TOMOYO: Don't abuse sys_getpid(), sys_getppid()
[zen-stable.git] / kernel / timer.c
blob97bf05baade7cb4b9db4a5b76cf26255b6a67753
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB to
94 * indicate whether the timer is deferrable.
96 * A deferrable timer will work normally when the system is busy, but
97 * will not cause a CPU to come out of idle just to service it; instead,
98 * the timer will be serviced when the CPU eventually wakes up with a
99 * subsequent non-deferrable timer.
101 #define TBASE_DEFERRABLE_FLAG (0x1)
103 /* Functions below help us manage 'deferrable' flag */
104 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
106 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
109 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
111 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
114 static inline void timer_set_deferrable(struct timer_list *timer)
116 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
117 TBASE_DEFERRABLE_FLAG));
120 static inline void
121 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
123 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
124 tbase_get_deferrable(timer->base));
127 static unsigned long round_jiffies_common(unsigned long j, int cpu,
128 bool force_up)
130 int rem;
131 unsigned long original = j;
134 * We don't want all cpus firing their timers at once hitting the
135 * same lock or cachelines, so we skew each extra cpu with an extra
136 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
137 * already did this.
138 * The skew is done by adding 3*cpunr, then round, then subtract this
139 * extra offset again.
141 j += cpu * 3;
143 rem = j % HZ;
146 * If the target jiffie is just after a whole second (which can happen
147 * due to delays of the timer irq, long irq off times etc etc) then
148 * we should round down to the whole second, not up. Use 1/4th second
149 * as cutoff for this rounding as an extreme upper bound for this.
150 * But never round down if @force_up is set.
152 if (rem < HZ/4 && !force_up) /* round down */
153 j = j - rem;
154 else /* round up */
155 j = j - rem + HZ;
157 /* now that we have rounded, subtract the extra skew again */
158 j -= cpu * 3;
160 if (j <= jiffies) /* rounding ate our timeout entirely; */
161 return original;
162 return j;
166 * __round_jiffies - function to round jiffies to a full second
167 * @j: the time in (absolute) jiffies that should be rounded
168 * @cpu: the processor number on which the timeout will happen
170 * __round_jiffies() rounds an absolute time in the future (in jiffies)
171 * up or down to (approximately) full seconds. This is useful for timers
172 * for which the exact time they fire does not matter too much, as long as
173 * they fire approximately every X seconds.
175 * By rounding these timers to whole seconds, all such timers will fire
176 * at the same time, rather than at various times spread out. The goal
177 * of this is to have the CPU wake up less, which saves power.
179 * The exact rounding is skewed for each processor to avoid all
180 * processors firing at the exact same time, which could lead
181 * to lock contention or spurious cache line bouncing.
183 * The return value is the rounded version of the @j parameter.
185 unsigned long __round_jiffies(unsigned long j, int cpu)
187 return round_jiffies_common(j, cpu, false);
189 EXPORT_SYMBOL_GPL(__round_jiffies);
192 * __round_jiffies_relative - function to round jiffies to a full second
193 * @j: the time in (relative) jiffies that should be rounded
194 * @cpu: the processor number on which the timeout will happen
196 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
197 * up or down to (approximately) full seconds. This is useful for timers
198 * for which the exact time they fire does not matter too much, as long as
199 * they fire approximately every X seconds.
201 * By rounding these timers to whole seconds, all such timers will fire
202 * at the same time, rather than at various times spread out. The goal
203 * of this is to have the CPU wake up less, which saves power.
205 * The exact rounding is skewed for each processor to avoid all
206 * processors firing at the exact same time, which could lead
207 * to lock contention or spurious cache line bouncing.
209 * The return value is the rounded version of the @j parameter.
211 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
213 unsigned long j0 = jiffies;
215 /* Use j0 because jiffies might change while we run */
216 return round_jiffies_common(j + j0, cpu, false) - j0;
218 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
221 * round_jiffies - function to round jiffies to a full second
222 * @j: the time in (absolute) jiffies that should be rounded
224 * round_jiffies() rounds an absolute time in the future (in jiffies)
225 * up or down to (approximately) full seconds. This is useful for timers
226 * for which the exact time they fire does not matter too much, as long as
227 * they fire approximately every X seconds.
229 * By rounding these timers to whole seconds, all such timers will fire
230 * at the same time, rather than at various times spread out. The goal
231 * of this is to have the CPU wake up less, which saves power.
233 * The return value is the rounded version of the @j parameter.
235 unsigned long round_jiffies(unsigned long j)
237 return round_jiffies_common(j, raw_smp_processor_id(), false);
239 EXPORT_SYMBOL_GPL(round_jiffies);
242 * round_jiffies_relative - function to round jiffies to a full second
243 * @j: the time in (relative) jiffies that should be rounded
245 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
246 * up or down to (approximately) full seconds. This is useful for timers
247 * for which the exact time they fire does not matter too much, as long as
248 * they fire approximately every X seconds.
250 * By rounding these timers to whole seconds, all such timers will fire
251 * at the same time, rather than at various times spread out. The goal
252 * of this is to have the CPU wake up less, which saves power.
254 * The return value is the rounded version of the @j parameter.
256 unsigned long round_jiffies_relative(unsigned long j)
258 return __round_jiffies_relative(j, raw_smp_processor_id());
260 EXPORT_SYMBOL_GPL(round_jiffies_relative);
263 * __round_jiffies_up - function to round jiffies up to a full second
264 * @j: the time in (absolute) jiffies that should be rounded
265 * @cpu: the processor number on which the timeout will happen
267 * This is the same as __round_jiffies() except that it will never
268 * round down. This is useful for timeouts for which the exact time
269 * of firing does not matter too much, as long as they don't fire too
270 * early.
272 unsigned long __round_jiffies_up(unsigned long j, int cpu)
274 return round_jiffies_common(j, cpu, true);
276 EXPORT_SYMBOL_GPL(__round_jiffies_up);
279 * __round_jiffies_up_relative - function to round jiffies up to a full second
280 * @j: the time in (relative) jiffies that should be rounded
281 * @cpu: the processor number on which the timeout will happen
283 * This is the same as __round_jiffies_relative() except that it will never
284 * round down. This is useful for timeouts for which the exact time
285 * of firing does not matter too much, as long as they don't fire too
286 * early.
288 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
290 unsigned long j0 = jiffies;
292 /* Use j0 because jiffies might change while we run */
293 return round_jiffies_common(j + j0, cpu, true) - j0;
295 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
298 * round_jiffies_up - function to round jiffies up to a full second
299 * @j: the time in (absolute) jiffies that should be rounded
301 * This is the same as round_jiffies() except that it will never
302 * round down. This is useful for timeouts for which the exact time
303 * of firing does not matter too much, as long as they don't fire too
304 * early.
306 unsigned long round_jiffies_up(unsigned long j)
308 return round_jiffies_common(j, raw_smp_processor_id(), true);
310 EXPORT_SYMBOL_GPL(round_jiffies_up);
313 * round_jiffies_up_relative - function to round jiffies up to a full second
314 * @j: the time in (relative) jiffies that should be rounded
316 * This is the same as round_jiffies_relative() except that it will never
317 * round down. This is useful for timeouts for which the exact time
318 * of firing does not matter too much, as long as they don't fire too
319 * early.
321 unsigned long round_jiffies_up_relative(unsigned long j)
323 return __round_jiffies_up_relative(j, raw_smp_processor_id());
325 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
328 * set_timer_slack - set the allowed slack for a timer
329 * @timer: the timer to be modified
330 * @slack_hz: the amount of time (in jiffies) allowed for rounding
332 * Set the amount of time, in jiffies, that a certain timer has
333 * in terms of slack. By setting this value, the timer subsystem
334 * will schedule the actual timer somewhere between
335 * the time mod_timer() asks for, and that time plus the slack.
337 * By setting the slack to -1, a percentage of the delay is used
338 * instead.
340 void set_timer_slack(struct timer_list *timer, int slack_hz)
342 timer->slack = slack_hz;
344 EXPORT_SYMBOL_GPL(set_timer_slack);
347 static inline void set_running_timer(struct tvec_base *base,
348 struct timer_list *timer)
350 #ifdef CONFIG_SMP
351 base->running_timer = timer;
352 #endif
355 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
357 unsigned long expires = timer->expires;
358 unsigned long idx = expires - base->timer_jiffies;
359 struct list_head *vec;
361 if (idx < TVR_SIZE) {
362 int i = expires & TVR_MASK;
363 vec = base->tv1.vec + i;
364 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
365 int i = (expires >> TVR_BITS) & TVN_MASK;
366 vec = base->tv2.vec + i;
367 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
368 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
369 vec = base->tv3.vec + i;
370 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
371 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
372 vec = base->tv4.vec + i;
373 } else if ((signed long) idx < 0) {
375 * Can happen if you add a timer with expires == jiffies,
376 * or you set a timer to go off in the past
378 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
379 } else {
380 int i;
381 /* If the timeout is larger than 0xffffffff on 64-bit
382 * architectures then we use the maximum timeout:
384 if (idx > 0xffffffffUL) {
385 idx = 0xffffffffUL;
386 expires = idx + base->timer_jiffies;
388 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
389 vec = base->tv5.vec + i;
392 * Timers are FIFO:
394 list_add_tail(&timer->entry, vec);
397 #ifdef CONFIG_TIMER_STATS
398 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
400 if (timer->start_site)
401 return;
403 timer->start_site = addr;
404 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
405 timer->start_pid = current->pid;
408 static void timer_stats_account_timer(struct timer_list *timer)
410 unsigned int flag = 0;
412 if (likely(!timer->start_site))
413 return;
414 if (unlikely(tbase_get_deferrable(timer->base)))
415 flag |= TIMER_STATS_FLAG_DEFERRABLE;
417 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
418 timer->function, timer->start_comm, flag);
421 #else
422 static void timer_stats_account_timer(struct timer_list *timer) {}
423 #endif
425 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
427 static struct debug_obj_descr timer_debug_descr;
430 * fixup_init is called when:
431 * - an active object is initialized
433 static int timer_fixup_init(void *addr, enum debug_obj_state state)
435 struct timer_list *timer = addr;
437 switch (state) {
438 case ODEBUG_STATE_ACTIVE:
439 del_timer_sync(timer);
440 debug_object_init(timer, &timer_debug_descr);
441 return 1;
442 default:
443 return 0;
448 * fixup_activate is called when:
449 * - an active object is activated
450 * - an unknown object is activated (might be a statically initialized object)
452 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
454 struct timer_list *timer = addr;
456 switch (state) {
458 case ODEBUG_STATE_NOTAVAILABLE:
460 * This is not really a fixup. The timer was
461 * statically initialized. We just make sure that it
462 * is tracked in the object tracker.
464 if (timer->entry.next == NULL &&
465 timer->entry.prev == TIMER_ENTRY_STATIC) {
466 debug_object_init(timer, &timer_debug_descr);
467 debug_object_activate(timer, &timer_debug_descr);
468 return 0;
469 } else {
470 WARN_ON_ONCE(1);
472 return 0;
474 case ODEBUG_STATE_ACTIVE:
475 WARN_ON(1);
477 default:
478 return 0;
483 * fixup_free is called when:
484 * - an active object is freed
486 static int timer_fixup_free(void *addr, enum debug_obj_state state)
488 struct timer_list *timer = addr;
490 switch (state) {
491 case ODEBUG_STATE_ACTIVE:
492 del_timer_sync(timer);
493 debug_object_free(timer, &timer_debug_descr);
494 return 1;
495 default:
496 return 0;
500 static struct debug_obj_descr timer_debug_descr = {
501 .name = "timer_list",
502 .fixup_init = timer_fixup_init,
503 .fixup_activate = timer_fixup_activate,
504 .fixup_free = timer_fixup_free,
507 static inline void debug_timer_init(struct timer_list *timer)
509 debug_object_init(timer, &timer_debug_descr);
512 static inline void debug_timer_activate(struct timer_list *timer)
514 debug_object_activate(timer, &timer_debug_descr);
517 static inline void debug_timer_deactivate(struct timer_list *timer)
519 debug_object_deactivate(timer, &timer_debug_descr);
522 static inline void debug_timer_free(struct timer_list *timer)
524 debug_object_free(timer, &timer_debug_descr);
527 static void __init_timer(struct timer_list *timer,
528 const char *name,
529 struct lock_class_key *key);
531 void init_timer_on_stack_key(struct timer_list *timer,
532 const char *name,
533 struct lock_class_key *key)
535 debug_object_init_on_stack(timer, &timer_debug_descr);
536 __init_timer(timer, name, key);
538 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
540 void destroy_timer_on_stack(struct timer_list *timer)
542 debug_object_free(timer, &timer_debug_descr);
544 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
546 #else
547 static inline void debug_timer_init(struct timer_list *timer) { }
548 static inline void debug_timer_activate(struct timer_list *timer) { }
549 static inline void debug_timer_deactivate(struct timer_list *timer) { }
550 #endif
552 static inline void debug_init(struct timer_list *timer)
554 debug_timer_init(timer);
555 trace_timer_init(timer);
558 static inline void
559 debug_activate(struct timer_list *timer, unsigned long expires)
561 debug_timer_activate(timer);
562 trace_timer_start(timer, expires);
565 static inline void debug_deactivate(struct timer_list *timer)
567 debug_timer_deactivate(timer);
568 trace_timer_cancel(timer);
571 static void __init_timer(struct timer_list *timer,
572 const char *name,
573 struct lock_class_key *key)
575 timer->entry.next = NULL;
576 timer->base = __raw_get_cpu_var(tvec_bases);
577 timer->slack = -1;
578 #ifdef CONFIG_TIMER_STATS
579 timer->start_site = NULL;
580 timer->start_pid = -1;
581 memset(timer->start_comm, 0, TASK_COMM_LEN);
582 #endif
583 lockdep_init_map(&timer->lockdep_map, name, key, 0);
586 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
587 const char *name,
588 struct lock_class_key *key,
589 void (*function)(unsigned long),
590 unsigned long data)
592 timer->function = function;
593 timer->data = data;
594 init_timer_on_stack_key(timer, name, key);
595 timer_set_deferrable(timer);
597 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
600 * init_timer_key - initialize a timer
601 * @timer: the timer to be initialized
602 * @name: name of the timer
603 * @key: lockdep class key of the fake lock used for tracking timer
604 * sync lock dependencies
606 * init_timer_key() must be done to a timer prior calling *any* of the
607 * other timer functions.
609 void init_timer_key(struct timer_list *timer,
610 const char *name,
611 struct lock_class_key *key)
613 debug_init(timer);
614 __init_timer(timer, name, key);
616 EXPORT_SYMBOL(init_timer_key);
618 void init_timer_deferrable_key(struct timer_list *timer,
619 const char *name,
620 struct lock_class_key *key)
622 init_timer_key(timer, name, key);
623 timer_set_deferrable(timer);
625 EXPORT_SYMBOL(init_timer_deferrable_key);
627 static inline void detach_timer(struct timer_list *timer,
628 int clear_pending)
630 struct list_head *entry = &timer->entry;
632 debug_deactivate(timer);
634 __list_del(entry->prev, entry->next);
635 if (clear_pending)
636 entry->next = NULL;
637 entry->prev = LIST_POISON2;
641 * We are using hashed locking: holding per_cpu(tvec_bases).lock
642 * means that all timers which are tied to this base via timer->base are
643 * locked, and the base itself is locked too.
645 * So __run_timers/migrate_timers can safely modify all timers which could
646 * be found on ->tvX lists.
648 * When the timer's base is locked, and the timer removed from list, it is
649 * possible to set timer->base = NULL and drop the lock: the timer remains
650 * locked.
652 static struct tvec_base *lock_timer_base(struct timer_list *timer,
653 unsigned long *flags)
654 __acquires(timer->base->lock)
656 struct tvec_base *base;
658 for (;;) {
659 struct tvec_base *prelock_base = timer->base;
660 base = tbase_get_base(prelock_base);
661 if (likely(base != NULL)) {
662 spin_lock_irqsave(&base->lock, *flags);
663 if (likely(prelock_base == timer->base))
664 return base;
665 /* The timer has migrated to another CPU */
666 spin_unlock_irqrestore(&base->lock, *flags);
668 cpu_relax();
672 static inline int
673 __mod_timer(struct timer_list *timer, unsigned long expires,
674 bool pending_only, int pinned)
676 struct tvec_base *base, *new_base;
677 unsigned long flags;
678 int ret = 0 , cpu;
680 timer_stats_timer_set_start_info(timer);
681 BUG_ON(!timer->function);
683 base = lock_timer_base(timer, &flags);
685 if (timer_pending(timer)) {
686 detach_timer(timer, 0);
687 if (timer->expires == base->next_timer &&
688 !tbase_get_deferrable(timer->base))
689 base->next_timer = base->timer_jiffies;
690 ret = 1;
691 } else {
692 if (pending_only)
693 goto out_unlock;
696 debug_activate(timer, expires);
698 cpu = smp_processor_id();
700 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
701 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
702 cpu = get_nohz_timer_target();
703 #endif
704 new_base = per_cpu(tvec_bases, cpu);
706 if (base != new_base) {
708 * We are trying to schedule the timer on the local CPU.
709 * However we can't change timer's base while it is running,
710 * otherwise del_timer_sync() can't detect that the timer's
711 * handler yet has not finished. This also guarantees that
712 * the timer is serialized wrt itself.
714 if (likely(base->running_timer != timer)) {
715 /* See the comment in lock_timer_base() */
716 timer_set_base(timer, NULL);
717 spin_unlock(&base->lock);
718 base = new_base;
719 spin_lock(&base->lock);
720 timer_set_base(timer, base);
724 timer->expires = expires;
725 if (time_before(timer->expires, base->next_timer) &&
726 !tbase_get_deferrable(timer->base))
727 base->next_timer = timer->expires;
728 internal_add_timer(base, timer);
730 out_unlock:
731 spin_unlock_irqrestore(&base->lock, flags);
733 return ret;
737 * mod_timer_pending - modify a pending timer's timeout
738 * @timer: the pending timer to be modified
739 * @expires: new timeout in jiffies
741 * mod_timer_pending() is the same for pending timers as mod_timer(),
742 * but will not re-activate and modify already deleted timers.
744 * It is useful for unserialized use of timers.
746 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
748 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
750 EXPORT_SYMBOL(mod_timer_pending);
753 * Decide where to put the timer while taking the slack into account
755 * Algorithm:
756 * 1) calculate the maximum (absolute) time
757 * 2) calculate the highest bit where the expires and new max are different
758 * 3) use this bit to make a mask
759 * 4) use the bitmask to round down the maximum time, so that all last
760 * bits are zeros
762 static inline
763 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
765 unsigned long expires_limit, mask;
766 int bit;
768 expires_limit = expires;
770 if (timer->slack >= 0) {
771 expires_limit = expires + timer->slack;
772 } else {
773 unsigned long now = jiffies;
775 /* No slack, if already expired else auto slack 0.4% */
776 if (time_after(expires, now))
777 expires_limit = expires + (expires - now)/256;
779 mask = expires ^ expires_limit;
780 if (mask == 0)
781 return expires;
783 bit = find_last_bit(&mask, BITS_PER_LONG);
785 mask = (1 << bit) - 1;
787 expires_limit = expires_limit & ~(mask);
789 return expires_limit;
793 * mod_timer - modify a timer's timeout
794 * @timer: the timer to be modified
795 * @expires: new timeout in jiffies
797 * mod_timer() is a more efficient way to update the expire field of an
798 * active timer (if the timer is inactive it will be activated)
800 * mod_timer(timer, expires) is equivalent to:
802 * del_timer(timer); timer->expires = expires; add_timer(timer);
804 * Note that if there are multiple unserialized concurrent users of the
805 * same timer, then mod_timer() is the only safe way to modify the timeout,
806 * since add_timer() cannot modify an already running timer.
808 * The function returns whether it has modified a pending timer or not.
809 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
810 * active timer returns 1.)
812 int mod_timer(struct timer_list *timer, unsigned long expires)
815 * This is a common optimization triggered by the
816 * networking code - if the timer is re-modified
817 * to be the same thing then just return:
819 if (timer_pending(timer) && timer->expires == expires)
820 return 1;
822 expires = apply_slack(timer, expires);
824 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
826 EXPORT_SYMBOL(mod_timer);
829 * mod_timer_pinned - modify a timer's timeout
830 * @timer: the timer to be modified
831 * @expires: new timeout in jiffies
833 * mod_timer_pinned() is a way to update the expire field of an
834 * active timer (if the timer is inactive it will be activated)
835 * and not allow the timer to be migrated to a different CPU.
837 * mod_timer_pinned(timer, expires) is equivalent to:
839 * del_timer(timer); timer->expires = expires; add_timer(timer);
841 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
843 if (timer->expires == expires && timer_pending(timer))
844 return 1;
846 return __mod_timer(timer, expires, false, TIMER_PINNED);
848 EXPORT_SYMBOL(mod_timer_pinned);
851 * add_timer - start a timer
852 * @timer: the timer to be added
854 * The kernel will do a ->function(->data) callback from the
855 * timer interrupt at the ->expires point in the future. The
856 * current time is 'jiffies'.
858 * The timer's ->expires, ->function (and if the handler uses it, ->data)
859 * fields must be set prior calling this function.
861 * Timers with an ->expires field in the past will be executed in the next
862 * timer tick.
864 void add_timer(struct timer_list *timer)
866 BUG_ON(timer_pending(timer));
867 mod_timer(timer, timer->expires);
869 EXPORT_SYMBOL(add_timer);
872 * add_timer_on - start a timer on a particular CPU
873 * @timer: the timer to be added
874 * @cpu: the CPU to start it on
876 * This is not very scalable on SMP. Double adds are not possible.
878 void add_timer_on(struct timer_list *timer, int cpu)
880 struct tvec_base *base = per_cpu(tvec_bases, cpu);
881 unsigned long flags;
883 timer_stats_timer_set_start_info(timer);
884 BUG_ON(timer_pending(timer) || !timer->function);
885 spin_lock_irqsave(&base->lock, flags);
886 timer_set_base(timer, base);
887 debug_activate(timer, timer->expires);
888 if (time_before(timer->expires, base->next_timer) &&
889 !tbase_get_deferrable(timer->base))
890 base->next_timer = timer->expires;
891 internal_add_timer(base, timer);
893 * Check whether the other CPU is idle and needs to be
894 * triggered to reevaluate the timer wheel when nohz is
895 * active. We are protected against the other CPU fiddling
896 * with the timer by holding the timer base lock. This also
897 * makes sure that a CPU on the way to idle can not evaluate
898 * the timer wheel.
900 wake_up_idle_cpu(cpu);
901 spin_unlock_irqrestore(&base->lock, flags);
903 EXPORT_SYMBOL_GPL(add_timer_on);
906 * del_timer - deactive a timer.
907 * @timer: the timer to be deactivated
909 * del_timer() deactivates a timer - this works on both active and inactive
910 * timers.
912 * The function returns whether it has deactivated a pending timer or not.
913 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
914 * active timer returns 1.)
916 int del_timer(struct timer_list *timer)
918 struct tvec_base *base;
919 unsigned long flags;
920 int ret = 0;
922 timer_stats_timer_clear_start_info(timer);
923 if (timer_pending(timer)) {
924 base = lock_timer_base(timer, &flags);
925 if (timer_pending(timer)) {
926 detach_timer(timer, 1);
927 if (timer->expires == base->next_timer &&
928 !tbase_get_deferrable(timer->base))
929 base->next_timer = base->timer_jiffies;
930 ret = 1;
932 spin_unlock_irqrestore(&base->lock, flags);
935 return ret;
937 EXPORT_SYMBOL(del_timer);
939 #ifdef CONFIG_SMP
941 * try_to_del_timer_sync - Try to deactivate a timer
942 * @timer: timer do del
944 * This function tries to deactivate a timer. Upon successful (ret >= 0)
945 * exit the timer is not queued and the handler is not running on any CPU.
947 * It must not be called from interrupt contexts.
949 int try_to_del_timer_sync(struct timer_list *timer)
951 struct tvec_base *base;
952 unsigned long flags;
953 int ret = -1;
955 base = lock_timer_base(timer, &flags);
957 if (base->running_timer == timer)
958 goto out;
960 timer_stats_timer_clear_start_info(timer);
961 ret = 0;
962 if (timer_pending(timer)) {
963 detach_timer(timer, 1);
964 if (timer->expires == base->next_timer &&
965 !tbase_get_deferrable(timer->base))
966 base->next_timer = base->timer_jiffies;
967 ret = 1;
969 out:
970 spin_unlock_irqrestore(&base->lock, flags);
972 return ret;
974 EXPORT_SYMBOL(try_to_del_timer_sync);
977 * del_timer_sync - deactivate a timer and wait for the handler to finish.
978 * @timer: the timer to be deactivated
980 * This function only differs from del_timer() on SMP: besides deactivating
981 * the timer it also makes sure the handler has finished executing on other
982 * CPUs.
984 * Synchronization rules: Callers must prevent restarting of the timer,
985 * otherwise this function is meaningless. It must not be called from
986 * interrupt contexts. The caller must not hold locks which would prevent
987 * completion of the timer's handler. The timer's handler must not call
988 * add_timer_on(). Upon exit the timer is not queued and the handler is
989 * not running on any CPU.
991 * The function returns whether it has deactivated a pending timer or not.
993 int del_timer_sync(struct timer_list *timer)
995 #ifdef CONFIG_LOCKDEP
996 unsigned long flags;
998 local_irq_save(flags);
999 lock_map_acquire(&timer->lockdep_map);
1000 lock_map_release(&timer->lockdep_map);
1001 local_irq_restore(flags);
1002 #endif
1004 for (;;) {
1005 int ret = try_to_del_timer_sync(timer);
1006 if (ret >= 0)
1007 return ret;
1008 cpu_relax();
1011 EXPORT_SYMBOL(del_timer_sync);
1012 #endif
1014 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1016 /* cascade all the timers from tv up one level */
1017 struct timer_list *timer, *tmp;
1018 struct list_head tv_list;
1020 list_replace_init(tv->vec + index, &tv_list);
1023 * We are removing _all_ timers from the list, so we
1024 * don't have to detach them individually.
1026 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1027 BUG_ON(tbase_get_base(timer->base) != base);
1028 internal_add_timer(base, timer);
1031 return index;
1034 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1035 unsigned long data)
1037 int preempt_count = preempt_count();
1039 #ifdef CONFIG_LOCKDEP
1041 * It is permissible to free the timer from inside the
1042 * function that is called from it, this we need to take into
1043 * account for lockdep too. To avoid bogus "held lock freed"
1044 * warnings as well as problems when looking into
1045 * timer->lockdep_map, make a copy and use that here.
1047 struct lockdep_map lockdep_map = timer->lockdep_map;
1048 #endif
1050 * Couple the lock chain with the lock chain at
1051 * del_timer_sync() by acquiring the lock_map around the fn()
1052 * call here and in del_timer_sync().
1054 lock_map_acquire(&lockdep_map);
1056 trace_timer_expire_entry(timer);
1057 fn(data);
1058 trace_timer_expire_exit(timer);
1060 lock_map_release(&lockdep_map);
1062 if (preempt_count != preempt_count()) {
1063 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1064 fn, preempt_count, preempt_count());
1066 * Restore the preempt count. That gives us a decent
1067 * chance to survive and extract information. If the
1068 * callback kept a lock held, bad luck, but not worse
1069 * than the BUG() we had.
1071 preempt_count() = preempt_count;
1075 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1078 * __run_timers - run all expired timers (if any) on this CPU.
1079 * @base: the timer vector to be processed.
1081 * This function cascades all vectors and executes all expired timer
1082 * vectors.
1084 static inline void __run_timers(struct tvec_base *base)
1086 struct timer_list *timer;
1088 spin_lock_irq(&base->lock);
1089 while (time_after_eq(jiffies, base->timer_jiffies)) {
1090 struct list_head work_list;
1091 struct list_head *head = &work_list;
1092 int index = base->timer_jiffies & TVR_MASK;
1095 * Cascade timers:
1097 if (!index &&
1098 (!cascade(base, &base->tv2, INDEX(0))) &&
1099 (!cascade(base, &base->tv3, INDEX(1))) &&
1100 !cascade(base, &base->tv4, INDEX(2)))
1101 cascade(base, &base->tv5, INDEX(3));
1102 ++base->timer_jiffies;
1103 list_replace_init(base->tv1.vec + index, &work_list);
1104 while (!list_empty(head)) {
1105 void (*fn)(unsigned long);
1106 unsigned long data;
1108 timer = list_first_entry(head, struct timer_list,entry);
1109 fn = timer->function;
1110 data = timer->data;
1112 timer_stats_account_timer(timer);
1114 set_running_timer(base, timer);
1115 detach_timer(timer, 1);
1117 spin_unlock_irq(&base->lock);
1118 call_timer_fn(timer, fn, data);
1119 spin_lock_irq(&base->lock);
1122 set_running_timer(base, NULL);
1123 spin_unlock_irq(&base->lock);
1126 #ifdef CONFIG_NO_HZ
1128 * Find out when the next timer event is due to happen. This
1129 * is used on S/390 to stop all activity when a CPU is idle.
1130 * This function needs to be called with interrupts disabled.
1132 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1134 unsigned long timer_jiffies = base->timer_jiffies;
1135 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1136 int index, slot, array, found = 0;
1137 struct timer_list *nte;
1138 struct tvec *varray[4];
1140 /* Look for timer events in tv1. */
1141 index = slot = timer_jiffies & TVR_MASK;
1142 do {
1143 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1144 if (tbase_get_deferrable(nte->base))
1145 continue;
1147 found = 1;
1148 expires = nte->expires;
1149 /* Look at the cascade bucket(s)? */
1150 if (!index || slot < index)
1151 goto cascade;
1152 return expires;
1154 slot = (slot + 1) & TVR_MASK;
1155 } while (slot != index);
1157 cascade:
1158 /* Calculate the next cascade event */
1159 if (index)
1160 timer_jiffies += TVR_SIZE - index;
1161 timer_jiffies >>= TVR_BITS;
1163 /* Check tv2-tv5. */
1164 varray[0] = &base->tv2;
1165 varray[1] = &base->tv3;
1166 varray[2] = &base->tv4;
1167 varray[3] = &base->tv5;
1169 for (array = 0; array < 4; array++) {
1170 struct tvec *varp = varray[array];
1172 index = slot = timer_jiffies & TVN_MASK;
1173 do {
1174 list_for_each_entry(nte, varp->vec + slot, entry) {
1175 if (tbase_get_deferrable(nte->base))
1176 continue;
1178 found = 1;
1179 if (time_before(nte->expires, expires))
1180 expires = nte->expires;
1183 * Do we still search for the first timer or are
1184 * we looking up the cascade buckets ?
1186 if (found) {
1187 /* Look at the cascade bucket(s)? */
1188 if (!index || slot < index)
1189 break;
1190 return expires;
1192 slot = (slot + 1) & TVN_MASK;
1193 } while (slot != index);
1195 if (index)
1196 timer_jiffies += TVN_SIZE - index;
1197 timer_jiffies >>= TVN_BITS;
1199 return expires;
1203 * Check, if the next hrtimer event is before the next timer wheel
1204 * event:
1206 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1207 unsigned long expires)
1209 ktime_t hr_delta = hrtimer_get_next_event();
1210 struct timespec tsdelta;
1211 unsigned long delta;
1213 if (hr_delta.tv64 == KTIME_MAX)
1214 return expires;
1217 * Expired timer available, let it expire in the next tick
1219 if (hr_delta.tv64 <= 0)
1220 return now + 1;
1222 tsdelta = ktime_to_timespec(hr_delta);
1223 delta = timespec_to_jiffies(&tsdelta);
1226 * Limit the delta to the max value, which is checked in
1227 * tick_nohz_stop_sched_tick():
1229 if (delta > NEXT_TIMER_MAX_DELTA)
1230 delta = NEXT_TIMER_MAX_DELTA;
1233 * Take rounding errors in to account and make sure, that it
1234 * expires in the next tick. Otherwise we go into an endless
1235 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1236 * the timer softirq
1238 if (delta < 1)
1239 delta = 1;
1240 now += delta;
1241 if (time_before(now, expires))
1242 return now;
1243 return expires;
1247 * get_next_timer_interrupt - return the jiffy of the next pending timer
1248 * @now: current time (in jiffies)
1250 unsigned long get_next_timer_interrupt(unsigned long now)
1252 struct tvec_base *base = __get_cpu_var(tvec_bases);
1253 unsigned long expires;
1255 spin_lock(&base->lock);
1256 if (time_before_eq(base->next_timer, base->timer_jiffies))
1257 base->next_timer = __next_timer_interrupt(base);
1258 expires = base->next_timer;
1259 spin_unlock(&base->lock);
1261 if (time_before_eq(expires, now))
1262 return now;
1264 return cmp_next_hrtimer_event(now, expires);
1266 #endif
1269 * Called from the timer interrupt handler to charge one tick to the current
1270 * process. user_tick is 1 if the tick is user time, 0 for system.
1272 void update_process_times(int user_tick)
1274 struct task_struct *p = current;
1275 int cpu = smp_processor_id();
1277 /* Note: this timer irq context must be accounted for as well. */
1278 account_process_tick(p, user_tick);
1279 run_local_timers();
1280 rcu_check_callbacks(cpu, user_tick);
1281 printk_tick();
1282 perf_event_do_pending();
1283 scheduler_tick();
1284 run_posix_cpu_timers(p);
1288 * This function runs timers and the timer-tq in bottom half context.
1290 static void run_timer_softirq(struct softirq_action *h)
1292 struct tvec_base *base = __get_cpu_var(tvec_bases);
1294 hrtimer_run_pending();
1296 if (time_after_eq(jiffies, base->timer_jiffies))
1297 __run_timers(base);
1301 * Called by the local, per-CPU timer interrupt on SMP.
1303 void run_local_timers(void)
1305 hrtimer_run_queues();
1306 raise_softirq(TIMER_SOFTIRQ);
1310 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1311 * without sampling the sequence number in xtime_lock.
1312 * jiffies is defined in the linker script...
1315 void do_timer(unsigned long ticks)
1317 jiffies_64 += ticks;
1318 update_wall_time();
1319 calc_global_load();
1322 #ifdef __ARCH_WANT_SYS_ALARM
1325 * For backwards compatibility? This can be done in libc so Alpha
1326 * and all newer ports shouldn't need it.
1328 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1330 return alarm_setitimer(seconds);
1333 #endif
1335 #ifndef __alpha__
1338 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1339 * should be moved into arch/i386 instead?
1343 * sys_getpid - return the thread group id of the current process
1345 * Note, despite the name, this returns the tgid not the pid. The tgid and
1346 * the pid are identical unless CLONE_THREAD was specified on clone() in
1347 * which case the tgid is the same in all threads of the same group.
1349 * This is SMP safe as current->tgid does not change.
1351 SYSCALL_DEFINE0(getpid)
1353 return task_tgid_vnr(current);
1357 * Accessing ->real_parent is not SMP-safe, it could
1358 * change from under us. However, we can use a stale
1359 * value of ->real_parent under rcu_read_lock(), see
1360 * release_task()->call_rcu(delayed_put_task_struct).
1362 SYSCALL_DEFINE0(getppid)
1364 int pid;
1366 rcu_read_lock();
1367 pid = task_tgid_vnr(current->real_parent);
1368 rcu_read_unlock();
1370 return pid;
1373 SYSCALL_DEFINE0(getuid)
1375 /* Only we change this so SMP safe */
1376 return current_uid();
1379 SYSCALL_DEFINE0(geteuid)
1381 /* Only we change this so SMP safe */
1382 return current_euid();
1385 SYSCALL_DEFINE0(getgid)
1387 /* Only we change this so SMP safe */
1388 return current_gid();
1391 SYSCALL_DEFINE0(getegid)
1393 /* Only we change this so SMP safe */
1394 return current_egid();
1397 #endif
1399 static void process_timeout(unsigned long __data)
1401 wake_up_process((struct task_struct *)__data);
1405 * schedule_timeout - sleep until timeout
1406 * @timeout: timeout value in jiffies
1408 * Make the current task sleep until @timeout jiffies have
1409 * elapsed. The routine will return immediately unless
1410 * the current task state has been set (see set_current_state()).
1412 * You can set the task state as follows -
1414 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1415 * pass before the routine returns. The routine will return 0
1417 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1418 * delivered to the current task. In this case the remaining time
1419 * in jiffies will be returned, or 0 if the timer expired in time
1421 * The current task state is guaranteed to be TASK_RUNNING when this
1422 * routine returns.
1424 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1425 * the CPU away without a bound on the timeout. In this case the return
1426 * value will be %MAX_SCHEDULE_TIMEOUT.
1428 * In all cases the return value is guaranteed to be non-negative.
1430 signed long __sched schedule_timeout(signed long timeout)
1432 struct timer_list timer;
1433 unsigned long expire;
1435 switch (timeout)
1437 case MAX_SCHEDULE_TIMEOUT:
1439 * These two special cases are useful to be comfortable
1440 * in the caller. Nothing more. We could take
1441 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1442 * but I' d like to return a valid offset (>=0) to allow
1443 * the caller to do everything it want with the retval.
1445 schedule();
1446 goto out;
1447 default:
1449 * Another bit of PARANOID. Note that the retval will be
1450 * 0 since no piece of kernel is supposed to do a check
1451 * for a negative retval of schedule_timeout() (since it
1452 * should never happens anyway). You just have the printk()
1453 * that will tell you if something is gone wrong and where.
1455 if (timeout < 0) {
1456 printk(KERN_ERR "schedule_timeout: wrong timeout "
1457 "value %lx\n", timeout);
1458 dump_stack();
1459 current->state = TASK_RUNNING;
1460 goto out;
1464 expire = timeout + jiffies;
1466 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1467 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1468 schedule();
1469 del_singleshot_timer_sync(&timer);
1471 /* Remove the timer from the object tracker */
1472 destroy_timer_on_stack(&timer);
1474 timeout = expire - jiffies;
1476 out:
1477 return timeout < 0 ? 0 : timeout;
1479 EXPORT_SYMBOL(schedule_timeout);
1482 * We can use __set_current_state() here because schedule_timeout() calls
1483 * schedule() unconditionally.
1485 signed long __sched schedule_timeout_interruptible(signed long timeout)
1487 __set_current_state(TASK_INTERRUPTIBLE);
1488 return schedule_timeout(timeout);
1490 EXPORT_SYMBOL(schedule_timeout_interruptible);
1492 signed long __sched schedule_timeout_killable(signed long timeout)
1494 __set_current_state(TASK_KILLABLE);
1495 return schedule_timeout(timeout);
1497 EXPORT_SYMBOL(schedule_timeout_killable);
1499 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1501 __set_current_state(TASK_UNINTERRUPTIBLE);
1502 return schedule_timeout(timeout);
1504 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1506 /* Thread ID - the internal kernel "pid" */
1507 SYSCALL_DEFINE0(gettid)
1509 return task_pid_vnr(current);
1513 * do_sysinfo - fill in sysinfo struct
1514 * @info: pointer to buffer to fill
1516 int do_sysinfo(struct sysinfo *info)
1518 unsigned long mem_total, sav_total;
1519 unsigned int mem_unit, bitcount;
1520 struct timespec tp;
1522 memset(info, 0, sizeof(struct sysinfo));
1524 ktime_get_ts(&tp);
1525 monotonic_to_bootbased(&tp);
1526 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1528 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1530 info->procs = nr_threads;
1532 si_meminfo(info);
1533 si_swapinfo(info);
1536 * If the sum of all the available memory (i.e. ram + swap)
1537 * is less than can be stored in a 32 bit unsigned long then
1538 * we can be binary compatible with 2.2.x kernels. If not,
1539 * well, in that case 2.2.x was broken anyways...
1541 * -Erik Andersen <andersee@debian.org>
1544 mem_total = info->totalram + info->totalswap;
1545 if (mem_total < info->totalram || mem_total < info->totalswap)
1546 goto out;
1547 bitcount = 0;
1548 mem_unit = info->mem_unit;
1549 while (mem_unit > 1) {
1550 bitcount++;
1551 mem_unit >>= 1;
1552 sav_total = mem_total;
1553 mem_total <<= 1;
1554 if (mem_total < sav_total)
1555 goto out;
1559 * If mem_total did not overflow, multiply all memory values by
1560 * info->mem_unit and set it to 1. This leaves things compatible
1561 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1562 * kernels...
1565 info->mem_unit = 1;
1566 info->totalram <<= bitcount;
1567 info->freeram <<= bitcount;
1568 info->sharedram <<= bitcount;
1569 info->bufferram <<= bitcount;
1570 info->totalswap <<= bitcount;
1571 info->freeswap <<= bitcount;
1572 info->totalhigh <<= bitcount;
1573 info->freehigh <<= bitcount;
1575 out:
1576 return 0;
1579 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1581 struct sysinfo val;
1583 do_sysinfo(&val);
1585 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1586 return -EFAULT;
1588 return 0;
1591 static int __cpuinit init_timers_cpu(int cpu)
1593 int j;
1594 struct tvec_base *base;
1595 static char __cpuinitdata tvec_base_done[NR_CPUS];
1597 if (!tvec_base_done[cpu]) {
1598 static char boot_done;
1600 if (boot_done) {
1602 * The APs use this path later in boot
1604 base = kmalloc_node(sizeof(*base),
1605 GFP_KERNEL | __GFP_ZERO,
1606 cpu_to_node(cpu));
1607 if (!base)
1608 return -ENOMEM;
1610 /* Make sure that tvec_base is 2 byte aligned */
1611 if (tbase_get_deferrable(base)) {
1612 WARN_ON(1);
1613 kfree(base);
1614 return -ENOMEM;
1616 per_cpu(tvec_bases, cpu) = base;
1617 } else {
1619 * This is for the boot CPU - we use compile-time
1620 * static initialisation because per-cpu memory isn't
1621 * ready yet and because the memory allocators are not
1622 * initialised either.
1624 boot_done = 1;
1625 base = &boot_tvec_bases;
1627 tvec_base_done[cpu] = 1;
1628 } else {
1629 base = per_cpu(tvec_bases, cpu);
1632 spin_lock_init(&base->lock);
1634 for (j = 0; j < TVN_SIZE; j++) {
1635 INIT_LIST_HEAD(base->tv5.vec + j);
1636 INIT_LIST_HEAD(base->tv4.vec + j);
1637 INIT_LIST_HEAD(base->tv3.vec + j);
1638 INIT_LIST_HEAD(base->tv2.vec + j);
1640 for (j = 0; j < TVR_SIZE; j++)
1641 INIT_LIST_HEAD(base->tv1.vec + j);
1643 base->timer_jiffies = jiffies;
1644 base->next_timer = base->timer_jiffies;
1645 return 0;
1648 #ifdef CONFIG_HOTPLUG_CPU
1649 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1651 struct timer_list *timer;
1653 while (!list_empty(head)) {
1654 timer = list_first_entry(head, struct timer_list, entry);
1655 detach_timer(timer, 0);
1656 timer_set_base(timer, new_base);
1657 if (time_before(timer->expires, new_base->next_timer) &&
1658 !tbase_get_deferrable(timer->base))
1659 new_base->next_timer = timer->expires;
1660 internal_add_timer(new_base, timer);
1664 static void __cpuinit migrate_timers(int cpu)
1666 struct tvec_base *old_base;
1667 struct tvec_base *new_base;
1668 int i;
1670 BUG_ON(cpu_online(cpu));
1671 old_base = per_cpu(tvec_bases, cpu);
1672 new_base = get_cpu_var(tvec_bases);
1674 * The caller is globally serialized and nobody else
1675 * takes two locks at once, deadlock is not possible.
1677 spin_lock_irq(&new_base->lock);
1678 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1680 BUG_ON(old_base->running_timer);
1682 for (i = 0; i < TVR_SIZE; i++)
1683 migrate_timer_list(new_base, old_base->tv1.vec + i);
1684 for (i = 0; i < TVN_SIZE; i++) {
1685 migrate_timer_list(new_base, old_base->tv2.vec + i);
1686 migrate_timer_list(new_base, old_base->tv3.vec + i);
1687 migrate_timer_list(new_base, old_base->tv4.vec + i);
1688 migrate_timer_list(new_base, old_base->tv5.vec + i);
1691 spin_unlock(&old_base->lock);
1692 spin_unlock_irq(&new_base->lock);
1693 put_cpu_var(tvec_bases);
1695 #endif /* CONFIG_HOTPLUG_CPU */
1697 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1698 unsigned long action, void *hcpu)
1700 long cpu = (long)hcpu;
1701 int err;
1703 switch(action) {
1704 case CPU_UP_PREPARE:
1705 case CPU_UP_PREPARE_FROZEN:
1706 err = init_timers_cpu(cpu);
1707 if (err < 0)
1708 return notifier_from_errno(err);
1709 break;
1710 #ifdef CONFIG_HOTPLUG_CPU
1711 case CPU_DEAD:
1712 case CPU_DEAD_FROZEN:
1713 migrate_timers(cpu);
1714 break;
1715 #endif
1716 default:
1717 break;
1719 return NOTIFY_OK;
1722 static struct notifier_block __cpuinitdata timers_nb = {
1723 .notifier_call = timer_cpu_notify,
1727 void __init init_timers(void)
1729 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1730 (void *)(long)smp_processor_id());
1732 init_timer_stats();
1734 BUG_ON(err != NOTIFY_OK);
1735 register_cpu_notifier(&timers_nb);
1736 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1740 * msleep - sleep safely even with waitqueue interruptions
1741 * @msecs: Time in milliseconds to sleep for
1743 void msleep(unsigned int msecs)
1745 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1747 while (timeout)
1748 timeout = schedule_timeout_uninterruptible(timeout);
1751 EXPORT_SYMBOL(msleep);
1754 * msleep_interruptible - sleep waiting for signals
1755 * @msecs: Time in milliseconds to sleep for
1757 unsigned long msleep_interruptible(unsigned int msecs)
1759 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1761 while (timeout && !signal_pending(current))
1762 timeout = schedule_timeout_interruptible(timeout);
1763 return jiffies_to_msecs(timeout);
1766 EXPORT_SYMBOL(msleep_interruptible);
1768 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1770 ktime_t kmin;
1771 unsigned long delta;
1773 kmin = ktime_set(0, min * NSEC_PER_USEC);
1774 delta = (max - min) * NSEC_PER_USEC;
1775 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1779 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1780 * @min: Minimum time in usecs to sleep
1781 * @max: Maximum time in usecs to sleep
1783 void usleep_range(unsigned long min, unsigned long max)
1785 __set_current_state(TASK_UNINTERRUPTIBLE);
1786 do_usleep_range(min, max);
1788 EXPORT_SYMBOL(usleep_range);