usb: host: Distinguish Kconfig text for Freescale controllers
[zen-stable.git] / drivers / dma / imx-sdma.c
bloba8af379680c16776e19ae3018a9991243a3a8255
1 /*
2 * drivers/dma/imx-sdma.c
4 * This file contains a driver for the Freescale Smart DMA engine
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 * Based on code from Freescale:
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
45 /* SDMA registers */
46 #define SDMA_H_C0PTR 0x000
47 #define SDMA_H_INTR 0x004
48 #define SDMA_H_STATSTOP 0x008
49 #define SDMA_H_START 0x00c
50 #define SDMA_H_EVTOVR 0x010
51 #define SDMA_H_DSPOVR 0x014
52 #define SDMA_H_HOSTOVR 0x018
53 #define SDMA_H_EVTPEND 0x01c
54 #define SDMA_H_DSPENBL 0x020
55 #define SDMA_H_RESET 0x024
56 #define SDMA_H_EVTERR 0x028
57 #define SDMA_H_INTRMSK 0x02c
58 #define SDMA_H_PSW 0x030
59 #define SDMA_H_EVTERRDBG 0x034
60 #define SDMA_H_CONFIG 0x038
61 #define SDMA_ONCE_ENB 0x040
62 #define SDMA_ONCE_DATA 0x044
63 #define SDMA_ONCE_INSTR 0x048
64 #define SDMA_ONCE_STAT 0x04c
65 #define SDMA_ONCE_CMD 0x050
66 #define SDMA_EVT_MIRROR 0x054
67 #define SDMA_ILLINSTADDR 0x058
68 #define SDMA_CHN0ADDR 0x05c
69 #define SDMA_ONCE_RTB 0x060
70 #define SDMA_XTRIG_CONF1 0x070
71 #define SDMA_XTRIG_CONF2 0x074
72 #define SDMA_CHNENBL0_IMX35 0x200
73 #define SDMA_CHNENBL0_IMX31 0x080
74 #define SDMA_CHNPRI_0 0x100
77 * Buffer descriptor status values.
79 #define BD_DONE 0x01
80 #define BD_WRAP 0x02
81 #define BD_CONT 0x04
82 #define BD_INTR 0x08
83 #define BD_RROR 0x10
84 #define BD_LAST 0x20
85 #define BD_EXTD 0x80
88 * Data Node descriptor status values.
90 #define DND_END_OF_FRAME 0x80
91 #define DND_END_OF_XFER 0x40
92 #define DND_DONE 0x20
93 #define DND_UNUSED 0x01
96 * IPCV2 descriptor status values.
98 #define BD_IPCV2_END_OF_FRAME 0x40
100 #define IPCV2_MAX_NODES 50
102 * Error bit set in the CCB status field by the SDMA,
103 * in setbd routine, in case of a transfer error
105 #define DATA_ERROR 0x10000000
108 * Buffer descriptor commands.
110 #define C0_ADDR 0x01
111 #define C0_LOAD 0x02
112 #define C0_DUMP 0x03
113 #define C0_SETCTX 0x07
114 #define C0_GETCTX 0x03
115 #define C0_SETDM 0x01
116 #define C0_SETPM 0x04
117 #define C0_GETDM 0x02
118 #define C0_GETPM 0x08
120 * Change endianness indicator in the BD command field
122 #define CHANGE_ENDIANNESS 0x80
125 * Mode/Count of data node descriptors - IPCv2
127 struct sdma_mode_count {
128 u32 count : 16; /* size of the buffer pointed by this BD */
129 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
130 u32 command : 8; /* command mostlky used for channel 0 */
134 * Buffer descriptor
136 struct sdma_buffer_descriptor {
137 struct sdma_mode_count mode;
138 u32 buffer_addr; /* address of the buffer described */
139 u32 ext_buffer_addr; /* extended buffer address */
140 } __attribute__ ((packed));
143 * struct sdma_channel_control - Channel control Block
145 * @current_bd_ptr current buffer descriptor processed
146 * @base_bd_ptr first element of buffer descriptor array
147 * @unused padding. The SDMA engine expects an array of 128 byte
148 * control blocks
150 struct sdma_channel_control {
151 u32 current_bd_ptr;
152 u32 base_bd_ptr;
153 u32 unused[2];
154 } __attribute__ ((packed));
157 * struct sdma_state_registers - SDMA context for a channel
159 * @pc: program counter
160 * @t: test bit: status of arithmetic & test instruction
161 * @rpc: return program counter
162 * @sf: source fault while loading data
163 * @spc: loop start program counter
164 * @df: destination fault while storing data
165 * @epc: loop end program counter
166 * @lm: loop mode
168 struct sdma_state_registers {
169 u32 pc :14;
170 u32 unused1: 1;
171 u32 t : 1;
172 u32 rpc :14;
173 u32 unused0: 1;
174 u32 sf : 1;
175 u32 spc :14;
176 u32 unused2: 1;
177 u32 df : 1;
178 u32 epc :14;
179 u32 lm : 2;
180 } __attribute__ ((packed));
183 * struct sdma_context_data - sdma context specific to a channel
185 * @channel_state: channel state bits
186 * @gReg: general registers
187 * @mda: burst dma destination address register
188 * @msa: burst dma source address register
189 * @ms: burst dma status register
190 * @md: burst dma data register
191 * @pda: peripheral dma destination address register
192 * @psa: peripheral dma source address register
193 * @ps: peripheral dma status register
194 * @pd: peripheral dma data register
195 * @ca: CRC polynomial register
196 * @cs: CRC accumulator register
197 * @dda: dedicated core destination address register
198 * @dsa: dedicated core source address register
199 * @ds: dedicated core status register
200 * @dd: dedicated core data register
202 struct sdma_context_data {
203 struct sdma_state_registers channel_state;
204 u32 gReg[8];
205 u32 mda;
206 u32 msa;
207 u32 ms;
208 u32 md;
209 u32 pda;
210 u32 psa;
211 u32 ps;
212 u32 pd;
213 u32 ca;
214 u32 cs;
215 u32 dda;
216 u32 dsa;
217 u32 ds;
218 u32 dd;
219 u32 scratch0;
220 u32 scratch1;
221 u32 scratch2;
222 u32 scratch3;
223 u32 scratch4;
224 u32 scratch5;
225 u32 scratch6;
226 u32 scratch7;
227 } __attribute__ ((packed));
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
231 struct sdma_engine;
234 * struct sdma_channel - housekeeping for a SDMA channel
236 * @sdma pointer to the SDMA engine for this channel
237 * @channel the channel number, matches dmaengine chan_id + 1
238 * @direction transfer type. Needed for setting SDMA script
239 * @peripheral_type Peripheral type. Needed for setting SDMA script
240 * @event_id0 aka dma request line
241 * @event_id1 for channels that use 2 events
242 * @word_size peripheral access size
243 * @buf_tail ID of the buffer that was processed
244 * @done channel completion
245 * @num_bd max NUM_BD. number of descriptors currently handling
247 struct sdma_channel {
248 struct sdma_engine *sdma;
249 unsigned int channel;
250 enum dma_transfer_direction direction;
251 enum sdma_peripheral_type peripheral_type;
252 unsigned int event_id0;
253 unsigned int event_id1;
254 enum dma_slave_buswidth word_size;
255 unsigned int buf_tail;
256 struct completion done;
257 unsigned int num_bd;
258 struct sdma_buffer_descriptor *bd;
259 dma_addr_t bd_phys;
260 unsigned int pc_from_device, pc_to_device;
261 unsigned long flags;
262 dma_addr_t per_address;
263 u32 event_mask0, event_mask1;
264 u32 watermark_level;
265 u32 shp_addr, per_addr;
266 struct dma_chan chan;
267 spinlock_t lock;
268 struct dma_async_tx_descriptor desc;
269 dma_cookie_t last_completed;
270 enum dma_status status;
271 unsigned int chn_count;
272 unsigned int chn_real_count;
275 #define IMX_DMA_SG_LOOP (1 << 0)
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285 * struct sdma_firmware_header - Layout of the firmware image
287 * @magic "SDMA"
288 * @version_major increased whenever layout of struct sdma_script_start_addrs
289 * changes.
290 * @version_minor firmware minor version (for binary compatible changes)
291 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
292 * @num_script_addrs Number of script addresses in this image
293 * @ram_code_start offset of SDMA ram image in this firmware image
294 * @ram_code_size size of SDMA ram image
295 * @script_addrs Stores the start address of the SDMA scripts
296 * (in SDMA memory space)
298 struct sdma_firmware_header {
299 u32 magic;
300 u32 version_major;
301 u32 version_minor;
302 u32 script_addrs_start;
303 u32 num_script_addrs;
304 u32 ram_code_start;
305 u32 ram_code_size;
308 enum sdma_devtype {
309 IMX31_SDMA, /* runs on i.mx31 */
310 IMX35_SDMA, /* runs on i.mx35 and later */
313 struct sdma_engine {
314 struct device *dev;
315 struct device_dma_parameters dma_parms;
316 struct sdma_channel channel[MAX_DMA_CHANNELS];
317 struct sdma_channel_control *channel_control;
318 void __iomem *regs;
319 enum sdma_devtype devtype;
320 unsigned int num_events;
321 struct sdma_context_data *context;
322 dma_addr_t context_phys;
323 struct dma_device dma_device;
324 struct clk *clk;
325 struct mutex channel_0_lock;
326 struct sdma_script_start_addrs *script_addrs;
329 static struct platform_device_id sdma_devtypes[] = {
331 .name = "imx31-sdma",
332 .driver_data = IMX31_SDMA,
333 }, {
334 .name = "imx35-sdma",
335 .driver_data = IMX35_SDMA,
336 }, {
337 /* sentinel */
340 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
342 static const struct of_device_id sdma_dt_ids[] = {
343 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
344 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
345 { /* sentinel */ }
347 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
349 #define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
350 #define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
351 #define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
352 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
354 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
356 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
357 SDMA_CHNENBL0_IMX35);
358 return chnenbl0 + event * 4;
361 static int sdma_config_ownership(struct sdma_channel *sdmac,
362 bool event_override, bool mcu_override, bool dsp_override)
364 struct sdma_engine *sdma = sdmac->sdma;
365 int channel = sdmac->channel;
366 u32 evt, mcu, dsp;
368 if (event_override && mcu_override && dsp_override)
369 return -EINVAL;
371 evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
372 mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
373 dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
375 if (dsp_override)
376 dsp &= ~(1 << channel);
377 else
378 dsp |= (1 << channel);
380 if (event_override)
381 evt &= ~(1 << channel);
382 else
383 evt |= (1 << channel);
385 if (mcu_override)
386 mcu &= ~(1 << channel);
387 else
388 mcu |= (1 << channel);
390 __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
391 __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
392 __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
394 return 0;
398 * sdma_run_channel - run a channel and wait till it's done
400 static int sdma_run_channel(struct sdma_channel *sdmac)
402 struct sdma_engine *sdma = sdmac->sdma;
403 int channel = sdmac->channel;
404 int ret;
406 init_completion(&sdmac->done);
408 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
410 ret = wait_for_completion_timeout(&sdmac->done, HZ);
412 return ret ? 0 : -ETIMEDOUT;
415 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
416 u32 address)
418 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
419 void *buf_virt;
420 dma_addr_t buf_phys;
421 int ret;
423 mutex_lock(&sdma->channel_0_lock);
425 buf_virt = dma_alloc_coherent(NULL,
426 size,
427 &buf_phys, GFP_KERNEL);
428 if (!buf_virt) {
429 ret = -ENOMEM;
430 goto err_out;
433 bd0->mode.command = C0_SETPM;
434 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
435 bd0->mode.count = size / 2;
436 bd0->buffer_addr = buf_phys;
437 bd0->ext_buffer_addr = address;
439 memcpy(buf_virt, buf, size);
441 ret = sdma_run_channel(&sdma->channel[0]);
443 dma_free_coherent(NULL, size, buf_virt, buf_phys);
445 err_out:
446 mutex_unlock(&sdma->channel_0_lock);
448 return ret;
451 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
453 struct sdma_engine *sdma = sdmac->sdma;
454 int channel = sdmac->channel;
455 u32 val;
456 u32 chnenbl = chnenbl_ofs(sdma, event);
458 val = __raw_readl(sdma->regs + chnenbl);
459 val |= (1 << channel);
460 __raw_writel(val, sdma->regs + chnenbl);
463 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
465 struct sdma_engine *sdma = sdmac->sdma;
466 int channel = sdmac->channel;
467 u32 chnenbl = chnenbl_ofs(sdma, event);
468 u32 val;
470 val = __raw_readl(sdma->regs + chnenbl);
471 val &= ~(1 << channel);
472 __raw_writel(val, sdma->regs + chnenbl);
475 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
477 struct sdma_buffer_descriptor *bd;
480 * loop mode. Iterate over descriptors, re-setup them and
481 * call callback function.
483 while (1) {
484 bd = &sdmac->bd[sdmac->buf_tail];
486 if (bd->mode.status & BD_DONE)
487 break;
489 if (bd->mode.status & BD_RROR)
490 sdmac->status = DMA_ERROR;
491 else
492 sdmac->status = DMA_IN_PROGRESS;
494 bd->mode.status |= BD_DONE;
495 sdmac->buf_tail++;
496 sdmac->buf_tail %= sdmac->num_bd;
498 if (sdmac->desc.callback)
499 sdmac->desc.callback(sdmac->desc.callback_param);
503 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
505 struct sdma_buffer_descriptor *bd;
506 int i, error = 0;
508 sdmac->chn_real_count = 0;
510 * non loop mode. Iterate over all descriptors, collect
511 * errors and call callback function
513 for (i = 0; i < sdmac->num_bd; i++) {
514 bd = &sdmac->bd[i];
516 if (bd->mode.status & (BD_DONE | BD_RROR))
517 error = -EIO;
518 sdmac->chn_real_count += bd->mode.count;
521 if (error)
522 sdmac->status = DMA_ERROR;
523 else
524 sdmac->status = DMA_SUCCESS;
526 sdmac->last_completed = sdmac->desc.cookie;
527 if (sdmac->desc.callback)
528 sdmac->desc.callback(sdmac->desc.callback_param);
531 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
533 complete(&sdmac->done);
535 /* not interested in channel 0 interrupts */
536 if (sdmac->channel == 0)
537 return;
539 if (sdmac->flags & IMX_DMA_SG_LOOP)
540 sdma_handle_channel_loop(sdmac);
541 else
542 mxc_sdma_handle_channel_normal(sdmac);
545 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
547 struct sdma_engine *sdma = dev_id;
548 u32 stat;
550 stat = __raw_readl(sdma->regs + SDMA_H_INTR);
551 __raw_writel(stat, sdma->regs + SDMA_H_INTR);
553 while (stat) {
554 int channel = fls(stat) - 1;
555 struct sdma_channel *sdmac = &sdma->channel[channel];
557 mxc_sdma_handle_channel(sdmac);
559 stat &= ~(1 << channel);
562 return IRQ_HANDLED;
566 * sets the pc of SDMA script according to the peripheral type
568 static void sdma_get_pc(struct sdma_channel *sdmac,
569 enum sdma_peripheral_type peripheral_type)
571 struct sdma_engine *sdma = sdmac->sdma;
572 int per_2_emi = 0, emi_2_per = 0;
574 * These are needed once we start to support transfers between
575 * two peripherals or memory-to-memory transfers
577 int per_2_per = 0, emi_2_emi = 0;
579 sdmac->pc_from_device = 0;
580 sdmac->pc_to_device = 0;
582 switch (peripheral_type) {
583 case IMX_DMATYPE_MEMORY:
584 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
585 break;
586 case IMX_DMATYPE_DSP:
587 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
588 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
589 break;
590 case IMX_DMATYPE_FIRI:
591 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
592 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
593 break;
594 case IMX_DMATYPE_UART:
595 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
596 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
597 break;
598 case IMX_DMATYPE_UART_SP:
599 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
600 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
601 break;
602 case IMX_DMATYPE_ATA:
603 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
604 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
605 break;
606 case IMX_DMATYPE_CSPI:
607 case IMX_DMATYPE_EXT:
608 case IMX_DMATYPE_SSI:
609 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
610 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611 break;
612 case IMX_DMATYPE_SSI_SP:
613 case IMX_DMATYPE_MMC:
614 case IMX_DMATYPE_SDHC:
615 case IMX_DMATYPE_CSPI_SP:
616 case IMX_DMATYPE_ESAI:
617 case IMX_DMATYPE_MSHC_SP:
618 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
619 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
620 break;
621 case IMX_DMATYPE_ASRC:
622 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
623 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
624 per_2_per = sdma->script_addrs->per_2_per_addr;
625 break;
626 case IMX_DMATYPE_MSHC:
627 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
628 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
629 break;
630 case IMX_DMATYPE_CCM:
631 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
632 break;
633 case IMX_DMATYPE_SPDIF:
634 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
635 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
636 break;
637 case IMX_DMATYPE_IPU_MEMORY:
638 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
639 break;
640 default:
641 break;
644 sdmac->pc_from_device = per_2_emi;
645 sdmac->pc_to_device = emi_2_per;
648 static int sdma_load_context(struct sdma_channel *sdmac)
650 struct sdma_engine *sdma = sdmac->sdma;
651 int channel = sdmac->channel;
652 int load_address;
653 struct sdma_context_data *context = sdma->context;
654 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
655 int ret;
657 if (sdmac->direction == DMA_DEV_TO_MEM) {
658 load_address = sdmac->pc_from_device;
659 } else {
660 load_address = sdmac->pc_to_device;
663 if (load_address < 0)
664 return load_address;
666 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
667 dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
668 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
669 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
670 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
671 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
673 mutex_lock(&sdma->channel_0_lock);
675 memset(context, 0, sizeof(*context));
676 context->channel_state.pc = load_address;
678 /* Send by context the event mask,base address for peripheral
679 * and watermark level
681 context->gReg[0] = sdmac->event_mask1;
682 context->gReg[1] = sdmac->event_mask0;
683 context->gReg[2] = sdmac->per_addr;
684 context->gReg[6] = sdmac->shp_addr;
685 context->gReg[7] = sdmac->watermark_level;
687 bd0->mode.command = C0_SETDM;
688 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689 bd0->mode.count = sizeof(*context) / 4;
690 bd0->buffer_addr = sdma->context_phys;
691 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
693 ret = sdma_run_channel(&sdma->channel[0]);
695 mutex_unlock(&sdma->channel_0_lock);
697 return ret;
700 static void sdma_disable_channel(struct sdma_channel *sdmac)
702 struct sdma_engine *sdma = sdmac->sdma;
703 int channel = sdmac->channel;
705 __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
706 sdmac->status = DMA_ERROR;
709 static int sdma_config_channel(struct sdma_channel *sdmac)
711 int ret;
713 sdma_disable_channel(sdmac);
715 sdmac->event_mask0 = 0;
716 sdmac->event_mask1 = 0;
717 sdmac->shp_addr = 0;
718 sdmac->per_addr = 0;
720 if (sdmac->event_id0) {
721 if (sdmac->event_id0 > 32)
722 return -EINVAL;
723 sdma_event_enable(sdmac, sdmac->event_id0);
726 switch (sdmac->peripheral_type) {
727 case IMX_DMATYPE_DSP:
728 sdma_config_ownership(sdmac, false, true, true);
729 break;
730 case IMX_DMATYPE_MEMORY:
731 sdma_config_ownership(sdmac, false, true, false);
732 break;
733 default:
734 sdma_config_ownership(sdmac, true, true, false);
735 break;
738 sdma_get_pc(sdmac, sdmac->peripheral_type);
740 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
741 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
742 /* Handle multiple event channels differently */
743 if (sdmac->event_id1) {
744 sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
745 if (sdmac->event_id1 > 31)
746 sdmac->watermark_level |= 1 << 31;
747 sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
748 if (sdmac->event_id0 > 31)
749 sdmac->watermark_level |= 1 << 30;
750 } else {
751 sdmac->event_mask0 = 1 << sdmac->event_id0;
752 sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
754 /* Watermark Level */
755 sdmac->watermark_level |= sdmac->watermark_level;
756 /* Address */
757 sdmac->shp_addr = sdmac->per_address;
758 } else {
759 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
762 ret = sdma_load_context(sdmac);
764 return ret;
767 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
768 unsigned int priority)
770 struct sdma_engine *sdma = sdmac->sdma;
771 int channel = sdmac->channel;
773 if (priority < MXC_SDMA_MIN_PRIORITY
774 || priority > MXC_SDMA_MAX_PRIORITY) {
775 return -EINVAL;
778 __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
780 return 0;
783 static int sdma_request_channel(struct sdma_channel *sdmac)
785 struct sdma_engine *sdma = sdmac->sdma;
786 int channel = sdmac->channel;
787 int ret = -EBUSY;
789 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
790 if (!sdmac->bd) {
791 ret = -ENOMEM;
792 goto out;
795 memset(sdmac->bd, 0, PAGE_SIZE);
797 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
798 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
800 clk_enable(sdma->clk);
802 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
804 init_completion(&sdmac->done);
806 sdmac->buf_tail = 0;
808 return 0;
809 out:
811 return ret;
814 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
816 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
819 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
821 dma_cookie_t cookie = sdmac->chan.cookie;
823 if (++cookie < 0)
824 cookie = 1;
826 sdmac->chan.cookie = cookie;
827 sdmac->desc.cookie = cookie;
829 return cookie;
832 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
834 return container_of(chan, struct sdma_channel, chan);
837 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
839 unsigned long flags;
840 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
841 struct sdma_engine *sdma = sdmac->sdma;
842 dma_cookie_t cookie;
844 spin_lock_irqsave(&sdmac->lock, flags);
846 cookie = sdma_assign_cookie(sdmac);
848 sdma_enable_channel(sdma, sdmac->channel);
850 spin_unlock_irqrestore(&sdmac->lock, flags);
852 return cookie;
855 static int sdma_alloc_chan_resources(struct dma_chan *chan)
857 struct sdma_channel *sdmac = to_sdma_chan(chan);
858 struct imx_dma_data *data = chan->private;
859 int prio, ret;
861 if (!data)
862 return -EINVAL;
864 switch (data->priority) {
865 case DMA_PRIO_HIGH:
866 prio = 3;
867 break;
868 case DMA_PRIO_MEDIUM:
869 prio = 2;
870 break;
871 case DMA_PRIO_LOW:
872 default:
873 prio = 1;
874 break;
877 sdmac->peripheral_type = data->peripheral_type;
878 sdmac->event_id0 = data->dma_request;
879 ret = sdma_set_channel_priority(sdmac, prio);
880 if (ret)
881 return ret;
883 ret = sdma_request_channel(sdmac);
884 if (ret)
885 return ret;
887 dma_async_tx_descriptor_init(&sdmac->desc, chan);
888 sdmac->desc.tx_submit = sdma_tx_submit;
889 /* txd.flags will be overwritten in prep funcs */
890 sdmac->desc.flags = DMA_CTRL_ACK;
892 return 0;
895 static void sdma_free_chan_resources(struct dma_chan *chan)
897 struct sdma_channel *sdmac = to_sdma_chan(chan);
898 struct sdma_engine *sdma = sdmac->sdma;
900 sdma_disable_channel(sdmac);
902 if (sdmac->event_id0)
903 sdma_event_disable(sdmac, sdmac->event_id0);
904 if (sdmac->event_id1)
905 sdma_event_disable(sdmac, sdmac->event_id1);
907 sdmac->event_id0 = 0;
908 sdmac->event_id1 = 0;
910 sdma_set_channel_priority(sdmac, 0);
912 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
914 clk_disable(sdma->clk);
917 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
918 struct dma_chan *chan, struct scatterlist *sgl,
919 unsigned int sg_len, enum dma_transfer_direction direction,
920 unsigned long flags)
922 struct sdma_channel *sdmac = to_sdma_chan(chan);
923 struct sdma_engine *sdma = sdmac->sdma;
924 int ret, i, count;
925 int channel = sdmac->channel;
926 struct scatterlist *sg;
928 if (sdmac->status == DMA_IN_PROGRESS)
929 return NULL;
930 sdmac->status = DMA_IN_PROGRESS;
932 sdmac->flags = 0;
934 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
935 sg_len, channel);
937 sdmac->direction = direction;
938 ret = sdma_load_context(sdmac);
939 if (ret)
940 goto err_out;
942 if (sg_len > NUM_BD) {
943 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
944 channel, sg_len, NUM_BD);
945 ret = -EINVAL;
946 goto err_out;
949 sdmac->chn_count = 0;
950 for_each_sg(sgl, sg, sg_len, i) {
951 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
952 int param;
954 bd->buffer_addr = sg->dma_address;
956 count = sg->length;
958 if (count > 0xffff) {
959 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
960 channel, count, 0xffff);
961 ret = -EINVAL;
962 goto err_out;
965 bd->mode.count = count;
966 sdmac->chn_count += count;
968 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
969 ret = -EINVAL;
970 goto err_out;
973 switch (sdmac->word_size) {
974 case DMA_SLAVE_BUSWIDTH_4_BYTES:
975 bd->mode.command = 0;
976 if (count & 3 || sg->dma_address & 3)
977 return NULL;
978 break;
979 case DMA_SLAVE_BUSWIDTH_2_BYTES:
980 bd->mode.command = 2;
981 if (count & 1 || sg->dma_address & 1)
982 return NULL;
983 break;
984 case DMA_SLAVE_BUSWIDTH_1_BYTE:
985 bd->mode.command = 1;
986 break;
987 default:
988 return NULL;
991 param = BD_DONE | BD_EXTD | BD_CONT;
993 if (i + 1 == sg_len) {
994 param |= BD_INTR;
995 param |= BD_LAST;
996 param &= ~BD_CONT;
999 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1000 i, count, sg->dma_address,
1001 param & BD_WRAP ? "wrap" : "",
1002 param & BD_INTR ? " intr" : "");
1004 bd->mode.status = param;
1007 sdmac->num_bd = sg_len;
1008 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1010 return &sdmac->desc;
1011 err_out:
1012 sdmac->status = DMA_ERROR;
1013 return NULL;
1016 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1017 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1018 size_t period_len, enum dma_transfer_direction direction)
1020 struct sdma_channel *sdmac = to_sdma_chan(chan);
1021 struct sdma_engine *sdma = sdmac->sdma;
1022 int num_periods = buf_len / period_len;
1023 int channel = sdmac->channel;
1024 int ret, i = 0, buf = 0;
1026 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1028 if (sdmac->status == DMA_IN_PROGRESS)
1029 return NULL;
1031 sdmac->status = DMA_IN_PROGRESS;
1033 sdmac->flags |= IMX_DMA_SG_LOOP;
1034 sdmac->direction = direction;
1035 ret = sdma_load_context(sdmac);
1036 if (ret)
1037 goto err_out;
1039 if (num_periods > NUM_BD) {
1040 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1041 channel, num_periods, NUM_BD);
1042 goto err_out;
1045 if (period_len > 0xffff) {
1046 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1047 channel, period_len, 0xffff);
1048 goto err_out;
1051 while (buf < buf_len) {
1052 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1053 int param;
1055 bd->buffer_addr = dma_addr;
1057 bd->mode.count = period_len;
1059 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1060 goto err_out;
1061 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1062 bd->mode.command = 0;
1063 else
1064 bd->mode.command = sdmac->word_size;
1066 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1067 if (i + 1 == num_periods)
1068 param |= BD_WRAP;
1070 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1071 i, period_len, dma_addr,
1072 param & BD_WRAP ? "wrap" : "",
1073 param & BD_INTR ? " intr" : "");
1075 bd->mode.status = param;
1077 dma_addr += period_len;
1078 buf += period_len;
1080 i++;
1083 sdmac->num_bd = num_periods;
1084 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1086 return &sdmac->desc;
1087 err_out:
1088 sdmac->status = DMA_ERROR;
1089 return NULL;
1092 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1093 unsigned long arg)
1095 struct sdma_channel *sdmac = to_sdma_chan(chan);
1096 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1098 switch (cmd) {
1099 case DMA_TERMINATE_ALL:
1100 sdma_disable_channel(sdmac);
1101 return 0;
1102 case DMA_SLAVE_CONFIG:
1103 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1104 sdmac->per_address = dmaengine_cfg->src_addr;
1105 sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1106 sdmac->word_size = dmaengine_cfg->src_addr_width;
1107 } else {
1108 sdmac->per_address = dmaengine_cfg->dst_addr;
1109 sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1110 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1112 sdmac->direction = dmaengine_cfg->direction;
1113 return sdma_config_channel(sdmac);
1114 default:
1115 return -ENOSYS;
1118 return -EINVAL;
1121 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1122 dma_cookie_t cookie,
1123 struct dma_tx_state *txstate)
1125 struct sdma_channel *sdmac = to_sdma_chan(chan);
1126 dma_cookie_t last_used;
1128 last_used = chan->cookie;
1130 dma_set_tx_state(txstate, sdmac->last_completed, last_used,
1131 sdmac->chn_count - sdmac->chn_real_count);
1133 return sdmac->status;
1136 static void sdma_issue_pending(struct dma_chan *chan)
1139 * Nothing to do. We only have a single descriptor
1143 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1145 static void sdma_add_scripts(struct sdma_engine *sdma,
1146 const struct sdma_script_start_addrs *addr)
1148 s32 *addr_arr = (u32 *)addr;
1149 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1150 int i;
1152 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1153 if (addr_arr[i] > 0)
1154 saddr_arr[i] = addr_arr[i];
1157 static void sdma_load_firmware(const struct firmware *fw, void *context)
1159 struct sdma_engine *sdma = context;
1160 const struct sdma_firmware_header *header;
1161 const struct sdma_script_start_addrs *addr;
1162 unsigned short *ram_code;
1164 if (!fw) {
1165 dev_err(sdma->dev, "firmware not found\n");
1166 return;
1169 if (fw->size < sizeof(*header))
1170 goto err_firmware;
1172 header = (struct sdma_firmware_header *)fw->data;
1174 if (header->magic != SDMA_FIRMWARE_MAGIC)
1175 goto err_firmware;
1176 if (header->ram_code_start + header->ram_code_size > fw->size)
1177 goto err_firmware;
1179 addr = (void *)header + header->script_addrs_start;
1180 ram_code = (void *)header + header->ram_code_start;
1182 clk_enable(sdma->clk);
1183 /* download the RAM image for SDMA */
1184 sdma_load_script(sdma, ram_code,
1185 header->ram_code_size,
1186 addr->ram_code_start_addr);
1187 clk_disable(sdma->clk);
1189 sdma_add_scripts(sdma, addr);
1191 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1192 header->version_major,
1193 header->version_minor);
1195 err_firmware:
1196 release_firmware(fw);
1199 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1200 const char *fw_name)
1202 int ret;
1204 ret = request_firmware_nowait(THIS_MODULE,
1205 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1206 GFP_KERNEL, sdma, sdma_load_firmware);
1208 return ret;
1211 static int __init sdma_init(struct sdma_engine *sdma)
1213 int i, ret;
1214 dma_addr_t ccb_phys;
1216 switch (sdma->devtype) {
1217 case IMX31_SDMA:
1218 sdma->num_events = 32;
1219 break;
1220 case IMX35_SDMA:
1221 sdma->num_events = 48;
1222 break;
1223 default:
1224 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1225 sdma->devtype);
1226 return -ENODEV;
1229 clk_enable(sdma->clk);
1231 /* Be sure SDMA has not started yet */
1232 __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1234 sdma->channel_control = dma_alloc_coherent(NULL,
1235 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1236 sizeof(struct sdma_context_data),
1237 &ccb_phys, GFP_KERNEL);
1239 if (!sdma->channel_control) {
1240 ret = -ENOMEM;
1241 goto err_dma_alloc;
1244 sdma->context = (void *)sdma->channel_control +
1245 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1246 sdma->context_phys = ccb_phys +
1247 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1249 /* Zero-out the CCB structures array just allocated */
1250 memset(sdma->channel_control, 0,
1251 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1253 /* disable all channels */
1254 for (i = 0; i < sdma->num_events; i++)
1255 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1257 /* All channels have priority 0 */
1258 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1259 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1261 ret = sdma_request_channel(&sdma->channel[0]);
1262 if (ret)
1263 goto err_dma_alloc;
1265 sdma_config_ownership(&sdma->channel[0], false, true, false);
1267 /* Set Command Channel (Channel Zero) */
1268 __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1270 /* Set bits of CONFIG register but with static context switching */
1271 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1272 __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1274 __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1276 /* Set bits of CONFIG register with given context switching mode */
1277 __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1279 /* Initializes channel's priorities */
1280 sdma_set_channel_priority(&sdma->channel[0], 7);
1282 clk_disable(sdma->clk);
1284 return 0;
1286 err_dma_alloc:
1287 clk_disable(sdma->clk);
1288 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1289 return ret;
1292 static int __init sdma_probe(struct platform_device *pdev)
1294 const struct of_device_id *of_id =
1295 of_match_device(sdma_dt_ids, &pdev->dev);
1296 struct device_node *np = pdev->dev.of_node;
1297 const char *fw_name;
1298 int ret;
1299 int irq;
1300 struct resource *iores;
1301 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1302 int i;
1303 struct sdma_engine *sdma;
1304 s32 *saddr_arr;
1306 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1307 if (!sdma)
1308 return -ENOMEM;
1310 mutex_init(&sdma->channel_0_lock);
1312 sdma->dev = &pdev->dev;
1314 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315 irq = platform_get_irq(pdev, 0);
1316 if (!iores || irq < 0) {
1317 ret = -EINVAL;
1318 goto err_irq;
1321 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1322 ret = -EBUSY;
1323 goto err_request_region;
1326 sdma->clk = clk_get(&pdev->dev, NULL);
1327 if (IS_ERR(sdma->clk)) {
1328 ret = PTR_ERR(sdma->clk);
1329 goto err_clk;
1332 sdma->regs = ioremap(iores->start, resource_size(iores));
1333 if (!sdma->regs) {
1334 ret = -ENOMEM;
1335 goto err_ioremap;
1338 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1339 if (ret)
1340 goto err_request_irq;
1342 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1343 if (!sdma->script_addrs) {
1344 ret = -ENOMEM;
1345 goto err_alloc;
1348 /* initially no scripts available */
1349 saddr_arr = (s32 *)sdma->script_addrs;
1350 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1351 saddr_arr[i] = -EINVAL;
1353 if (of_id)
1354 pdev->id_entry = of_id->data;
1355 sdma->devtype = pdev->id_entry->driver_data;
1357 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1358 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1360 INIT_LIST_HEAD(&sdma->dma_device.channels);
1361 /* Initialize channel parameters */
1362 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1363 struct sdma_channel *sdmac = &sdma->channel[i];
1365 sdmac->sdma = sdma;
1366 spin_lock_init(&sdmac->lock);
1368 sdmac->chan.device = &sdma->dma_device;
1369 sdmac->channel = i;
1372 * Add the channel to the DMAC list. Do not add channel 0 though
1373 * because we need it internally in the SDMA driver. This also means
1374 * that channel 0 in dmaengine counting matches sdma channel 1.
1376 if (i)
1377 list_add_tail(&sdmac->chan.device_node,
1378 &sdma->dma_device.channels);
1381 ret = sdma_init(sdma);
1382 if (ret)
1383 goto err_init;
1385 if (pdata && pdata->script_addrs)
1386 sdma_add_scripts(sdma, pdata->script_addrs);
1388 if (pdata) {
1389 sdma_get_firmware(sdma, pdata->fw_name);
1390 } else {
1392 * Because that device tree does not encode ROM script address,
1393 * the RAM script in firmware is mandatory for device tree
1394 * probe, otherwise it fails.
1396 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1397 &fw_name);
1398 if (ret) {
1399 dev_err(&pdev->dev, "failed to get firmware name\n");
1400 goto err_init;
1403 ret = sdma_get_firmware(sdma, fw_name);
1404 if (ret) {
1405 dev_err(&pdev->dev, "failed to get firmware\n");
1406 goto err_init;
1410 sdma->dma_device.dev = &pdev->dev;
1412 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1413 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1414 sdma->dma_device.device_tx_status = sdma_tx_status;
1415 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1416 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1417 sdma->dma_device.device_control = sdma_control;
1418 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1419 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1420 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1422 ret = dma_async_device_register(&sdma->dma_device);
1423 if (ret) {
1424 dev_err(&pdev->dev, "unable to register\n");
1425 goto err_init;
1428 dev_info(sdma->dev, "initialized\n");
1430 return 0;
1432 err_init:
1433 kfree(sdma->script_addrs);
1434 err_alloc:
1435 free_irq(irq, sdma);
1436 err_request_irq:
1437 iounmap(sdma->regs);
1438 err_ioremap:
1439 clk_put(sdma->clk);
1440 err_clk:
1441 release_mem_region(iores->start, resource_size(iores));
1442 err_request_region:
1443 err_irq:
1444 kfree(sdma);
1445 return ret;
1448 static int __exit sdma_remove(struct platform_device *pdev)
1450 return -EBUSY;
1453 static struct platform_driver sdma_driver = {
1454 .driver = {
1455 .name = "imx-sdma",
1456 .of_match_table = sdma_dt_ids,
1458 .id_table = sdma_devtypes,
1459 .remove = __exit_p(sdma_remove),
1462 static int __init sdma_module_init(void)
1464 return platform_driver_probe(&sdma_driver, sdma_probe);
1466 module_init(sdma_module_init);
1468 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1469 MODULE_DESCRIPTION("i.MX SDMA driver");
1470 MODULE_LICENSE("GPL");