
.start
= 0;
4659 ctxt
->fetch
.end
= 0;
4660 ctxt
->io_read
.pos
= 0;
4661 ctxt
->io_read
.end
= 0;
4662 ctxt
->mem_read
.pos
= 0;
4663 ctxt
->mem_read
.end
= 0;
4666 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4668 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4672 * TODO: fix emulate.c to use guest_read/write_register
4673 * instead of direct ->regs accesses, can save hundred cycles
4674 * on Intel for instructions that don't read/change RSP, for
4677 cache_all_regs(vcpu
);
4679 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4681 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4682 ctxt
->eip
= kvm_rip_read(vcpu
);
4683 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4684 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4685 cs_l
? X86EMUL_MODE_PROT64
:
4686 cs_db
? X86EMUL_MODE_PROT32
:
4687 X86EMUL_MODE_PROT16
;
4688 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4690 init_decode_cache(ctxt
, vcpu
->arch
.regs
);
4691 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4694 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4696 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4699 init_emulate_ctxt(vcpu
);
4703 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4704 ret
= emulate_int_real(ctxt
, irq
);
4706 if (ret
!= X86EMUL_CONTINUE
)
4707 return EMULATE_FAIL
;
4709 ctxt
->eip
= ctxt
->_eip
;
4710 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4711 kvm_rip_write(vcpu
, ctxt
->eip
);
4712 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4714 if (irq
== NMI_VECTOR
)
4715 vcpu
->arch
.nmi_pending
= false;
4717 vcpu
->arch
.interrupt
.pending
= false;
4719 return EMULATE_DONE
;
4721 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4723 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4725 int r
= EMULATE_DONE
;
4727 ++vcpu
->stat
.insn_emulation_fail
;
4728 trace_kvm_emulate_insn_failed(vcpu
);
4729 if (!is_guest_mode(vcpu
)) {
4730 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4731 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4732 vcpu
->run
->internal
.ndata
= 0;
4735 kvm_queue_exception(vcpu
, UD_VECTOR
);
4740 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4748 * if emulation was due to access to shadowed page table
4749 * and it failed try to unshadow page and re-entetr the
4750 * guest to let CPU execute the instruction.
4752 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4755 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4757 if (gpa
== UNMAPPED_GVA
)
4758 return true; /* let cpu generate fault */
4760 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4766 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4773 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4774 bool writeback
= true;
4776 kvm_clear_exception_queue(vcpu
);
4778 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4779 init_emulate_ctxt(vcpu
);
4780 ctxt
->interruptibility
= 0;
4781 ctxt
->have_exception
= false;
4782 ctxt
->perm_ok
= false;
4784 ctxt
->only_vendor_specific_insn
4785 = emulation_type
& EMULTYPE_TRAP_UD
;
4787 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4789 trace_kvm_emulate_insn_start(vcpu
);
4790 ++vcpu
->stat
.insn_emulation
;
4792 if (emulation_type
& EMULTYPE_TRAP_UD
)
4793 return EMULATE_FAIL
;
4794 if (reexecute_instruction(vcpu
, cr2
))
4795 return EMULATE_DONE
;
4796 if (emulation_type
& EMULTYPE_SKIP
)
4797 return EMULATE_FAIL
;
4798 return handle_emulation_failure(vcpu
);
4802 if (emulation_type
& EMULTYPE_SKIP
) {
4803 kvm_rip_write(vcpu
, ctxt
->_eip
);
4804 return EMULATE_DONE
;
4807 /* this is needed for vmware backdoor interface to work since it
4808 changes registers values during IO operation */
4809 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4810 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4811 memcpy(ctxt
->regs
, vcpu
->arch
.regs
, sizeof ctxt
->regs
);
4815 r
= x86_emulate_insn(ctxt
);
4817 if (r
== EMULATION_INTERCEPTED
)
4818 return EMULATE_DONE
;
4820 if (r
== EMULATION_FAILED
) {
4821 if (reexecute_instruction(vcpu
, cr2
))
4822 return EMULATE_DONE
;
4824 return handle_emulation_failure(vcpu
);
4827 if (ctxt
->have_exception
) {
4828 inject_emulated_exception(vcpu
);
4830 } else if (vcpu
->arch
.pio
.count
) {
4831 if (!vcpu
->arch
.pio
.in
)
4832 vcpu
->arch
.pio
.count
= 0;
4835 r
= EMULATE_DO_MMIO
;
4836 } else if (vcpu
->mmio_needed
) {
4837 if (!vcpu
->mmio_is_write
)
4839 r
= EMULATE_DO_MMIO
;
4840 } else if (r
== EMULATION_RESTART
)
4846 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4847 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4848 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4849 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4850 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4851 kvm_rip_write(vcpu
, ctxt
->eip
);
4853 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4857 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4859 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4861 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4862 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4863 size
, port
, &val
, 1);
4864 /* do not return to emulator after return from userspace */
4865 vcpu
->arch
.pio
.count
= 0;
4868 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4870 static void tsc_bad(void *info
)
4872 __this_cpu_write(cpu_tsc_khz
, 0);
4875 static void tsc_khz_changed(void *data
)
4877 struct cpufreq_freqs
*freq
= data
;
4878 unsigned long khz
= 0;
4882 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4883 khz
= cpufreq_quick_get(raw_smp_processor_id());
4886 __this_cpu_write(cpu_tsc_khz
, khz
);
4889 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4892 struct cpufreq_freqs
*freq
= data
;
4894 struct kvm_vcpu
*vcpu
;
4895 int i
, send_ipi
= 0;
4898 * We allow guests to temporarily run on slowing clocks,
4899 * provided we notify them after, or to run on accelerating
4900 * clocks, provided we notify them before. Thus time never
4903 * However, we have a problem. We can't atomically update
4904 * the frequency of a given CPU from this function; it is
4905 * merely a notifier, which can be called from any CPU.
4906 * Changing the TSC frequency at arbitrary points in time
4907 * requires a recomputation of local variables related to
4908 * the TSC for each VCPU. We must flag these local variables
4909 * to be updated and be sure the update takes place with the
4910 * new frequency before any guests proceed.
4912 * Unfortunately, the combination of hotplug CPU and frequency
4913 * change creates an intractable locking scenario; the order
4914 * of when these callouts happen is undefined with respect to
4915 * CPU hotplug, and they can race with each other. As such,
4916 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4917 * undefined; you can actually have a CPU frequency change take
4918 * place in between the computation of X and the setting of the
4919 * variable. To protect against this problem, all updates of
4920 * the per_cpu tsc_khz variable are done in an interrupt
4921 * protected IPI, and all callers wishing to update the value
4922 * must wait for a synchronous IPI to complete (which is trivial
4923 * if the caller is on the CPU already). This establishes the
4924 * necessary total order on variable updates.
4926 * Note that because a guest time update may take place
4927 * anytime after the setting of the VCPU's request bit, the
4928 * correct TSC value must be set before the request. However,
4929 * to ensure the update actually makes it to any guest which
4930 * starts running in hardware virtualization between the set
4931 * and the acquisition of the spinlock, we must also ping the
4932 * CPU after setting the request bit.
4936 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4938 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4941 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4943 raw_spin_lock(&kvm_lock
);
4944 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4945 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4946 if (vcpu
->cpu
!= freq
->cpu
)
4948 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4949 if (vcpu
->cpu
!= smp_processor_id())
4953 raw_spin_unlock(&kvm_lock
);
4955 if (freq
->old
< freq
->new && send_ipi
) {
4957 * We upscale the frequency. Must make the guest
4958 * doesn't see old kvmclock values while running with
4959 * the new frequency, otherwise we risk the guest sees
4960 * time go backwards.
4962 * In case we update the frequency for another cpu
4963 * (which might be in guest context) send an interrupt
4964 * to kick the cpu out of guest context. Next time
4965 * guest context is entered kvmclock will be updated,
4966 * so the guest will not see stale values.
4968 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4973 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4974 .notifier_call
= kvmclock_cpufreq_notifier
4977 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4978 unsigned long action
, void *hcpu
)
4980 unsigned int cpu
= (unsigned long)hcpu
;
4984 case CPU_DOWN_FAILED
:
4985 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4987 case CPU_DOWN_PREPARE
:
4988 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4994 static struct notifier_block kvmclock_cpu_notifier_block
= {
4995 .notifier_call
= kvmclock_cpu_notifier
,
4996 .priority
= -INT_MAX
4999 static void kvm_timer_init(void)
5003 max_tsc_khz
= tsc_khz
;
5004 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5005 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5006 #ifdef CONFIG_CPU_FREQ
5007 struct cpufreq_policy policy
;
5008 memset(&policy
, 0, sizeof(policy
));
5010 cpufreq_get_policy(&policy
, cpu
);
5011 if (policy
.cpuinfo
.max_freq
)
5012 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5015 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5016 CPUFREQ_TRANSITION_NOTIFIER
);
5018 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5019 for_each_online_cpu(cpu
)
5020 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5023 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5025 static int kvm_is_in_guest(void)
5027 return percpu_read(current_vcpu
) != NULL
;
5030 static int kvm_is_user_mode(void)
5034 if (percpu_read(current_vcpu
))
5035 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
5037 return user_mode
!= 0;
5040 static unsigned long kvm_get_guest_ip(void)
5042 unsigned long ip
= 0;
5044 if (percpu_read(current_vcpu
))
5045 ip
= kvm_rip_read(percpu_read(current_vcpu
));
5050 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5051 .is_in_guest
= kvm_is_in_guest
,
5052 .is_user_mode
= kvm_is_user_mode
,
5053 .get_guest_ip
= kvm_get_guest_ip
,
5056 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5058 percpu_write(current_vcpu
, vcpu
);
5060 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5062 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5064 percpu_write(current_vcpu
, NULL
);
5066 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5068 static void kvm_set_mmio_spte_mask(void)
5071 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5074 * Set the reserved bits and the present bit of an paging-structure
5075 * entry to generate page fault with PFER.RSV = 1.
5077 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5080 #ifdef CONFIG_X86_64
5082 * If reserved bit is not supported, clear the present bit to disable
5085 if (maxphyaddr
== 52)
5089 kvm_mmu_set_mmio_spte_mask(mask
);
5092 int kvm_arch_init(void *opaque
)
5095 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
5098 printk(KERN_ERR
"kvm: already loaded the other module\n");
5103 if (!ops
->cpu_has_kvm_support()) {
5104 printk(KERN_ERR
"kvm: no hardware support\n");
5108 if (ops
->disabled_by_bios()) {
5109 printk(KERN_ERR
"kvm: disabled by bios\n");
5114 r
= kvm_mmu_module_init();
5118 kvm_set_mmio_spte_mask();
5119 kvm_init_msr_list();
5122 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5123 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5127 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5130 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5138 void kvm_arch_exit(void)
5140 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5142 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5143 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5144 CPUFREQ_TRANSITION_NOTIFIER
);
5145 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5147 kvm_mmu_module_exit();
5150 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5152 ++vcpu
->stat
.halt_exits
;
5153 if (irqchip_in_kernel(vcpu
->kvm
)) {
5154 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5157 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5161 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5163 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
5166 if (is_long_mode(vcpu
))
5169 return a0
| ((gpa_t
)a1
<< 32);
5172 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5174 u64 param
, ingpa
, outgpa
, ret
;
5175 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5176 bool fast
, longmode
;
5180 * hypercall generates UD from non zero cpl and real mode
5183 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5184 kvm_queue_exception(vcpu
, UD_VECTOR
);
5188 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5189 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5192 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5193 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5194 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5195 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5196 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5197 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5199 #ifdef CONFIG_X86_64
5201 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5202 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5203 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5207 code
= param
& 0xffff;
5208 fast
= (param
>> 16) & 0x1;
5209 rep_cnt
= (param
>> 32) & 0xfff;
5210 rep_idx
= (param
>> 48) & 0xfff;
5212 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5215 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5216 kvm_vcpu_on_spin(vcpu
);
5219 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5223 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5225 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5227 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5228 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5234 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5236 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5239 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5240 return kvm_hv_hypercall(vcpu
);
5242 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5243 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5244 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5245 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5246 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5248 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5250 if (!is_long_mode(vcpu
)) {
5258 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5264 case KVM_HC_VAPIC_POLL_IRQ
:
5268 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
5275 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5276 ++vcpu
->stat
.hypercalls
;
5279 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5281 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5283 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5284 char instruction
[3];
5285 unsigned long rip
= kvm_rip_read(vcpu
);
5288 * Blow out the MMU to ensure that no other VCPU has an active mapping
5289 * to ensure that the updated hypercall appears atomically across all
5292 kvm_mmu_zap_all(vcpu
->kvm
);
5294 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5296 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5299 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
5301 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
5302 int j
, nent
= vcpu
->arch
.cpuid_nent
;
5304 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
5305 /* when no next entry is found, the current entry[i] is reselected */
5306 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
5307 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
5308 if (ej
->function
== e
->function
) {
5309 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
5313 return 0; /* silence gcc, even though control never reaches here */
5316 /* find an entry with matching function, matching index (if needed), and that
5317 * should be read next (if it's stateful) */
5318 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
5319 u32 function
, u32 index
)
5321 if (e
->function
!= function
)
5323 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
5325 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
5326 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
5331 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
5332 u32 function
, u32 index
)
5335 struct kvm_cpuid_entry2
*best
= NULL
;
5337 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
5338 struct kvm_cpuid_entry2
*e
;
5340 e
= &vcpu
->arch
.cpuid_entries
[i
];
5341 if (is_matching_cpuid_entry(e
, function
, index
)) {
5342 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
5343 move_to_next_stateful_cpuid_entry(vcpu
, i
);
5350 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
5352 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
5354 struct kvm_cpuid_entry2
*best
;
5356 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
5357 if (!best
|| best
->eax
< 0x80000008)
5359 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
5361 return best
->eax
& 0xff;
5367 * If no match is found, check whether we exceed the vCPU's limit
5368 * and return the content of the highest valid _standard_ leaf instead.
5369 * This is to satisfy the CPUID specification.
5371 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
5372 u32 function
, u32 index
)
5374 struct kvm_cpuid_entry2
*maxlevel
;
5376 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
5377 if (!maxlevel
|| maxlevel
->eax
>= function
)
5379 if (function
& 0x80000000) {
5380 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
5384 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
5387 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
5389 u32 function
, index
;
5390 struct kvm_cpuid_entry2
*best
;
5392 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5393 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5394 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
5395 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
5396 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
5397 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
5398 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
5401 best
= check_cpuid_limit(vcpu
, function
, index
);
5404 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
5405 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
5406 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
5407 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
5409 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5410 trace_kvm_cpuid(function
,
5411 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
5412 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
5413 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
5414 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
5416 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
5419 * Check if userspace requested an interrupt window, and that the
5420 * interrupt window is open.
5422 * No need to exit to userspace if we already have an interrupt queued.
5424 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5426 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5427 vcpu
->run
->request_interrupt_window
&&
5428 kvm_arch_interrupt_allowed(vcpu
));
5431 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5433 struct kvm_run
*kvm_run
= vcpu
->run
;
5435 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5436 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5437 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5438 if (irqchip_in_kernel(vcpu
->kvm
))
5439 kvm_run
->ready_for_interrupt_injection
= 1;
5441 kvm_run
->ready_for_interrupt_injection
=
5442 kvm_arch_interrupt_allowed(vcpu
) &&
5443 !kvm_cpu_has_interrupt(vcpu
) &&
5444 !kvm_event_needs_reinjection(vcpu
);
5447 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5449 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5452 if (!apic
|| !apic
->vapic_addr
)
5455 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5457 vcpu
->arch
.apic
->vapic_page
= page
;
5460 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5462 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5465 if (!apic
|| !apic
->vapic_addr
)
5468 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5469 kvm_release_page_dirty(apic
->vapic_page
);
5470 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5471 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5474 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5478 if (!kvm_x86_ops
->update_cr8_intercept
)
5481 if (!vcpu
->arch
.apic
)
5484 if (!vcpu
->arch
.apic
->vapic_addr
)
5485 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5492 tpr
= kvm_lapic_get_cr8(vcpu
);
5494 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5497 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5499 /* try to reinject previous events if any */
5500 if (vcpu
->arch
.exception
.pending
) {
5501 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5502 vcpu
->arch
.exception
.has_error_code
,
5503 vcpu
->arch
.exception
.error_code
);
5504 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5505 vcpu
->arch
.exception
.has_error_code
,
5506 vcpu
->arch
.exception
.error_code
,
5507 vcpu
->arch
.exception
.reinject
);
5511 if (vcpu
->arch
.nmi_injected
) {
5512 kvm_x86_ops
->set_nmi(vcpu
);
5516 if (vcpu
->arch
.interrupt
.pending
) {
5517 kvm_x86_ops
->set_irq(vcpu
);
5521 /* try to inject new event if pending */
5522 if (vcpu
->arch
.nmi_pending
) {
5523 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5524 vcpu
->arch
.nmi_pending
= false;
5525 vcpu
->arch
.nmi_injected
= true;
5526 kvm_x86_ops
->set_nmi(vcpu
);
5528 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5529 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5530 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5532 kvm_x86_ops
->set_irq(vcpu
);
5537 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5539 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5540 !vcpu
->guest_xcr0_loaded
) {
5541 /* kvm_set_xcr() also depends on this */
5542 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5543 vcpu
->guest_xcr0_loaded
= 1;
5547 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5549 if (vcpu
->guest_xcr0_loaded
) {
5550 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5551 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5552 vcpu
->guest_xcr0_loaded
= 0;
5556 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5560 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5561 vcpu
->run
->request_interrupt_window
;
5563 if (vcpu
->requests
) {
5564 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5565 kvm_mmu_unload(vcpu
);
5566 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5567 __kvm_migrate_timers(vcpu
);
5568 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5569 r
= kvm_guest_time_update(vcpu
);
5573 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5574 kvm_mmu_sync_roots(vcpu
);
5575 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5576 kvm_x86_ops
->tlb_flush(vcpu
);
5577 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5578 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5582 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5583 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5587 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5588 vcpu
->fpu_active
= 0;
5589 kvm_x86_ops
->fpu_deactivate(vcpu
);
5591 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5592 /* Page is swapped out. Do synthetic halt */
5593 vcpu
->arch
.apf
.halted
= true;
5597 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5598 record_steal_time(vcpu
);
5602 r
= kvm_mmu_reload(vcpu
);
5607 * An NMI can be injected between local nmi_pending read and
5608 * vcpu->arch.nmi_pending read inside inject_pending_event().
5609 * But in that case, KVM_REQ_EVENT will be set, which makes
5610 * the race described above benign.
5612 nmi_pending
= ACCESS_ONCE(vcpu
->arch
.nmi_pending
);
5614 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5615 inject_pending_event(vcpu
);
5617 /* enable NMI/IRQ window open exits if needed */
5619 kvm_x86_ops
->enable_nmi_window(vcpu
);
5620 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5621 kvm_x86_ops
->enable_irq_window(vcpu
);
5623 if (kvm_lapic_enabled(vcpu
)) {
5624 update_cr8_intercept(vcpu
);
5625 kvm_lapic_sync_to_vapic(vcpu
);
5631 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5632 if (vcpu
->fpu_active
)
5633 kvm_load_guest_fpu(vcpu
);
5634 kvm_load_guest_xcr0(vcpu
);
5636 vcpu
->mode
= IN_GUEST_MODE
;
5638 /* We should set ->mode before check ->requests,
5639 * see the comment in make_all_cpus_request.
5643 local_irq_disable();
5645 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5646 || need_resched() || signal_pending(current
)) {
5647 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5651 kvm_x86_ops
->cancel_injection(vcpu
);
5656 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5660 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5662 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5663 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5664 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5665 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5668 trace_kvm_entry(vcpu
->vcpu_id
);
5669 kvm_x86_ops
->run(vcpu
);
5672 * If the guest has used debug registers, at least dr7
5673 * will be disabled while returning to the host.
5674 * If we don't have active breakpoints in the host, we don't
5675 * care about the messed up debug address registers. But if
5676 * we have some of them active, restore the old state.
5678 if (hw_breakpoint_active())
5679 hw_breakpoint_restore();
5681 kvm_get_msr(vcpu
, MSR_IA32_TSC
, &vcpu
->arch
.last_guest_tsc
);
5683 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5690 * We must have an instruction between local_irq_enable() and
5691 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5692 * the interrupt shadow. The stat.exits increment will do nicely.
5693 * But we need to prevent reordering, hence this barrier():
5701 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5704 * Profile KVM exit RIPs:
5706 if (unlikely(prof_on
== KVM_PROFILING
)) {
5707 unsigned long rip
= kvm_rip_read(vcpu
);
5708 profile_hit(KVM_PROFILING
, (void *)rip
);
5712 kvm_lapic_sync_from_vapic(vcpu
);
5714 r
= kvm_x86_ops
->handle_exit(vcpu
);
5720 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5723 struct kvm
*kvm
= vcpu
->kvm
;
5725 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5726 pr_debug("vcpu %d received sipi with vector # %x\n",
5727 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5728 kvm_lapic_reset(vcpu
);
5729 r
= kvm_arch_vcpu_reset(vcpu
);
5732 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5735 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5740 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5741 !vcpu
->arch
.apf
.halted
)
5742 r
= vcpu_enter_guest(vcpu
);
5744 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5745 kvm_vcpu_block(vcpu
);
5746 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5747 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5749 switch(vcpu
->arch
.mp_state
) {
5750 case KVM_MP_STATE_HALTED
:
5751 vcpu
->arch
.mp_state
=
5752 KVM_MP_STATE_RUNNABLE
;
5753 case KVM_MP_STATE_RUNNABLE
:
5754 vcpu
->arch
.apf
.halted
= false;
5756 case KVM_MP_STATE_SIPI_RECEIVED
:
5767 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5768 if (kvm_cpu_has_pending_timer(vcpu
))
5769 kvm_inject_pending_timer_irqs(vcpu
);
5771 if (dm_request_for_irq_injection(vcpu
)) {
5773 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5774 ++vcpu
->stat
.request_irq_exits
;
5777 kvm_check_async_pf_completion(vcpu
);
5779 if (signal_pending(current
)) {
5781 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5782 ++vcpu
->stat
.signal_exits
;
5784 if (need_resched()) {
5785 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5787 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5791 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5798 static int complete_mmio(struct kvm_vcpu
*vcpu
)
5800 struct kvm_run
*run
= vcpu
->run
;
5803 if (!(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
))
5806 if (vcpu
->mmio_needed
) {
5807 vcpu
->mmio_needed
= 0;
5808 if (!vcpu
->mmio_is_write
)
5809 memcpy(vcpu
->mmio_data
+ vcpu
->mmio_index
,
5811 vcpu
->mmio_index
+= 8;
5812 if (vcpu
->mmio_index
< vcpu
->mmio_size
) {
5813 run
->exit_reason
= KVM_EXIT_MMIO
;
5814 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
+ vcpu
->mmio_index
;
5815 memcpy(run
->mmio
.data
, vcpu
->mmio_data
+ vcpu
->mmio_index
, 8);
5816 run
->mmio
.len
= min(vcpu
->mmio_size
- vcpu
->mmio_index
, 8);
5817 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5818 vcpu
->mmio_needed
= 1;
5821 if (vcpu
->mmio_is_write
)
5823 vcpu
->mmio_read_completed
= 1;
5825 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5826 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5827 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5828 if (r
!= EMULATE_DONE
)
5833 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5838 if (!tsk_used_math(current
) && init_fpu(current
))
5841 if (vcpu
->sigset_active
)
5842 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5844 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5845 kvm_vcpu_block(vcpu
);
5846 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5851 /* re-sync apic's tpr */
5852 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5853 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5859 r
= complete_mmio(vcpu
);
5863 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
5864 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
5865 kvm_run
->hypercall
.ret
);
5867 r
= __vcpu_run(vcpu
);
5870 post_kvm_run_save(vcpu
);
5871 if (vcpu
->sigset_active
)
5872 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5877 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5879 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5881 * We are here if userspace calls get_regs() in the middle of
5882 * instruction emulation. Registers state needs to be copied
5883 * back from emulation context to vcpu. Usrapace shouldn't do
5884 * that usually, but some bad designed PV devices (vmware
5885 * backdoor interface) need this to work
5887 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5888 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5889 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5891 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5892 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5893 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5894 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5895 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5896 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5897 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5898 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5899 #ifdef CONFIG_X86_64
5900 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5901 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5902 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5903 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5904 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5905 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5906 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5907 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5910 regs
->rip
= kvm_rip_read(vcpu
);
5911 regs
->rflags
= kvm_get_rflags(vcpu
);
5916 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5918 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
5919 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5921 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5922 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5923 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5924 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5925 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5926 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5927 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5928 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5929 #ifdef CONFIG_X86_64
5930 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5931 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5932 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5933 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5934 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5935 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5936 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5937 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5940 kvm_rip_write(vcpu
, regs
->rip
);
5941 kvm_set_rflags(vcpu
, regs
->rflags
);
5943 vcpu
->arch
.exception
.pending
= false;
5945 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5950 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5952 struct kvm_segment cs
;
5954 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5958 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5960 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5961 struct kvm_sregs
*sregs
)
5965 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5966 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5967 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5968 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5969 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5970 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5972 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5973 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5975 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5976 sregs
->idt
.limit
= dt
.size
;
5977 sregs
->idt
.base
= dt
.address
;
5978 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5979 sregs
->gdt
.limit
= dt
.size
;
5980 sregs
->gdt
.base
= dt
.address
;
5982 sregs
->cr0
= kvm_read_cr0(vcpu
);
5983 sregs
->cr2
= vcpu
->arch
.cr2
;
5984 sregs
->cr3
= kvm_read_cr3(vcpu
);
5985 sregs
->cr4
= kvm_read_cr4(vcpu
);
5986 sregs
->cr8
= kvm_get_cr8(vcpu
);
5987 sregs
->efer
= vcpu
->arch
.efer
;
5988 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5990 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5992 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5993 set_bit(vcpu
->arch
.interrupt
.nr
,
5994 (unsigned long *)sregs
->interrupt_bitmap
);
5999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6000 struct kvm_mp_state
*mp_state
)
6002 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6006 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6007 struct kvm_mp_state
*mp_state
)
6009 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6010 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6014 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
6015 bool has_error_code
, u32 error_code
)
6017 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6020 init_emulate_ctxt(vcpu
);
6022 ret
= emulator_task_switch(ctxt
, tss_selector
, reason
,
6023 has_error_code
, error_code
);
6026 return EMULATE_FAIL
;
6028 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
6029 kvm_rip_write(vcpu
, ctxt
->eip
);
6030 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6031 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6032 return EMULATE_DONE
;
6034 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6037 struct kvm_sregs
*sregs
)
6039 int mmu_reset_needed
= 0;
6040 int pending_vec
, max_bits
, idx
;
6043 dt
.size
= sregs
->idt
.limit
;
6044 dt
.address
= sregs
->idt
.base
;
6045 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6046 dt
.size
= sregs
->gdt
.limit
;
6047 dt
.address
= sregs
->gdt
.base
;
6048 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6050 vcpu
->arch
.cr2
= sregs
->cr2
;
6051 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6052 vcpu
->arch
.cr3
= sregs
->cr3
;
6053 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6055 kvm_set_cr8(vcpu
, sregs
->cr8
);
6057 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6058 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6059 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6061 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6062 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6063 vcpu
->arch
.cr0
= sregs
->cr0
;
6065 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6066 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6067 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6070 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6071 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6072 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6073 mmu_reset_needed
= 1;
6075 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6077 if (mmu_reset_needed
)
6078 kvm_mmu_reset_context(vcpu
);
6080 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
6081 pending_vec
= find_first_bit(
6082 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6083 if (pending_vec
< max_bits
) {
6084 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6085 pr_debug("Set back pending irq %d\n", pending_vec
);
6088 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6089 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6090 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6091 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6092 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6093 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6095 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6096 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6098 update_cr8_intercept(vcpu
);
6100 /* Older userspace won't unhalt the vcpu on reset. */
6101 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6102 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6104 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6106 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6111 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6112 struct kvm_guest_debug
*dbg
)
6114 unsigned long rflags
;
6117 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6119 if (vcpu
->arch
.exception
.pending
)
6121 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6122 kvm_queue_exception(vcpu
, DB_VECTOR
);
6124 kvm_queue_exception(vcpu
, BP_VECTOR
);
6128 * Read rflags as long as potentially injected trace flags are still
6131 rflags
= kvm_get_rflags(vcpu
);
6133 vcpu
->guest_debug
= dbg
->control
;
6134 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6135 vcpu
->guest_debug
= 0;
6137 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6138 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6139 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6140 vcpu
->arch
.switch_db_regs
=
6141 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
6143 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6144 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6145 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
6148 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6149 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6150 get_segment_base(vcpu
, VCPU_SREG_CS
);
6153 * Trigger an rflags update that will inject or remove the trace
6156 kvm_set_rflags(vcpu
, rflags
);
6158 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
6168 * Translate a guest virtual address to a guest physical address.
6170 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6171 struct kvm_translation
*tr
)
6173 unsigned long vaddr
= tr
->linear_address
;
6177 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6178 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6179 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6180 tr
->physical_address
= gpa
;
6181 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6188 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6190 struct i387_fxsave_struct
*fxsave
=
6191 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6193 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6194 fpu
->fcw
= fxsave
->cwd
;
6195 fpu
->fsw
= fxsave
->swd
;
6196 fpu
->ftwx
= fxsave
->twd
;
6197 fpu
->last_opcode
= fxsave
->fop
;
6198 fpu
->last_ip
= fxsave
->rip
;
6199 fpu
->last_dp
= fxsave
->rdp
;
6200 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6205 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6207 struct i387_fxsave_struct
*fxsave
=
6208 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6210 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6211 fxsave
->cwd
= fpu
->fcw
;
6212 fxsave
->swd
= fpu
->fsw
;
6213 fxsave
->twd
= fpu
->ftwx
;
6214 fxsave
->fop
= fpu
->last_opcode
;
6215 fxsave
->rip
= fpu
->last_ip
;
6216 fxsave
->rdp
= fpu
->last_dp
;
6217 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6222 int fx_init(struct kvm_vcpu
*vcpu
)
6226 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6230 fpu_finit(&vcpu
->arch
.guest_fpu
);
6233 * Ensure guest xcr0 is valid for loading
6235 vcpu
->arch
.xcr0
= XSTATE_FP
;
6237 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6241 EXPORT_SYMBOL_GPL(fx_init
);
6243 static void fx_free(struct kvm_vcpu
*vcpu
)
6245 fpu_free(&vcpu
->arch
.guest_fpu
);
6248 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6250 if (vcpu
->guest_fpu_loaded
)
6254 * Restore all possible states in the guest,
6255 * and assume host would use all available bits.
6256 * Guest xcr0 would be loaded later.
6258 kvm_put_guest_xcr0(vcpu
);
6259 vcpu
->guest_fpu_loaded
= 1;
6260 unlazy_fpu(current
);
6261 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6265 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6267 kvm_put_guest_xcr0(vcpu
);
6269 if (!vcpu
->guest_fpu_loaded
)
6272 vcpu
->guest_fpu_loaded
= 0;
6273 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6274 ++vcpu
->stat
.fpu_reload
;
6275 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6279 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6281 kvmclock_reset(vcpu
);
6283 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6285 kvm_x86_ops
->vcpu_free(vcpu
);
6288 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6291 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6292 printk_once(KERN_WARNING
6293 "kvm: SMP vm created on host with unstable TSC; "
6294 "guest TSC will not be reliable\n");
6295 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6298 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6302 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6304 r
= kvm_arch_vcpu_reset(vcpu
);
6306 r
= kvm_mmu_setup(vcpu
);
6312 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6314 vcpu
->arch
.apf
.msr_val
= 0;
6317 kvm_mmu_unload(vcpu
);
6321 kvm_x86_ops
->vcpu_free(vcpu
);
6324 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
6326 vcpu
->arch
.nmi_pending
= false;
6327 vcpu
->arch
.nmi_injected
= false;
6329 vcpu
->arch
.switch_db_regs
= 0;
6330 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6331 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6332 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6334 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6335 vcpu
->arch
.apf
.msr_val
= 0;
6336 vcpu
->arch
.st
.msr_val
= 0;
6338 kvmclock_reset(vcpu
);
6340 kvm_clear_async_pf_completion_queue(vcpu
);
6341 kvm_async_pf_hash_reset(vcpu
);
6342 vcpu
->arch
.apf
.halted
= false;
6344 return kvm_x86_ops
->vcpu_reset(vcpu
);
6347 int kvm_arch_hardware_enable(void *garbage
)
6350 struct kvm_vcpu
*vcpu
;
6353 kvm_shared_msr_cpu_online();
6354 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6355 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6356 if (vcpu
->cpu
== smp_processor_id())
6357 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6358 return kvm_x86_ops
->hardware_enable(garbage
);
6361 void kvm_arch_hardware_disable(void *garbage
)
6363 kvm_x86_ops
->hardware_disable(garbage
);
6364 drop_user_return_notifiers(garbage
);
6367 int kvm_arch_hardware_setup(void)
6369 return kvm_x86_ops
->hardware_setup();
6372 void kvm_arch_hardware_unsetup(void)
6374 kvm_x86_ops
->hardware_unsetup();
6377 void kvm_arch_check_processor_compat(void *rtn
)
6379 kvm_x86_ops
->check_processor_compatibility(rtn
);
6382 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6388 BUG_ON(vcpu
->kvm
== NULL
);
6391 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6392 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
6393 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
6394 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
6395 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
6396 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6397 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6399 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6401 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6406 vcpu
->arch
.pio_data
= page_address(page
);
6408 kvm_init_tsc_catchup(vcpu
, max_tsc_khz
);
6410 r
= kvm_mmu_create(vcpu
);
6412 goto fail_free_pio_data
;
6414 if (irqchip_in_kernel(kvm
)) {
6415 r
= kvm_create_lapic(vcpu
);
6417 goto fail_mmu_destroy
;
6420 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6422 if (!vcpu
->arch
.mce_banks
) {
6424 goto fail_free_lapic
;
6426 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6428 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6429 goto fail_free_mce_banks
;
6431 kvm_async_pf_hash_reset(vcpu
);
6434 fail_free_mce_banks
:
6435 kfree(vcpu
->arch
.mce_banks
);
6437 kvm_free_lapic(vcpu
);
6439 kvm_mmu_destroy(vcpu
);
6441 free_page((unsigned long)vcpu
->arch
.pio_data
);
6446 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6450 kfree(vcpu
->arch
.mce_banks
);
6451 kvm_free_lapic(vcpu
);
6452 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6453 kvm_mmu_destroy(vcpu
);
6454 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6455 free_page((unsigned long)vcpu
->arch
.pio_data
);
6458 int kvm_arch_init_vm(struct kvm
*kvm
)
6460 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6461 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6463 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6464 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6466 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6471 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6474 kvm_mmu_unload(vcpu
);
6478 static void kvm_free_vcpus(struct kvm
*kvm
)
6481 struct kvm_vcpu
*vcpu
;
6484 * Unpin any mmu pages first.
6486 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6487 kvm_clear_async_pf_completion_queue(vcpu
);
6488 kvm_unload_vcpu_mmu(vcpu
);
6490 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6491 kvm_arch_vcpu_free(vcpu
);
6493 mutex_lock(&kvm
->lock
);
6494 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6495 kvm
->vcpus
[i
] = NULL
;
6497 atomic_set(&kvm
->online_vcpus
, 0);
6498 mutex_unlock(&kvm
->lock
);
6501 void kvm_arch_sync_events(struct kvm
*kvm
)
6503 kvm_free_all_assigned_devices(kvm
);
6507 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6509 kvm_iommu_unmap_guest(kvm
);
6510 kfree(kvm
->arch
.vpic
);
6511 kfree(kvm
->arch
.vioapic
);
6512 kvm_free_vcpus(kvm
);
6513 if (kvm
->arch
.apic_access_page
)
6514 put_page(kvm
->arch
.apic_access_page
);
6515 if (kvm
->arch
.ept_identity_pagetable
)
6516 put_page(kvm
->arch
.ept_identity_pagetable
);
6519 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6520 struct kvm_memory_slot
*memslot
,
6521 struct kvm_memory_slot old
,
6522 struct kvm_userspace_memory_region
*mem
,
6525 int npages
= memslot
->npages
;
6526 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6528 /* Prevent internal slot pages from being moved by fork()/COW. */
6529 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6530 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6532 /*To keep backward compatibility with older userspace,
6533 *x86 needs to hanlde !user_alloc case.
6536 if (npages
&& !old
.rmap
) {
6537 unsigned long userspace_addr
;
6539 down_write(¤t
->mm
->mmap_sem
);
6540 userspace_addr
= do_mmap(NULL
, 0,
6542 PROT_READ
| PROT_WRITE
,
6545 up_write(¤t
->mm
->mmap_sem
);
6547 if (IS_ERR((void *)userspace_addr
))
6548 return PTR_ERR((void *)userspace_addr
);
6550 memslot
->userspace_addr
= userspace_addr
;
6558 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6559 struct kvm_userspace_memory_region
*mem
,
6560 struct kvm_memory_slot old
,
6564 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6566 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6569 down_write(¤t
->mm
->mmap_sem
);
6570 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6571 old
.npages
* PAGE_SIZE
);
6572 up_write(¤t
->mm
->mmap_sem
);
6575 "kvm_vm_ioctl_set_memory_region: "
6576 "failed to munmap memory\n");
6579 if (!kvm
->arch
.n_requested_mmu_pages
)
6580 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6582 spin_lock(&kvm
->mmu_lock
);
6584 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6585 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6586 spin_unlock(&kvm
->mmu_lock
);
6589 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6591 kvm_mmu_zap_all(kvm
);
6592 kvm_reload_remote_mmus(kvm
);
6595 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6597 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6598 !vcpu
->arch
.apf
.halted
)
6599 || !list_empty_careful(&vcpu
->async_pf
.done
)
6600 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6601 || vcpu
->arch
.nmi_pending
||
6602 (kvm_arch_interrupt_allowed(vcpu
) &&
6603 kvm_cpu_has_interrupt(vcpu
));
6606 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6609 int cpu
= vcpu
->cpu
;
6611 if (waitqueue_active(&vcpu
->wq
)) {
6612 wake_up_interruptible(&vcpu
->wq
);
6613 ++vcpu
->stat
.halt_wakeup
;
6617 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6618 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6619 smp_send_reschedule(cpu
);
6623 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6625 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6628 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6630 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6631 get_segment_base(vcpu
, VCPU_SREG_CS
);
6633 return current_rip
== linear_rip
;
6635 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6637 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6639 unsigned long rflags
;
6641 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6642 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6643 rflags
&= ~X86_EFLAGS_TF
;
6646 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6648 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6650 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6651 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6652 rflags
|= X86_EFLAGS_TF
;
6653 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6654 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6656 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6658 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6662 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6663 is_error_page(work
->page
))
6666 r
= kvm_mmu_reload(vcpu
);
6670 if (!vcpu
->arch
.mmu
.direct_map
&&
6671 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6674 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6677 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6679 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6682 static inline u32
kvm_async_pf_next_probe(u32 key
)
6684 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6687 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6689 u32 key
= kvm_async_pf_hash_fn(gfn
);
6691 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6692 key
= kvm_async_pf_next_probe(key
);
6694 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6697 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6700 u32 key
= kvm_async_pf_hash_fn(gfn
);
6702 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6703 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6704 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6705 key
= kvm_async_pf_next_probe(key
);
6710 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6712 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6715 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6719 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6721 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6723 j
= kvm_async_pf_next_probe(j
);
6724 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6726 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6728 * k lies cyclically in ]i,j]
6730 * |....j i.k.| or |.k..j i...|
6732 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6733 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6738 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6741 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6745 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6746 struct kvm_async_pf
*work
)
6748 struct x86_exception fault
;
6750 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6751 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6753 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6754 (vcpu
->arch
.apf
.send_user_only
&&
6755 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6756 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6757 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6758 fault
.vector
= PF_VECTOR
;
6759 fault
.error_code_valid
= true;
6760 fault
.error_code
= 0;
6761 fault
.nested_page_fault
= false;
6762 fault
.address
= work
->arch
.token
;
6763 kvm_inject_page_fault(vcpu
, &fault
);
6767 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6768 struct kvm_async_pf
*work
)
6770 struct x86_exception fault
;
6772 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6773 if (is_error_page(work
->page
))
6774 work
->arch
.token
= ~0; /* broadcast wakeup */
6776 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6778 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6779 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6780 fault
.vector
= PF_VECTOR
;
6781 fault
.error_code_valid
= true;
6782 fault
.error_code
= 0;
6783 fault
.nested_page_fault
= false;
6784 fault
.address
= work
->arch
.token
;
6785 kvm_inject_page_fault(vcpu
, &fault
);
6787 vcpu
->arch
.apf
.halted
= false;
6790 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6792 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6795 return !kvm_event_needs_reinjection(vcpu
) &&
6796 kvm_x86_ops
->interrupt_allowed(vcpu
);
6799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);