ALSA: virtuoso: rename AC97 callback function
[zen-stable.git] / arch / blackfin / kernel / kgdb.c
bloba1f9641a6425d6158ebf21f4a71f4df867fd44ea
1 /*
2 * File: arch/blackfin/kernel/kgdb.c
3 * Based on:
4 * Author: Sonic Zhang
6 * Created:
7 * Description:
9 * Rev: $Id: kgdb_bfin_linux-2.6.x.patch 4934 2007-02-13 09:32:11Z sonicz $
11 * Modified:
12 * Copyright 2005-2006 Analog Devices Inc.
14 * Bugs: Enter bugs at http://blackfin.uclinux.org/
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see the file COPYING, or write
28 * to the Free Software Foundation, Inc.,
29 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
32 #include <linux/string.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/spinlock.h>
37 #include <linux/delay.h>
38 #include <linux/ptrace.h> /* for linux pt_regs struct */
39 #include <linux/kgdb.h>
40 #include <linux/console.h>
41 #include <linux/init.h>
42 #include <linux/debugger.h>
43 #include <linux/errno.h>
44 #include <linux/irq.h>
45 #include <asm/system.h>
46 #include <asm/traps.h>
47 #include <asm/blackfin.h>
49 /* Put the error code here just in case the user cares. */
50 int gdb_bf533errcode;
51 /* Likewise, the vector number here (since GDB only gets the signal
52 number through the usual means, and that's not very specific). */
53 int gdb_bf533vector = -1;
55 #if KGDB_MAX_NO_CPUS != 8
56 #error change the definition of slavecpulocks
57 #endif
59 void regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
61 gdb_regs[BFIN_R0] = regs->r0;
62 gdb_regs[BFIN_R1] = regs->r1;
63 gdb_regs[BFIN_R2] = regs->r2;
64 gdb_regs[BFIN_R3] = regs->r3;
65 gdb_regs[BFIN_R4] = regs->r4;
66 gdb_regs[BFIN_R5] = regs->r5;
67 gdb_regs[BFIN_R6] = regs->r6;
68 gdb_regs[BFIN_R7] = regs->r7;
69 gdb_regs[BFIN_P0] = regs->p0;
70 gdb_regs[BFIN_P1] = regs->p1;
71 gdb_regs[BFIN_P2] = regs->p2;
72 gdb_regs[BFIN_P3] = regs->p3;
73 gdb_regs[BFIN_P4] = regs->p4;
74 gdb_regs[BFIN_P5] = regs->p5;
75 gdb_regs[BFIN_SP] = regs->reserved;
76 gdb_regs[BFIN_FP] = regs->fp;
77 gdb_regs[BFIN_I0] = regs->i0;
78 gdb_regs[BFIN_I1] = regs->i1;
79 gdb_regs[BFIN_I2] = regs->i2;
80 gdb_regs[BFIN_I3] = regs->i3;
81 gdb_regs[BFIN_M0] = regs->m0;
82 gdb_regs[BFIN_M1] = regs->m1;
83 gdb_regs[BFIN_M2] = regs->m2;
84 gdb_regs[BFIN_M3] = regs->m3;
85 gdb_regs[BFIN_B0] = regs->b0;
86 gdb_regs[BFIN_B1] = regs->b1;
87 gdb_regs[BFIN_B2] = regs->b2;
88 gdb_regs[BFIN_B3] = regs->b3;
89 gdb_regs[BFIN_L0] = regs->l0;
90 gdb_regs[BFIN_L1] = regs->l1;
91 gdb_regs[BFIN_L2] = regs->l2;
92 gdb_regs[BFIN_L3] = regs->l3;
93 gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
94 gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
95 gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
96 gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
97 gdb_regs[BFIN_ASTAT] = regs->astat;
98 gdb_regs[BFIN_RETS] = regs->rets;
99 gdb_regs[BFIN_LC0] = regs->lc0;
100 gdb_regs[BFIN_LT0] = regs->lt0;
101 gdb_regs[BFIN_LB0] = regs->lb0;
102 gdb_regs[BFIN_LC1] = regs->lc1;
103 gdb_regs[BFIN_LT1] = regs->lt1;
104 gdb_regs[BFIN_LB1] = regs->lb1;
105 gdb_regs[BFIN_CYCLES] = 0;
106 gdb_regs[BFIN_CYCLES2] = 0;
107 gdb_regs[BFIN_USP] = regs->usp;
108 gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
109 gdb_regs[BFIN_SYSCFG] = regs->syscfg;
110 gdb_regs[BFIN_RETI] = regs->pc;
111 gdb_regs[BFIN_RETX] = regs->retx;
112 gdb_regs[BFIN_RETN] = regs->retn;
113 gdb_regs[BFIN_RETE] = regs->rete;
114 gdb_regs[BFIN_PC] = regs->pc;
115 gdb_regs[BFIN_CC] = 0;
116 gdb_regs[BFIN_EXTRA1] = 0;
117 gdb_regs[BFIN_EXTRA2] = 0;
118 gdb_regs[BFIN_EXTRA3] = 0;
119 gdb_regs[BFIN_IPEND] = regs->ipend;
123 * Extracts ebp, esp and eip values understandable by gdb from the values
124 * saved by switch_to.
125 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
126 * prior to entering switch_to is 8 greater then the value that is saved.
127 * If switch_to changes, change following code appropriately.
129 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
131 gdb_regs[BFIN_SP] = p->thread.ksp;
132 gdb_regs[BFIN_PC] = p->thread.pc;
133 gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
136 void gdb_regs_to_regs(unsigned long *gdb_regs, struct pt_regs *regs)
138 regs->r0 = gdb_regs[BFIN_R0];
139 regs->r1 = gdb_regs[BFIN_R1];
140 regs->r2 = gdb_regs[BFIN_R2];
141 regs->r3 = gdb_regs[BFIN_R3];
142 regs->r4 = gdb_regs[BFIN_R4];
143 regs->r5 = gdb_regs[BFIN_R5];
144 regs->r6 = gdb_regs[BFIN_R6];
145 regs->r7 = gdb_regs[BFIN_R7];
146 regs->p0 = gdb_regs[BFIN_P0];
147 regs->p1 = gdb_regs[BFIN_P1];
148 regs->p2 = gdb_regs[BFIN_P2];
149 regs->p3 = gdb_regs[BFIN_P3];
150 regs->p4 = gdb_regs[BFIN_P4];
151 regs->p5 = gdb_regs[BFIN_P5];
152 regs->fp = gdb_regs[BFIN_FP];
153 regs->i0 = gdb_regs[BFIN_I0];
154 regs->i1 = gdb_regs[BFIN_I1];
155 regs->i2 = gdb_regs[BFIN_I2];
156 regs->i3 = gdb_regs[BFIN_I3];
157 regs->m0 = gdb_regs[BFIN_M0];
158 regs->m1 = gdb_regs[BFIN_M1];
159 regs->m2 = gdb_regs[BFIN_M2];
160 regs->m3 = gdb_regs[BFIN_M3];
161 regs->b0 = gdb_regs[BFIN_B0];
162 regs->b1 = gdb_regs[BFIN_B1];
163 regs->b2 = gdb_regs[BFIN_B2];
164 regs->b3 = gdb_regs[BFIN_B3];
165 regs->l0 = gdb_regs[BFIN_L0];
166 regs->l1 = gdb_regs[BFIN_L1];
167 regs->l2 = gdb_regs[BFIN_L2];
168 regs->l3 = gdb_regs[BFIN_L3];
169 regs->a0x = gdb_regs[BFIN_A0_DOT_X];
170 regs->a0w = gdb_regs[BFIN_A0_DOT_W];
171 regs->a1x = gdb_regs[BFIN_A1_DOT_X];
172 regs->a1w = gdb_regs[BFIN_A1_DOT_W];
173 regs->rets = gdb_regs[BFIN_RETS];
174 regs->lc0 = gdb_regs[BFIN_LC0];
175 regs->lt0 = gdb_regs[BFIN_LT0];
176 regs->lb0 = gdb_regs[BFIN_LB0];
177 regs->lc1 = gdb_regs[BFIN_LC1];
178 regs->lt1 = gdb_regs[BFIN_LT1];
179 regs->lb1 = gdb_regs[BFIN_LB1];
180 regs->usp = gdb_regs[BFIN_USP];
181 regs->syscfg = gdb_regs[BFIN_SYSCFG];
182 regs->retx = gdb_regs[BFIN_PC];
183 regs->retn = gdb_regs[BFIN_RETN];
184 regs->rete = gdb_regs[BFIN_RETE];
185 regs->pc = gdb_regs[BFIN_PC];
187 #if 0 /* can't change these */
188 regs->astat = gdb_regs[BFIN_ASTAT];
189 regs->seqstat = gdb_regs[BFIN_SEQSTAT];
190 regs->ipend = gdb_regs[BFIN_IPEND];
191 #endif
194 struct hw_breakpoint {
195 unsigned int occupied:1;
196 unsigned int skip:1;
197 unsigned int enabled:1;
198 unsigned int type:1;
199 unsigned int dataacc:2;
200 unsigned short count;
201 unsigned int addr;
202 } breakinfo[HW_BREAKPOINT_NUM];
204 int kgdb_arch_init(void)
206 debugger_step = 0;
208 kgdb_remove_all_hw_break();
209 return 0;
212 int kgdb_set_hw_break(unsigned long addr)
214 int breakno;
215 for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
216 if (!breakinfo[breakno].occupied) {
217 breakinfo[breakno].occupied = 1;
218 breakinfo[breakno].enabled = 1;
219 breakinfo[breakno].type = 1;
220 breakinfo[breakno].addr = addr;
221 return 0;
224 return -ENOSPC;
227 int kgdb_remove_hw_break(unsigned long addr)
229 int breakno;
230 for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++)
231 if (breakinfo[breakno].addr == addr)
232 memset(&(breakinfo[breakno]), 0, sizeof(struct hw_breakpoint));
234 return 0;
237 void kgdb_remove_all_hw_break(void)
239 memset(breakinfo, 0, sizeof(struct hw_breakpoint)*8);
243 void kgdb_show_info(void)
245 printk(KERN_DEBUG "hwd: wpia0=0x%x, wpiacnt0=%d, wpiactl=0x%x, wpstat=0x%x\n",
246 bfin_read_WPIA0(), bfin_read_WPIACNT0(),
247 bfin_read_WPIACTL(), bfin_read_WPSTAT());
251 void kgdb_correct_hw_break(void)
253 int breakno;
254 int correctit;
255 uint32_t wpdactl = bfin_read_WPDACTL();
257 correctit = 0;
258 for (breakno = 0; breakno < HW_BREAKPOINT_NUM; breakno++) {
259 if (breakinfo[breakno].type == 1) {
260 switch (breakno) {
261 case 0:
262 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN0)) {
263 correctit = 1;
264 wpdactl &= ~(WPIREN01|EMUSW0);
265 wpdactl |= WPIAEN0|WPICNTEN0;
266 bfin_write_WPIA0(breakinfo[breakno].addr);
267 bfin_write_WPIACNT0(breakinfo[breakno].skip);
268 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN0)) {
269 correctit = 1;
270 wpdactl &= ~WPIAEN0;
272 break;
274 case 1:
275 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN1)) {
276 correctit = 1;
277 wpdactl &= ~(WPIREN01|EMUSW1);
278 wpdactl |= WPIAEN1|WPICNTEN1;
279 bfin_write_WPIA1(breakinfo[breakno].addr);
280 bfin_write_WPIACNT1(breakinfo[breakno].skip);
281 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN1)) {
282 correctit = 1;
283 wpdactl &= ~WPIAEN1;
285 break;
287 case 2:
288 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN2)) {
289 correctit = 1;
290 wpdactl &= ~(WPIREN23|EMUSW2);
291 wpdactl |= WPIAEN2|WPICNTEN2;
292 bfin_write_WPIA2(breakinfo[breakno].addr);
293 bfin_write_WPIACNT2(breakinfo[breakno].skip);
294 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN2)) {
295 correctit = 1;
296 wpdactl &= ~WPIAEN2;
298 break;
300 case 3:
301 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN3)) {
302 correctit = 1;
303 wpdactl &= ~(WPIREN23|EMUSW3);
304 wpdactl |= WPIAEN3|WPICNTEN3;
305 bfin_write_WPIA3(breakinfo[breakno].addr);
306 bfin_write_WPIACNT3(breakinfo[breakno].skip);
307 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN3)) {
308 correctit = 1;
309 wpdactl &= ~WPIAEN3;
311 break;
312 case 4:
313 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN4)) {
314 correctit = 1;
315 wpdactl &= ~(WPIREN45|EMUSW4);
316 wpdactl |= WPIAEN4|WPICNTEN4;
317 bfin_write_WPIA4(breakinfo[breakno].addr);
318 bfin_write_WPIACNT4(breakinfo[breakno].skip);
319 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN4)) {
320 correctit = 1;
321 wpdactl &= ~WPIAEN4;
323 break;
324 case 5:
325 if (breakinfo[breakno].enabled && !(wpdactl & WPIAEN5)) {
326 correctit = 1;
327 wpdactl &= ~(WPIREN45|EMUSW5);
328 wpdactl |= WPIAEN5|WPICNTEN5;
329 bfin_write_WPIA5(breakinfo[breakno].addr);
330 bfin_write_WPIACNT5(breakinfo[breakno].skip);
331 } else if (!breakinfo[breakno].enabled && (wpdactl & WPIAEN5)) {
332 correctit = 1;
333 wpdactl &= ~WPIAEN5;
335 break;
339 if (correctit) {
340 wpdactl &= ~WPAND;
341 wpdactl |= WPPWR;
342 /*printk("correct_hw_break: wpdactl=0x%x\n", wpdactl);*/
343 bfin_write_WPDACTL(wpdactl);
344 CSYNC();
345 /*kgdb_show_info();*/
349 void kgdb_disable_hw_debug(struct pt_regs *regs)
351 /* Disable hardware debugging while we are in kgdb */
352 bfin_write_WPIACTL(bfin_read_WPIACTL() & ~0x1);
353 CSYNC();
356 void kgdb_post_master_code(struct pt_regs *regs, int eVector, int err_code)
358 /* Master processor is completely in the debugger */
359 gdb_bf533vector = eVector;
360 gdb_bf533errcode = err_code;
363 int kgdb_arch_handle_exception(int exceptionVector, int signo,
364 int err_code, char *remcom_in_buffer,
365 char *remcom_out_buffer,
366 struct pt_regs *linux_regs)
368 long addr;
369 long breakno;
370 char *ptr;
371 int newPC;
372 int wp_status;
373 int i;
375 switch (remcom_in_buffer[0]) {
376 case 'c':
377 case 's':
378 if (kgdb_contthread && kgdb_contthread != current) {
379 strcpy(remcom_out_buffer, "E00");
380 break;
383 kgdb_contthread = NULL;
385 /* try to read optional parameter, pc unchanged if no parm */
386 ptr = &remcom_in_buffer[1];
387 if (kgdb_hex2long(&ptr, &addr)) {
388 linux_regs->retx = addr;
390 newPC = linux_regs->retx;
392 /* clear the trace bit */
393 linux_regs->syscfg &= 0xfffffffe;
395 /* set the trace bit if we're stepping */
396 if (remcom_in_buffer[0] == 's') {
397 linux_regs->syscfg |= 0x1;
398 debugger_step = linux_regs->ipend;
399 debugger_step >>= 6;
400 for (i = 10; i > 0; i--, debugger_step >>= 1)
401 if (debugger_step & 1)
402 break;
403 /* i indicate event priority of current stopped instruction
404 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
405 * debugger_step > 0 means in single step mode
407 debugger_step = i + 1;
408 } else {
409 debugger_step = 0;
412 wp_status = bfin_read_WPSTAT();
413 CSYNC();
415 if (exceptionVector == VEC_WATCH) {
416 for (breakno = 0; breakno < 6; ++breakno) {
417 if (wp_status & (1 << breakno)) {
418 breakinfo->skip = 1;
419 break;
423 kgdb_correct_hw_break();
425 bfin_write_WPSTAT(0);
427 return 0;
428 } /* switch */
429 return -1; /* this means that we do not want to exit from the handler */
432 struct kgdb_arch arch_kgdb_ops = {
433 .gdb_bpt_instr = {0xa1},
434 .flags = KGDB_HW_BREAKPOINT,