2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex
);
83 static struct dbs_tuners
{
84 unsigned int sampling_rate
;
85 unsigned int sampling_down_factor
;
86 unsigned int up_threshold
;
87 unsigned int down_threshold
;
88 unsigned int ignore_nice
;
89 unsigned int freq_step
;
91 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
92 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
93 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
98 static inline u64
get_cpu_idle_time_jiffy(unsigned int cpu
, u64
*wall
)
104 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
106 busy_time
= kcpustat_cpu(cpu
).cpustat
[CPUTIME_USER
];
107 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SYSTEM
];
108 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_IRQ
];
109 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SOFTIRQ
];
110 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_STEAL
];
111 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_NICE
];
113 idle_time
= cur_wall_time
- busy_time
;
115 *wall
= jiffies_to_usecs(cur_wall_time
);
117 return jiffies_to_usecs(idle_time
);
120 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
122 u64 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
124 if (idle_time
== -1ULL)
125 return get_cpu_idle_time_jiffy(cpu
, wall
);
127 idle_time
+= get_cpu_iowait_time_us(cpu
, wall
);
132 /* keep track of frequency transitions */
134 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
137 struct cpufreq_freqs
*freq
= data
;
138 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
141 struct cpufreq_policy
*policy
;
143 if (!this_dbs_info
->enable
)
146 policy
= this_dbs_info
->cur_policy
;
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
153 if (this_dbs_info
->requested_freq
> policy
->max
154 || this_dbs_info
->requested_freq
< policy
->min
)
155 this_dbs_info
->requested_freq
= freq
->new;
160 static struct notifier_block dbs_cpufreq_notifier_block
= {
161 .notifier_call
= dbs_cpufreq_notifier
164 /************************** sysfs interface ************************/
165 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
166 struct attribute
*attr
, char *buf
)
168 return sprintf(buf
, "%u\n", min_sampling_rate
);
171 define_one_global_ro(sampling_rate_min
);
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object) \
175 static ssize_t show_##file_name \
176 (struct kobject *kobj, struct attribute *attr, char *buf) \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
180 show_one(sampling_rate
, sampling_rate
);
181 show_one(sampling_down_factor
, sampling_down_factor
);
182 show_one(up_threshold
, up_threshold
);
183 show_one(down_threshold
, down_threshold
);
184 show_one(ignore_nice_load
, ignore_nice
);
185 show_one(freq_step
, freq_step
);
187 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
189 const char *buf
, size_t count
)
193 ret
= sscanf(buf
, "%u", &input
);
195 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
198 dbs_tuners_ins
.sampling_down_factor
= input
;
202 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
203 const char *buf
, size_t count
)
207 ret
= sscanf(buf
, "%u", &input
);
212 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
216 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
217 const char *buf
, size_t count
)
221 ret
= sscanf(buf
, "%u", &input
);
223 if (ret
!= 1 || input
> 100 ||
224 input
<= dbs_tuners_ins
.down_threshold
)
227 dbs_tuners_ins
.up_threshold
= input
;
231 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
232 const char *buf
, size_t count
)
236 ret
= sscanf(buf
, "%u", &input
);
238 /* cannot be lower than 11 otherwise freq will not fall */
239 if (ret
!= 1 || input
< 11 || input
> 100 ||
240 input
>= dbs_tuners_ins
.up_threshold
)
243 dbs_tuners_ins
.down_threshold
= input
;
247 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
248 const char *buf
, size_t count
)
255 ret
= sscanf(buf
, "%u", &input
);
262 if (input
== dbs_tuners_ins
.ignore_nice
) /* nothing to do */
265 dbs_tuners_ins
.ignore_nice
= input
;
267 /* we need to re-evaluate prev_cpu_idle */
268 for_each_online_cpu(j
) {
269 struct cpu_dbs_info_s
*dbs_info
;
270 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
271 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
272 &dbs_info
->prev_cpu_wall
);
273 if (dbs_tuners_ins
.ignore_nice
)
274 dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
279 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
280 const char *buf
, size_t count
)
284 ret
= sscanf(buf
, "%u", &input
);
292 /* no need to test here if freq_step is zero as the user might actually
293 * want this, they would be crazy though :) */
294 dbs_tuners_ins
.freq_step
= input
;
298 define_one_global_rw(sampling_rate
);
299 define_one_global_rw(sampling_down_factor
);
300 define_one_global_rw(up_threshold
);
301 define_one_global_rw(down_threshold
);
302 define_one_global_rw(ignore_nice_load
);
303 define_one_global_rw(freq_step
);
305 static struct attribute
*dbs_attributes
[] = {
306 &sampling_rate_min
.attr
,
308 &sampling_down_factor
.attr
,
310 &down_threshold
.attr
,
311 &ignore_nice_load
.attr
,
316 static struct attribute_group dbs_attr_group
= {
317 .attrs
= dbs_attributes
,
318 .name
= "conservative",
321 /************************** sysfs end ************************/
323 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
325 unsigned int load
= 0;
326 unsigned int max_load
= 0;
327 unsigned int freq_target
;
329 struct cpufreq_policy
*policy
;
332 policy
= this_dbs_info
->cur_policy
;
335 * Every sampling_rate, we check, if current idle time is less
336 * than 20% (default), then we try to increase frequency
337 * Every sampling_rate*sampling_down_factor, we check, if current
338 * idle time is more than 80%, then we try to decrease frequency
340 * Any frequency increase takes it to the maximum frequency.
341 * Frequency reduction happens at minimum steps of
342 * 5% (default) of maximum frequency
345 /* Get Absolute Load */
346 for_each_cpu(j
, policy
->cpus
) {
347 struct cpu_dbs_info_s
*j_dbs_info
;
348 cputime64_t cur_wall_time
, cur_idle_time
;
349 unsigned int idle_time
, wall_time
;
351 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
353 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
355 wall_time
= (unsigned int)
356 (cur_wall_time
- j_dbs_info
->prev_cpu_wall
);
357 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
359 idle_time
= (unsigned int)
360 (cur_idle_time
- j_dbs_info
->prev_cpu_idle
);
361 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
363 if (dbs_tuners_ins
.ignore_nice
) {
365 unsigned long cur_nice_jiffies
;
367 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
] -
368 j_dbs_info
->prev_cpu_nice
;
370 * Assumption: nice time between sampling periods will
371 * be less than 2^32 jiffies for 32 bit sys
373 cur_nice_jiffies
= (unsigned long)
374 cputime64_to_jiffies64(cur_nice
);
376 j_dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
377 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
380 if (unlikely(!wall_time
|| wall_time
< idle_time
))
383 load
= 100 * (wall_time
- idle_time
) / wall_time
;
390 * break out if we 'cannot' reduce the speed as the user might
391 * want freq_step to be zero
393 if (dbs_tuners_ins
.freq_step
== 0)
396 /* Check for frequency increase */
397 if (max_load
> dbs_tuners_ins
.up_threshold
) {
398 this_dbs_info
->down_skip
= 0;
400 /* if we are already at full speed then break out early */
401 if (this_dbs_info
->requested_freq
== policy
->max
)
404 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
406 /* max freq cannot be less than 100. But who knows.... */
407 if (unlikely(freq_target
== 0))
410 this_dbs_info
->requested_freq
+= freq_target
;
411 if (this_dbs_info
->requested_freq
> policy
->max
)
412 this_dbs_info
->requested_freq
= policy
->max
;
414 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
420 * The optimal frequency is the frequency that is the lowest that
421 * can support the current CPU usage without triggering the up
422 * policy. To be safe, we focus 10 points under the threshold.
424 if (max_load
< (dbs_tuners_ins
.down_threshold
- 10)) {
425 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
427 this_dbs_info
->requested_freq
-= freq_target
;
428 if (this_dbs_info
->requested_freq
< policy
->min
)
429 this_dbs_info
->requested_freq
= policy
->min
;
432 * if we cannot reduce the frequency anymore, break out early
434 if (policy
->cur
== policy
->min
)
437 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
443 static void do_dbs_timer(struct work_struct
*work
)
445 struct cpu_dbs_info_s
*dbs_info
=
446 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
447 unsigned int cpu
= dbs_info
->cpu
;
449 /* We want all CPUs to do sampling nearly on same jiffy */
450 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
452 delay
-= jiffies
% delay
;
454 mutex_lock(&dbs_info
->timer_mutex
);
456 dbs_check_cpu(dbs_info
);
458 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
459 mutex_unlock(&dbs_info
->timer_mutex
);
462 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
464 /* We want all CPUs to do sampling nearly on same jiffy */
465 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
466 delay
-= jiffies
% delay
;
468 dbs_info
->enable
= 1;
469 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
470 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
473 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
475 dbs_info
->enable
= 0;
476 cancel_delayed_work_sync(&dbs_info
->work
);
479 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
482 unsigned int cpu
= policy
->cpu
;
483 struct cpu_dbs_info_s
*this_dbs_info
;
487 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
490 case CPUFREQ_GOV_START
:
491 if ((!cpu_online(cpu
)) || (!policy
->cur
))
494 mutex_lock(&dbs_mutex
);
496 for_each_cpu(j
, policy
->cpus
) {
497 struct cpu_dbs_info_s
*j_dbs_info
;
498 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
499 j_dbs_info
->cur_policy
= policy
;
501 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
502 &j_dbs_info
->prev_cpu_wall
);
503 if (dbs_tuners_ins
.ignore_nice
)
504 j_dbs_info
->prev_cpu_nice
=
505 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
507 this_dbs_info
->down_skip
= 0;
508 this_dbs_info
->requested_freq
= policy
->cur
;
510 mutex_init(&this_dbs_info
->timer_mutex
);
513 * Start the timerschedule work, when this governor
514 * is used for first time
516 if (dbs_enable
== 1) {
517 unsigned int latency
;
518 /* policy latency is in nS. Convert it to uS first */
519 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
523 rc
= sysfs_create_group(cpufreq_global_kobject
,
526 mutex_unlock(&dbs_mutex
);
531 * conservative does not implement micro like ondemand
532 * governor, thus we are bound to jiffes/HZ
535 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
536 /* Bring kernel and HW constraints together */
537 min_sampling_rate
= max(min_sampling_rate
,
538 MIN_LATENCY_MULTIPLIER
* latency
);
539 dbs_tuners_ins
.sampling_rate
=
540 max(min_sampling_rate
,
541 latency
* LATENCY_MULTIPLIER
);
543 cpufreq_register_notifier(
544 &dbs_cpufreq_notifier_block
,
545 CPUFREQ_TRANSITION_NOTIFIER
);
547 mutex_unlock(&dbs_mutex
);
549 dbs_timer_init(this_dbs_info
);
553 case CPUFREQ_GOV_STOP
:
554 dbs_timer_exit(this_dbs_info
);
556 mutex_lock(&dbs_mutex
);
558 mutex_destroy(&this_dbs_info
->timer_mutex
);
561 * Stop the timerschedule work, when this governor
562 * is used for first time
565 cpufreq_unregister_notifier(
566 &dbs_cpufreq_notifier_block
,
567 CPUFREQ_TRANSITION_NOTIFIER
);
569 mutex_unlock(&dbs_mutex
);
571 sysfs_remove_group(cpufreq_global_kobject
,
576 case CPUFREQ_GOV_LIMITS
:
577 mutex_lock(&this_dbs_info
->timer_mutex
);
578 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
579 __cpufreq_driver_target(
580 this_dbs_info
->cur_policy
,
581 policy
->max
, CPUFREQ_RELATION_H
);
582 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
583 __cpufreq_driver_target(
584 this_dbs_info
->cur_policy
,
585 policy
->min
, CPUFREQ_RELATION_L
);
586 mutex_unlock(&this_dbs_info
->timer_mutex
);
593 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 struct cpufreq_governor cpufreq_gov_conservative
= {
597 .name
= "conservative",
598 .governor
= cpufreq_governor_dbs
,
599 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
600 .owner
= THIS_MODULE
,
603 static int __init
cpufreq_gov_dbs_init(void)
605 return cpufreq_register_governor(&cpufreq_gov_conservative
);
608 static void __exit
cpufreq_gov_dbs_exit(void)
610 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
614 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
615 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
616 "Low Latency Frequency Transition capable processors "
617 "optimised for use in a battery environment");
618 MODULE_LICENSE("GPL");
620 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
621 fs_initcall(cpufreq_gov_dbs_init
);
623 module_init(cpufreq_gov_dbs_init
);
625 module_exit(cpufreq_gov_dbs_exit
);