ACPI / Button: Avoid disabling wakeup unnecessarily on remove
[zen-stable.git] / fs / aio.c
blobfc557a3be0a9af055a9a9505d3c161a77a7f2129
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
21 #define DEBUG 0
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
44 #if DEBUG > 1
45 #define dprintk printk
46 #else
47 #define dprintk(x...) do { ; } while (0)
48 #endif
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock);
52 unsigned long aio_nr; /* current system wide number of aio requests */
53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
56 static struct kmem_cache *kiocb_cachep;
57 static struct kmem_cache *kioctx_cachep;
59 static struct workqueue_struct *aio_wq;
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct *);
63 static DECLARE_WORK(fput_work, aio_fput_routine);
65 static DEFINE_SPINLOCK(fput_lock);
66 static LIST_HEAD(fput_head);
68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry {
71 struct hlist_node list;
72 struct address_space *mapping;
74 mempool_t *abe_pool;
76 static void aio_kick_handler(struct work_struct *);
77 static void aio_queue_work(struct kioctx *);
79 /* aio_setup
80 * Creates the slab caches used by the aio routines, panic on
81 * failure as this is done early during the boot sequence.
83 static int __init aio_setup(void)
85 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
88 aio_wq = create_workqueue("aio");
89 abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90 BUG_ON(!aio_wq || !abe_pool);
92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
94 return 0;
96 __initcall(aio_setup);
98 static void aio_free_ring(struct kioctx *ctx)
100 struct aio_ring_info *info = &ctx->ring_info;
101 long i;
103 for (i=0; i<info->nr_pages; i++)
104 put_page(info->ring_pages[i]);
106 if (info->mmap_size) {
107 down_write(&ctx->mm->mmap_sem);
108 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109 up_write(&ctx->mm->mmap_sem);
112 if (info->ring_pages && info->ring_pages != info->internal_pages)
113 kfree(info->ring_pages);
114 info->ring_pages = NULL;
115 info->nr = 0;
118 static int aio_setup_ring(struct kioctx *ctx)
120 struct aio_ring *ring;
121 struct aio_ring_info *info = &ctx->ring_info;
122 unsigned nr_events = ctx->max_reqs;
123 unsigned long size;
124 int nr_pages;
126 /* Compensate for the ring buffer's head/tail overlap entry */
127 nr_events += 2; /* 1 is required, 2 for good luck */
129 size = sizeof(struct aio_ring);
130 size += sizeof(struct io_event) * nr_events;
131 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
133 if (nr_pages < 0)
134 return -EINVAL;
136 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
138 info->nr = 0;
139 info->ring_pages = info->internal_pages;
140 if (nr_pages > AIO_RING_PAGES) {
141 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142 if (!info->ring_pages)
143 return -ENOMEM;
146 info->mmap_size = nr_pages * PAGE_SIZE;
147 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148 down_write(&ctx->mm->mmap_sem);
149 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
152 if (IS_ERR((void *)info->mmap_base)) {
153 up_write(&ctx->mm->mmap_sem);
154 info->mmap_size = 0;
155 aio_free_ring(ctx);
156 return -EAGAIN;
159 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160 info->nr_pages = get_user_pages(current, ctx->mm,
161 info->mmap_base, nr_pages,
162 1, 0, info->ring_pages, NULL);
163 up_write(&ctx->mm->mmap_sem);
165 if (unlikely(info->nr_pages != nr_pages)) {
166 aio_free_ring(ctx);
167 return -EAGAIN;
170 ctx->user_id = info->mmap_base;
172 info->nr = nr_events; /* trusted copy */
174 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175 ring->nr = nr_events; /* user copy */
176 ring->id = ctx->user_id;
177 ring->head = ring->tail = 0;
178 ring->magic = AIO_RING_MAGIC;
179 ring->compat_features = AIO_RING_COMPAT_FEATURES;
180 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181 ring->header_length = sizeof(struct aio_ring);
182 kunmap_atomic(ring, KM_USER0);
184 return 0;
188 /* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
195 #define aio_ring_event(info, nr, km) ({ \
196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
197 struct io_event *__event; \
198 __event = kmap_atomic( \
199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 __event += pos % AIO_EVENTS_PER_PAGE; \
201 __event; \
204 #define put_aio_ring_event(event, km) do { \
205 struct io_event *__event = (event); \
206 (void)__event; \
207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208 } while(0)
210 static void ctx_rcu_free(struct rcu_head *head)
212 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213 unsigned nr_events = ctx->max_reqs;
215 kmem_cache_free(kioctx_cachep, ctx);
217 if (nr_events) {
218 spin_lock(&aio_nr_lock);
219 BUG_ON(aio_nr - nr_events > aio_nr);
220 aio_nr -= nr_events;
221 spin_unlock(&aio_nr_lock);
225 /* __put_ioctx
226 * Called when the last user of an aio context has gone away,
227 * and the struct needs to be freed.
229 static void __put_ioctx(struct kioctx *ctx)
231 BUG_ON(ctx->reqs_active);
233 cancel_delayed_work(&ctx->wq);
234 cancel_work_sync(&ctx->wq.work);
235 aio_free_ring(ctx);
236 mmdrop(ctx->mm);
237 ctx->mm = NULL;
238 pr_debug("__put_ioctx: freeing %p\n", ctx);
239 call_rcu(&ctx->rcu_head, ctx_rcu_free);
242 #define get_ioctx(kioctx) do { \
243 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
244 atomic_inc(&(kioctx)->users); \
245 } while (0)
246 #define put_ioctx(kioctx) do { \
247 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
248 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
249 __put_ioctx(kioctx); \
250 } while (0)
252 /* ioctx_alloc
253 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
255 static struct kioctx *ioctx_alloc(unsigned nr_events)
257 struct mm_struct *mm;
258 struct kioctx *ctx;
259 int did_sync = 0;
261 /* Prevent overflows */
262 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
263 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
264 pr_debug("ENOMEM: nr_events too high\n");
265 return ERR_PTR(-EINVAL);
268 if ((unsigned long)nr_events > aio_max_nr)
269 return ERR_PTR(-EAGAIN);
271 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
272 if (!ctx)
273 return ERR_PTR(-ENOMEM);
275 ctx->max_reqs = nr_events;
276 mm = ctx->mm = current->mm;
277 atomic_inc(&mm->mm_count);
279 atomic_set(&ctx->users, 1);
280 spin_lock_init(&ctx->ctx_lock);
281 spin_lock_init(&ctx->ring_info.ring_lock);
282 init_waitqueue_head(&ctx->wait);
284 INIT_LIST_HEAD(&ctx->active_reqs);
285 INIT_LIST_HEAD(&ctx->run_list);
286 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
288 if (aio_setup_ring(ctx) < 0)
289 goto out_freectx;
291 /* limit the number of system wide aios */
292 do {
293 spin_lock_bh(&aio_nr_lock);
294 if (aio_nr + nr_events > aio_max_nr ||
295 aio_nr + nr_events < aio_nr)
296 ctx->max_reqs = 0;
297 else
298 aio_nr += ctx->max_reqs;
299 spin_unlock_bh(&aio_nr_lock);
300 if (ctx->max_reqs || did_sync)
301 break;
303 /* wait for rcu callbacks to have completed before giving up */
304 synchronize_rcu();
305 did_sync = 1;
306 ctx->max_reqs = nr_events;
307 } while (1);
309 if (ctx->max_reqs == 0)
310 goto out_cleanup;
312 /* now link into global list. */
313 spin_lock(&mm->ioctx_lock);
314 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
315 spin_unlock(&mm->ioctx_lock);
317 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
319 return ctx;
321 out_cleanup:
322 __put_ioctx(ctx);
323 return ERR_PTR(-EAGAIN);
325 out_freectx:
326 mmdrop(mm);
327 kmem_cache_free(kioctx_cachep, ctx);
328 ctx = ERR_PTR(-ENOMEM);
330 dprintk("aio: error allocating ioctx %p\n", ctx);
331 return ctx;
334 /* aio_cancel_all
335 * Cancels all outstanding aio requests on an aio context. Used
336 * when the processes owning a context have all exited to encourage
337 * the rapid destruction of the kioctx.
339 static void aio_cancel_all(struct kioctx *ctx)
341 int (*cancel)(struct kiocb *, struct io_event *);
342 struct io_event res;
343 spin_lock_irq(&ctx->ctx_lock);
344 ctx->dead = 1;
345 while (!list_empty(&ctx->active_reqs)) {
346 struct list_head *pos = ctx->active_reqs.next;
347 struct kiocb *iocb = list_kiocb(pos);
348 list_del_init(&iocb->ki_list);
349 cancel = iocb->ki_cancel;
350 kiocbSetCancelled(iocb);
351 if (cancel) {
352 iocb->ki_users++;
353 spin_unlock_irq(&ctx->ctx_lock);
354 cancel(iocb, &res);
355 spin_lock_irq(&ctx->ctx_lock);
358 spin_unlock_irq(&ctx->ctx_lock);
361 static void wait_for_all_aios(struct kioctx *ctx)
363 struct task_struct *tsk = current;
364 DECLARE_WAITQUEUE(wait, tsk);
366 spin_lock_irq(&ctx->ctx_lock);
367 if (!ctx->reqs_active)
368 goto out;
370 add_wait_queue(&ctx->wait, &wait);
371 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
372 while (ctx->reqs_active) {
373 spin_unlock_irq(&ctx->ctx_lock);
374 io_schedule();
375 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
376 spin_lock_irq(&ctx->ctx_lock);
378 __set_task_state(tsk, TASK_RUNNING);
379 remove_wait_queue(&ctx->wait, &wait);
381 out:
382 spin_unlock_irq(&ctx->ctx_lock);
385 /* wait_on_sync_kiocb:
386 * Waits on the given sync kiocb to complete.
388 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
390 while (iocb->ki_users) {
391 set_current_state(TASK_UNINTERRUPTIBLE);
392 if (!iocb->ki_users)
393 break;
394 io_schedule();
396 __set_current_state(TASK_RUNNING);
397 return iocb->ki_user_data;
399 EXPORT_SYMBOL(wait_on_sync_kiocb);
401 /* exit_aio: called when the last user of mm goes away. At this point,
402 * there is no way for any new requests to be submited or any of the
403 * io_* syscalls to be called on the context. However, there may be
404 * outstanding requests which hold references to the context; as they
405 * go away, they will call put_ioctx and release any pinned memory
406 * associated with the request (held via struct page * references).
408 void exit_aio(struct mm_struct *mm)
410 struct kioctx *ctx;
412 while (!hlist_empty(&mm->ioctx_list)) {
413 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
414 hlist_del_rcu(&ctx->list);
416 aio_cancel_all(ctx);
418 wait_for_all_aios(ctx);
420 * Ensure we don't leave the ctx on the aio_wq
422 cancel_work_sync(&ctx->wq.work);
424 if (1 != atomic_read(&ctx->users))
425 printk(KERN_DEBUG
426 "exit_aio:ioctx still alive: %d %d %d\n",
427 atomic_read(&ctx->users), ctx->dead,
428 ctx->reqs_active);
429 put_ioctx(ctx);
433 /* aio_get_req
434 * Allocate a slot for an aio request. Increments the users count
435 * of the kioctx so that the kioctx stays around until all requests are
436 * complete. Returns NULL if no requests are free.
438 * Returns with kiocb->users set to 2. The io submit code path holds
439 * an extra reference while submitting the i/o.
440 * This prevents races between the aio code path referencing the
441 * req (after submitting it) and aio_complete() freeing the req.
443 static struct kiocb *__aio_get_req(struct kioctx *ctx)
445 struct kiocb *req = NULL;
446 struct aio_ring *ring;
447 int okay = 0;
449 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
450 if (unlikely(!req))
451 return NULL;
453 req->ki_flags = 0;
454 req->ki_users = 2;
455 req->ki_key = 0;
456 req->ki_ctx = ctx;
457 req->ki_cancel = NULL;
458 req->ki_retry = NULL;
459 req->ki_dtor = NULL;
460 req->private = NULL;
461 req->ki_iovec = NULL;
462 INIT_LIST_HEAD(&req->ki_run_list);
463 req->ki_eventfd = NULL;
465 /* Check if the completion queue has enough free space to
466 * accept an event from this io.
468 spin_lock_irq(&ctx->ctx_lock);
469 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
470 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
471 list_add(&req->ki_list, &ctx->active_reqs);
472 ctx->reqs_active++;
473 okay = 1;
475 kunmap_atomic(ring, KM_USER0);
476 spin_unlock_irq(&ctx->ctx_lock);
478 if (!okay) {
479 kmem_cache_free(kiocb_cachep, req);
480 req = NULL;
483 return req;
486 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
488 struct kiocb *req;
489 /* Handle a potential starvation case -- should be exceedingly rare as
490 * requests will be stuck on fput_head only if the aio_fput_routine is
491 * delayed and the requests were the last user of the struct file.
493 req = __aio_get_req(ctx);
494 if (unlikely(NULL == req)) {
495 aio_fput_routine(NULL);
496 req = __aio_get_req(ctx);
498 return req;
501 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
503 assert_spin_locked(&ctx->ctx_lock);
505 if (req->ki_eventfd != NULL)
506 eventfd_ctx_put(req->ki_eventfd);
507 if (req->ki_dtor)
508 req->ki_dtor(req);
509 if (req->ki_iovec != &req->ki_inline_vec)
510 kfree(req->ki_iovec);
511 kmem_cache_free(kiocb_cachep, req);
512 ctx->reqs_active--;
514 if (unlikely(!ctx->reqs_active && ctx->dead))
515 wake_up(&ctx->wait);
518 static void aio_fput_routine(struct work_struct *data)
520 spin_lock_irq(&fput_lock);
521 while (likely(!list_empty(&fput_head))) {
522 struct kiocb *req = list_kiocb(fput_head.next);
523 struct kioctx *ctx = req->ki_ctx;
525 list_del(&req->ki_list);
526 spin_unlock_irq(&fput_lock);
528 /* Complete the fput(s) */
529 if (req->ki_filp != NULL)
530 fput(req->ki_filp);
532 /* Link the iocb into the context's free list */
533 spin_lock_irq(&ctx->ctx_lock);
534 really_put_req(ctx, req);
535 spin_unlock_irq(&ctx->ctx_lock);
537 put_ioctx(ctx);
538 spin_lock_irq(&fput_lock);
540 spin_unlock_irq(&fput_lock);
543 /* __aio_put_req
544 * Returns true if this put was the last user of the request.
546 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
548 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
549 req, atomic_long_read(&req->ki_filp->f_count));
551 assert_spin_locked(&ctx->ctx_lock);
553 req->ki_users--;
554 BUG_ON(req->ki_users < 0);
555 if (likely(req->ki_users))
556 return 0;
557 list_del(&req->ki_list); /* remove from active_reqs */
558 req->ki_cancel = NULL;
559 req->ki_retry = NULL;
562 * Try to optimize the aio and eventfd file* puts, by avoiding to
563 * schedule work in case it is not final fput() time. In normal cases,
564 * we would not be holding the last reference to the file*, so
565 * this function will be executed w/out any aio kthread wakeup.
567 if (unlikely(!fput_atomic(req->ki_filp))) {
568 get_ioctx(ctx);
569 spin_lock(&fput_lock);
570 list_add(&req->ki_list, &fput_head);
571 spin_unlock(&fput_lock);
572 queue_work(aio_wq, &fput_work);
573 } else {
574 req->ki_filp = NULL;
575 really_put_req(ctx, req);
577 return 1;
580 /* aio_put_req
581 * Returns true if this put was the last user of the kiocb,
582 * false if the request is still in use.
584 int aio_put_req(struct kiocb *req)
586 struct kioctx *ctx = req->ki_ctx;
587 int ret;
588 spin_lock_irq(&ctx->ctx_lock);
589 ret = __aio_put_req(ctx, req);
590 spin_unlock_irq(&ctx->ctx_lock);
591 return ret;
593 EXPORT_SYMBOL(aio_put_req);
595 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
597 struct mm_struct *mm = current->mm;
598 struct kioctx *ctx, *ret = NULL;
599 struct hlist_node *n;
601 rcu_read_lock();
603 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
604 if (ctx->user_id == ctx_id && !ctx->dead) {
605 get_ioctx(ctx);
606 ret = ctx;
607 break;
611 rcu_read_unlock();
612 return ret;
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 struct kioctx *ctx = iocb->ki_ctx;
628 assert_spin_locked(&ctx->ctx_lock);
630 if (list_empty(&iocb->ki_run_list)) {
631 list_add_tail(&iocb->ki_run_list,
632 &ctx->run_list);
633 return 1;
635 return 0;
638 /* aio_run_iocb
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 struct kioctx *ctx = iocb->ki_ctx;
663 ssize_t (*retry)(struct kiocb *);
664 ssize_t ret;
666 if (!(retry = iocb->ki_retry)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 return 0;
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
679 * this one.
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
687 * it up afresh.
690 kiocbClearKicked(iocb);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 spin_unlock_irq(&ctx->ctx_lock);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb)) {
703 ret = -EINTR;
704 aio_complete(iocb, ret, 0);
705 /* must not access the iocb after this */
706 goto out;
710 * Now we are all set to call the retry method in async
711 * context.
713 ret = retry(iocb);
715 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717 * There's no easy way to restart the syscall since other AIO's
718 * may be already running. Just fail this IO with EINTR.
720 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
721 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
722 ret = -EINTR;
723 aio_complete(iocb, ret, 0);
725 out:
726 spin_lock_irq(&ctx->ctx_lock);
728 if (-EIOCBRETRY == ret) {
730 * OK, now that we are done with this iteration
731 * and know that there is more left to go,
732 * this is where we let go so that a subsequent
733 * "kick" can start the next iteration
736 /* will make __queue_kicked_iocb succeed from here on */
737 INIT_LIST_HEAD(&iocb->ki_run_list);
738 /* we must queue the next iteration ourselves, if it
739 * has already been kicked */
740 if (kiocbIsKicked(iocb)) {
741 __queue_kicked_iocb(iocb);
744 * __queue_kicked_iocb will always return 1 here, because
745 * iocb->ki_run_list is empty at this point so it should
746 * be safe to unconditionally queue the context into the
747 * work queue.
749 aio_queue_work(ctx);
752 return ret;
756 * __aio_run_iocbs:
757 * Process all pending retries queued on the ioctx
758 * run list.
759 * Assumes it is operating within the aio issuer's mm
760 * context.
762 static int __aio_run_iocbs(struct kioctx *ctx)
764 struct kiocb *iocb;
765 struct list_head run_list;
767 assert_spin_locked(&ctx->ctx_lock);
769 list_replace_init(&ctx->run_list, &run_list);
770 while (!list_empty(&run_list)) {
771 iocb = list_entry(run_list.next, struct kiocb,
772 ki_run_list);
773 list_del(&iocb->ki_run_list);
775 * Hold an extra reference while retrying i/o.
777 iocb->ki_users++; /* grab extra reference */
778 aio_run_iocb(iocb);
779 __aio_put_req(ctx, iocb);
781 if (!list_empty(&ctx->run_list))
782 return 1;
783 return 0;
786 static void aio_queue_work(struct kioctx * ctx)
788 unsigned long timeout;
790 * if someone is waiting, get the work started right
791 * away, otherwise, use a longer delay
793 smp_mb();
794 if (waitqueue_active(&ctx->wait))
795 timeout = 1;
796 else
797 timeout = HZ/10;
798 queue_delayed_work(aio_wq, &ctx->wq, timeout);
802 * aio_run_all_iocbs:
803 * Process all pending retries queued on the ioctx
804 * run list, and keep running them until the list
805 * stays empty.
806 * Assumes it is operating within the aio issuer's mm context.
808 static inline void aio_run_all_iocbs(struct kioctx *ctx)
810 spin_lock_irq(&ctx->ctx_lock);
811 while (__aio_run_iocbs(ctx))
813 spin_unlock_irq(&ctx->ctx_lock);
817 * aio_kick_handler:
818 * Work queue handler triggered to process pending
819 * retries on an ioctx. Takes on the aio issuer's
820 * mm context before running the iocbs, so that
821 * copy_xxx_user operates on the issuer's address
822 * space.
823 * Run on aiod's context.
825 static void aio_kick_handler(struct work_struct *work)
827 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
828 mm_segment_t oldfs = get_fs();
829 struct mm_struct *mm;
830 int requeue;
832 set_fs(USER_DS);
833 use_mm(ctx->mm);
834 spin_lock_irq(&ctx->ctx_lock);
835 requeue =__aio_run_iocbs(ctx);
836 mm = ctx->mm;
837 spin_unlock_irq(&ctx->ctx_lock);
838 unuse_mm(mm);
839 set_fs(oldfs);
841 * we're in a worker thread already, don't use queue_delayed_work,
843 if (requeue)
844 queue_delayed_work(aio_wq, &ctx->wq, 0);
849 * Called by kick_iocb to queue the kiocb for retry
850 * and if required activate the aio work queue to process
851 * it
853 static void try_queue_kicked_iocb(struct kiocb *iocb)
855 struct kioctx *ctx = iocb->ki_ctx;
856 unsigned long flags;
857 int run = 0;
859 spin_lock_irqsave(&ctx->ctx_lock, flags);
860 /* set this inside the lock so that we can't race with aio_run_iocb()
861 * testing it and putting the iocb on the run list under the lock */
862 if (!kiocbTryKick(iocb))
863 run = __queue_kicked_iocb(iocb);
864 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
865 if (run)
866 aio_queue_work(ctx);
870 * kick_iocb:
871 * Called typically from a wait queue callback context
872 * to trigger a retry of the iocb.
873 * The retry is usually executed by aio workqueue
874 * threads (See aio_kick_handler).
876 void kick_iocb(struct kiocb *iocb)
878 /* sync iocbs are easy: they can only ever be executing from a
879 * single context. */
880 if (is_sync_kiocb(iocb)) {
881 kiocbSetKicked(iocb);
882 wake_up_process(iocb->ki_obj.tsk);
883 return;
886 try_queue_kicked_iocb(iocb);
888 EXPORT_SYMBOL(kick_iocb);
890 /* aio_complete
891 * Called when the io request on the given iocb is complete.
892 * Returns true if this is the last user of the request. The
893 * only other user of the request can be the cancellation code.
895 int aio_complete(struct kiocb *iocb, long res, long res2)
897 struct kioctx *ctx = iocb->ki_ctx;
898 struct aio_ring_info *info;
899 struct aio_ring *ring;
900 struct io_event *event;
901 unsigned long flags;
902 unsigned long tail;
903 int ret;
906 * Special case handling for sync iocbs:
907 * - events go directly into the iocb for fast handling
908 * - the sync task with the iocb in its stack holds the single iocb
909 * ref, no other paths have a way to get another ref
910 * - the sync task helpfully left a reference to itself in the iocb
912 if (is_sync_kiocb(iocb)) {
913 BUG_ON(iocb->ki_users != 1);
914 iocb->ki_user_data = res;
915 iocb->ki_users = 0;
916 wake_up_process(iocb->ki_obj.tsk);
917 return 1;
920 info = &ctx->ring_info;
922 /* add a completion event to the ring buffer.
923 * must be done holding ctx->ctx_lock to prevent
924 * other code from messing with the tail
925 * pointer since we might be called from irq
926 * context.
928 spin_lock_irqsave(&ctx->ctx_lock, flags);
930 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
931 list_del_init(&iocb->ki_run_list);
934 * cancelled requests don't get events, userland was given one
935 * when the event got cancelled.
937 if (kiocbIsCancelled(iocb))
938 goto put_rq;
940 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
942 tail = info->tail;
943 event = aio_ring_event(info, tail, KM_IRQ0);
944 if (++tail >= info->nr)
945 tail = 0;
947 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
948 event->data = iocb->ki_user_data;
949 event->res = res;
950 event->res2 = res2;
952 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
953 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
954 res, res2);
956 /* after flagging the request as done, we
957 * must never even look at it again
959 smp_wmb(); /* make event visible before updating tail */
961 info->tail = tail;
962 ring->tail = tail;
964 put_aio_ring_event(event, KM_IRQ0);
965 kunmap_atomic(ring, KM_IRQ1);
967 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
970 * Check if the user asked us to deliver the result through an
971 * eventfd. The eventfd_signal() function is safe to be called
972 * from IRQ context.
974 if (iocb->ki_eventfd != NULL)
975 eventfd_signal(iocb->ki_eventfd, 1);
977 put_rq:
978 /* everything turned out well, dispose of the aiocb. */
979 ret = __aio_put_req(ctx, iocb);
982 * We have to order our ring_info tail store above and test
983 * of the wait list below outside the wait lock. This is
984 * like in wake_up_bit() where clearing a bit has to be
985 * ordered with the unlocked test.
987 smp_mb();
989 if (waitqueue_active(&ctx->wait))
990 wake_up(&ctx->wait);
992 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
993 return ret;
995 EXPORT_SYMBOL(aio_complete);
997 /* aio_read_evt
998 * Pull an event off of the ioctx's event ring. Returns the number of
999 * events fetched (0 or 1 ;-)
1000 * FIXME: make this use cmpxchg.
1001 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1003 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1005 struct aio_ring_info *info = &ioctx->ring_info;
1006 struct aio_ring *ring;
1007 unsigned long head;
1008 int ret = 0;
1010 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1011 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1012 (unsigned long)ring->head, (unsigned long)ring->tail,
1013 (unsigned long)ring->nr);
1015 if (ring->head == ring->tail)
1016 goto out;
1018 spin_lock(&info->ring_lock);
1020 head = ring->head % info->nr;
1021 if (head != ring->tail) {
1022 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1023 *ent = *evp;
1024 head = (head + 1) % info->nr;
1025 smp_mb(); /* finish reading the event before updatng the head */
1026 ring->head = head;
1027 ret = 1;
1028 put_aio_ring_event(evp, KM_USER1);
1030 spin_unlock(&info->ring_lock);
1032 out:
1033 kunmap_atomic(ring, KM_USER0);
1034 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1035 (unsigned long)ring->head, (unsigned long)ring->tail);
1036 return ret;
1039 struct aio_timeout {
1040 struct timer_list timer;
1041 int timed_out;
1042 struct task_struct *p;
1045 static void timeout_func(unsigned long data)
1047 struct aio_timeout *to = (struct aio_timeout *)data;
1049 to->timed_out = 1;
1050 wake_up_process(to->p);
1053 static inline void init_timeout(struct aio_timeout *to)
1055 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1056 to->timed_out = 0;
1057 to->p = current;
1060 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1061 const struct timespec *ts)
1063 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1064 if (time_after(to->timer.expires, jiffies))
1065 add_timer(&to->timer);
1066 else
1067 to->timed_out = 1;
1070 static inline void clear_timeout(struct aio_timeout *to)
1072 del_singleshot_timer_sync(&to->timer);
1075 static int read_events(struct kioctx *ctx,
1076 long min_nr, long nr,
1077 struct io_event __user *event,
1078 struct timespec __user *timeout)
1080 long start_jiffies = jiffies;
1081 struct task_struct *tsk = current;
1082 DECLARE_WAITQUEUE(wait, tsk);
1083 int ret;
1084 int i = 0;
1085 struct io_event ent;
1086 struct aio_timeout to;
1087 int retry = 0;
1089 /* needed to zero any padding within an entry (there shouldn't be
1090 * any, but C is fun!
1092 memset(&ent, 0, sizeof(ent));
1093 retry:
1094 ret = 0;
1095 while (likely(i < nr)) {
1096 ret = aio_read_evt(ctx, &ent);
1097 if (unlikely(ret <= 0))
1098 break;
1100 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1101 ent.data, ent.obj, ent.res, ent.res2);
1103 /* Could we split the check in two? */
1104 ret = -EFAULT;
1105 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1106 dprintk("aio: lost an event due to EFAULT.\n");
1107 break;
1109 ret = 0;
1111 /* Good, event copied to userland, update counts. */
1112 event ++;
1113 i ++;
1116 if (min_nr <= i)
1117 return i;
1118 if (ret)
1119 return ret;
1121 /* End fast path */
1123 /* racey check, but it gets redone */
1124 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1125 retry = 1;
1126 aio_run_all_iocbs(ctx);
1127 goto retry;
1130 init_timeout(&to);
1131 if (timeout) {
1132 struct timespec ts;
1133 ret = -EFAULT;
1134 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1135 goto out;
1137 set_timeout(start_jiffies, &to, &ts);
1140 while (likely(i < nr)) {
1141 add_wait_queue_exclusive(&ctx->wait, &wait);
1142 do {
1143 set_task_state(tsk, TASK_INTERRUPTIBLE);
1144 ret = aio_read_evt(ctx, &ent);
1145 if (ret)
1146 break;
1147 if (min_nr <= i)
1148 break;
1149 if (unlikely(ctx->dead)) {
1150 ret = -EINVAL;
1151 break;
1153 if (to.timed_out) /* Only check after read evt */
1154 break;
1155 /* Try to only show up in io wait if there are ops
1156 * in flight */
1157 if (ctx->reqs_active)
1158 io_schedule();
1159 else
1160 schedule();
1161 if (signal_pending(tsk)) {
1162 ret = -EINTR;
1163 break;
1165 /*ret = aio_read_evt(ctx, &ent);*/
1166 } while (1) ;
1168 set_task_state(tsk, TASK_RUNNING);
1169 remove_wait_queue(&ctx->wait, &wait);
1171 if (unlikely(ret <= 0))
1172 break;
1174 ret = -EFAULT;
1175 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1176 dprintk("aio: lost an event due to EFAULT.\n");
1177 break;
1180 /* Good, event copied to userland, update counts. */
1181 event ++;
1182 i ++;
1185 if (timeout)
1186 clear_timeout(&to);
1187 out:
1188 destroy_timer_on_stack(&to.timer);
1189 return i ? i : ret;
1192 /* Take an ioctx and remove it from the list of ioctx's. Protects
1193 * against races with itself via ->dead.
1195 static void io_destroy(struct kioctx *ioctx)
1197 struct mm_struct *mm = current->mm;
1198 int was_dead;
1200 /* delete the entry from the list is someone else hasn't already */
1201 spin_lock(&mm->ioctx_lock);
1202 was_dead = ioctx->dead;
1203 ioctx->dead = 1;
1204 hlist_del_rcu(&ioctx->list);
1205 spin_unlock(&mm->ioctx_lock);
1207 dprintk("aio_release(%p)\n", ioctx);
1208 if (likely(!was_dead))
1209 put_ioctx(ioctx); /* twice for the list */
1211 aio_cancel_all(ioctx);
1212 wait_for_all_aios(ioctx);
1215 * Wake up any waiters. The setting of ctx->dead must be seen
1216 * by other CPUs at this point. Right now, we rely on the
1217 * locking done by the above calls to ensure this consistency.
1219 wake_up(&ioctx->wait);
1220 put_ioctx(ioctx); /* once for the lookup */
1223 /* sys_io_setup:
1224 * Create an aio_context capable of receiving at least nr_events.
1225 * ctxp must not point to an aio_context that already exists, and
1226 * must be initialized to 0 prior to the call. On successful
1227 * creation of the aio_context, *ctxp is filled in with the resulting
1228 * handle. May fail with -EINVAL if *ctxp is not initialized,
1229 * if the specified nr_events exceeds internal limits. May fail
1230 * with -EAGAIN if the specified nr_events exceeds the user's limit
1231 * of available events. May fail with -ENOMEM if insufficient kernel
1232 * resources are available. May fail with -EFAULT if an invalid
1233 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1234 * implemented.
1236 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1238 struct kioctx *ioctx = NULL;
1239 unsigned long ctx;
1240 long ret;
1242 ret = get_user(ctx, ctxp);
1243 if (unlikely(ret))
1244 goto out;
1246 ret = -EINVAL;
1247 if (unlikely(ctx || nr_events == 0)) {
1248 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1249 ctx, nr_events);
1250 goto out;
1253 ioctx = ioctx_alloc(nr_events);
1254 ret = PTR_ERR(ioctx);
1255 if (!IS_ERR(ioctx)) {
1256 ret = put_user(ioctx->user_id, ctxp);
1257 if (!ret)
1258 return 0;
1260 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1261 io_destroy(ioctx);
1264 out:
1265 return ret;
1268 /* sys_io_destroy:
1269 * Destroy the aio_context specified. May cancel any outstanding
1270 * AIOs and block on completion. Will fail with -ENOSYS if not
1271 * implemented. May fail with -EINVAL if the context pointed to
1272 * is invalid.
1274 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1276 struct kioctx *ioctx = lookup_ioctx(ctx);
1277 if (likely(NULL != ioctx)) {
1278 io_destroy(ioctx);
1279 return 0;
1281 pr_debug("EINVAL: io_destroy: invalid context id\n");
1282 return -EINVAL;
1285 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1287 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1289 BUG_ON(ret <= 0);
1291 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1292 ssize_t this = min((ssize_t)iov->iov_len, ret);
1293 iov->iov_base += this;
1294 iov->iov_len -= this;
1295 iocb->ki_left -= this;
1296 ret -= this;
1297 if (iov->iov_len == 0) {
1298 iocb->ki_cur_seg++;
1299 iov++;
1303 /* the caller should not have done more io than what fit in
1304 * the remaining iovecs */
1305 BUG_ON(ret > 0 && iocb->ki_left == 0);
1308 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1310 struct file *file = iocb->ki_filp;
1311 struct address_space *mapping = file->f_mapping;
1312 struct inode *inode = mapping->host;
1313 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1314 unsigned long, loff_t);
1315 ssize_t ret = 0;
1316 unsigned short opcode;
1318 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1319 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1320 rw_op = file->f_op->aio_read;
1321 opcode = IOCB_CMD_PREADV;
1322 } else {
1323 rw_op = file->f_op->aio_write;
1324 opcode = IOCB_CMD_PWRITEV;
1327 /* This matches the pread()/pwrite() logic */
1328 if (iocb->ki_pos < 0)
1329 return -EINVAL;
1331 do {
1332 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1333 iocb->ki_nr_segs - iocb->ki_cur_seg,
1334 iocb->ki_pos);
1335 if (ret > 0)
1336 aio_advance_iovec(iocb, ret);
1338 /* retry all partial writes. retry partial reads as long as its a
1339 * regular file. */
1340 } while (ret > 0 && iocb->ki_left > 0 &&
1341 (opcode == IOCB_CMD_PWRITEV ||
1342 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1344 /* This means we must have transferred all that we could */
1345 /* No need to retry anymore */
1346 if ((ret == 0) || (iocb->ki_left == 0))
1347 ret = iocb->ki_nbytes - iocb->ki_left;
1349 /* If we managed to write some out we return that, rather than
1350 * the eventual error. */
1351 if (opcode == IOCB_CMD_PWRITEV
1352 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1353 && iocb->ki_nbytes - iocb->ki_left)
1354 ret = iocb->ki_nbytes - iocb->ki_left;
1356 return ret;
1359 static ssize_t aio_fdsync(struct kiocb *iocb)
1361 struct file *file = iocb->ki_filp;
1362 ssize_t ret = -EINVAL;
1364 if (file->f_op->aio_fsync)
1365 ret = file->f_op->aio_fsync(iocb, 1);
1366 return ret;
1369 static ssize_t aio_fsync(struct kiocb *iocb)
1371 struct file *file = iocb->ki_filp;
1372 ssize_t ret = -EINVAL;
1374 if (file->f_op->aio_fsync)
1375 ret = file->f_op->aio_fsync(iocb, 0);
1376 return ret;
1379 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1381 ssize_t ret;
1383 #ifdef CONFIG_COMPAT
1384 if (compat)
1385 ret = compat_rw_copy_check_uvector(type,
1386 (struct compat_iovec __user *)kiocb->ki_buf,
1387 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1388 &kiocb->ki_iovec);
1389 else
1390 #endif
1391 ret = rw_copy_check_uvector(type,
1392 (struct iovec __user *)kiocb->ki_buf,
1393 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1394 &kiocb->ki_iovec);
1395 if (ret < 0)
1396 goto out;
1398 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1399 kiocb->ki_cur_seg = 0;
1400 /* ki_nbytes/left now reflect bytes instead of segs */
1401 kiocb->ki_nbytes = ret;
1402 kiocb->ki_left = ret;
1404 ret = 0;
1405 out:
1406 return ret;
1409 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1411 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1412 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1413 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1414 kiocb->ki_nr_segs = 1;
1415 kiocb->ki_cur_seg = 0;
1416 return 0;
1420 * aio_setup_iocb:
1421 * Performs the initial checks and aio retry method
1422 * setup for the kiocb at the time of io submission.
1424 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1426 struct file *file = kiocb->ki_filp;
1427 ssize_t ret = 0;
1429 switch (kiocb->ki_opcode) {
1430 case IOCB_CMD_PREAD:
1431 ret = -EBADF;
1432 if (unlikely(!(file->f_mode & FMODE_READ)))
1433 break;
1434 ret = -EFAULT;
1435 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1436 kiocb->ki_left)))
1437 break;
1438 ret = security_file_permission(file, MAY_READ);
1439 if (unlikely(ret))
1440 break;
1441 ret = aio_setup_single_vector(kiocb);
1442 if (ret)
1443 break;
1444 ret = -EINVAL;
1445 if (file->f_op->aio_read)
1446 kiocb->ki_retry = aio_rw_vect_retry;
1447 break;
1448 case IOCB_CMD_PWRITE:
1449 ret = -EBADF;
1450 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1451 break;
1452 ret = -EFAULT;
1453 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1454 kiocb->ki_left)))
1455 break;
1456 ret = security_file_permission(file, MAY_WRITE);
1457 if (unlikely(ret))
1458 break;
1459 ret = aio_setup_single_vector(kiocb);
1460 if (ret)
1461 break;
1462 ret = -EINVAL;
1463 if (file->f_op->aio_write)
1464 kiocb->ki_retry = aio_rw_vect_retry;
1465 break;
1466 case IOCB_CMD_PREADV:
1467 ret = -EBADF;
1468 if (unlikely(!(file->f_mode & FMODE_READ)))
1469 break;
1470 ret = security_file_permission(file, MAY_READ);
1471 if (unlikely(ret))
1472 break;
1473 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1474 if (ret)
1475 break;
1476 ret = -EINVAL;
1477 if (file->f_op->aio_read)
1478 kiocb->ki_retry = aio_rw_vect_retry;
1479 break;
1480 case IOCB_CMD_PWRITEV:
1481 ret = -EBADF;
1482 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1483 break;
1484 ret = security_file_permission(file, MAY_WRITE);
1485 if (unlikely(ret))
1486 break;
1487 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1488 if (ret)
1489 break;
1490 ret = -EINVAL;
1491 if (file->f_op->aio_write)
1492 kiocb->ki_retry = aio_rw_vect_retry;
1493 break;
1494 case IOCB_CMD_FDSYNC:
1495 ret = -EINVAL;
1496 if (file->f_op->aio_fsync)
1497 kiocb->ki_retry = aio_fdsync;
1498 break;
1499 case IOCB_CMD_FSYNC:
1500 ret = -EINVAL;
1501 if (file->f_op->aio_fsync)
1502 kiocb->ki_retry = aio_fsync;
1503 break;
1504 default:
1505 dprintk("EINVAL: io_submit: no operation provided\n");
1506 ret = -EINVAL;
1509 if (!kiocb->ki_retry)
1510 return ret;
1512 return 0;
1515 static void aio_batch_add(struct address_space *mapping,
1516 struct hlist_head *batch_hash)
1518 struct aio_batch_entry *abe;
1519 struct hlist_node *pos;
1520 unsigned bucket;
1522 bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1523 hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1524 if (abe->mapping == mapping)
1525 return;
1528 abe = mempool_alloc(abe_pool, GFP_KERNEL);
1531 * we should be using igrab here, but
1532 * we don't want to hammer on the global
1533 * inode spinlock just to take an extra
1534 * reference on a file that we must already
1535 * have a reference to.
1537 * When we're called, we always have a reference
1538 * on the file, so we must always have a reference
1539 * on the inode, so ihold() is safe here.
1541 ihold(mapping->host);
1542 abe->mapping = mapping;
1543 hlist_add_head(&abe->list, &batch_hash[bucket]);
1544 return;
1547 static void aio_batch_free(struct hlist_head *batch_hash)
1549 struct aio_batch_entry *abe;
1550 struct hlist_node *pos, *n;
1551 int i;
1553 for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1554 hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1555 blk_run_address_space(abe->mapping);
1556 iput(abe->mapping->host);
1557 hlist_del(&abe->list);
1558 mempool_free(abe, abe_pool);
1563 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1564 struct iocb *iocb, struct hlist_head *batch_hash,
1565 bool compat)
1567 struct kiocb *req;
1568 struct file *file;
1569 ssize_t ret;
1571 /* enforce forwards compatibility on users */
1572 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1573 pr_debug("EINVAL: io_submit: reserve field set\n");
1574 return -EINVAL;
1577 /* prevent overflows */
1578 if (unlikely(
1579 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1580 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1581 ((ssize_t)iocb->aio_nbytes < 0)
1582 )) {
1583 pr_debug("EINVAL: io_submit: overflow check\n");
1584 return -EINVAL;
1587 file = fget(iocb->aio_fildes);
1588 if (unlikely(!file))
1589 return -EBADF;
1591 req = aio_get_req(ctx); /* returns with 2 references to req */
1592 if (unlikely(!req)) {
1593 fput(file);
1594 return -EAGAIN;
1596 req->ki_filp = file;
1597 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1599 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1600 * instance of the file* now. The file descriptor must be
1601 * an eventfd() fd, and will be signaled for each completed
1602 * event using the eventfd_signal() function.
1604 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1605 if (IS_ERR(req->ki_eventfd)) {
1606 ret = PTR_ERR(req->ki_eventfd);
1607 req->ki_eventfd = NULL;
1608 goto out_put_req;
1612 ret = put_user(req->ki_key, &user_iocb->aio_key);
1613 if (unlikely(ret)) {
1614 dprintk("EFAULT: aio_key\n");
1615 goto out_put_req;
1618 req->ki_obj.user = user_iocb;
1619 req->ki_user_data = iocb->aio_data;
1620 req->ki_pos = iocb->aio_offset;
1622 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1623 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1624 req->ki_opcode = iocb->aio_lio_opcode;
1626 ret = aio_setup_iocb(req, compat);
1628 if (ret)
1629 goto out_put_req;
1631 spin_lock_irq(&ctx->ctx_lock);
1632 aio_run_iocb(req);
1633 if (!list_empty(&ctx->run_list)) {
1634 /* drain the run list */
1635 while (__aio_run_iocbs(ctx))
1638 spin_unlock_irq(&ctx->ctx_lock);
1639 if (req->ki_opcode == IOCB_CMD_PREAD ||
1640 req->ki_opcode == IOCB_CMD_PREADV ||
1641 req->ki_opcode == IOCB_CMD_PWRITE ||
1642 req->ki_opcode == IOCB_CMD_PWRITEV)
1643 aio_batch_add(file->f_mapping, batch_hash);
1645 aio_put_req(req); /* drop extra ref to req */
1646 return 0;
1648 out_put_req:
1649 aio_put_req(req); /* drop extra ref to req */
1650 aio_put_req(req); /* drop i/o ref to req */
1651 return ret;
1654 long do_io_submit(aio_context_t ctx_id, long nr,
1655 struct iocb __user *__user *iocbpp, bool compat)
1657 struct kioctx *ctx;
1658 long ret = 0;
1659 int i;
1660 struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1662 if (unlikely(nr < 0))
1663 return -EINVAL;
1665 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1666 nr = LONG_MAX/sizeof(*iocbpp);
1668 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1669 return -EFAULT;
1671 ctx = lookup_ioctx(ctx_id);
1672 if (unlikely(!ctx)) {
1673 pr_debug("EINVAL: io_submit: invalid context id\n");
1674 return -EINVAL;
1678 * AKPM: should this return a partial result if some of the IOs were
1679 * successfully submitted?
1681 for (i=0; i<nr; i++) {
1682 struct iocb __user *user_iocb;
1683 struct iocb tmp;
1685 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1686 ret = -EFAULT;
1687 break;
1690 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1691 ret = -EFAULT;
1692 break;
1695 ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1696 if (ret)
1697 break;
1699 aio_batch_free(batch_hash);
1701 put_ioctx(ctx);
1702 return i ? i : ret;
1705 /* sys_io_submit:
1706 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1707 * the number of iocbs queued. May return -EINVAL if the aio_context
1708 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1709 * *iocbpp[0] is not properly initialized, if the operation specified
1710 * is invalid for the file descriptor in the iocb. May fail with
1711 * -EFAULT if any of the data structures point to invalid data. May
1712 * fail with -EBADF if the file descriptor specified in the first
1713 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1714 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1715 * fail with -ENOSYS if not implemented.
1717 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1718 struct iocb __user * __user *, iocbpp)
1720 return do_io_submit(ctx_id, nr, iocbpp, 0);
1723 /* lookup_kiocb
1724 * Finds a given iocb for cancellation.
1726 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1727 u32 key)
1729 struct list_head *pos;
1731 assert_spin_locked(&ctx->ctx_lock);
1733 /* TODO: use a hash or array, this sucks. */
1734 list_for_each(pos, &ctx->active_reqs) {
1735 struct kiocb *kiocb = list_kiocb(pos);
1736 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1737 return kiocb;
1739 return NULL;
1742 /* sys_io_cancel:
1743 * Attempts to cancel an iocb previously passed to io_submit. If
1744 * the operation is successfully cancelled, the resulting event is
1745 * copied into the memory pointed to by result without being placed
1746 * into the completion queue and 0 is returned. May fail with
1747 * -EFAULT if any of the data structures pointed to are invalid.
1748 * May fail with -EINVAL if aio_context specified by ctx_id is
1749 * invalid. May fail with -EAGAIN if the iocb specified was not
1750 * cancelled. Will fail with -ENOSYS if not implemented.
1752 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1753 struct io_event __user *, result)
1755 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1756 struct kioctx *ctx;
1757 struct kiocb *kiocb;
1758 u32 key;
1759 int ret;
1761 ret = get_user(key, &iocb->aio_key);
1762 if (unlikely(ret))
1763 return -EFAULT;
1765 ctx = lookup_ioctx(ctx_id);
1766 if (unlikely(!ctx))
1767 return -EINVAL;
1769 spin_lock_irq(&ctx->ctx_lock);
1770 ret = -EAGAIN;
1771 kiocb = lookup_kiocb(ctx, iocb, key);
1772 if (kiocb && kiocb->ki_cancel) {
1773 cancel = kiocb->ki_cancel;
1774 kiocb->ki_users ++;
1775 kiocbSetCancelled(kiocb);
1776 } else
1777 cancel = NULL;
1778 spin_unlock_irq(&ctx->ctx_lock);
1780 if (NULL != cancel) {
1781 struct io_event tmp;
1782 pr_debug("calling cancel\n");
1783 memset(&tmp, 0, sizeof(tmp));
1784 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1785 tmp.data = kiocb->ki_user_data;
1786 ret = cancel(kiocb, &tmp);
1787 if (!ret) {
1788 /* Cancellation succeeded -- copy the result
1789 * into the user's buffer.
1791 if (copy_to_user(result, &tmp, sizeof(tmp)))
1792 ret = -EFAULT;
1794 } else
1795 ret = -EINVAL;
1797 put_ioctx(ctx);
1799 return ret;
1802 /* io_getevents:
1803 * Attempts to read at least min_nr events and up to nr events from
1804 * the completion queue for the aio_context specified by ctx_id. If
1805 * it succeeds, the number of read events is returned. May fail with
1806 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1807 * out of range, if timeout is out of range. May fail with -EFAULT
1808 * if any of the memory specified is invalid. May return 0 or
1809 * < min_nr if the timeout specified by timeout has elapsed
1810 * before sufficient events are available, where timeout == NULL
1811 * specifies an infinite timeout. Note that the timeout pointed to by
1812 * timeout is relative and will be updated if not NULL and the
1813 * operation blocks. Will fail with -ENOSYS if not implemented.
1815 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1816 long, min_nr,
1817 long, nr,
1818 struct io_event __user *, events,
1819 struct timespec __user *, timeout)
1821 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1822 long ret = -EINVAL;
1824 if (likely(ioctx)) {
1825 if (likely(min_nr <= nr && min_nr >= 0))
1826 ret = read_events(ioctx, min_nr, nr, events, timeout);
1827 put_ioctx(ioctx);
1830 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1831 return ret;