2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio
{
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios
;
50 /* the pages with the compressed data on them */
51 struct page
**compressed_pages
;
53 /* inode that owns this data */
56 /* starting offset in the inode for our pages */
59 /* number of bytes in the inode we're working on */
62 /* number of bytes on disk */
63 unsigned long compressed_len
;
65 /* the compression algorithm for this bio */
68 /* number of compressed pages in the array */
69 unsigned long nr_pages
;
75 /* for reads, this is the bio we are copying the data into */
79 * the start of a variable length array of checksums only
85 static inline int compressed_bio_size(struct btrfs_root
*root
,
86 unsigned long disk_size
)
88 u16 csum_size
= btrfs_super_csum_size(&root
->fs_info
->super_copy
);
89 return sizeof(struct compressed_bio
) +
90 ((disk_size
+ root
->sectorsize
- 1) / root
->sectorsize
) *
94 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
95 u64 first_byte
, gfp_t gfp_flags
)
99 nr_vecs
= bio_get_nr_vecs(bdev
);
100 return btrfs_bio_alloc(bdev
, first_byte
>> 9, nr_vecs
, gfp_flags
);
103 static int check_compressed_csum(struct inode
*inode
,
104 struct compressed_bio
*cb
,
108 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
113 u32
*cb_sum
= &cb
->sums
;
115 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
118 for (i
= 0; i
< cb
->nr_pages
; i
++) {
119 page
= cb
->compressed_pages
[i
];
122 kaddr
= kmap_atomic(page
, KM_USER0
);
123 csum
= btrfs_csum_data(root
, kaddr
, csum
, PAGE_CACHE_SIZE
);
124 btrfs_csum_final(csum
, (char *)&csum
);
125 kunmap_atomic(kaddr
, KM_USER0
);
127 if (csum
!= *cb_sum
) {
128 printk(KERN_INFO
"btrfs csum failed ino %lu "
129 "extent %llu csum %u "
130 "wanted %u mirror %d\n", inode
->i_ino
,
131 (unsigned long long)disk_start
,
132 csum
, *cb_sum
, cb
->mirror_num
);
144 /* when we finish reading compressed pages from the disk, we
145 * decompress them and then run the bio end_io routines on the
146 * decompressed pages (in the inode address space).
148 * This allows the checksumming and other IO error handling routines
151 * The compressed pages are freed here, and it must be run
154 static void end_compressed_bio_read(struct bio
*bio
, int err
)
156 struct compressed_bio
*cb
= bio
->bi_private
;
165 /* if there are more bios still pending for this compressed
168 if (!atomic_dec_and_test(&cb
->pending_bios
))
172 ret
= check_compressed_csum(inode
, cb
, (u64
)bio
->bi_sector
<< 9);
176 /* ok, we're the last bio for this extent, lets start
179 ret
= btrfs_decompress_biovec(cb
->compress_type
,
180 cb
->compressed_pages
,
182 cb
->orig_bio
->bi_io_vec
,
183 cb
->orig_bio
->bi_vcnt
,
189 /* release the compressed pages */
191 for (index
= 0; index
< cb
->nr_pages
; index
++) {
192 page
= cb
->compressed_pages
[index
];
193 page
->mapping
= NULL
;
194 page_cache_release(page
);
197 /* do io completion on the original bio */
199 bio_io_error(cb
->orig_bio
);
202 struct bio_vec
*bvec
= cb
->orig_bio
->bi_io_vec
;
205 * we have verified the checksum already, set page
206 * checked so the end_io handlers know about it
208 while (bio_index
< cb
->orig_bio
->bi_vcnt
) {
209 SetPageChecked(bvec
->bv_page
);
213 bio_endio(cb
->orig_bio
, 0);
216 /* finally free the cb struct */
217 kfree(cb
->compressed_pages
);
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
227 static noinline
int end_compressed_writeback(struct inode
*inode
, u64 start
,
228 unsigned long ram_size
)
230 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
231 unsigned long end_index
= (start
+ ram_size
- 1) >> PAGE_CACHE_SHIFT
;
232 struct page
*pages
[16];
233 unsigned long nr_pages
= end_index
- index
+ 1;
237 while (nr_pages
> 0) {
238 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
240 nr_pages
, ARRAY_SIZE(pages
)), pages
);
246 for (i
= 0; i
< ret
; i
++) {
247 end_page_writeback(pages
[i
]);
248 page_cache_release(pages
[i
]);
253 /* the inode may be gone now */
258 * do the cleanup once all the compressed pages hit the disk.
259 * This will clear writeback on the file pages and free the compressed
262 * This also calls the writeback end hooks for the file pages so that
263 * metadata and checksums can be updated in the file.
265 static void end_compressed_bio_write(struct bio
*bio
, int err
)
267 struct extent_io_tree
*tree
;
268 struct compressed_bio
*cb
= bio
->bi_private
;
276 /* if there are more bios still pending for this compressed
279 if (!atomic_dec_and_test(&cb
->pending_bios
))
282 /* ok, we're the last bio for this extent, step one is to
283 * call back into the FS and do all the end_io operations
286 tree
= &BTRFS_I(inode
)->io_tree
;
287 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
288 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
290 cb
->start
+ cb
->len
- 1,
292 cb
->compressed_pages
[0]->mapping
= NULL
;
294 end_compressed_writeback(inode
, cb
->start
, cb
->len
);
295 /* note, our inode could be gone now */
298 * release the compressed pages, these came from alloc_page and
299 * are not attached to the inode at all
302 for (index
= 0; index
< cb
->nr_pages
; index
++) {
303 page
= cb
->compressed_pages
[index
];
304 page
->mapping
= NULL
;
305 page_cache_release(page
);
308 /* finally free the cb struct */
309 kfree(cb
->compressed_pages
);
316 * worker function to build and submit bios for previously compressed pages.
317 * The corresponding pages in the inode should be marked for writeback
318 * and the compressed pages should have a reference on them for dropping
319 * when the IO is complete.
321 * This also checksums the file bytes and gets things ready for
324 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
325 unsigned long len
, u64 disk_start
,
326 unsigned long compressed_len
,
327 struct page
**compressed_pages
,
328 unsigned long nr_pages
)
330 struct bio
*bio
= NULL
;
331 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
332 struct compressed_bio
*cb
;
333 unsigned long bytes_left
;
334 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
337 u64 first_byte
= disk_start
;
338 struct block_device
*bdev
;
341 WARN_ON(start
& ((u64
)PAGE_CACHE_SIZE
- 1));
342 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
343 atomic_set(&cb
->pending_bios
, 0);
349 cb
->compressed_pages
= compressed_pages
;
350 cb
->compressed_len
= compressed_len
;
352 cb
->nr_pages
= nr_pages
;
354 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
356 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
357 bio
->bi_private
= cb
;
358 bio
->bi_end_io
= end_compressed_bio_write
;
359 atomic_inc(&cb
->pending_bios
);
361 /* create and submit bios for the compressed pages */
362 bytes_left
= compressed_len
;
363 for (page_index
= 0; page_index
< cb
->nr_pages
; page_index
++) {
364 page
= compressed_pages
[page_index
];
365 page
->mapping
= inode
->i_mapping
;
367 ret
= io_tree
->ops
->merge_bio_hook(page
, 0,
373 page
->mapping
= NULL
;
374 if (ret
|| bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) <
379 * inc the count before we submit the bio so
380 * we know the end IO handler won't happen before
381 * we inc the count. Otherwise, the cb might get
382 * freed before we're done setting it up
384 atomic_inc(&cb
->pending_bios
);
385 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
388 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
391 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
396 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
397 bio
->bi_private
= cb
;
398 bio
->bi_end_io
= end_compressed_bio_write
;
399 bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
401 if (bytes_left
< PAGE_CACHE_SIZE
) {
402 printk("bytes left %lu compress len %lu nr %lu\n",
403 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
405 bytes_left
-= PAGE_CACHE_SIZE
;
406 first_byte
+= PAGE_CACHE_SIZE
;
411 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
414 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
417 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
424 static noinline
int add_ra_bio_pages(struct inode
*inode
,
426 struct compressed_bio
*cb
)
428 unsigned long end_index
;
429 unsigned long page_index
;
431 u64 isize
= i_size_read(inode
);
434 unsigned long nr_pages
= 0;
435 struct extent_map
*em
;
436 struct address_space
*mapping
= inode
->i_mapping
;
437 struct extent_map_tree
*em_tree
;
438 struct extent_io_tree
*tree
;
442 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
443 last_offset
= (page_offset(page
) + PAGE_CACHE_SIZE
);
444 em_tree
= &BTRFS_I(inode
)->extent_tree
;
445 tree
= &BTRFS_I(inode
)->io_tree
;
450 end_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
452 while (last_offset
< compressed_end
) {
453 page_index
= last_offset
>> PAGE_CACHE_SHIFT
;
455 if (page_index
> end_index
)
459 page
= radix_tree_lookup(&mapping
->page_tree
, page_index
);
468 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) &
473 if (add_to_page_cache_lru(page
, mapping
, page_index
,
475 page_cache_release(page
);
479 end
= last_offset
+ PAGE_CACHE_SIZE
- 1;
481 * at this point, we have a locked page in the page cache
482 * for these bytes in the file. But, we have to make
483 * sure they map to this compressed extent on disk.
485 set_page_extent_mapped(page
);
486 lock_extent(tree
, last_offset
, end
, GFP_NOFS
);
487 read_lock(&em_tree
->lock
);
488 em
= lookup_extent_mapping(em_tree
, last_offset
,
490 read_unlock(&em_tree
->lock
);
492 if (!em
|| last_offset
< em
->start
||
493 (last_offset
+ PAGE_CACHE_SIZE
> extent_map_end(em
)) ||
494 (em
->block_start
>> 9) != cb
->orig_bio
->bi_sector
) {
496 unlock_extent(tree
, last_offset
, end
, GFP_NOFS
);
498 page_cache_release(page
);
503 if (page
->index
== end_index
) {
505 size_t zero_offset
= isize
& (PAGE_CACHE_SIZE
- 1);
509 zeros
= PAGE_CACHE_SIZE
- zero_offset
;
510 userpage
= kmap_atomic(page
, KM_USER0
);
511 memset(userpage
+ zero_offset
, 0, zeros
);
512 flush_dcache_page(page
);
513 kunmap_atomic(userpage
, KM_USER0
);
517 ret
= bio_add_page(cb
->orig_bio
, page
,
520 if (ret
== PAGE_CACHE_SIZE
) {
522 page_cache_release(page
);
524 unlock_extent(tree
, last_offset
, end
, GFP_NOFS
);
526 page_cache_release(page
);
530 last_offset
+= PAGE_CACHE_SIZE
;
536 * for a compressed read, the bio we get passed has all the inode pages
537 * in it. We don't actually do IO on those pages but allocate new ones
538 * to hold the compressed pages on disk.
540 * bio->bi_sector points to the compressed extent on disk
541 * bio->bi_io_vec points to all of the inode pages
542 * bio->bi_vcnt is a count of pages
544 * After the compressed pages are read, we copy the bytes into the
545 * bio we were passed and then call the bio end_io calls
547 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
548 int mirror_num
, unsigned long bio_flags
)
550 struct extent_io_tree
*tree
;
551 struct extent_map_tree
*em_tree
;
552 struct compressed_bio
*cb
;
553 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
554 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
555 unsigned long compressed_len
;
556 unsigned long nr_pages
;
557 unsigned long page_index
;
559 struct block_device
*bdev
;
560 struct bio
*comp_bio
;
561 u64 cur_disk_byte
= (u64
)bio
->bi_sector
<< 9;
564 struct extent_map
*em
;
568 tree
= &BTRFS_I(inode
)->io_tree
;
569 em_tree
= &BTRFS_I(inode
)->extent_tree
;
571 /* we need the actual starting offset of this extent in the file */
572 read_lock(&em_tree
->lock
);
573 em
= lookup_extent_mapping(em_tree
,
574 page_offset(bio
->bi_io_vec
->bv_page
),
576 read_unlock(&em_tree
->lock
);
578 compressed_len
= em
->block_len
;
579 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
580 atomic_set(&cb
->pending_bios
, 0);
583 cb
->mirror_num
= mirror_num
;
586 cb
->start
= em
->orig_start
;
588 em_start
= em
->start
;
593 cb
->len
= uncompressed_len
;
594 cb
->compressed_len
= compressed_len
;
595 cb
->compress_type
= extent_compress_type(bio_flags
);
598 nr_pages
= (compressed_len
+ PAGE_CACHE_SIZE
- 1) /
600 cb
->compressed_pages
= kmalloc(sizeof(struct page
*) * nr_pages
,
602 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
604 for (page_index
= 0; page_index
< nr_pages
; page_index
++) {
605 cb
->compressed_pages
[page_index
] = alloc_page(GFP_NOFS
|
608 cb
->nr_pages
= nr_pages
;
610 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
612 /* include any pages we added in add_ra-bio_pages */
613 uncompressed_len
= bio
->bi_vcnt
* PAGE_CACHE_SIZE
;
614 cb
->len
= uncompressed_len
;
616 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
617 comp_bio
->bi_private
= cb
;
618 comp_bio
->bi_end_io
= end_compressed_bio_read
;
619 atomic_inc(&cb
->pending_bios
);
621 for (page_index
= 0; page_index
< nr_pages
; page_index
++) {
622 page
= cb
->compressed_pages
[page_index
];
623 page
->mapping
= inode
->i_mapping
;
624 page
->index
= em_start
>> PAGE_CACHE_SHIFT
;
626 if (comp_bio
->bi_size
)
627 ret
= tree
->ops
->merge_bio_hook(page
, 0,
633 page
->mapping
= NULL
;
634 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0) <
638 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
642 * inc the count before we submit the bio so
643 * we know the end IO handler won't happen before
644 * we inc the count. Otherwise, the cb might get
645 * freed before we're done setting it up
647 atomic_inc(&cb
->pending_bios
);
649 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
650 btrfs_lookup_bio_sums(root
, inode
, comp_bio
,
653 sums
+= (comp_bio
->bi_size
+ root
->sectorsize
- 1) /
656 ret
= btrfs_map_bio(root
, READ
, comp_bio
,
662 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
664 comp_bio
->bi_private
= cb
;
665 comp_bio
->bi_end_io
= end_compressed_bio_read
;
667 bio_add_page(comp_bio
, page
, PAGE_CACHE_SIZE
, 0);
669 cur_disk_byte
+= PAGE_CACHE_SIZE
;
673 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
, 0);
676 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
677 btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
679 ret
= btrfs_map_bio(root
, READ
, comp_bio
, mirror_num
, 0);
686 static struct list_head comp_idle_workspace
[BTRFS_COMPRESS_TYPES
];
687 static spinlock_t comp_workspace_lock
[BTRFS_COMPRESS_TYPES
];
688 static int comp_num_workspace
[BTRFS_COMPRESS_TYPES
];
689 static atomic_t comp_alloc_workspace
[BTRFS_COMPRESS_TYPES
];
690 static wait_queue_head_t comp_workspace_wait
[BTRFS_COMPRESS_TYPES
];
692 struct btrfs_compress_op
*btrfs_compress_op
[] = {
693 &btrfs_zlib_compress
,
697 int __init
btrfs_init_compress(void)
701 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
702 INIT_LIST_HEAD(&comp_idle_workspace
[i
]);
703 spin_lock_init(&comp_workspace_lock
[i
]);
704 atomic_set(&comp_alloc_workspace
[i
], 0);
705 init_waitqueue_head(&comp_workspace_wait
[i
]);
711 * this finds an available workspace or allocates a new one
712 * ERR_PTR is returned if things go bad.
714 static struct list_head
*find_workspace(int type
)
716 struct list_head
*workspace
;
717 int cpus
= num_online_cpus();
720 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
721 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
722 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
723 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
724 int *num_workspace
= &comp_num_workspace
[idx
];
726 spin_lock(workspace_lock
);
727 if (!list_empty(idle_workspace
)) {
728 workspace
= idle_workspace
->next
;
731 spin_unlock(workspace_lock
);
735 if (atomic_read(alloc_workspace
) > cpus
) {
738 spin_unlock(workspace_lock
);
739 prepare_to_wait(workspace_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
740 if (atomic_read(alloc_workspace
) > cpus
&& !*num_workspace
)
742 finish_wait(workspace_wait
, &wait
);
745 atomic_inc(alloc_workspace
);
746 spin_unlock(workspace_lock
);
748 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
749 if (IS_ERR(workspace
)) {
750 atomic_dec(alloc_workspace
);
751 wake_up(workspace_wait
);
757 * put a workspace struct back on the list or free it if we have enough
758 * idle ones sitting around
760 static void free_workspace(int type
, struct list_head
*workspace
)
763 struct list_head
*idle_workspace
= &comp_idle_workspace
[idx
];
764 spinlock_t
*workspace_lock
= &comp_workspace_lock
[idx
];
765 atomic_t
*alloc_workspace
= &comp_alloc_workspace
[idx
];
766 wait_queue_head_t
*workspace_wait
= &comp_workspace_wait
[idx
];
767 int *num_workspace
= &comp_num_workspace
[idx
];
769 spin_lock(workspace_lock
);
770 if (*num_workspace
< num_online_cpus()) {
771 list_add_tail(workspace
, idle_workspace
);
773 spin_unlock(workspace_lock
);
776 spin_unlock(workspace_lock
);
778 btrfs_compress_op
[idx
]->free_workspace(workspace
);
779 atomic_dec(alloc_workspace
);
781 if (waitqueue_active(workspace_wait
))
782 wake_up(workspace_wait
);
786 * cleanup function for module exit
788 static void free_workspaces(void)
790 struct list_head
*workspace
;
793 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
794 while (!list_empty(&comp_idle_workspace
[i
])) {
795 workspace
= comp_idle_workspace
[i
].next
;
797 btrfs_compress_op
[i
]->free_workspace(workspace
);
798 atomic_dec(&comp_alloc_workspace
[i
]);
804 * given an address space and start/len, compress the bytes.
806 * pages are allocated to hold the compressed result and stored
809 * out_pages is used to return the number of pages allocated. There
810 * may be pages allocated even if we return an error
812 * total_in is used to return the number of bytes actually read. It
813 * may be smaller then len if we had to exit early because we
814 * ran out of room in the pages array or because we cross the
817 * total_out is used to return the total number of compressed bytes
819 * max_out tells us the max number of bytes that we're allowed to
822 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
823 u64 start
, unsigned long len
,
825 unsigned long nr_dest_pages
,
826 unsigned long *out_pages
,
827 unsigned long *total_in
,
828 unsigned long *total_out
,
829 unsigned long max_out
)
831 struct list_head
*workspace
;
834 workspace
= find_workspace(type
);
835 if (IS_ERR(workspace
))
838 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
840 nr_dest_pages
, out_pages
,
843 free_workspace(type
, workspace
);
848 * pages_in is an array of pages with compressed data.
850 * disk_start is the starting logical offset of this array in the file
852 * bvec is a bio_vec of pages from the file that we want to decompress into
854 * vcnt is the count of pages in the biovec
856 * srclen is the number of bytes in pages_in
858 * The basic idea is that we have a bio that was created by readpages.
859 * The pages in the bio are for the uncompressed data, and they may not
860 * be contiguous. They all correspond to the range of bytes covered by
861 * the compressed extent.
863 int btrfs_decompress_biovec(int type
, struct page
**pages_in
, u64 disk_start
,
864 struct bio_vec
*bvec
, int vcnt
, size_t srclen
)
866 struct list_head
*workspace
;
869 workspace
= find_workspace(type
);
870 if (IS_ERR(workspace
))
873 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
876 free_workspace(type
, workspace
);
881 * a less complex decompression routine. Our compressed data fits in a
882 * single page, and we want to read a single page out of it.
883 * start_byte tells us the offset into the compressed data we're interested in
885 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
886 unsigned long start_byte
, size_t srclen
, size_t destlen
)
888 struct list_head
*workspace
;
891 workspace
= find_workspace(type
);
892 if (IS_ERR(workspace
))
895 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
896 dest_page
, start_byte
,
899 free_workspace(type
, workspace
);
903 void __exit
btrfs_exit_compress(void)
909 * Copy uncompressed data from working buffer to pages.
911 * buf_start is the byte offset we're of the start of our workspace buffer.
913 * total_out is the last byte of the buffer
915 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
916 unsigned long total_out
, u64 disk_start
,
917 struct bio_vec
*bvec
, int vcnt
,
918 unsigned long *page_index
,
919 unsigned long *pg_offset
)
921 unsigned long buf_offset
;
922 unsigned long current_buf_start
;
923 unsigned long start_byte
;
924 unsigned long working_bytes
= total_out
- buf_start
;
927 struct page
*page_out
= bvec
[*page_index
].bv_page
;
930 * start byte is the first byte of the page we're currently
931 * copying into relative to the start of the compressed data.
933 start_byte
= page_offset(page_out
) - disk_start
;
935 /* we haven't yet hit data corresponding to this page */
936 if (total_out
<= start_byte
)
940 * the start of the data we care about is offset into
941 * the middle of our working buffer
943 if (total_out
> start_byte
&& buf_start
< start_byte
) {
944 buf_offset
= start_byte
- buf_start
;
945 working_bytes
-= buf_offset
;
949 current_buf_start
= buf_start
;
951 /* copy bytes from the working buffer into the pages */
952 while (working_bytes
> 0) {
953 bytes
= min(PAGE_CACHE_SIZE
- *pg_offset
,
954 PAGE_CACHE_SIZE
- buf_offset
);
955 bytes
= min(bytes
, working_bytes
);
956 kaddr
= kmap_atomic(page_out
, KM_USER0
);
957 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
958 kunmap_atomic(kaddr
, KM_USER0
);
959 flush_dcache_page(page_out
);
963 working_bytes
-= bytes
;
964 current_buf_start
+= bytes
;
966 /* check if we need to pick another page */
967 if (*pg_offset
== PAGE_CACHE_SIZE
) {
969 if (*page_index
>= vcnt
)
972 page_out
= bvec
[*page_index
].bv_page
;
974 start_byte
= page_offset(page_out
) - disk_start
;
977 * make sure our new page is covered by this
980 if (total_out
<= start_byte
)
984 * the next page in the biovec might not be adjacent
985 * to the last page, but it might still be found
986 * inside this working buffer. bump our offset pointer
988 if (total_out
> start_byte
&&
989 current_buf_start
< start_byte
) {
990 buf_offset
= start_byte
- buf_start
;
991 working_bytes
= total_out
- start_byte
;
992 current_buf_start
= buf_start
+ buf_offset
;