usb: host: Distinguish Kconfig text for Freescale controllers
[zen-stable.git] / drivers / firewire / ohci.c
blob6628feaa76229009f1bf5f62b3419d9e79dcea35
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
55 #include "core.h"
56 #include "ohci.h"
58 #define DESCRIPTOR_OUTPUT_MORE 0
59 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
60 #define DESCRIPTOR_INPUT_MORE (2 << 12)
61 #define DESCRIPTOR_INPUT_LAST (3 << 12)
62 #define DESCRIPTOR_STATUS (1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
64 #define DESCRIPTOR_PING (1 << 7)
65 #define DESCRIPTOR_YY (1 << 6)
66 #define DESCRIPTOR_NO_IRQ (0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
70 #define DESCRIPTOR_WAIT (3 << 0)
72 struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79 } __attribute__((aligned(16)));
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
95 struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct tasklet_struct tasklet;
107 struct context;
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
117 struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[0];
125 struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131 bool flushing;
134 * List of page-sized buffers for storing DMA descriptors.
135 * Head of list contains buffers in use and tail of list contains
136 * free buffers.
138 struct list_head buffer_list;
141 * Pointer to a buffer inside buffer_list that contains the tail
142 * end of the current DMA program.
144 struct descriptor_buffer *buffer_tail;
147 * The descriptor containing the branch address of the first
148 * descriptor that has not yet been filled by the device.
150 struct descriptor *last;
153 * The last descriptor in the DMA program. It contains the branch
154 * address that must be updated upon appending a new descriptor.
156 struct descriptor *prev;
158 descriptor_callback_t callback;
160 struct tasklet_struct tasklet;
163 #define IT_HEADER_SY(v) ((v) << 0)
164 #define IT_HEADER_TCODE(v) ((v) << 4)
165 #define IT_HEADER_CHANNEL(v) ((v) << 8)
166 #define IT_HEADER_TAG(v) ((v) << 14)
167 #define IT_HEADER_SPEED(v) ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct iso_context {
171 struct fw_iso_context base;
172 struct context context;
173 int excess_bytes;
174 void *header;
175 size_t header_length;
177 u8 sync;
178 u8 tags;
181 #define CONFIG_ROM_SIZE 1024
183 struct fw_ohci {
184 struct fw_card card;
186 __iomem char *registers;
187 int node_id;
188 int generation;
189 int request_generation; /* for timestamping incoming requests */
190 unsigned quirks;
191 unsigned int pri_req_max;
192 u32 bus_time;
193 bool is_root;
194 bool csr_state_setclear_abdicate;
195 int n_ir;
196 int n_it;
198 * Spinlock for accessing fw_ohci data. Never call out of
199 * this driver with this lock held.
201 spinlock_t lock;
203 struct mutex phy_reg_mutex;
205 void *misc_buffer;
206 dma_addr_t misc_buffer_bus;
208 struct ar_context ar_request_ctx;
209 struct ar_context ar_response_ctx;
210 struct context at_request_ctx;
211 struct context at_response_ctx;
213 u32 it_context_support;
214 u32 it_context_mask; /* unoccupied IT contexts */
215 struct iso_context *it_context_list;
216 u64 ir_context_channels; /* unoccupied channels */
217 u32 ir_context_support;
218 u32 ir_context_mask; /* unoccupied IR contexts */
219 struct iso_context *ir_context_list;
220 u64 mc_channels; /* channels in use by the multichannel IR context */
221 bool mc_allocated;
223 __be32 *config_rom;
224 dma_addr_t config_rom_bus;
225 __be32 *next_config_rom;
226 dma_addr_t next_config_rom_bus;
227 __be32 next_header;
229 __le32 *self_id_cpu;
230 dma_addr_t self_id_bus;
231 struct work_struct bus_reset_work;
233 u32 self_id_buffer[512];
236 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
238 return container_of(card, struct fw_ohci, card);
241 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
242 #define IR_CONTEXT_BUFFER_FILL 0x80000000
243 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
244 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
245 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
246 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
248 #define CONTEXT_RUN 0x8000
249 #define CONTEXT_WAKE 0x1000
250 #define CONTEXT_DEAD 0x0800
251 #define CONTEXT_ACTIVE 0x0400
253 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
254 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
255 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
257 #define OHCI1394_REGISTER_SIZE 0x800
258 #define OHCI1394_PCI_HCI_Control 0x40
259 #define SELF_ID_BUF_SIZE 0x800
260 #define OHCI_TCODE_PHY_PACKET 0x0e
261 #define OHCI_VERSION_1_1 0x010010
263 static char ohci_driver_name[] = KBUILD_MODNAME;
265 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
272 #define QUIRK_CYCLE_TIMER 1
273 #define QUIRK_RESET_PACKET 2
274 #define QUIRK_BE_HEADERS 4
275 #define QUIRK_NO_1394A 8
276 #define QUIRK_NO_MSI 16
277 #define QUIRK_TI_SLLZ059 32
279 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
280 static const struct {
281 unsigned short vendor, device, revision, flags;
282 } ohci_quirks[] = {
283 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
284 QUIRK_CYCLE_TIMER},
286 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
287 QUIRK_BE_HEADERS},
289 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
290 QUIRK_NO_MSI},
292 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
293 QUIRK_NO_MSI},
295 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
296 QUIRK_CYCLE_TIMER},
298 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
299 QUIRK_NO_MSI},
301 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
302 QUIRK_CYCLE_TIMER},
304 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
305 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
307 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
308 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
310 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
311 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
313 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
314 QUIRK_RESET_PACKET},
316 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
317 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
320 /* This overrides anything that was found in ohci_quirks[]. */
321 static int param_quirks;
322 module_param_named(quirks, param_quirks, int, 0644);
323 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
324 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
325 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
326 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
327 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
328 ", disable MSI = " __stringify(QUIRK_NO_MSI)
329 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
330 ")");
332 #define OHCI_PARAM_DEBUG_AT_AR 1
333 #define OHCI_PARAM_DEBUG_SELFIDS 2
334 #define OHCI_PARAM_DEBUG_IRQS 4
335 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
337 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
339 static int param_debug;
340 module_param_named(debug, param_debug, int, 0644);
341 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
342 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
343 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
344 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
345 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
346 ", or a combination, or all = -1)");
348 static void log_irqs(u32 evt)
350 if (likely(!(param_debug &
351 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
352 return;
354 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
355 !(evt & OHCI1394_busReset))
356 return;
358 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
359 evt & OHCI1394_selfIDComplete ? " selfID" : "",
360 evt & OHCI1394_RQPkt ? " AR_req" : "",
361 evt & OHCI1394_RSPkt ? " AR_resp" : "",
362 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
363 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
364 evt & OHCI1394_isochRx ? " IR" : "",
365 evt & OHCI1394_isochTx ? " IT" : "",
366 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
367 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
368 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
369 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
370 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
371 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
372 evt & OHCI1394_busReset ? " busReset" : "",
373 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
374 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
375 OHCI1394_respTxComplete | OHCI1394_isochRx |
376 OHCI1394_isochTx | OHCI1394_postedWriteErr |
377 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
378 OHCI1394_cycleInconsistent |
379 OHCI1394_regAccessFail | OHCI1394_busReset)
380 ? " ?" : "");
383 static const char *speed[] = {
384 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
386 static const char *power[] = {
387 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
388 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
390 static const char port[] = { '.', '-', 'p', 'c', };
392 static char _p(u32 *s, int shift)
394 return port[*s >> shift & 3];
397 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
399 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
400 return;
402 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
403 self_id_count, generation, node_id);
405 for (; self_id_count--; ++s)
406 if ((*s & 1 << 23) == 0)
407 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
408 "%s gc=%d %s %s%s%s\n",
409 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
410 speed[*s >> 14 & 3], *s >> 16 & 63,
411 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
412 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
413 else
414 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
415 *s, *s >> 24 & 63,
416 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
417 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
420 static const char *evts[] = {
421 [0x00] = "evt_no_status", [0x01] = "-reserved-",
422 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
423 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
424 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
425 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
426 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
427 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
428 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
429 [0x10] = "-reserved-", [0x11] = "ack_complete",
430 [0x12] = "ack_pending ", [0x13] = "-reserved-",
431 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
432 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
433 [0x18] = "-reserved-", [0x19] = "-reserved-",
434 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
435 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
436 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
437 [0x20] = "pending/cancelled",
439 static const char *tcodes[] = {
440 [0x0] = "QW req", [0x1] = "BW req",
441 [0x2] = "W resp", [0x3] = "-reserved-",
442 [0x4] = "QR req", [0x5] = "BR req",
443 [0x6] = "QR resp", [0x7] = "BR resp",
444 [0x8] = "cycle start", [0x9] = "Lk req",
445 [0xa] = "async stream packet", [0xb] = "Lk resp",
446 [0xc] = "-reserved-", [0xd] = "-reserved-",
447 [0xe] = "link internal", [0xf] = "-reserved-",
450 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
452 int tcode = header[0] >> 4 & 0xf;
453 char specific[12];
455 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
456 return;
458 if (unlikely(evt >= ARRAY_SIZE(evts)))
459 evt = 0x1f;
461 if (evt == OHCI1394_evt_bus_reset) {
462 fw_notify("A%c evt_bus_reset, generation %d\n",
463 dir, (header[2] >> 16) & 0xff);
464 return;
467 switch (tcode) {
468 case 0x0: case 0x6: case 0x8:
469 snprintf(specific, sizeof(specific), " = %08x",
470 be32_to_cpu((__force __be32)header[3]));
471 break;
472 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
473 snprintf(specific, sizeof(specific), " %x,%x",
474 header[3] >> 16, header[3] & 0xffff);
475 break;
476 default:
477 specific[0] = '\0';
480 switch (tcode) {
481 case 0xa:
482 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
483 break;
484 case 0xe:
485 fw_notify("A%c %s, PHY %08x %08x\n",
486 dir, evts[evt], header[1], header[2]);
487 break;
488 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
489 fw_notify("A%c spd %x tl %02x, "
490 "%04x -> %04x, %s, "
491 "%s, %04x%08x%s\n",
492 dir, speed, header[0] >> 10 & 0x3f,
493 header[1] >> 16, header[0] >> 16, evts[evt],
494 tcodes[tcode], header[1] & 0xffff, header[2], specific);
495 break;
496 default:
497 fw_notify("A%c spd %x tl %02x, "
498 "%04x -> %04x, %s, "
499 "%s%s\n",
500 dir, speed, header[0] >> 10 & 0x3f,
501 header[1] >> 16, header[0] >> 16, evts[evt],
502 tcodes[tcode], specific);
506 #else
508 #define param_debug 0
509 static inline void log_irqs(u32 evt) {}
510 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
511 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
513 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
515 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
517 writel(data, ohci->registers + offset);
520 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
522 return readl(ohci->registers + offset);
525 static inline void flush_writes(const struct fw_ohci *ohci)
527 /* Do a dummy read to flush writes. */
528 reg_read(ohci, OHCI1394_Version);
532 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
533 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
534 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
535 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
537 static int read_phy_reg(struct fw_ohci *ohci, int addr)
539 u32 val;
540 int i;
542 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
543 for (i = 0; i < 3 + 100; i++) {
544 val = reg_read(ohci, OHCI1394_PhyControl);
545 if (!~val)
546 return -ENODEV; /* Card was ejected. */
548 if (val & OHCI1394_PhyControl_ReadDone)
549 return OHCI1394_PhyControl_ReadData(val);
552 * Try a few times without waiting. Sleeping is necessary
553 * only when the link/PHY interface is busy.
555 if (i >= 3)
556 msleep(1);
558 fw_error("failed to read phy reg\n");
560 return -EBUSY;
563 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
565 int i;
567 reg_write(ohci, OHCI1394_PhyControl,
568 OHCI1394_PhyControl_Write(addr, val));
569 for (i = 0; i < 3 + 100; i++) {
570 val = reg_read(ohci, OHCI1394_PhyControl);
571 if (!~val)
572 return -ENODEV; /* Card was ejected. */
574 if (!(val & OHCI1394_PhyControl_WritePending))
575 return 0;
577 if (i >= 3)
578 msleep(1);
580 fw_error("failed to write phy reg\n");
582 return -EBUSY;
585 static int update_phy_reg(struct fw_ohci *ohci, int addr,
586 int clear_bits, int set_bits)
588 int ret = read_phy_reg(ohci, addr);
589 if (ret < 0)
590 return ret;
593 * The interrupt status bits are cleared by writing a one bit.
594 * Avoid clearing them unless explicitly requested in set_bits.
596 if (addr == 5)
597 clear_bits |= PHY_INT_STATUS_BITS;
599 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
602 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
604 int ret;
606 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
607 if (ret < 0)
608 return ret;
610 return read_phy_reg(ohci, addr);
613 static int ohci_read_phy_reg(struct fw_card *card, int addr)
615 struct fw_ohci *ohci = fw_ohci(card);
616 int ret;
618 mutex_lock(&ohci->phy_reg_mutex);
619 ret = read_phy_reg(ohci, addr);
620 mutex_unlock(&ohci->phy_reg_mutex);
622 return ret;
625 static int ohci_update_phy_reg(struct fw_card *card, int addr,
626 int clear_bits, int set_bits)
628 struct fw_ohci *ohci = fw_ohci(card);
629 int ret;
631 mutex_lock(&ohci->phy_reg_mutex);
632 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
633 mutex_unlock(&ohci->phy_reg_mutex);
635 return ret;
638 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
640 return page_private(ctx->pages[i]);
643 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
645 struct descriptor *d;
647 d = &ctx->descriptors[index];
648 d->branch_address &= cpu_to_le32(~0xf);
649 d->res_count = cpu_to_le16(PAGE_SIZE);
650 d->transfer_status = 0;
652 wmb(); /* finish init of new descriptors before branch_address update */
653 d = &ctx->descriptors[ctx->last_buffer_index];
654 d->branch_address |= cpu_to_le32(1);
656 ctx->last_buffer_index = index;
658 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
661 static void ar_context_release(struct ar_context *ctx)
663 unsigned int i;
665 if (ctx->buffer)
666 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
668 for (i = 0; i < AR_BUFFERS; i++)
669 if (ctx->pages[i]) {
670 dma_unmap_page(ctx->ohci->card.device,
671 ar_buffer_bus(ctx, i),
672 PAGE_SIZE, DMA_FROM_DEVICE);
673 __free_page(ctx->pages[i]);
677 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
679 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
680 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
681 flush_writes(ctx->ohci);
683 fw_error("AR error: %s; DMA stopped\n", error_msg);
685 /* FIXME: restart? */
688 static inline unsigned int ar_next_buffer_index(unsigned int index)
690 return (index + 1) % AR_BUFFERS;
693 static inline unsigned int ar_prev_buffer_index(unsigned int index)
695 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
698 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
700 return ar_next_buffer_index(ctx->last_buffer_index);
704 * We search for the buffer that contains the last AR packet DMA data written
705 * by the controller.
707 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
708 unsigned int *buffer_offset)
710 unsigned int i, next_i, last = ctx->last_buffer_index;
711 __le16 res_count, next_res_count;
713 i = ar_first_buffer_index(ctx);
714 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
716 /* A buffer that is not yet completely filled must be the last one. */
717 while (i != last && res_count == 0) {
719 /* Peek at the next descriptor. */
720 next_i = ar_next_buffer_index(i);
721 rmb(); /* read descriptors in order */
722 next_res_count = ACCESS_ONCE(
723 ctx->descriptors[next_i].res_count);
725 * If the next descriptor is still empty, we must stop at this
726 * descriptor.
728 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
730 * The exception is when the DMA data for one packet is
731 * split over three buffers; in this case, the middle
732 * buffer's descriptor might be never updated by the
733 * controller and look still empty, and we have to peek
734 * at the third one.
736 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
737 next_i = ar_next_buffer_index(next_i);
738 rmb();
739 next_res_count = ACCESS_ONCE(
740 ctx->descriptors[next_i].res_count);
741 if (next_res_count != cpu_to_le16(PAGE_SIZE))
742 goto next_buffer_is_active;
745 break;
748 next_buffer_is_active:
749 i = next_i;
750 res_count = next_res_count;
753 rmb(); /* read res_count before the DMA data */
755 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
756 if (*buffer_offset > PAGE_SIZE) {
757 *buffer_offset = 0;
758 ar_context_abort(ctx, "corrupted descriptor");
761 return i;
764 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
765 unsigned int end_buffer_index,
766 unsigned int end_buffer_offset)
768 unsigned int i;
770 i = ar_first_buffer_index(ctx);
771 while (i != end_buffer_index) {
772 dma_sync_single_for_cpu(ctx->ohci->card.device,
773 ar_buffer_bus(ctx, i),
774 PAGE_SIZE, DMA_FROM_DEVICE);
775 i = ar_next_buffer_index(i);
777 if (end_buffer_offset > 0)
778 dma_sync_single_for_cpu(ctx->ohci->card.device,
779 ar_buffer_bus(ctx, i),
780 end_buffer_offset, DMA_FROM_DEVICE);
783 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
784 #define cond_le32_to_cpu(v) \
785 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
786 #else
787 #define cond_le32_to_cpu(v) le32_to_cpu(v)
788 #endif
790 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
792 struct fw_ohci *ohci = ctx->ohci;
793 struct fw_packet p;
794 u32 status, length, tcode;
795 int evt;
797 p.header[0] = cond_le32_to_cpu(buffer[0]);
798 p.header[1] = cond_le32_to_cpu(buffer[1]);
799 p.header[2] = cond_le32_to_cpu(buffer[2]);
801 tcode = (p.header[0] >> 4) & 0x0f;
802 switch (tcode) {
803 case TCODE_WRITE_QUADLET_REQUEST:
804 case TCODE_READ_QUADLET_RESPONSE:
805 p.header[3] = (__force __u32) buffer[3];
806 p.header_length = 16;
807 p.payload_length = 0;
808 break;
810 case TCODE_READ_BLOCK_REQUEST :
811 p.header[3] = cond_le32_to_cpu(buffer[3]);
812 p.header_length = 16;
813 p.payload_length = 0;
814 break;
816 case TCODE_WRITE_BLOCK_REQUEST:
817 case TCODE_READ_BLOCK_RESPONSE:
818 case TCODE_LOCK_REQUEST:
819 case TCODE_LOCK_RESPONSE:
820 p.header[3] = cond_le32_to_cpu(buffer[3]);
821 p.header_length = 16;
822 p.payload_length = p.header[3] >> 16;
823 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
824 ar_context_abort(ctx, "invalid packet length");
825 return NULL;
827 break;
829 case TCODE_WRITE_RESPONSE:
830 case TCODE_READ_QUADLET_REQUEST:
831 case OHCI_TCODE_PHY_PACKET:
832 p.header_length = 12;
833 p.payload_length = 0;
834 break;
836 default:
837 ar_context_abort(ctx, "invalid tcode");
838 return NULL;
841 p.payload = (void *) buffer + p.header_length;
843 /* FIXME: What to do about evt_* errors? */
844 length = (p.header_length + p.payload_length + 3) / 4;
845 status = cond_le32_to_cpu(buffer[length]);
846 evt = (status >> 16) & 0x1f;
848 p.ack = evt - 16;
849 p.speed = (status >> 21) & 0x7;
850 p.timestamp = status & 0xffff;
851 p.generation = ohci->request_generation;
853 log_ar_at_event('R', p.speed, p.header, evt);
856 * Several controllers, notably from NEC and VIA, forget to
857 * write ack_complete status at PHY packet reception.
859 if (evt == OHCI1394_evt_no_status &&
860 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
861 p.ack = ACK_COMPLETE;
864 * The OHCI bus reset handler synthesizes a PHY packet with
865 * the new generation number when a bus reset happens (see
866 * section 8.4.2.3). This helps us determine when a request
867 * was received and make sure we send the response in the same
868 * generation. We only need this for requests; for responses
869 * we use the unique tlabel for finding the matching
870 * request.
872 * Alas some chips sometimes emit bus reset packets with a
873 * wrong generation. We set the correct generation for these
874 * at a slightly incorrect time (in bus_reset_work).
876 if (evt == OHCI1394_evt_bus_reset) {
877 if (!(ohci->quirks & QUIRK_RESET_PACKET))
878 ohci->request_generation = (p.header[2] >> 16) & 0xff;
879 } else if (ctx == &ohci->ar_request_ctx) {
880 fw_core_handle_request(&ohci->card, &p);
881 } else {
882 fw_core_handle_response(&ohci->card, &p);
885 return buffer + length + 1;
888 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
890 void *next;
892 while (p < end) {
893 next = handle_ar_packet(ctx, p);
894 if (!next)
895 return p;
896 p = next;
899 return p;
902 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
904 unsigned int i;
906 i = ar_first_buffer_index(ctx);
907 while (i != end_buffer) {
908 dma_sync_single_for_device(ctx->ohci->card.device,
909 ar_buffer_bus(ctx, i),
910 PAGE_SIZE, DMA_FROM_DEVICE);
911 ar_context_link_page(ctx, i);
912 i = ar_next_buffer_index(i);
916 static void ar_context_tasklet(unsigned long data)
918 struct ar_context *ctx = (struct ar_context *)data;
919 unsigned int end_buffer_index, end_buffer_offset;
920 void *p, *end;
922 p = ctx->pointer;
923 if (!p)
924 return;
926 end_buffer_index = ar_search_last_active_buffer(ctx,
927 &end_buffer_offset);
928 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
929 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
931 if (end_buffer_index < ar_first_buffer_index(ctx)) {
933 * The filled part of the overall buffer wraps around; handle
934 * all packets up to the buffer end here. If the last packet
935 * wraps around, its tail will be visible after the buffer end
936 * because the buffer start pages are mapped there again.
938 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
939 p = handle_ar_packets(ctx, p, buffer_end);
940 if (p < buffer_end)
941 goto error;
942 /* adjust p to point back into the actual buffer */
943 p -= AR_BUFFERS * PAGE_SIZE;
946 p = handle_ar_packets(ctx, p, end);
947 if (p != end) {
948 if (p > end)
949 ar_context_abort(ctx, "inconsistent descriptor");
950 goto error;
953 ctx->pointer = p;
954 ar_recycle_buffers(ctx, end_buffer_index);
956 return;
958 error:
959 ctx->pointer = NULL;
962 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
963 unsigned int descriptors_offset, u32 regs)
965 unsigned int i;
966 dma_addr_t dma_addr;
967 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
968 struct descriptor *d;
970 ctx->regs = regs;
971 ctx->ohci = ohci;
972 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
974 for (i = 0; i < AR_BUFFERS; i++) {
975 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
976 if (!ctx->pages[i])
977 goto out_of_memory;
978 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
979 0, PAGE_SIZE, DMA_FROM_DEVICE);
980 if (dma_mapping_error(ohci->card.device, dma_addr)) {
981 __free_page(ctx->pages[i]);
982 ctx->pages[i] = NULL;
983 goto out_of_memory;
985 set_page_private(ctx->pages[i], dma_addr);
988 for (i = 0; i < AR_BUFFERS; i++)
989 pages[i] = ctx->pages[i];
990 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
991 pages[AR_BUFFERS + i] = ctx->pages[i];
992 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
993 -1, PAGE_KERNEL);
994 if (!ctx->buffer)
995 goto out_of_memory;
997 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
998 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1000 for (i = 0; i < AR_BUFFERS; i++) {
1001 d = &ctx->descriptors[i];
1002 d->req_count = cpu_to_le16(PAGE_SIZE);
1003 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1004 DESCRIPTOR_STATUS |
1005 DESCRIPTOR_BRANCH_ALWAYS);
1006 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1007 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1008 ar_next_buffer_index(i) * sizeof(struct descriptor));
1011 return 0;
1013 out_of_memory:
1014 ar_context_release(ctx);
1016 return -ENOMEM;
1019 static void ar_context_run(struct ar_context *ctx)
1021 unsigned int i;
1023 for (i = 0; i < AR_BUFFERS; i++)
1024 ar_context_link_page(ctx, i);
1026 ctx->pointer = ctx->buffer;
1028 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1029 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1032 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1034 __le16 branch;
1036 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1038 /* figure out which descriptor the branch address goes in */
1039 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1040 return d;
1041 else
1042 return d + z - 1;
1045 static void context_tasklet(unsigned long data)
1047 struct context *ctx = (struct context *) data;
1048 struct descriptor *d, *last;
1049 u32 address;
1050 int z;
1051 struct descriptor_buffer *desc;
1053 desc = list_entry(ctx->buffer_list.next,
1054 struct descriptor_buffer, list);
1055 last = ctx->last;
1056 while (last->branch_address != 0) {
1057 struct descriptor_buffer *old_desc = desc;
1058 address = le32_to_cpu(last->branch_address);
1059 z = address & 0xf;
1060 address &= ~0xf;
1061 ctx->current_bus = address;
1063 /* If the branch address points to a buffer outside of the
1064 * current buffer, advance to the next buffer. */
1065 if (address < desc->buffer_bus ||
1066 address >= desc->buffer_bus + desc->used)
1067 desc = list_entry(desc->list.next,
1068 struct descriptor_buffer, list);
1069 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1070 last = find_branch_descriptor(d, z);
1072 if (!ctx->callback(ctx, d, last))
1073 break;
1075 if (old_desc != desc) {
1076 /* If we've advanced to the next buffer, move the
1077 * previous buffer to the free list. */
1078 unsigned long flags;
1079 old_desc->used = 0;
1080 spin_lock_irqsave(&ctx->ohci->lock, flags);
1081 list_move_tail(&old_desc->list, &ctx->buffer_list);
1082 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1084 ctx->last = last;
1089 * Allocate a new buffer and add it to the list of free buffers for this
1090 * context. Must be called with ohci->lock held.
1092 static int context_add_buffer(struct context *ctx)
1094 struct descriptor_buffer *desc;
1095 dma_addr_t uninitialized_var(bus_addr);
1096 int offset;
1099 * 16MB of descriptors should be far more than enough for any DMA
1100 * program. This will catch run-away userspace or DoS attacks.
1102 if (ctx->total_allocation >= 16*1024*1024)
1103 return -ENOMEM;
1105 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1106 &bus_addr, GFP_ATOMIC);
1107 if (!desc)
1108 return -ENOMEM;
1110 offset = (void *)&desc->buffer - (void *)desc;
1111 desc->buffer_size = PAGE_SIZE - offset;
1112 desc->buffer_bus = bus_addr + offset;
1113 desc->used = 0;
1115 list_add_tail(&desc->list, &ctx->buffer_list);
1116 ctx->total_allocation += PAGE_SIZE;
1118 return 0;
1121 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1122 u32 regs, descriptor_callback_t callback)
1124 ctx->ohci = ohci;
1125 ctx->regs = regs;
1126 ctx->total_allocation = 0;
1128 INIT_LIST_HEAD(&ctx->buffer_list);
1129 if (context_add_buffer(ctx) < 0)
1130 return -ENOMEM;
1132 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1133 struct descriptor_buffer, list);
1135 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1136 ctx->callback = callback;
1139 * We put a dummy descriptor in the buffer that has a NULL
1140 * branch address and looks like it's been sent. That way we
1141 * have a descriptor to append DMA programs to.
1143 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1144 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1145 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1146 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1147 ctx->last = ctx->buffer_tail->buffer;
1148 ctx->prev = ctx->buffer_tail->buffer;
1150 return 0;
1153 static void context_release(struct context *ctx)
1155 struct fw_card *card = &ctx->ohci->card;
1156 struct descriptor_buffer *desc, *tmp;
1158 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1159 dma_free_coherent(card->device, PAGE_SIZE, desc,
1160 desc->buffer_bus -
1161 ((void *)&desc->buffer - (void *)desc));
1164 /* Must be called with ohci->lock held */
1165 static struct descriptor *context_get_descriptors(struct context *ctx,
1166 int z, dma_addr_t *d_bus)
1168 struct descriptor *d = NULL;
1169 struct descriptor_buffer *desc = ctx->buffer_tail;
1171 if (z * sizeof(*d) > desc->buffer_size)
1172 return NULL;
1174 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1175 /* No room for the descriptor in this buffer, so advance to the
1176 * next one. */
1178 if (desc->list.next == &ctx->buffer_list) {
1179 /* If there is no free buffer next in the list,
1180 * allocate one. */
1181 if (context_add_buffer(ctx) < 0)
1182 return NULL;
1184 desc = list_entry(desc->list.next,
1185 struct descriptor_buffer, list);
1186 ctx->buffer_tail = desc;
1189 d = desc->buffer + desc->used / sizeof(*d);
1190 memset(d, 0, z * sizeof(*d));
1191 *d_bus = desc->buffer_bus + desc->used;
1193 return d;
1196 static void context_run(struct context *ctx, u32 extra)
1198 struct fw_ohci *ohci = ctx->ohci;
1200 reg_write(ohci, COMMAND_PTR(ctx->regs),
1201 le32_to_cpu(ctx->last->branch_address));
1202 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1203 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1204 ctx->running = true;
1205 flush_writes(ohci);
1208 static void context_append(struct context *ctx,
1209 struct descriptor *d, int z, int extra)
1211 dma_addr_t d_bus;
1212 struct descriptor_buffer *desc = ctx->buffer_tail;
1214 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1216 desc->used += (z + extra) * sizeof(*d);
1218 wmb(); /* finish init of new descriptors before branch_address update */
1219 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1220 ctx->prev = find_branch_descriptor(d, z);
1223 static void context_stop(struct context *ctx)
1225 u32 reg;
1226 int i;
1228 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1229 ctx->running = false;
1231 for (i = 0; i < 1000; i++) {
1232 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1233 if ((reg & CONTEXT_ACTIVE) == 0)
1234 return;
1236 if (i)
1237 udelay(10);
1239 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1242 struct driver_data {
1243 u8 inline_data[8];
1244 struct fw_packet *packet;
1248 * This function apppends a packet to the DMA queue for transmission.
1249 * Must always be called with the ochi->lock held to ensure proper
1250 * generation handling and locking around packet queue manipulation.
1252 static int at_context_queue_packet(struct context *ctx,
1253 struct fw_packet *packet)
1255 struct fw_ohci *ohci = ctx->ohci;
1256 dma_addr_t d_bus, uninitialized_var(payload_bus);
1257 struct driver_data *driver_data;
1258 struct descriptor *d, *last;
1259 __le32 *header;
1260 int z, tcode;
1262 d = context_get_descriptors(ctx, 4, &d_bus);
1263 if (d == NULL) {
1264 packet->ack = RCODE_SEND_ERROR;
1265 return -1;
1268 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1269 d[0].res_count = cpu_to_le16(packet->timestamp);
1272 * The DMA format for asyncronous link packets is different
1273 * from the IEEE1394 layout, so shift the fields around
1274 * accordingly.
1277 tcode = (packet->header[0] >> 4) & 0x0f;
1278 header = (__le32 *) &d[1];
1279 switch (tcode) {
1280 case TCODE_WRITE_QUADLET_REQUEST:
1281 case TCODE_WRITE_BLOCK_REQUEST:
1282 case TCODE_WRITE_RESPONSE:
1283 case TCODE_READ_QUADLET_REQUEST:
1284 case TCODE_READ_BLOCK_REQUEST:
1285 case TCODE_READ_QUADLET_RESPONSE:
1286 case TCODE_READ_BLOCK_RESPONSE:
1287 case TCODE_LOCK_REQUEST:
1288 case TCODE_LOCK_RESPONSE:
1289 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1290 (packet->speed << 16));
1291 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1292 (packet->header[0] & 0xffff0000));
1293 header[2] = cpu_to_le32(packet->header[2]);
1295 if (TCODE_IS_BLOCK_PACKET(tcode))
1296 header[3] = cpu_to_le32(packet->header[3]);
1297 else
1298 header[3] = (__force __le32) packet->header[3];
1300 d[0].req_count = cpu_to_le16(packet->header_length);
1301 break;
1303 case TCODE_LINK_INTERNAL:
1304 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1305 (packet->speed << 16));
1306 header[1] = cpu_to_le32(packet->header[1]);
1307 header[2] = cpu_to_le32(packet->header[2]);
1308 d[0].req_count = cpu_to_le16(12);
1310 if (is_ping_packet(&packet->header[1]))
1311 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1312 break;
1314 case TCODE_STREAM_DATA:
1315 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1316 (packet->speed << 16));
1317 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1318 d[0].req_count = cpu_to_le16(8);
1319 break;
1321 default:
1322 /* BUG(); */
1323 packet->ack = RCODE_SEND_ERROR;
1324 return -1;
1327 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1328 driver_data = (struct driver_data *) &d[3];
1329 driver_data->packet = packet;
1330 packet->driver_data = driver_data;
1332 if (packet->payload_length > 0) {
1333 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1334 payload_bus = dma_map_single(ohci->card.device,
1335 packet->payload,
1336 packet->payload_length,
1337 DMA_TO_DEVICE);
1338 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1339 packet->ack = RCODE_SEND_ERROR;
1340 return -1;
1342 packet->payload_bus = payload_bus;
1343 packet->payload_mapped = true;
1344 } else {
1345 memcpy(driver_data->inline_data, packet->payload,
1346 packet->payload_length);
1347 payload_bus = d_bus + 3 * sizeof(*d);
1350 d[2].req_count = cpu_to_le16(packet->payload_length);
1351 d[2].data_address = cpu_to_le32(payload_bus);
1352 last = &d[2];
1353 z = 3;
1354 } else {
1355 last = &d[0];
1356 z = 2;
1359 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1360 DESCRIPTOR_IRQ_ALWAYS |
1361 DESCRIPTOR_BRANCH_ALWAYS);
1363 /* FIXME: Document how the locking works. */
1364 if (ohci->generation != packet->generation) {
1365 if (packet->payload_mapped)
1366 dma_unmap_single(ohci->card.device, payload_bus,
1367 packet->payload_length, DMA_TO_DEVICE);
1368 packet->ack = RCODE_GENERATION;
1369 return -1;
1372 context_append(ctx, d, z, 4 - z);
1374 if (ctx->running)
1375 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1376 else
1377 context_run(ctx, 0);
1379 return 0;
1382 static void at_context_flush(struct context *ctx)
1384 tasklet_disable(&ctx->tasklet);
1386 ctx->flushing = true;
1387 context_tasklet((unsigned long)ctx);
1388 ctx->flushing = false;
1390 tasklet_enable(&ctx->tasklet);
1393 static int handle_at_packet(struct context *context,
1394 struct descriptor *d,
1395 struct descriptor *last)
1397 struct driver_data *driver_data;
1398 struct fw_packet *packet;
1399 struct fw_ohci *ohci = context->ohci;
1400 int evt;
1402 if (last->transfer_status == 0 && !context->flushing)
1403 /* This descriptor isn't done yet, stop iteration. */
1404 return 0;
1406 driver_data = (struct driver_data *) &d[3];
1407 packet = driver_data->packet;
1408 if (packet == NULL)
1409 /* This packet was cancelled, just continue. */
1410 return 1;
1412 if (packet->payload_mapped)
1413 dma_unmap_single(ohci->card.device, packet->payload_bus,
1414 packet->payload_length, DMA_TO_DEVICE);
1416 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1417 packet->timestamp = le16_to_cpu(last->res_count);
1419 log_ar_at_event('T', packet->speed, packet->header, evt);
1421 switch (evt) {
1422 case OHCI1394_evt_timeout:
1423 /* Async response transmit timed out. */
1424 packet->ack = RCODE_CANCELLED;
1425 break;
1427 case OHCI1394_evt_flushed:
1429 * The packet was flushed should give same error as
1430 * when we try to use a stale generation count.
1432 packet->ack = RCODE_GENERATION;
1433 break;
1435 case OHCI1394_evt_missing_ack:
1436 if (context->flushing)
1437 packet->ack = RCODE_GENERATION;
1438 else {
1440 * Using a valid (current) generation count, but the
1441 * node is not on the bus or not sending acks.
1443 packet->ack = RCODE_NO_ACK;
1445 break;
1447 case ACK_COMPLETE + 0x10:
1448 case ACK_PENDING + 0x10:
1449 case ACK_BUSY_X + 0x10:
1450 case ACK_BUSY_A + 0x10:
1451 case ACK_BUSY_B + 0x10:
1452 case ACK_DATA_ERROR + 0x10:
1453 case ACK_TYPE_ERROR + 0x10:
1454 packet->ack = evt - 0x10;
1455 break;
1457 case OHCI1394_evt_no_status:
1458 if (context->flushing) {
1459 packet->ack = RCODE_GENERATION;
1460 break;
1462 /* fall through */
1464 default:
1465 packet->ack = RCODE_SEND_ERROR;
1466 break;
1469 packet->callback(packet, &ohci->card, packet->ack);
1471 return 1;
1474 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1475 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1476 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1477 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1478 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1480 static void handle_local_rom(struct fw_ohci *ohci,
1481 struct fw_packet *packet, u32 csr)
1483 struct fw_packet response;
1484 int tcode, length, i;
1486 tcode = HEADER_GET_TCODE(packet->header[0]);
1487 if (TCODE_IS_BLOCK_PACKET(tcode))
1488 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1489 else
1490 length = 4;
1492 i = csr - CSR_CONFIG_ROM;
1493 if (i + length > CONFIG_ROM_SIZE) {
1494 fw_fill_response(&response, packet->header,
1495 RCODE_ADDRESS_ERROR, NULL, 0);
1496 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1497 fw_fill_response(&response, packet->header,
1498 RCODE_TYPE_ERROR, NULL, 0);
1499 } else {
1500 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1501 (void *) ohci->config_rom + i, length);
1504 fw_core_handle_response(&ohci->card, &response);
1507 static void handle_local_lock(struct fw_ohci *ohci,
1508 struct fw_packet *packet, u32 csr)
1510 struct fw_packet response;
1511 int tcode, length, ext_tcode, sel, try;
1512 __be32 *payload, lock_old;
1513 u32 lock_arg, lock_data;
1515 tcode = HEADER_GET_TCODE(packet->header[0]);
1516 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1517 payload = packet->payload;
1518 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1520 if (tcode == TCODE_LOCK_REQUEST &&
1521 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1522 lock_arg = be32_to_cpu(payload[0]);
1523 lock_data = be32_to_cpu(payload[1]);
1524 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1525 lock_arg = 0;
1526 lock_data = 0;
1527 } else {
1528 fw_fill_response(&response, packet->header,
1529 RCODE_TYPE_ERROR, NULL, 0);
1530 goto out;
1533 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1534 reg_write(ohci, OHCI1394_CSRData, lock_data);
1535 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1536 reg_write(ohci, OHCI1394_CSRControl, sel);
1538 for (try = 0; try < 20; try++)
1539 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1540 lock_old = cpu_to_be32(reg_read(ohci,
1541 OHCI1394_CSRData));
1542 fw_fill_response(&response, packet->header,
1543 RCODE_COMPLETE,
1544 &lock_old, sizeof(lock_old));
1545 goto out;
1548 fw_error("swap not done (CSR lock timeout)\n");
1549 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1551 out:
1552 fw_core_handle_response(&ohci->card, &response);
1555 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1557 u64 offset, csr;
1559 if (ctx == &ctx->ohci->at_request_ctx) {
1560 packet->ack = ACK_PENDING;
1561 packet->callback(packet, &ctx->ohci->card, packet->ack);
1564 offset =
1565 ((unsigned long long)
1566 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1567 packet->header[2];
1568 csr = offset - CSR_REGISTER_BASE;
1570 /* Handle config rom reads. */
1571 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1572 handle_local_rom(ctx->ohci, packet, csr);
1573 else switch (csr) {
1574 case CSR_BUS_MANAGER_ID:
1575 case CSR_BANDWIDTH_AVAILABLE:
1576 case CSR_CHANNELS_AVAILABLE_HI:
1577 case CSR_CHANNELS_AVAILABLE_LO:
1578 handle_local_lock(ctx->ohci, packet, csr);
1579 break;
1580 default:
1581 if (ctx == &ctx->ohci->at_request_ctx)
1582 fw_core_handle_request(&ctx->ohci->card, packet);
1583 else
1584 fw_core_handle_response(&ctx->ohci->card, packet);
1585 break;
1588 if (ctx == &ctx->ohci->at_response_ctx) {
1589 packet->ack = ACK_COMPLETE;
1590 packet->callback(packet, &ctx->ohci->card, packet->ack);
1594 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1596 unsigned long flags;
1597 int ret;
1599 spin_lock_irqsave(&ctx->ohci->lock, flags);
1601 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1602 ctx->ohci->generation == packet->generation) {
1603 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1604 handle_local_request(ctx, packet);
1605 return;
1608 ret = at_context_queue_packet(ctx, packet);
1609 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1611 if (ret < 0)
1612 packet->callback(packet, &ctx->ohci->card, packet->ack);
1616 static void detect_dead_context(struct fw_ohci *ohci,
1617 const char *name, unsigned int regs)
1619 u32 ctl;
1621 ctl = reg_read(ohci, CONTROL_SET(regs));
1622 if (ctl & CONTEXT_DEAD) {
1623 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1624 fw_error("DMA context %s has stopped, error code: %s\n",
1625 name, evts[ctl & 0x1f]);
1626 #else
1627 fw_error("DMA context %s has stopped, error code: %#x\n",
1628 name, ctl & 0x1f);
1629 #endif
1633 static void handle_dead_contexts(struct fw_ohci *ohci)
1635 unsigned int i;
1636 char name[8];
1638 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1639 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1640 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1641 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1642 for (i = 0; i < 32; ++i) {
1643 if (!(ohci->it_context_support & (1 << i)))
1644 continue;
1645 sprintf(name, "IT%u", i);
1646 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1648 for (i = 0; i < 32; ++i) {
1649 if (!(ohci->ir_context_support & (1 << i)))
1650 continue;
1651 sprintf(name, "IR%u", i);
1652 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1654 /* TODO: maybe try to flush and restart the dead contexts */
1657 static u32 cycle_timer_ticks(u32 cycle_timer)
1659 u32 ticks;
1661 ticks = cycle_timer & 0xfff;
1662 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1663 ticks += (3072 * 8000) * (cycle_timer >> 25);
1665 return ticks;
1669 * Some controllers exhibit one or more of the following bugs when updating the
1670 * iso cycle timer register:
1671 * - When the lowest six bits are wrapping around to zero, a read that happens
1672 * at the same time will return garbage in the lowest ten bits.
1673 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1674 * not incremented for about 60 ns.
1675 * - Occasionally, the entire register reads zero.
1677 * To catch these, we read the register three times and ensure that the
1678 * difference between each two consecutive reads is approximately the same, i.e.
1679 * less than twice the other. Furthermore, any negative difference indicates an
1680 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1681 * execute, so we have enough precision to compute the ratio of the differences.)
1683 static u32 get_cycle_time(struct fw_ohci *ohci)
1685 u32 c0, c1, c2;
1686 u32 t0, t1, t2;
1687 s32 diff01, diff12;
1688 int i;
1690 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1692 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1693 i = 0;
1694 c1 = c2;
1695 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1696 do {
1697 c0 = c1;
1698 c1 = c2;
1699 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1700 t0 = cycle_timer_ticks(c0);
1701 t1 = cycle_timer_ticks(c1);
1702 t2 = cycle_timer_ticks(c2);
1703 diff01 = t1 - t0;
1704 diff12 = t2 - t1;
1705 } while ((diff01 <= 0 || diff12 <= 0 ||
1706 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1707 && i++ < 20);
1710 return c2;
1714 * This function has to be called at least every 64 seconds. The bus_time
1715 * field stores not only the upper 25 bits of the BUS_TIME register but also
1716 * the most significant bit of the cycle timer in bit 6 so that we can detect
1717 * changes in this bit.
1719 static u32 update_bus_time(struct fw_ohci *ohci)
1721 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1723 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1724 ohci->bus_time += 0x40;
1726 return ohci->bus_time | cycle_time_seconds;
1729 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1731 int reg;
1733 mutex_lock(&ohci->phy_reg_mutex);
1734 reg = write_phy_reg(ohci, 7, port_index);
1735 if (reg >= 0)
1736 reg = read_phy_reg(ohci, 8);
1737 mutex_unlock(&ohci->phy_reg_mutex);
1738 if (reg < 0)
1739 return reg;
1741 switch (reg & 0x0f) {
1742 case 0x06:
1743 return 2; /* is child node (connected to parent node) */
1744 case 0x0e:
1745 return 3; /* is parent node (connected to child node) */
1747 return 1; /* not connected */
1750 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1751 int self_id_count)
1753 int i;
1754 u32 entry;
1756 for (i = 0; i < self_id_count; i++) {
1757 entry = ohci->self_id_buffer[i];
1758 if ((self_id & 0xff000000) == (entry & 0xff000000))
1759 return -1;
1760 if ((self_id & 0xff000000) < (entry & 0xff000000))
1761 return i;
1763 return i;
1767 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1768 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1769 * Construct the selfID from phy register contents.
1770 * FIXME: How to determine the selfID.i flag?
1772 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1774 int reg, i, pos, status;
1775 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1776 u32 self_id = 0x8040c800;
1778 reg = reg_read(ohci, OHCI1394_NodeID);
1779 if (!(reg & OHCI1394_NodeID_idValid)) {
1780 fw_notify("node ID not valid, new bus reset in progress\n");
1781 return -EBUSY;
1783 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1785 reg = ohci_read_phy_reg(&ohci->card, 4);
1786 if (reg < 0)
1787 return reg;
1788 self_id |= ((reg & 0x07) << 8); /* power class */
1790 reg = ohci_read_phy_reg(&ohci->card, 1);
1791 if (reg < 0)
1792 return reg;
1793 self_id |= ((reg & 0x3f) << 16); /* gap count */
1795 for (i = 0; i < 3; i++) {
1796 status = get_status_for_port(ohci, i);
1797 if (status < 0)
1798 return status;
1799 self_id |= ((status & 0x3) << (6 - (i * 2)));
1802 pos = get_self_id_pos(ohci, self_id, self_id_count);
1803 if (pos >= 0) {
1804 memmove(&(ohci->self_id_buffer[pos+1]),
1805 &(ohci->self_id_buffer[pos]),
1806 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1807 ohci->self_id_buffer[pos] = self_id;
1808 self_id_count++;
1810 return self_id_count;
1813 static void bus_reset_work(struct work_struct *work)
1815 struct fw_ohci *ohci =
1816 container_of(work, struct fw_ohci, bus_reset_work);
1817 int self_id_count, i, j, reg;
1818 int generation, new_generation;
1819 unsigned long flags;
1820 void *free_rom = NULL;
1821 dma_addr_t free_rom_bus = 0;
1822 bool is_new_root;
1824 reg = reg_read(ohci, OHCI1394_NodeID);
1825 if (!(reg & OHCI1394_NodeID_idValid)) {
1826 fw_notify("node ID not valid, new bus reset in progress\n");
1827 return;
1829 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1830 fw_notify("malconfigured bus\n");
1831 return;
1833 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1834 OHCI1394_NodeID_nodeNumber);
1836 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1837 if (!(ohci->is_root && is_new_root))
1838 reg_write(ohci, OHCI1394_LinkControlSet,
1839 OHCI1394_LinkControl_cycleMaster);
1840 ohci->is_root = is_new_root;
1842 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1843 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1844 fw_notify("inconsistent self IDs\n");
1845 return;
1848 * The count in the SelfIDCount register is the number of
1849 * bytes in the self ID receive buffer. Since we also receive
1850 * the inverted quadlets and a header quadlet, we shift one
1851 * bit extra to get the actual number of self IDs.
1853 self_id_count = (reg >> 3) & 0xff;
1855 if (self_id_count > 252) {
1856 fw_notify("inconsistent self IDs\n");
1857 return;
1860 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1861 rmb();
1863 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1864 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1866 * If the invalid data looks like a cycle start packet,
1867 * it's likely to be the result of the cycle master
1868 * having a wrong gap count. In this case, the self IDs
1869 * so far are valid and should be processed so that the
1870 * bus manager can then correct the gap count.
1872 if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1873 == 0xffff008f) {
1874 fw_notify("ignoring spurious self IDs\n");
1875 self_id_count = j;
1876 break;
1877 } else {
1878 fw_notify("inconsistent self IDs\n");
1879 return;
1882 ohci->self_id_buffer[j] =
1883 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1886 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1887 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1888 if (self_id_count < 0) {
1889 fw_notify("could not construct local self ID\n");
1890 return;
1894 if (self_id_count == 0) {
1895 fw_notify("inconsistent self IDs\n");
1896 return;
1898 rmb();
1901 * Check the consistency of the self IDs we just read. The
1902 * problem we face is that a new bus reset can start while we
1903 * read out the self IDs from the DMA buffer. If this happens,
1904 * the DMA buffer will be overwritten with new self IDs and we
1905 * will read out inconsistent data. The OHCI specification
1906 * (section 11.2) recommends a technique similar to
1907 * linux/seqlock.h, where we remember the generation of the
1908 * self IDs in the buffer before reading them out and compare
1909 * it to the current generation after reading them out. If
1910 * the two generations match we know we have a consistent set
1911 * of self IDs.
1914 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1915 if (new_generation != generation) {
1916 fw_notify("recursive bus reset detected, "
1917 "discarding self ids\n");
1918 return;
1921 /* FIXME: Document how the locking works. */
1922 spin_lock_irqsave(&ohci->lock, flags);
1924 ohci->generation = -1; /* prevent AT packet queueing */
1925 context_stop(&ohci->at_request_ctx);
1926 context_stop(&ohci->at_response_ctx);
1928 spin_unlock_irqrestore(&ohci->lock, flags);
1931 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1932 * packets in the AT queues and software needs to drain them.
1933 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1935 at_context_flush(&ohci->at_request_ctx);
1936 at_context_flush(&ohci->at_response_ctx);
1938 spin_lock_irqsave(&ohci->lock, flags);
1940 ohci->generation = generation;
1941 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1943 if (ohci->quirks & QUIRK_RESET_PACKET)
1944 ohci->request_generation = generation;
1947 * This next bit is unrelated to the AT context stuff but we
1948 * have to do it under the spinlock also. If a new config rom
1949 * was set up before this reset, the old one is now no longer
1950 * in use and we can free it. Update the config rom pointers
1951 * to point to the current config rom and clear the
1952 * next_config_rom pointer so a new update can take place.
1955 if (ohci->next_config_rom != NULL) {
1956 if (ohci->next_config_rom != ohci->config_rom) {
1957 free_rom = ohci->config_rom;
1958 free_rom_bus = ohci->config_rom_bus;
1960 ohci->config_rom = ohci->next_config_rom;
1961 ohci->config_rom_bus = ohci->next_config_rom_bus;
1962 ohci->next_config_rom = NULL;
1965 * Restore config_rom image and manually update
1966 * config_rom registers. Writing the header quadlet
1967 * will indicate that the config rom is ready, so we
1968 * do that last.
1970 reg_write(ohci, OHCI1394_BusOptions,
1971 be32_to_cpu(ohci->config_rom[2]));
1972 ohci->config_rom[0] = ohci->next_header;
1973 reg_write(ohci, OHCI1394_ConfigROMhdr,
1974 be32_to_cpu(ohci->next_header));
1977 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1978 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1979 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1980 #endif
1982 spin_unlock_irqrestore(&ohci->lock, flags);
1984 if (free_rom)
1985 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1986 free_rom, free_rom_bus);
1988 log_selfids(ohci->node_id, generation,
1989 self_id_count, ohci->self_id_buffer);
1991 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1992 self_id_count, ohci->self_id_buffer,
1993 ohci->csr_state_setclear_abdicate);
1994 ohci->csr_state_setclear_abdicate = false;
1997 static irqreturn_t irq_handler(int irq, void *data)
1999 struct fw_ohci *ohci = data;
2000 u32 event, iso_event;
2001 int i;
2003 event = reg_read(ohci, OHCI1394_IntEventClear);
2005 if (!event || !~event)
2006 return IRQ_NONE;
2009 * busReset and postedWriteErr must not be cleared yet
2010 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2012 reg_write(ohci, OHCI1394_IntEventClear,
2013 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2014 log_irqs(event);
2016 if (event & OHCI1394_selfIDComplete)
2017 queue_work(fw_workqueue, &ohci->bus_reset_work);
2019 if (event & OHCI1394_RQPkt)
2020 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2022 if (event & OHCI1394_RSPkt)
2023 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2025 if (event & OHCI1394_reqTxComplete)
2026 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2028 if (event & OHCI1394_respTxComplete)
2029 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2031 if (event & OHCI1394_isochRx) {
2032 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2033 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2035 while (iso_event) {
2036 i = ffs(iso_event) - 1;
2037 tasklet_schedule(
2038 &ohci->ir_context_list[i].context.tasklet);
2039 iso_event &= ~(1 << i);
2043 if (event & OHCI1394_isochTx) {
2044 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2045 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2047 while (iso_event) {
2048 i = ffs(iso_event) - 1;
2049 tasklet_schedule(
2050 &ohci->it_context_list[i].context.tasklet);
2051 iso_event &= ~(1 << i);
2055 if (unlikely(event & OHCI1394_regAccessFail))
2056 fw_error("Register access failure - "
2057 "please notify linux1394-devel@lists.sf.net\n");
2059 if (unlikely(event & OHCI1394_postedWriteErr)) {
2060 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2061 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2062 reg_write(ohci, OHCI1394_IntEventClear,
2063 OHCI1394_postedWriteErr);
2064 if (printk_ratelimit())
2065 fw_error("PCI posted write error\n");
2068 if (unlikely(event & OHCI1394_cycleTooLong)) {
2069 if (printk_ratelimit())
2070 fw_notify("isochronous cycle too long\n");
2071 reg_write(ohci, OHCI1394_LinkControlSet,
2072 OHCI1394_LinkControl_cycleMaster);
2075 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2077 * We need to clear this event bit in order to make
2078 * cycleMatch isochronous I/O work. In theory we should
2079 * stop active cycleMatch iso contexts now and restart
2080 * them at least two cycles later. (FIXME?)
2082 if (printk_ratelimit())
2083 fw_notify("isochronous cycle inconsistent\n");
2086 if (unlikely(event & OHCI1394_unrecoverableError))
2087 handle_dead_contexts(ohci);
2089 if (event & OHCI1394_cycle64Seconds) {
2090 spin_lock(&ohci->lock);
2091 update_bus_time(ohci);
2092 spin_unlock(&ohci->lock);
2093 } else
2094 flush_writes(ohci);
2096 return IRQ_HANDLED;
2099 static int software_reset(struct fw_ohci *ohci)
2101 u32 val;
2102 int i;
2104 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2105 for (i = 0; i < 500; i++) {
2106 val = reg_read(ohci, OHCI1394_HCControlSet);
2107 if (!~val)
2108 return -ENODEV; /* Card was ejected. */
2110 if (!(val & OHCI1394_HCControl_softReset))
2111 return 0;
2113 msleep(1);
2116 return -EBUSY;
2119 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2121 size_t size = length * 4;
2123 memcpy(dest, src, size);
2124 if (size < CONFIG_ROM_SIZE)
2125 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2128 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2130 bool enable_1394a;
2131 int ret, clear, set, offset;
2133 /* Check if the driver should configure link and PHY. */
2134 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2135 OHCI1394_HCControl_programPhyEnable))
2136 return 0;
2138 /* Paranoia: check whether the PHY supports 1394a, too. */
2139 enable_1394a = false;
2140 ret = read_phy_reg(ohci, 2);
2141 if (ret < 0)
2142 return ret;
2143 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2144 ret = read_paged_phy_reg(ohci, 1, 8);
2145 if (ret < 0)
2146 return ret;
2147 if (ret >= 1)
2148 enable_1394a = true;
2151 if (ohci->quirks & QUIRK_NO_1394A)
2152 enable_1394a = false;
2154 /* Configure PHY and link consistently. */
2155 if (enable_1394a) {
2156 clear = 0;
2157 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2158 } else {
2159 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2160 set = 0;
2162 ret = update_phy_reg(ohci, 5, clear, set);
2163 if (ret < 0)
2164 return ret;
2166 if (enable_1394a)
2167 offset = OHCI1394_HCControlSet;
2168 else
2169 offset = OHCI1394_HCControlClear;
2170 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2172 /* Clean up: configuration has been taken care of. */
2173 reg_write(ohci, OHCI1394_HCControlClear,
2174 OHCI1394_HCControl_programPhyEnable);
2176 return 0;
2179 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2181 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2182 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2183 int reg, i;
2185 reg = read_phy_reg(ohci, 2);
2186 if (reg < 0)
2187 return reg;
2188 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2189 return 0;
2191 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2192 reg = read_paged_phy_reg(ohci, 1, i + 10);
2193 if (reg < 0)
2194 return reg;
2195 if (reg != id[i])
2196 return 0;
2198 return 1;
2201 static int ohci_enable(struct fw_card *card,
2202 const __be32 *config_rom, size_t length)
2204 struct fw_ohci *ohci = fw_ohci(card);
2205 struct pci_dev *dev = to_pci_dev(card->device);
2206 u32 lps, seconds, version, irqs;
2207 int i, ret;
2209 if (software_reset(ohci)) {
2210 fw_error("Failed to reset ohci card.\n");
2211 return -EBUSY;
2215 * Now enable LPS, which we need in order to start accessing
2216 * most of the registers. In fact, on some cards (ALI M5251),
2217 * accessing registers in the SClk domain without LPS enabled
2218 * will lock up the machine. Wait 50msec to make sure we have
2219 * full link enabled. However, with some cards (well, at least
2220 * a JMicron PCIe card), we have to try again sometimes.
2222 reg_write(ohci, OHCI1394_HCControlSet,
2223 OHCI1394_HCControl_LPS |
2224 OHCI1394_HCControl_postedWriteEnable);
2225 flush_writes(ohci);
2227 for (lps = 0, i = 0; !lps && i < 3; i++) {
2228 msleep(50);
2229 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2230 OHCI1394_HCControl_LPS;
2233 if (!lps) {
2234 fw_error("Failed to set Link Power Status\n");
2235 return -EIO;
2238 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2239 ret = probe_tsb41ba3d(ohci);
2240 if (ret < 0)
2241 return ret;
2242 if (ret)
2243 fw_notify("local TSB41BA3D phy\n");
2244 else
2245 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2248 reg_write(ohci, OHCI1394_HCControlClear,
2249 OHCI1394_HCControl_noByteSwapData);
2251 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2252 reg_write(ohci, OHCI1394_LinkControlSet,
2253 OHCI1394_LinkControl_cycleTimerEnable |
2254 OHCI1394_LinkControl_cycleMaster);
2256 reg_write(ohci, OHCI1394_ATRetries,
2257 OHCI1394_MAX_AT_REQ_RETRIES |
2258 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2259 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2260 (200 << 16));
2262 seconds = lower_32_bits(get_seconds());
2263 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2264 ohci->bus_time = seconds & ~0x3f;
2266 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2267 if (version >= OHCI_VERSION_1_1) {
2268 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2269 0xfffffffe);
2270 card->broadcast_channel_auto_allocated = true;
2273 /* Get implemented bits of the priority arbitration request counter. */
2274 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2275 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2276 reg_write(ohci, OHCI1394_FairnessControl, 0);
2277 card->priority_budget_implemented = ohci->pri_req_max != 0;
2279 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2280 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2281 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2283 ret = configure_1394a_enhancements(ohci);
2284 if (ret < 0)
2285 return ret;
2287 /* Activate link_on bit and contender bit in our self ID packets.*/
2288 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2289 if (ret < 0)
2290 return ret;
2293 * When the link is not yet enabled, the atomic config rom
2294 * update mechanism described below in ohci_set_config_rom()
2295 * is not active. We have to update ConfigRomHeader and
2296 * BusOptions manually, and the write to ConfigROMmap takes
2297 * effect immediately. We tie this to the enabling of the
2298 * link, so we have a valid config rom before enabling - the
2299 * OHCI requires that ConfigROMhdr and BusOptions have valid
2300 * values before enabling.
2302 * However, when the ConfigROMmap is written, some controllers
2303 * always read back quadlets 0 and 2 from the config rom to
2304 * the ConfigRomHeader and BusOptions registers on bus reset.
2305 * They shouldn't do that in this initial case where the link
2306 * isn't enabled. This means we have to use the same
2307 * workaround here, setting the bus header to 0 and then write
2308 * the right values in the bus reset tasklet.
2311 if (config_rom) {
2312 ohci->next_config_rom =
2313 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2314 &ohci->next_config_rom_bus,
2315 GFP_KERNEL);
2316 if (ohci->next_config_rom == NULL)
2317 return -ENOMEM;
2319 copy_config_rom(ohci->next_config_rom, config_rom, length);
2320 } else {
2322 * In the suspend case, config_rom is NULL, which
2323 * means that we just reuse the old config rom.
2325 ohci->next_config_rom = ohci->config_rom;
2326 ohci->next_config_rom_bus = ohci->config_rom_bus;
2329 ohci->next_header = ohci->next_config_rom[0];
2330 ohci->next_config_rom[0] = 0;
2331 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2332 reg_write(ohci, OHCI1394_BusOptions,
2333 be32_to_cpu(ohci->next_config_rom[2]));
2334 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2336 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2338 if (!(ohci->quirks & QUIRK_NO_MSI))
2339 pci_enable_msi(dev);
2340 if (request_irq(dev->irq, irq_handler,
2341 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2342 ohci_driver_name, ohci)) {
2343 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2344 pci_disable_msi(dev);
2346 if (config_rom) {
2347 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2348 ohci->next_config_rom,
2349 ohci->next_config_rom_bus);
2350 ohci->next_config_rom = NULL;
2352 return -EIO;
2355 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2356 OHCI1394_RQPkt | OHCI1394_RSPkt |
2357 OHCI1394_isochTx | OHCI1394_isochRx |
2358 OHCI1394_postedWriteErr |
2359 OHCI1394_selfIDComplete |
2360 OHCI1394_regAccessFail |
2361 OHCI1394_cycle64Seconds |
2362 OHCI1394_cycleInconsistent |
2363 OHCI1394_unrecoverableError |
2364 OHCI1394_cycleTooLong |
2365 OHCI1394_masterIntEnable;
2366 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2367 irqs |= OHCI1394_busReset;
2368 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2370 reg_write(ohci, OHCI1394_HCControlSet,
2371 OHCI1394_HCControl_linkEnable |
2372 OHCI1394_HCControl_BIBimageValid);
2374 reg_write(ohci, OHCI1394_LinkControlSet,
2375 OHCI1394_LinkControl_rcvSelfID |
2376 OHCI1394_LinkControl_rcvPhyPkt);
2378 ar_context_run(&ohci->ar_request_ctx);
2379 ar_context_run(&ohci->ar_response_ctx);
2381 flush_writes(ohci);
2383 /* We are ready to go, reset bus to finish initialization. */
2384 fw_schedule_bus_reset(&ohci->card, false, true);
2386 return 0;
2389 static int ohci_set_config_rom(struct fw_card *card,
2390 const __be32 *config_rom, size_t length)
2392 struct fw_ohci *ohci;
2393 unsigned long flags;
2394 __be32 *next_config_rom;
2395 dma_addr_t uninitialized_var(next_config_rom_bus);
2397 ohci = fw_ohci(card);
2400 * When the OHCI controller is enabled, the config rom update
2401 * mechanism is a bit tricky, but easy enough to use. See
2402 * section 5.5.6 in the OHCI specification.
2404 * The OHCI controller caches the new config rom address in a
2405 * shadow register (ConfigROMmapNext) and needs a bus reset
2406 * for the changes to take place. When the bus reset is
2407 * detected, the controller loads the new values for the
2408 * ConfigRomHeader and BusOptions registers from the specified
2409 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2410 * shadow register. All automatically and atomically.
2412 * Now, there's a twist to this story. The automatic load of
2413 * ConfigRomHeader and BusOptions doesn't honor the
2414 * noByteSwapData bit, so with a be32 config rom, the
2415 * controller will load be32 values in to these registers
2416 * during the atomic update, even on litte endian
2417 * architectures. The workaround we use is to put a 0 in the
2418 * header quadlet; 0 is endian agnostic and means that the
2419 * config rom isn't ready yet. In the bus reset tasklet we
2420 * then set up the real values for the two registers.
2422 * We use ohci->lock to avoid racing with the code that sets
2423 * ohci->next_config_rom to NULL (see bus_reset_work).
2426 next_config_rom =
2427 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2428 &next_config_rom_bus, GFP_KERNEL);
2429 if (next_config_rom == NULL)
2430 return -ENOMEM;
2432 spin_lock_irqsave(&ohci->lock, flags);
2435 * If there is not an already pending config_rom update,
2436 * push our new allocation into the ohci->next_config_rom
2437 * and then mark the local variable as null so that we
2438 * won't deallocate the new buffer.
2440 * OTOH, if there is a pending config_rom update, just
2441 * use that buffer with the new config_rom data, and
2442 * let this routine free the unused DMA allocation.
2445 if (ohci->next_config_rom == NULL) {
2446 ohci->next_config_rom = next_config_rom;
2447 ohci->next_config_rom_bus = next_config_rom_bus;
2448 next_config_rom = NULL;
2451 copy_config_rom(ohci->next_config_rom, config_rom, length);
2453 ohci->next_header = config_rom[0];
2454 ohci->next_config_rom[0] = 0;
2456 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2458 spin_unlock_irqrestore(&ohci->lock, flags);
2460 /* If we didn't use the DMA allocation, delete it. */
2461 if (next_config_rom != NULL)
2462 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2463 next_config_rom, next_config_rom_bus);
2466 * Now initiate a bus reset to have the changes take
2467 * effect. We clean up the old config rom memory and DMA
2468 * mappings in the bus reset tasklet, since the OHCI
2469 * controller could need to access it before the bus reset
2470 * takes effect.
2473 fw_schedule_bus_reset(&ohci->card, true, true);
2475 return 0;
2478 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2480 struct fw_ohci *ohci = fw_ohci(card);
2482 at_context_transmit(&ohci->at_request_ctx, packet);
2485 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2487 struct fw_ohci *ohci = fw_ohci(card);
2489 at_context_transmit(&ohci->at_response_ctx, packet);
2492 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2494 struct fw_ohci *ohci = fw_ohci(card);
2495 struct context *ctx = &ohci->at_request_ctx;
2496 struct driver_data *driver_data = packet->driver_data;
2497 int ret = -ENOENT;
2499 tasklet_disable(&ctx->tasklet);
2501 if (packet->ack != 0)
2502 goto out;
2504 if (packet->payload_mapped)
2505 dma_unmap_single(ohci->card.device, packet->payload_bus,
2506 packet->payload_length, DMA_TO_DEVICE);
2508 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2509 driver_data->packet = NULL;
2510 packet->ack = RCODE_CANCELLED;
2511 packet->callback(packet, &ohci->card, packet->ack);
2512 ret = 0;
2513 out:
2514 tasklet_enable(&ctx->tasklet);
2516 return ret;
2519 static int ohci_enable_phys_dma(struct fw_card *card,
2520 int node_id, int generation)
2522 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2523 return 0;
2524 #else
2525 struct fw_ohci *ohci = fw_ohci(card);
2526 unsigned long flags;
2527 int n, ret = 0;
2530 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2531 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2534 spin_lock_irqsave(&ohci->lock, flags);
2536 if (ohci->generation != generation) {
2537 ret = -ESTALE;
2538 goto out;
2542 * Note, if the node ID contains a non-local bus ID, physical DMA is
2543 * enabled for _all_ nodes on remote buses.
2546 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2547 if (n < 32)
2548 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2549 else
2550 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2552 flush_writes(ohci);
2553 out:
2554 spin_unlock_irqrestore(&ohci->lock, flags);
2556 return ret;
2557 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2560 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2562 struct fw_ohci *ohci = fw_ohci(card);
2563 unsigned long flags;
2564 u32 value;
2566 switch (csr_offset) {
2567 case CSR_STATE_CLEAR:
2568 case CSR_STATE_SET:
2569 if (ohci->is_root &&
2570 (reg_read(ohci, OHCI1394_LinkControlSet) &
2571 OHCI1394_LinkControl_cycleMaster))
2572 value = CSR_STATE_BIT_CMSTR;
2573 else
2574 value = 0;
2575 if (ohci->csr_state_setclear_abdicate)
2576 value |= CSR_STATE_BIT_ABDICATE;
2578 return value;
2580 case CSR_NODE_IDS:
2581 return reg_read(ohci, OHCI1394_NodeID) << 16;
2583 case CSR_CYCLE_TIME:
2584 return get_cycle_time(ohci);
2586 case CSR_BUS_TIME:
2588 * We might be called just after the cycle timer has wrapped
2589 * around but just before the cycle64Seconds handler, so we
2590 * better check here, too, if the bus time needs to be updated.
2592 spin_lock_irqsave(&ohci->lock, flags);
2593 value = update_bus_time(ohci);
2594 spin_unlock_irqrestore(&ohci->lock, flags);
2595 return value;
2597 case CSR_BUSY_TIMEOUT:
2598 value = reg_read(ohci, OHCI1394_ATRetries);
2599 return (value >> 4) & 0x0ffff00f;
2601 case CSR_PRIORITY_BUDGET:
2602 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2603 (ohci->pri_req_max << 8);
2605 default:
2606 WARN_ON(1);
2607 return 0;
2611 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2613 struct fw_ohci *ohci = fw_ohci(card);
2614 unsigned long flags;
2616 switch (csr_offset) {
2617 case CSR_STATE_CLEAR:
2618 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2619 reg_write(ohci, OHCI1394_LinkControlClear,
2620 OHCI1394_LinkControl_cycleMaster);
2621 flush_writes(ohci);
2623 if (value & CSR_STATE_BIT_ABDICATE)
2624 ohci->csr_state_setclear_abdicate = false;
2625 break;
2627 case CSR_STATE_SET:
2628 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2629 reg_write(ohci, OHCI1394_LinkControlSet,
2630 OHCI1394_LinkControl_cycleMaster);
2631 flush_writes(ohci);
2633 if (value & CSR_STATE_BIT_ABDICATE)
2634 ohci->csr_state_setclear_abdicate = true;
2635 break;
2637 case CSR_NODE_IDS:
2638 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2639 flush_writes(ohci);
2640 break;
2642 case CSR_CYCLE_TIME:
2643 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2644 reg_write(ohci, OHCI1394_IntEventSet,
2645 OHCI1394_cycleInconsistent);
2646 flush_writes(ohci);
2647 break;
2649 case CSR_BUS_TIME:
2650 spin_lock_irqsave(&ohci->lock, flags);
2651 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2652 spin_unlock_irqrestore(&ohci->lock, flags);
2653 break;
2655 case CSR_BUSY_TIMEOUT:
2656 value = (value & 0xf) | ((value & 0xf) << 4) |
2657 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2658 reg_write(ohci, OHCI1394_ATRetries, value);
2659 flush_writes(ohci);
2660 break;
2662 case CSR_PRIORITY_BUDGET:
2663 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2664 flush_writes(ohci);
2665 break;
2667 default:
2668 WARN_ON(1);
2669 break;
2673 static void copy_iso_headers(struct iso_context *ctx, void *p)
2675 int i = ctx->header_length;
2677 if (i + ctx->base.header_size > PAGE_SIZE)
2678 return;
2681 * The iso header is byteswapped to little endian by
2682 * the controller, but the remaining header quadlets
2683 * are big endian. We want to present all the headers
2684 * as big endian, so we have to swap the first quadlet.
2686 if (ctx->base.header_size > 0)
2687 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2688 if (ctx->base.header_size > 4)
2689 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2690 if (ctx->base.header_size > 8)
2691 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2692 ctx->header_length += ctx->base.header_size;
2695 static int handle_ir_packet_per_buffer(struct context *context,
2696 struct descriptor *d,
2697 struct descriptor *last)
2699 struct iso_context *ctx =
2700 container_of(context, struct iso_context, context);
2701 struct descriptor *pd;
2702 u32 buffer_dma;
2703 __le32 *ir_header;
2704 void *p;
2706 for (pd = d; pd <= last; pd++)
2707 if (pd->transfer_status)
2708 break;
2709 if (pd > last)
2710 /* Descriptor(s) not done yet, stop iteration */
2711 return 0;
2713 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2714 d++;
2715 buffer_dma = le32_to_cpu(d->data_address);
2716 dma_sync_single_range_for_cpu(context->ohci->card.device,
2717 buffer_dma & PAGE_MASK,
2718 buffer_dma & ~PAGE_MASK,
2719 le16_to_cpu(d->req_count),
2720 DMA_FROM_DEVICE);
2723 p = last + 1;
2724 copy_iso_headers(ctx, p);
2726 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2727 ir_header = (__le32 *) p;
2728 ctx->base.callback.sc(&ctx->base,
2729 le32_to_cpu(ir_header[0]) & 0xffff,
2730 ctx->header_length, ctx->header,
2731 ctx->base.callback_data);
2732 ctx->header_length = 0;
2735 return 1;
2738 /* d == last because each descriptor block is only a single descriptor. */
2739 static int handle_ir_buffer_fill(struct context *context,
2740 struct descriptor *d,
2741 struct descriptor *last)
2743 struct iso_context *ctx =
2744 container_of(context, struct iso_context, context);
2745 u32 buffer_dma;
2747 if (!last->transfer_status)
2748 /* Descriptor(s) not done yet, stop iteration */
2749 return 0;
2751 buffer_dma = le32_to_cpu(last->data_address);
2752 dma_sync_single_range_for_cpu(context->ohci->card.device,
2753 buffer_dma & PAGE_MASK,
2754 buffer_dma & ~PAGE_MASK,
2755 le16_to_cpu(last->req_count),
2756 DMA_FROM_DEVICE);
2758 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2759 ctx->base.callback.mc(&ctx->base,
2760 le32_to_cpu(last->data_address) +
2761 le16_to_cpu(last->req_count) -
2762 le16_to_cpu(last->res_count),
2763 ctx->base.callback_data);
2765 return 1;
2768 static inline void sync_it_packet_for_cpu(struct context *context,
2769 struct descriptor *pd)
2771 __le16 control;
2772 u32 buffer_dma;
2774 /* only packets beginning with OUTPUT_MORE* have data buffers */
2775 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2776 return;
2778 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2779 pd += 2;
2782 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2783 * data buffer is in the context program's coherent page and must not
2784 * be synced.
2786 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2787 (context->current_bus & PAGE_MASK)) {
2788 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2789 return;
2790 pd++;
2793 do {
2794 buffer_dma = le32_to_cpu(pd->data_address);
2795 dma_sync_single_range_for_cpu(context->ohci->card.device,
2796 buffer_dma & PAGE_MASK,
2797 buffer_dma & ~PAGE_MASK,
2798 le16_to_cpu(pd->req_count),
2799 DMA_TO_DEVICE);
2800 control = pd->control;
2801 pd++;
2802 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2805 static int handle_it_packet(struct context *context,
2806 struct descriptor *d,
2807 struct descriptor *last)
2809 struct iso_context *ctx =
2810 container_of(context, struct iso_context, context);
2811 int i;
2812 struct descriptor *pd;
2814 for (pd = d; pd <= last; pd++)
2815 if (pd->transfer_status)
2816 break;
2817 if (pd > last)
2818 /* Descriptor(s) not done yet, stop iteration */
2819 return 0;
2821 sync_it_packet_for_cpu(context, d);
2823 i = ctx->header_length;
2824 if (i + 4 < PAGE_SIZE) {
2825 /* Present this value as big-endian to match the receive code */
2826 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2827 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2828 le16_to_cpu(pd->res_count));
2829 ctx->header_length += 4;
2831 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2832 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2833 ctx->header_length, ctx->header,
2834 ctx->base.callback_data);
2835 ctx->header_length = 0;
2837 return 1;
2840 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2842 u32 hi = channels >> 32, lo = channels;
2844 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2845 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2846 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2847 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2848 mmiowb();
2849 ohci->mc_channels = channels;
2852 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2853 int type, int channel, size_t header_size)
2855 struct fw_ohci *ohci = fw_ohci(card);
2856 struct iso_context *uninitialized_var(ctx);
2857 descriptor_callback_t uninitialized_var(callback);
2858 u64 *uninitialized_var(channels);
2859 u32 *uninitialized_var(mask), uninitialized_var(regs);
2860 unsigned long flags;
2861 int index, ret = -EBUSY;
2863 spin_lock_irqsave(&ohci->lock, flags);
2865 switch (type) {
2866 case FW_ISO_CONTEXT_TRANSMIT:
2867 mask = &ohci->it_context_mask;
2868 callback = handle_it_packet;
2869 index = ffs(*mask) - 1;
2870 if (index >= 0) {
2871 *mask &= ~(1 << index);
2872 regs = OHCI1394_IsoXmitContextBase(index);
2873 ctx = &ohci->it_context_list[index];
2875 break;
2877 case FW_ISO_CONTEXT_RECEIVE:
2878 channels = &ohci->ir_context_channels;
2879 mask = &ohci->ir_context_mask;
2880 callback = handle_ir_packet_per_buffer;
2881 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2882 if (index >= 0) {
2883 *channels &= ~(1ULL << channel);
2884 *mask &= ~(1 << index);
2885 regs = OHCI1394_IsoRcvContextBase(index);
2886 ctx = &ohci->ir_context_list[index];
2888 break;
2890 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2891 mask = &ohci->ir_context_mask;
2892 callback = handle_ir_buffer_fill;
2893 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2894 if (index >= 0) {
2895 ohci->mc_allocated = true;
2896 *mask &= ~(1 << index);
2897 regs = OHCI1394_IsoRcvContextBase(index);
2898 ctx = &ohci->ir_context_list[index];
2900 break;
2902 default:
2903 index = -1;
2904 ret = -ENOSYS;
2907 spin_unlock_irqrestore(&ohci->lock, flags);
2909 if (index < 0)
2910 return ERR_PTR(ret);
2912 memset(ctx, 0, sizeof(*ctx));
2913 ctx->header_length = 0;
2914 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2915 if (ctx->header == NULL) {
2916 ret = -ENOMEM;
2917 goto out;
2919 ret = context_init(&ctx->context, ohci, regs, callback);
2920 if (ret < 0)
2921 goto out_with_header;
2923 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2924 set_multichannel_mask(ohci, 0);
2926 return &ctx->base;
2928 out_with_header:
2929 free_page((unsigned long)ctx->header);
2930 out:
2931 spin_lock_irqsave(&ohci->lock, flags);
2933 switch (type) {
2934 case FW_ISO_CONTEXT_RECEIVE:
2935 *channels |= 1ULL << channel;
2936 break;
2938 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2939 ohci->mc_allocated = false;
2940 break;
2942 *mask |= 1 << index;
2944 spin_unlock_irqrestore(&ohci->lock, flags);
2946 return ERR_PTR(ret);
2949 static int ohci_start_iso(struct fw_iso_context *base,
2950 s32 cycle, u32 sync, u32 tags)
2952 struct iso_context *ctx = container_of(base, struct iso_context, base);
2953 struct fw_ohci *ohci = ctx->context.ohci;
2954 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2955 int index;
2957 /* the controller cannot start without any queued packets */
2958 if (ctx->context.last->branch_address == 0)
2959 return -ENODATA;
2961 switch (ctx->base.type) {
2962 case FW_ISO_CONTEXT_TRANSMIT:
2963 index = ctx - ohci->it_context_list;
2964 match = 0;
2965 if (cycle >= 0)
2966 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2967 (cycle & 0x7fff) << 16;
2969 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2970 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2971 context_run(&ctx->context, match);
2972 break;
2974 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2975 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2976 /* fall through */
2977 case FW_ISO_CONTEXT_RECEIVE:
2978 index = ctx - ohci->ir_context_list;
2979 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2980 if (cycle >= 0) {
2981 match |= (cycle & 0x07fff) << 12;
2982 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2985 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2986 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2987 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2988 context_run(&ctx->context, control);
2990 ctx->sync = sync;
2991 ctx->tags = tags;
2993 break;
2996 return 0;
2999 static int ohci_stop_iso(struct fw_iso_context *base)
3001 struct fw_ohci *ohci = fw_ohci(base->card);
3002 struct iso_context *ctx = container_of(base, struct iso_context, base);
3003 int index;
3005 switch (ctx->base.type) {
3006 case FW_ISO_CONTEXT_TRANSMIT:
3007 index = ctx - ohci->it_context_list;
3008 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3009 break;
3011 case FW_ISO_CONTEXT_RECEIVE:
3012 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3013 index = ctx - ohci->ir_context_list;
3014 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3015 break;
3017 flush_writes(ohci);
3018 context_stop(&ctx->context);
3019 tasklet_kill(&ctx->context.tasklet);
3021 return 0;
3024 static void ohci_free_iso_context(struct fw_iso_context *base)
3026 struct fw_ohci *ohci = fw_ohci(base->card);
3027 struct iso_context *ctx = container_of(base, struct iso_context, base);
3028 unsigned long flags;
3029 int index;
3031 ohci_stop_iso(base);
3032 context_release(&ctx->context);
3033 free_page((unsigned long)ctx->header);
3035 spin_lock_irqsave(&ohci->lock, flags);
3037 switch (base->type) {
3038 case FW_ISO_CONTEXT_TRANSMIT:
3039 index = ctx - ohci->it_context_list;
3040 ohci->it_context_mask |= 1 << index;
3041 break;
3043 case FW_ISO_CONTEXT_RECEIVE:
3044 index = ctx - ohci->ir_context_list;
3045 ohci->ir_context_mask |= 1 << index;
3046 ohci->ir_context_channels |= 1ULL << base->channel;
3047 break;
3049 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3050 index = ctx - ohci->ir_context_list;
3051 ohci->ir_context_mask |= 1 << index;
3052 ohci->ir_context_channels |= ohci->mc_channels;
3053 ohci->mc_channels = 0;
3054 ohci->mc_allocated = false;
3055 break;
3058 spin_unlock_irqrestore(&ohci->lock, flags);
3061 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3063 struct fw_ohci *ohci = fw_ohci(base->card);
3064 unsigned long flags;
3065 int ret;
3067 switch (base->type) {
3068 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3070 spin_lock_irqsave(&ohci->lock, flags);
3072 /* Don't allow multichannel to grab other contexts' channels. */
3073 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3074 *channels = ohci->ir_context_channels;
3075 ret = -EBUSY;
3076 } else {
3077 set_multichannel_mask(ohci, *channels);
3078 ret = 0;
3081 spin_unlock_irqrestore(&ohci->lock, flags);
3083 break;
3084 default:
3085 ret = -EINVAL;
3088 return ret;
3091 #ifdef CONFIG_PM
3092 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3094 int i;
3095 struct iso_context *ctx;
3097 for (i = 0 ; i < ohci->n_ir ; i++) {
3098 ctx = &ohci->ir_context_list[i];
3099 if (ctx->context.running)
3100 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3103 for (i = 0 ; i < ohci->n_it ; i++) {
3104 ctx = &ohci->it_context_list[i];
3105 if (ctx->context.running)
3106 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3109 #endif
3111 static int queue_iso_transmit(struct iso_context *ctx,
3112 struct fw_iso_packet *packet,
3113 struct fw_iso_buffer *buffer,
3114 unsigned long payload)
3116 struct descriptor *d, *last, *pd;
3117 struct fw_iso_packet *p;
3118 __le32 *header;
3119 dma_addr_t d_bus, page_bus;
3120 u32 z, header_z, payload_z, irq;
3121 u32 payload_index, payload_end_index, next_page_index;
3122 int page, end_page, i, length, offset;
3124 p = packet;
3125 payload_index = payload;
3127 if (p->skip)
3128 z = 1;
3129 else
3130 z = 2;
3131 if (p->header_length > 0)
3132 z++;
3134 /* Determine the first page the payload isn't contained in. */
3135 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3136 if (p->payload_length > 0)
3137 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3138 else
3139 payload_z = 0;
3141 z += payload_z;
3143 /* Get header size in number of descriptors. */
3144 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3146 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3147 if (d == NULL)
3148 return -ENOMEM;
3150 if (!p->skip) {
3151 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3152 d[0].req_count = cpu_to_le16(8);
3154 * Link the skip address to this descriptor itself. This causes
3155 * a context to skip a cycle whenever lost cycles or FIFO
3156 * overruns occur, without dropping the data. The application
3157 * should then decide whether this is an error condition or not.
3158 * FIXME: Make the context's cycle-lost behaviour configurable?
3160 d[0].branch_address = cpu_to_le32(d_bus | z);
3162 header = (__le32 *) &d[1];
3163 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3164 IT_HEADER_TAG(p->tag) |
3165 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3166 IT_HEADER_CHANNEL(ctx->base.channel) |
3167 IT_HEADER_SPEED(ctx->base.speed));
3168 header[1] =
3169 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3170 p->payload_length));
3173 if (p->header_length > 0) {
3174 d[2].req_count = cpu_to_le16(p->header_length);
3175 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3176 memcpy(&d[z], p->header, p->header_length);
3179 pd = d + z - payload_z;
3180 payload_end_index = payload_index + p->payload_length;
3181 for (i = 0; i < payload_z; i++) {
3182 page = payload_index >> PAGE_SHIFT;
3183 offset = payload_index & ~PAGE_MASK;
3184 next_page_index = (page + 1) << PAGE_SHIFT;
3185 length =
3186 min(next_page_index, payload_end_index) - payload_index;
3187 pd[i].req_count = cpu_to_le16(length);
3189 page_bus = page_private(buffer->pages[page]);
3190 pd[i].data_address = cpu_to_le32(page_bus + offset);
3192 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3193 page_bus, offset, length,
3194 DMA_TO_DEVICE);
3196 payload_index += length;
3199 if (p->interrupt)
3200 irq = DESCRIPTOR_IRQ_ALWAYS;
3201 else
3202 irq = DESCRIPTOR_NO_IRQ;
3204 last = z == 2 ? d : d + z - 1;
3205 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3206 DESCRIPTOR_STATUS |
3207 DESCRIPTOR_BRANCH_ALWAYS |
3208 irq);
3210 context_append(&ctx->context, d, z, header_z);
3212 return 0;
3215 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3216 struct fw_iso_packet *packet,
3217 struct fw_iso_buffer *buffer,
3218 unsigned long payload)
3220 struct device *device = ctx->context.ohci->card.device;
3221 struct descriptor *d, *pd;
3222 dma_addr_t d_bus, page_bus;
3223 u32 z, header_z, rest;
3224 int i, j, length;
3225 int page, offset, packet_count, header_size, payload_per_buffer;
3228 * The OHCI controller puts the isochronous header and trailer in the
3229 * buffer, so we need at least 8 bytes.
3231 packet_count = packet->header_length / ctx->base.header_size;
3232 header_size = max(ctx->base.header_size, (size_t)8);
3234 /* Get header size in number of descriptors. */
3235 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3236 page = payload >> PAGE_SHIFT;
3237 offset = payload & ~PAGE_MASK;
3238 payload_per_buffer = packet->payload_length / packet_count;
3240 for (i = 0; i < packet_count; i++) {
3241 /* d points to the header descriptor */
3242 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3243 d = context_get_descriptors(&ctx->context,
3244 z + header_z, &d_bus);
3245 if (d == NULL)
3246 return -ENOMEM;
3248 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3249 DESCRIPTOR_INPUT_MORE);
3250 if (packet->skip && i == 0)
3251 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3252 d->req_count = cpu_to_le16(header_size);
3253 d->res_count = d->req_count;
3254 d->transfer_status = 0;
3255 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3257 rest = payload_per_buffer;
3258 pd = d;
3259 for (j = 1; j < z; j++) {
3260 pd++;
3261 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3262 DESCRIPTOR_INPUT_MORE);
3264 if (offset + rest < PAGE_SIZE)
3265 length = rest;
3266 else
3267 length = PAGE_SIZE - offset;
3268 pd->req_count = cpu_to_le16(length);
3269 pd->res_count = pd->req_count;
3270 pd->transfer_status = 0;
3272 page_bus = page_private(buffer->pages[page]);
3273 pd->data_address = cpu_to_le32(page_bus + offset);
3275 dma_sync_single_range_for_device(device, page_bus,
3276 offset, length,
3277 DMA_FROM_DEVICE);
3279 offset = (offset + length) & ~PAGE_MASK;
3280 rest -= length;
3281 if (offset == 0)
3282 page++;
3284 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3285 DESCRIPTOR_INPUT_LAST |
3286 DESCRIPTOR_BRANCH_ALWAYS);
3287 if (packet->interrupt && i == packet_count - 1)
3288 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3290 context_append(&ctx->context, d, z, header_z);
3293 return 0;
3296 static int queue_iso_buffer_fill(struct iso_context *ctx,
3297 struct fw_iso_packet *packet,
3298 struct fw_iso_buffer *buffer,
3299 unsigned long payload)
3301 struct descriptor *d;
3302 dma_addr_t d_bus, page_bus;
3303 int page, offset, rest, z, i, length;
3305 page = payload >> PAGE_SHIFT;
3306 offset = payload & ~PAGE_MASK;
3307 rest = packet->payload_length;
3309 /* We need one descriptor for each page in the buffer. */
3310 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3312 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3313 return -EFAULT;
3315 for (i = 0; i < z; i++) {
3316 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3317 if (d == NULL)
3318 return -ENOMEM;
3320 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3321 DESCRIPTOR_BRANCH_ALWAYS);
3322 if (packet->skip && i == 0)
3323 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3324 if (packet->interrupt && i == z - 1)
3325 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3327 if (offset + rest < PAGE_SIZE)
3328 length = rest;
3329 else
3330 length = PAGE_SIZE - offset;
3331 d->req_count = cpu_to_le16(length);
3332 d->res_count = d->req_count;
3333 d->transfer_status = 0;
3335 page_bus = page_private(buffer->pages[page]);
3336 d->data_address = cpu_to_le32(page_bus + offset);
3338 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3339 page_bus, offset, length,
3340 DMA_FROM_DEVICE);
3342 rest -= length;
3343 offset = 0;
3344 page++;
3346 context_append(&ctx->context, d, 1, 0);
3349 return 0;
3352 static int ohci_queue_iso(struct fw_iso_context *base,
3353 struct fw_iso_packet *packet,
3354 struct fw_iso_buffer *buffer,
3355 unsigned long payload)
3357 struct iso_context *ctx = container_of(base, struct iso_context, base);
3358 unsigned long flags;
3359 int ret = -ENOSYS;
3361 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3362 switch (base->type) {
3363 case FW_ISO_CONTEXT_TRANSMIT:
3364 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3365 break;
3366 case FW_ISO_CONTEXT_RECEIVE:
3367 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3368 break;
3369 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3370 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3371 break;
3373 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3375 return ret;
3378 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3380 struct context *ctx =
3381 &container_of(base, struct iso_context, base)->context;
3383 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3386 static const struct fw_card_driver ohci_driver = {
3387 .enable = ohci_enable,
3388 .read_phy_reg = ohci_read_phy_reg,
3389 .update_phy_reg = ohci_update_phy_reg,
3390 .set_config_rom = ohci_set_config_rom,
3391 .send_request = ohci_send_request,
3392 .send_response = ohci_send_response,
3393 .cancel_packet = ohci_cancel_packet,
3394 .enable_phys_dma = ohci_enable_phys_dma,
3395 .read_csr = ohci_read_csr,
3396 .write_csr = ohci_write_csr,
3398 .allocate_iso_context = ohci_allocate_iso_context,
3399 .free_iso_context = ohci_free_iso_context,
3400 .set_iso_channels = ohci_set_iso_channels,
3401 .queue_iso = ohci_queue_iso,
3402 .flush_queue_iso = ohci_flush_queue_iso,
3403 .start_iso = ohci_start_iso,
3404 .stop_iso = ohci_stop_iso,
3407 #ifdef CONFIG_PPC_PMAC
3408 static void pmac_ohci_on(struct pci_dev *dev)
3410 if (machine_is(powermac)) {
3411 struct device_node *ofn = pci_device_to_OF_node(dev);
3413 if (ofn) {
3414 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3415 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3420 static void pmac_ohci_off(struct pci_dev *dev)
3422 if (machine_is(powermac)) {
3423 struct device_node *ofn = pci_device_to_OF_node(dev);
3425 if (ofn) {
3426 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3427 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3431 #else
3432 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3433 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3434 #endif /* CONFIG_PPC_PMAC */
3436 static int __devinit pci_probe(struct pci_dev *dev,
3437 const struct pci_device_id *ent)
3439 struct fw_ohci *ohci;
3440 u32 bus_options, max_receive, link_speed, version;
3441 u64 guid;
3442 int i, err;
3443 size_t size;
3445 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3446 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3447 return -ENOSYS;
3450 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3451 if (ohci == NULL) {
3452 err = -ENOMEM;
3453 goto fail;
3456 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3458 pmac_ohci_on(dev);
3460 err = pci_enable_device(dev);
3461 if (err) {
3462 fw_error("Failed to enable OHCI hardware\n");
3463 goto fail_free;
3466 pci_set_master(dev);
3467 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3468 pci_set_drvdata(dev, ohci);
3470 spin_lock_init(&ohci->lock);
3471 mutex_init(&ohci->phy_reg_mutex);
3473 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3475 err = pci_request_region(dev, 0, ohci_driver_name);
3476 if (err) {
3477 fw_error("MMIO resource unavailable\n");
3478 goto fail_disable;
3481 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3482 if (ohci->registers == NULL) {
3483 fw_error("Failed to remap registers\n");
3484 err = -ENXIO;
3485 goto fail_iomem;
3488 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3489 if ((ohci_quirks[i].vendor == dev->vendor) &&
3490 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3491 ohci_quirks[i].device == dev->device) &&
3492 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3493 ohci_quirks[i].revision >= dev->revision)) {
3494 ohci->quirks = ohci_quirks[i].flags;
3495 break;
3497 if (param_quirks)
3498 ohci->quirks = param_quirks;
3501 * Because dma_alloc_coherent() allocates at least one page,
3502 * we save space by using a common buffer for the AR request/
3503 * response descriptors and the self IDs buffer.
3505 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3506 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3507 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3508 PAGE_SIZE,
3509 &ohci->misc_buffer_bus,
3510 GFP_KERNEL);
3511 if (!ohci->misc_buffer) {
3512 err = -ENOMEM;
3513 goto fail_iounmap;
3516 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3517 OHCI1394_AsReqRcvContextControlSet);
3518 if (err < 0)
3519 goto fail_misc_buf;
3521 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3522 OHCI1394_AsRspRcvContextControlSet);
3523 if (err < 0)
3524 goto fail_arreq_ctx;
3526 err = context_init(&ohci->at_request_ctx, ohci,
3527 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3528 if (err < 0)
3529 goto fail_arrsp_ctx;
3531 err = context_init(&ohci->at_response_ctx, ohci,
3532 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3533 if (err < 0)
3534 goto fail_atreq_ctx;
3536 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3537 ohci->ir_context_channels = ~0ULL;
3538 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3539 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3540 ohci->ir_context_mask = ohci->ir_context_support;
3541 ohci->n_ir = hweight32(ohci->ir_context_mask);
3542 size = sizeof(struct iso_context) * ohci->n_ir;
3543 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3545 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3546 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3547 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3548 ohci->it_context_mask = ohci->it_context_support;
3549 ohci->n_it = hweight32(ohci->it_context_mask);
3550 size = sizeof(struct iso_context) * ohci->n_it;
3551 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3553 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3554 err = -ENOMEM;
3555 goto fail_contexts;
3558 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3559 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3561 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3562 max_receive = (bus_options >> 12) & 0xf;
3563 link_speed = bus_options & 0x7;
3564 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3565 reg_read(ohci, OHCI1394_GUIDLo);
3567 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3568 if (err)
3569 goto fail_contexts;
3571 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3572 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3573 "%d IR + %d IT contexts, quirks 0x%x\n",
3574 dev_name(&dev->dev), version >> 16, version & 0xff,
3575 ohci->n_ir, ohci->n_it, ohci->quirks);
3577 return 0;
3579 fail_contexts:
3580 kfree(ohci->ir_context_list);
3581 kfree(ohci->it_context_list);
3582 context_release(&ohci->at_response_ctx);
3583 fail_atreq_ctx:
3584 context_release(&ohci->at_request_ctx);
3585 fail_arrsp_ctx:
3586 ar_context_release(&ohci->ar_response_ctx);
3587 fail_arreq_ctx:
3588 ar_context_release(&ohci->ar_request_ctx);
3589 fail_misc_buf:
3590 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3591 ohci->misc_buffer, ohci->misc_buffer_bus);
3592 fail_iounmap:
3593 pci_iounmap(dev, ohci->registers);
3594 fail_iomem:
3595 pci_release_region(dev, 0);
3596 fail_disable:
3597 pci_disable_device(dev);
3598 fail_free:
3599 kfree(ohci);
3600 pmac_ohci_off(dev);
3601 fail:
3602 if (err == -ENOMEM)
3603 fw_error("Out of memory\n");
3605 return err;
3608 static void pci_remove(struct pci_dev *dev)
3610 struct fw_ohci *ohci;
3612 ohci = pci_get_drvdata(dev);
3613 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3614 flush_writes(ohci);
3615 cancel_work_sync(&ohci->bus_reset_work);
3616 fw_core_remove_card(&ohci->card);
3619 * FIXME: Fail all pending packets here, now that the upper
3620 * layers can't queue any more.
3623 software_reset(ohci);
3624 free_irq(dev->irq, ohci);
3626 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3627 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3628 ohci->next_config_rom, ohci->next_config_rom_bus);
3629 if (ohci->config_rom)
3630 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3631 ohci->config_rom, ohci->config_rom_bus);
3632 ar_context_release(&ohci->ar_request_ctx);
3633 ar_context_release(&ohci->ar_response_ctx);
3634 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3635 ohci->misc_buffer, ohci->misc_buffer_bus);
3636 context_release(&ohci->at_request_ctx);
3637 context_release(&ohci->at_response_ctx);
3638 kfree(ohci->it_context_list);
3639 kfree(ohci->ir_context_list);
3640 pci_disable_msi(dev);
3641 pci_iounmap(dev, ohci->registers);
3642 pci_release_region(dev, 0);
3643 pci_disable_device(dev);
3644 kfree(ohci);
3645 pmac_ohci_off(dev);
3647 fw_notify("Removed fw-ohci device.\n");
3650 #ifdef CONFIG_PM
3651 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3653 struct fw_ohci *ohci = pci_get_drvdata(dev);
3654 int err;
3656 software_reset(ohci);
3657 free_irq(dev->irq, ohci);
3658 pci_disable_msi(dev);
3659 err = pci_save_state(dev);
3660 if (err) {
3661 fw_error("pci_save_state failed\n");
3662 return err;
3664 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3665 if (err)
3666 fw_error("pci_set_power_state failed with %d\n", err);
3667 pmac_ohci_off(dev);
3669 return 0;
3672 static int pci_resume(struct pci_dev *dev)
3674 struct fw_ohci *ohci = pci_get_drvdata(dev);
3675 int err;
3677 pmac_ohci_on(dev);
3678 pci_set_power_state(dev, PCI_D0);
3679 pci_restore_state(dev);
3680 err = pci_enable_device(dev);
3681 if (err) {
3682 fw_error("pci_enable_device failed\n");
3683 return err;
3686 /* Some systems don't setup GUID register on resume from ram */
3687 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3688 !reg_read(ohci, OHCI1394_GUIDHi)) {
3689 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3690 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3693 err = ohci_enable(&ohci->card, NULL, 0);
3694 if (err)
3695 return err;
3697 ohci_resume_iso_dma(ohci);
3699 return 0;
3701 #endif
3703 static const struct pci_device_id pci_table[] = {
3704 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3708 MODULE_DEVICE_TABLE(pci, pci_table);
3710 static struct pci_driver fw_ohci_pci_driver = {
3711 .name = ohci_driver_name,
3712 .id_table = pci_table,
3713 .probe = pci_probe,
3714 .remove = pci_remove,
3715 #ifdef CONFIG_PM
3716 .resume = pci_resume,
3717 .suspend = pci_suspend,
3718 #endif
3721 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3722 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3723 MODULE_LICENSE("GPL");
3725 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3726 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3727 MODULE_ALIAS("ohci1394");
3728 #endif
3730 static int __init fw_ohci_init(void)
3732 return pci_register_driver(&fw_ohci_pci_driver);
3735 static void __exit fw_ohci_cleanup(void)
3737 pci_unregister_driver(&fw_ohci_pci_driver);
3740 module_init(fw_ohci_init);
3741 module_exit(fw_ohci_cleanup);