2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
35 #include <mach/ep93xx_spi.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @irq: IRQ number used by the driver
80 * @min_rate: minimum clock rate (in Hz) supported by the controller
81 * @max_rate: maximum clock rate (in Hz) supported by the controller
82 * @running: is the queue running
83 * @wq: workqueue used by the driver
84 * @msg_work: work that is queued for the driver
85 * @wait: wait here until given transfer is completed
86 * @msg_queue: queue for the messages
87 * @current_msg: message that is currently processed (or %NULL if none)
88 * @tx: current byte in transfer to transmit
89 * @rx: current byte in transfer to receive
90 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91 * frame decreases this level and sending one frame increases it.
92 * @dma_rx: RX DMA channel
93 * @dma_tx: TX DMA channel
94 * @dma_rx_data: RX parameters passed to the DMA engine
95 * @dma_tx_data: TX parameters passed to the DMA engine
96 * @rx_sgt: sg table for RX transfers
97 * @tx_sgt: sg table for TX transfers
98 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
101 * This structure holds EP93xx SPI controller specific information. When
102 * @running is %true, driver accepts transfer requests from protocol drivers.
103 * @current_msg is used to hold pointer to the message that is currently
104 * processed. If @current_msg is %NULL, it means that no processing is going
107 * Most of the fields are only written once and they can be accessed without
108 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109 * @running, and @msg_queue.
113 const struct platform_device
*pdev
;
115 void __iomem
*regs_base
;
116 unsigned long sspdr_phys
;
118 unsigned long min_rate
;
119 unsigned long max_rate
;
121 struct workqueue_struct
*wq
;
122 struct work_struct msg_work
;
123 struct completion wait
;
124 struct list_head msg_queue
;
125 struct spi_message
*current_msg
;
129 struct dma_chan
*dma_rx
;
130 struct dma_chan
*dma_tx
;
131 struct ep93xx_dma_data dma_rx_data
;
132 struct ep93xx_dma_data dma_tx_data
;
133 struct sg_table rx_sgt
;
134 struct sg_table tx_sgt
;
139 * struct ep93xx_spi_chip - SPI device hardware settings
140 * @spi: back pointer to the SPI device
141 * @rate: max rate in hz this chip supports
142 * @div_cpsr: cpsr (pre-scaler) divider
143 * @div_scr: scr divider
144 * @dss: bits per word (4 - 16 bits)
145 * @ops: private chip operations
147 * This structure is used to store hardware register specific settings for each
148 * SPI device. Settings are written to hardware by function
149 * ep93xx_spi_chip_setup().
151 struct ep93xx_spi_chip
{
152 const struct spi_device
*spi
;
157 struct ep93xx_spi_chip_ops
*ops
;
160 /* converts bits per word to CR0.DSS value */
161 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
164 ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
, u16 reg
, u8 value
)
166 __raw_writeb(value
, espi
->regs_base
+ reg
);
170 ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
172 return __raw_readb(spi
->regs_base
+ reg
);
176 ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
, u16 reg
, u16 value
)
178 __raw_writew(value
, espi
->regs_base
+ reg
);
182 ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
184 return __raw_readw(spi
->regs_base
+ reg
);
187 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
192 err
= clk_enable(espi
->clk
);
196 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
197 regval
|= SSPCR1_SSE
;
198 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
203 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
207 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
208 regval
&= ~SSPCR1_SSE
;
209 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
211 clk_disable(espi
->clk
);
214 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
218 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
219 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
220 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
223 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
227 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
228 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
229 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
233 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234 * @espi: ep93xx SPI controller struct
235 * @chip: divisors are calculated for this chip
236 * @rate: desired SPI output clock rate
238 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240 * for some reason, divisors cannot be calculated nothing is stored and
241 * %-EINVAL is returned.
243 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
244 struct ep93xx_spi_chip
*chip
,
247 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
251 * Make sure that max value is between values supported by the
252 * controller. Note that minimum value is already checked in
253 * ep93xx_spi_transfer().
255 rate
= clamp(rate
, espi
->min_rate
, espi
->max_rate
);
258 * Calculate divisors so that we can get speed according the
260 * rate = spi_clock_rate / (cpsr * (1 + scr))
262 * cpsr must be even number and starts from 2, scr can be any number
265 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
266 for (scr
= 0; scr
<= 255; scr
++) {
267 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
268 chip
->div_scr
= (u8
)scr
;
269 chip
->div_cpsr
= (u8
)cpsr
;
278 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
280 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
281 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
283 if (chip
->ops
&& chip
->ops
->cs_control
)
284 chip
->ops
->cs_control(spi
, value
);
288 * ep93xx_spi_setup() - setup an SPI device
289 * @spi: SPI device to setup
291 * This function sets up SPI device mode, speed etc. Can be called multiple
292 * times for a single device. Returns %0 in case of success, negative error in
293 * case of failure. When this function returns success, the device is
296 static int ep93xx_spi_setup(struct spi_device
*spi
)
298 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
299 struct ep93xx_spi_chip
*chip
;
301 if (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 16) {
302 dev_err(&espi
->pdev
->dev
, "invalid bits per word %d\n",
307 chip
= spi_get_ctldata(spi
);
309 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
312 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
317 chip
->ops
= spi
->controller_data
;
319 if (chip
->ops
&& chip
->ops
->setup
) {
320 int ret
= chip
->ops
->setup(spi
);
327 spi_set_ctldata(spi
, chip
);
330 if (spi
->max_speed_hz
!= chip
->rate
) {
333 err
= ep93xx_spi_calc_divisors(espi
, chip
, spi
->max_speed_hz
);
335 spi_set_ctldata(spi
, NULL
);
339 chip
->rate
= spi
->max_speed_hz
;
342 chip
->dss
= bits_per_word_to_dss(spi
->bits_per_word
);
344 ep93xx_spi_cs_control(spi
, false);
349 * ep93xx_spi_transfer() - queue message to be transferred
350 * @spi: target SPI device
351 * @msg: message to be transferred
353 * This function is called by SPI device drivers when they are going to transfer
354 * a new message. It simply puts the message in the queue and schedules
355 * workqueue to perform the actual transfer later on.
357 * Returns %0 on success and negative error in case of failure.
359 static int ep93xx_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
361 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
362 struct spi_transfer
*t
;
365 if (!msg
|| !msg
->complete
)
368 /* first validate each transfer */
369 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
370 if (t
->bits_per_word
) {
371 if (t
->bits_per_word
< 4 || t
->bits_per_word
> 16)
374 if (t
->speed_hz
&& t
->speed_hz
< espi
->min_rate
)
379 * Now that we own the message, let's initialize it so that it is
380 * suitable for us. We use @msg->status to signal whether there was
381 * error in transfer and @msg->state is used to hold pointer to the
382 * current transfer (or %NULL if no active current transfer).
386 msg
->actual_length
= 0;
388 spin_lock_irqsave(&espi
->lock
, flags
);
389 if (!espi
->running
) {
390 spin_unlock_irqrestore(&espi
->lock
, flags
);
393 list_add_tail(&msg
->queue
, &espi
->msg_queue
);
394 queue_work(espi
->wq
, &espi
->msg_work
);
395 spin_unlock_irqrestore(&espi
->lock
, flags
);
401 * ep93xx_spi_cleanup() - cleans up master controller specific state
402 * @spi: SPI device to cleanup
404 * This function releases master controller specific state for given @spi
407 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
409 struct ep93xx_spi_chip
*chip
;
411 chip
= spi_get_ctldata(spi
);
413 if (chip
->ops
&& chip
->ops
->cleanup
)
414 chip
->ops
->cleanup(spi
);
415 spi_set_ctldata(spi
, NULL
);
421 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422 * @espi: ep93xx SPI controller struct
423 * @chip: chip specific settings
425 * This function sets up the actual hardware registers with settings given in
426 * @chip. Note that no validation is done so make sure that callers validate
427 * settings before calling this.
429 static void ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
430 const struct ep93xx_spi_chip
*chip
)
434 cr0
= chip
->div_scr
<< SSPCR0_SCR_SHIFT
;
435 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
438 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439 chip
->spi
->mode
, chip
->div_cpsr
, chip
->div_scr
, chip
->dss
);
440 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x", cr0
);
442 ep93xx_spi_write_u8(espi
, SSPCPSR
, chip
->div_cpsr
);
443 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
446 static inline int bits_per_word(const struct ep93xx_spi
*espi
)
448 struct spi_message
*msg
= espi
->current_msg
;
449 struct spi_transfer
*t
= msg
->state
;
451 return t
->bits_per_word
? t
->bits_per_word
: msg
->spi
->bits_per_word
;
454 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
456 if (bits_per_word(espi
) > 8) {
460 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
461 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
462 espi
->tx
+= sizeof(tx_val
);
467 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
468 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
469 espi
->tx
+= sizeof(tx_val
);
473 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
475 if (bits_per_word(espi
) > 8) {
478 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
480 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
481 espi
->rx
+= sizeof(rx_val
);
485 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
487 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
488 espi
->rx
+= sizeof(rx_val
);
493 * ep93xx_spi_read_write() - perform next RX/TX transfer
494 * @espi: ep93xx SPI controller struct
496 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497 * called several times, the whole transfer will be completed. Returns
498 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
500 * When this function is finished, RX FIFO should be empty and TX FIFO should be
503 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
505 struct spi_message
*msg
= espi
->current_msg
;
506 struct spi_transfer
*t
= msg
->state
;
508 /* read as long as RX FIFO has frames in it */
509 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
510 ep93xx_do_read(espi
, t
);
514 /* write as long as TX FIFO has room */
515 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
516 ep93xx_do_write(espi
, t
);
520 if (espi
->rx
== t
->len
)
526 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
529 * Now everything is set up for the current transfer. We prime the TX
530 * FIFO, enable interrupts, and wait for the transfer to complete.
532 if (ep93xx_spi_read_write(espi
)) {
533 ep93xx_spi_enable_interrupts(espi
);
534 wait_for_completion(&espi
->wait
);
539 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540 * @espi: ep93xx SPI controller struct
541 * @dir: DMA transfer direction
543 * Function configures the DMA, maps the buffer and prepares the DMA
544 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545 * in case of failure.
547 static struct dma_async_tx_descriptor
*
548 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_data_direction dir
)
550 struct spi_transfer
*t
= espi
->current_msg
->state
;
551 struct dma_async_tx_descriptor
*txd
;
552 enum dma_slave_buswidth buswidth
;
553 struct dma_slave_config conf
;
554 enum dma_transfer_direction slave_dirn
;
555 struct scatterlist
*sg
;
556 struct sg_table
*sgt
;
557 struct dma_chan
*chan
;
558 const void *buf
, *pbuf
;
562 if (bits_per_word(espi
) > 8)
563 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
565 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
567 memset(&conf
, 0, sizeof(conf
));
568 conf
.direction
= dir
;
570 if (dir
== DMA_FROM_DEVICE
) {
575 conf
.src_addr
= espi
->sspdr_phys
;
576 conf
.src_addr_width
= buswidth
;
577 slave_dirn
= DMA_DEV_TO_MEM
;
583 conf
.dst_addr
= espi
->sspdr_phys
;
584 conf
.dst_addr_width
= buswidth
;
585 slave_dirn
= DMA_MEM_TO_DEV
;
588 ret
= dmaengine_slave_config(chan
, &conf
);
593 * We need to split the transfer into PAGE_SIZE'd chunks. This is
594 * because we are using @espi->zeropage to provide a zero RX buffer
595 * for the TX transfers and we have only allocated one page for that.
597 * For performance reasons we allocate a new sg_table only when
598 * needed. Otherwise we will re-use the current one. Eventually the
599 * last sg_table is released in ep93xx_spi_release_dma().
602 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
603 if (nents
!= sgt
->nents
) {
606 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
612 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
613 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
616 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
617 offset_in_page(pbuf
));
619 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
628 dev_warn(&espi
->pdev
->dev
, "len = %d expected 0!", len
);
629 return ERR_PTR(-EINVAL
);
632 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
634 return ERR_PTR(-ENOMEM
);
636 txd
= chan
->device
->device_prep_slave_sg(chan
, sgt
->sgl
, nents
,
637 slave_dirn
, DMA_CTRL_ACK
);
639 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
640 return ERR_PTR(-ENOMEM
);
646 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
647 * @espi: ep93xx SPI controller struct
648 * @dir: DMA transfer direction
650 * Function finishes with the DMA transfer. After this, the DMA buffer is
653 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
654 enum dma_data_direction dir
)
656 struct dma_chan
*chan
;
657 struct sg_table
*sgt
;
659 if (dir
== DMA_FROM_DEVICE
) {
667 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
670 static void ep93xx_spi_dma_callback(void *callback_param
)
672 complete(callback_param
);
675 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
677 struct spi_message
*msg
= espi
->current_msg
;
678 struct dma_async_tx_descriptor
*rxd
, *txd
;
680 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_FROM_DEVICE
);
682 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
683 msg
->status
= PTR_ERR(rxd
);
687 txd
= ep93xx_spi_dma_prepare(espi
, DMA_TO_DEVICE
);
689 ep93xx_spi_dma_finish(espi
, DMA_FROM_DEVICE
);
690 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(rxd
));
691 msg
->status
= PTR_ERR(txd
);
695 /* We are ready when RX is done */
696 rxd
->callback
= ep93xx_spi_dma_callback
;
697 rxd
->callback_param
= &espi
->wait
;
699 /* Now submit both descriptors and wait while they finish */
700 dmaengine_submit(rxd
);
701 dmaengine_submit(txd
);
703 dma_async_issue_pending(espi
->dma_rx
);
704 dma_async_issue_pending(espi
->dma_tx
);
706 wait_for_completion(&espi
->wait
);
708 ep93xx_spi_dma_finish(espi
, DMA_TO_DEVICE
);
709 ep93xx_spi_dma_finish(espi
, DMA_FROM_DEVICE
);
713 * ep93xx_spi_process_transfer() - processes one SPI transfer
714 * @espi: ep93xx SPI controller struct
715 * @msg: current message
716 * @t: transfer to process
718 * This function processes one SPI transfer given in @t. Function waits until
719 * transfer is complete (may sleep) and updates @msg->status based on whether
720 * transfer was successfully processed or not.
722 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
723 struct spi_message
*msg
,
724 struct spi_transfer
*t
)
726 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
731 * Handle any transfer specific settings if needed. We use
732 * temporary chip settings here and restore original later when
733 * the transfer is finished.
735 if (t
->speed_hz
|| t
->bits_per_word
) {
736 struct ep93xx_spi_chip tmp_chip
= *chip
;
741 err
= ep93xx_spi_calc_divisors(espi
, &tmp_chip
,
744 dev_err(&espi
->pdev
->dev
,
745 "failed to adjust speed\n");
751 if (t
->bits_per_word
)
752 tmp_chip
.dss
= bits_per_word_to_dss(t
->bits_per_word
);
755 * Set up temporary new hw settings for this transfer.
757 ep93xx_spi_chip_setup(espi
, &tmp_chip
);
764 * There is no point of setting up DMA for the transfers which will
765 * fit into the FIFO and can be transferred with a single interrupt.
766 * So in these cases we will be using PIO and don't bother for DMA.
768 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
769 ep93xx_spi_dma_transfer(espi
);
771 ep93xx_spi_pio_transfer(espi
);
774 * In case of error during transmit, we bail out from processing
780 msg
->actual_length
+= t
->len
;
783 * After this transfer is finished, perform any possible
784 * post-transfer actions requested by the protocol driver.
786 if (t
->delay_usecs
) {
787 set_current_state(TASK_UNINTERRUPTIBLE
);
788 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
791 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
793 * In case protocol driver is asking us to drop the
794 * chipselect briefly, we let the scheduler to handle
797 ep93xx_spi_cs_control(msg
->spi
, false);
799 ep93xx_spi_cs_control(msg
->spi
, true);
803 if (t
->speed_hz
|| t
->bits_per_word
)
804 ep93xx_spi_chip_setup(espi
, chip
);
808 * ep93xx_spi_process_message() - process one SPI message
809 * @espi: ep93xx SPI controller struct
810 * @msg: message to process
812 * This function processes a single SPI message. We go through all transfers in
813 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
814 * asserted during the whole message (unless per transfer cs_change is set).
816 * @msg->status contains %0 in case of success or negative error code in case of
819 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
820 struct spi_message
*msg
)
822 unsigned long timeout
;
823 struct spi_transfer
*t
;
827 * Enable the SPI controller and its clock.
829 err
= ep93xx_spi_enable(espi
);
831 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
837 * Just to be sure: flush any data from RX FIFO.
839 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
840 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
841 if (time_after(jiffies
, timeout
)) {
842 dev_warn(&espi
->pdev
->dev
,
843 "timeout while flushing RX FIFO\n");
844 msg
->status
= -ETIMEDOUT
;
847 ep93xx_spi_read_u16(espi
, SSPDR
);
851 * We explicitly handle FIFO level. This way we don't have to check TX
852 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
854 espi
->fifo_level
= 0;
857 * Update SPI controller registers according to spi device and assert
860 ep93xx_spi_chip_setup(espi
, spi_get_ctldata(msg
->spi
));
861 ep93xx_spi_cs_control(msg
->spi
, true);
863 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
864 ep93xx_spi_process_transfer(espi
, msg
, t
);
870 * Now the whole message is transferred (or failed for some reason). We
871 * deselect the device and disable the SPI controller.
873 ep93xx_spi_cs_control(msg
->spi
, false);
874 ep93xx_spi_disable(espi
);
877 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
880 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
883 * Workqueue worker function. This function is called when there are new
884 * SPI messages to be processed. Message is taken out from the queue and then
885 * passed to ep93xx_spi_process_message().
887 * After message is transferred, protocol driver is notified by calling
888 * @msg->complete(). In case of error, @msg->status is set to negative error
889 * number, otherwise it contains zero (and @msg->actual_length is updated).
891 static void ep93xx_spi_work(struct work_struct
*work
)
893 struct ep93xx_spi
*espi
= work_to_espi(work
);
894 struct spi_message
*msg
;
896 spin_lock_irq(&espi
->lock
);
897 if (!espi
->running
|| espi
->current_msg
||
898 list_empty(&espi
->msg_queue
)) {
899 spin_unlock_irq(&espi
->lock
);
902 msg
= list_first_entry(&espi
->msg_queue
, struct spi_message
, queue
);
903 list_del_init(&msg
->queue
);
904 espi
->current_msg
= msg
;
905 spin_unlock_irq(&espi
->lock
);
907 ep93xx_spi_process_message(espi
, msg
);
910 * Update the current message and re-schedule ourselves if there are
911 * more messages in the queue.
913 spin_lock_irq(&espi
->lock
);
914 espi
->current_msg
= NULL
;
915 if (espi
->running
&& !list_empty(&espi
->msg_queue
))
916 queue_work(espi
->wq
, &espi
->msg_work
);
917 spin_unlock_irq(&espi
->lock
);
919 /* notify the protocol driver that we are done with this message */
920 msg
->complete(msg
->context
);
923 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
925 struct ep93xx_spi
*espi
= dev_id
;
926 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
929 * If we got ROR (receive overrun) interrupt we know that something is
930 * wrong. Just abort the message.
932 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
933 /* clear the overrun interrupt */
934 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
935 dev_warn(&espi
->pdev
->dev
,
936 "receive overrun, aborting the message\n");
937 espi
->current_msg
->status
= -EIO
;
940 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
941 * simply execute next data transfer.
943 if (ep93xx_spi_read_write(espi
)) {
945 * In normal case, there still is some processing left
946 * for current transfer. Let's wait for the next
954 * Current transfer is finished, either with error or with success. In
955 * any case we disable interrupts and notify the worker to handle
956 * any post-processing of the message.
958 ep93xx_spi_disable_interrupts(espi
);
959 complete(&espi
->wait
);
963 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
965 if (ep93xx_dma_chan_is_m2p(chan
))
968 chan
->private = filter_param
;
972 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
977 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
982 dma_cap_set(DMA_SLAVE
, mask
);
984 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
985 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
986 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
988 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
995 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
996 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
997 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
999 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
1000 &espi
->dma_tx_data
);
1001 if (!espi
->dma_tx
) {
1003 goto fail_release_rx
;
1009 dma_release_channel(espi
->dma_rx
);
1010 espi
->dma_rx
= NULL
;
1012 free_page((unsigned long)espi
->zeropage
);
1017 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
1020 dma_release_channel(espi
->dma_rx
);
1021 sg_free_table(&espi
->rx_sgt
);
1024 dma_release_channel(espi
->dma_tx
);
1025 sg_free_table(&espi
->tx_sgt
);
1029 free_page((unsigned long)espi
->zeropage
);
1032 static int __devinit
ep93xx_spi_probe(struct platform_device
*pdev
)
1034 struct spi_master
*master
;
1035 struct ep93xx_spi_info
*info
;
1036 struct ep93xx_spi
*espi
;
1037 struct resource
*res
;
1040 info
= pdev
->dev
.platform_data
;
1042 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
1044 dev_err(&pdev
->dev
, "failed to allocate spi master\n");
1048 master
->setup
= ep93xx_spi_setup
;
1049 master
->transfer
= ep93xx_spi_transfer
;
1050 master
->cleanup
= ep93xx_spi_cleanup
;
1051 master
->bus_num
= pdev
->id
;
1052 master
->num_chipselect
= info
->num_chipselect
;
1053 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1055 platform_set_drvdata(pdev
, master
);
1057 espi
= spi_master_get_devdata(master
);
1059 espi
->clk
= clk_get(&pdev
->dev
, NULL
);
1060 if (IS_ERR(espi
->clk
)) {
1061 dev_err(&pdev
->dev
, "unable to get spi clock\n");
1062 error
= PTR_ERR(espi
->clk
);
1063 goto fail_release_master
;
1066 spin_lock_init(&espi
->lock
);
1067 init_completion(&espi
->wait
);
1070 * Calculate maximum and minimum supported clock rates
1071 * for the controller.
1073 espi
->max_rate
= clk_get_rate(espi
->clk
) / 2;
1074 espi
->min_rate
= clk_get_rate(espi
->clk
) / (254 * 256);
1077 espi
->irq
= platform_get_irq(pdev
, 0);
1078 if (espi
->irq
< 0) {
1080 dev_err(&pdev
->dev
, "failed to get irq resources\n");
1081 goto fail_put_clock
;
1084 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1086 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
1088 goto fail_put_clock
;
1091 res
= request_mem_region(res
->start
, resource_size(res
), pdev
->name
);
1093 dev_err(&pdev
->dev
, "unable to request iomem resources\n");
1095 goto fail_put_clock
;
1098 espi
->sspdr_phys
= res
->start
+ SSPDR
;
1099 espi
->regs_base
= ioremap(res
->start
, resource_size(res
));
1100 if (!espi
->regs_base
) {
1101 dev_err(&pdev
->dev
, "failed to map resources\n");
1106 error
= request_irq(espi
->irq
, ep93xx_spi_interrupt
, 0,
1107 "ep93xx-spi", espi
);
1109 dev_err(&pdev
->dev
, "failed to request irq\n");
1110 goto fail_unmap_regs
;
1113 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
1114 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
1116 espi
->wq
= create_singlethread_workqueue("ep93xx_spid");
1118 dev_err(&pdev
->dev
, "unable to create workqueue\n");
1121 INIT_WORK(&espi
->msg_work
, ep93xx_spi_work
);
1122 INIT_LIST_HEAD(&espi
->msg_queue
);
1123 espi
->running
= true;
1125 /* make sure that the hardware is disabled */
1126 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
1128 error
= spi_register_master(master
);
1130 dev_err(&pdev
->dev
, "failed to register SPI master\n");
1131 goto fail_free_queue
;
1134 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1135 (unsigned long)res
->start
, espi
->irq
);
1140 destroy_workqueue(espi
->wq
);
1142 ep93xx_spi_release_dma(espi
);
1143 free_irq(espi
->irq
, espi
);
1145 iounmap(espi
->regs_base
);
1147 release_mem_region(res
->start
, resource_size(res
));
1150 fail_release_master
:
1151 spi_master_put(master
);
1152 platform_set_drvdata(pdev
, NULL
);
1157 static int __devexit
ep93xx_spi_remove(struct platform_device
*pdev
)
1159 struct spi_master
*master
= platform_get_drvdata(pdev
);
1160 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
1161 struct resource
*res
;
1163 spin_lock_irq(&espi
->lock
);
1164 espi
->running
= false;
1165 spin_unlock_irq(&espi
->lock
);
1167 destroy_workqueue(espi
->wq
);
1170 * Complete remaining messages with %-ESHUTDOWN status.
1172 spin_lock_irq(&espi
->lock
);
1173 while (!list_empty(&espi
->msg_queue
)) {
1174 struct spi_message
*msg
;
1176 msg
= list_first_entry(&espi
->msg_queue
,
1177 struct spi_message
, queue
);
1178 list_del_init(&msg
->queue
);
1179 msg
->status
= -ESHUTDOWN
;
1180 spin_unlock_irq(&espi
->lock
);
1181 msg
->complete(msg
->context
);
1182 spin_lock_irq(&espi
->lock
);
1184 spin_unlock_irq(&espi
->lock
);
1186 ep93xx_spi_release_dma(espi
);
1187 free_irq(espi
->irq
, espi
);
1188 iounmap(espi
->regs_base
);
1189 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1190 release_mem_region(res
->start
, resource_size(res
));
1192 platform_set_drvdata(pdev
, NULL
);
1194 spi_unregister_master(master
);
1198 static struct platform_driver ep93xx_spi_driver
= {
1200 .name
= "ep93xx-spi",
1201 .owner
= THIS_MODULE
,
1203 .probe
= ep93xx_spi_probe
,
1204 .remove
= __devexit_p(ep93xx_spi_remove
),
1206 module_platform_driver(ep93xx_spi_driver
);
1208 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1209 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1210 MODULE_LICENSE("GPL");
1211 MODULE_ALIAS("platform:ep93xx-spi");