2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent(log
->fs_info
->extent_root
,
280 eb
->start
, eb
->len
, 0);
282 if (btrfs_buffer_uptodate(eb
, gen
)) {
284 btrfs_write_tree_block(eb
);
286 btrfs_wait_tree_block_writeback(eb
);
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
306 struct btrfs_root
*root
,
307 struct btrfs_path
*path
,
308 struct extent_buffer
*eb
, int slot
,
309 struct btrfs_key
*key
)
313 u64 saved_i_size
= 0;
314 int save_old_i_size
= 0;
315 unsigned long src_ptr
;
316 unsigned long dst_ptr
;
317 int overwrite_root
= 0;
319 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
322 item_size
= btrfs_item_size_nr(eb
, slot
);
323 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
325 /* look for the key in the destination tree */
326 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
330 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
332 if (dst_size
!= item_size
)
335 if (item_size
== 0) {
336 btrfs_release_path(root
, path
);
339 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
340 src_copy
= kmalloc(item_size
, GFP_NOFS
);
342 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
344 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
345 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
347 ret
= memcmp(dst_copy
, src_copy
, item_size
);
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
358 btrfs_release_path(root
, path
);
364 btrfs_release_path(root
, path
);
365 /* try to insert the key into the destination tree */
366 ret
= btrfs_insert_empty_item(trans
, root
, path
,
369 /* make sure any existing item is the correct size */
370 if (ret
== -EEXIST
) {
372 found_size
= btrfs_item_size_nr(path
->nodes
[0],
374 if (found_size
> item_size
) {
375 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
376 } else if (found_size
< item_size
) {
377 ret
= btrfs_extend_item(trans
, root
, path
,
378 item_size
- found_size
);
384 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
387 /* don't overwrite an existing inode if the generation number
388 * was logged as zero. This is done when the tree logging code
389 * is just logging an inode to make sure it exists after recovery.
391 * Also, don't overwrite i_size on directories during replay.
392 * log replay inserts and removes directory items based on the
393 * state of the tree found in the subvolume, and i_size is modified
396 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
397 struct btrfs_inode_item
*src_item
;
398 struct btrfs_inode_item
*dst_item
;
400 src_item
= (struct btrfs_inode_item
*)src_ptr
;
401 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
403 if (btrfs_inode_generation(eb
, src_item
) == 0)
406 if (overwrite_root
&&
407 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
408 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
410 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
415 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
418 if (save_old_i_size
) {
419 struct btrfs_inode_item
*dst_item
;
420 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
421 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
424 /* make sure the generation is filled in */
425 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
426 struct btrfs_inode_item
*dst_item
;
427 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
428 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
429 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
434 btrfs_mark_buffer_dirty(path
->nodes
[0]);
435 btrfs_release_path(root
, path
);
440 * simple helper to read an inode off the disk from a given root
441 * This can only be called for subvolume roots and not for the log
443 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
446 struct btrfs_key key
;
449 key
.objectid
= objectid
;
450 key
.type
= BTRFS_INODE_ITEM_KEY
;
452 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
455 } else if (is_bad_inode(inode
)) {
462 /* replays a single extent in 'eb' at 'slot' with 'key' into the
463 * subvolume 'root'. path is released on entry and should be released
466 * extents in the log tree have not been allocated out of the extent
467 * tree yet. So, this completes the allocation, taking a reference
468 * as required if the extent already exists or creating a new extent
469 * if it isn't in the extent allocation tree yet.
471 * The extent is inserted into the file, dropping any existing extents
472 * from the file that overlap the new one.
474 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
475 struct btrfs_root
*root
,
476 struct btrfs_path
*path
,
477 struct extent_buffer
*eb
, int slot
,
478 struct btrfs_key
*key
)
481 u64 mask
= root
->sectorsize
- 1;
484 u64 start
= key
->offset
;
486 struct btrfs_file_extent_item
*item
;
487 struct inode
*inode
= NULL
;
491 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
492 found_type
= btrfs_file_extent_type(eb
, item
);
494 if (found_type
== BTRFS_FILE_EXTENT_REG
||
495 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
496 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
497 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
498 size
= btrfs_file_extent_inline_len(eb
, item
);
499 extent_end
= (start
+ size
+ mask
) & ~mask
;
505 inode
= read_one_inode(root
, key
->objectid
);
512 * first check to see if we already have this extent in the
513 * file. This must be done before the btrfs_drop_extents run
514 * so we don't try to drop this extent.
516 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
520 (found_type
== BTRFS_FILE_EXTENT_REG
||
521 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
522 struct btrfs_file_extent_item cmp1
;
523 struct btrfs_file_extent_item cmp2
;
524 struct btrfs_file_extent_item
*existing
;
525 struct extent_buffer
*leaf
;
527 leaf
= path
->nodes
[0];
528 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
529 struct btrfs_file_extent_item
);
531 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
533 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
537 * we already have a pointer to this exact extent,
538 * we don't have to do anything
540 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
541 btrfs_release_path(root
, path
);
545 btrfs_release_path(root
, path
);
547 saved_nbytes
= inode_get_bytes(inode
);
548 /* drop any overlapping extents */
549 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
553 if (found_type
== BTRFS_FILE_EXTENT_REG
||
554 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
556 unsigned long dest_offset
;
557 struct btrfs_key ins
;
559 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
562 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
564 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
565 (unsigned long)item
, sizeof(*item
));
567 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
568 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
569 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
570 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
572 if (ins
.objectid
> 0) {
575 LIST_HEAD(ordered_sums
);
577 * is this extent already allocated in the extent
578 * allocation tree? If so, just add a reference
580 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
583 ret
= btrfs_inc_extent_ref(trans
, root
,
584 ins
.objectid
, ins
.offset
,
585 0, root
->root_key
.objectid
,
586 key
->objectid
, offset
);
589 * insert the extent pointer in the extent
592 ret
= btrfs_alloc_logged_file_extent(trans
,
593 root
, root
->root_key
.objectid
,
594 key
->objectid
, offset
, &ins
);
597 btrfs_release_path(root
, path
);
599 if (btrfs_file_extent_compression(eb
, item
)) {
600 csum_start
= ins
.objectid
;
601 csum_end
= csum_start
+ ins
.offset
;
603 csum_start
= ins
.objectid
+
604 btrfs_file_extent_offset(eb
, item
);
605 csum_end
= csum_start
+
606 btrfs_file_extent_num_bytes(eb
, item
);
609 ret
= btrfs_lookup_csums_range(root
->log_root
,
610 csum_start
, csum_end
- 1,
613 while (!list_empty(&ordered_sums
)) {
614 struct btrfs_ordered_sum
*sums
;
615 sums
= list_entry(ordered_sums
.next
,
616 struct btrfs_ordered_sum
,
618 ret
= btrfs_csum_file_blocks(trans
,
619 root
->fs_info
->csum_root
,
622 list_del(&sums
->list
);
626 btrfs_release_path(root
, path
);
628 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
629 /* inline extents are easy, we just overwrite them */
630 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
634 inode_set_bytes(inode
, saved_nbytes
);
635 btrfs_update_inode(trans
, root
, inode
);
643 * when cleaning up conflicts between the directory names in the
644 * subvolume, directory names in the log and directory names in the
645 * inode back references, we may have to unlink inodes from directories.
647 * This is a helper function to do the unlink of a specific directory
650 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
651 struct btrfs_root
*root
,
652 struct btrfs_path
*path
,
654 struct btrfs_dir_item
*di
)
659 struct extent_buffer
*leaf
;
660 struct btrfs_key location
;
663 leaf
= path
->nodes
[0];
665 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
666 name_len
= btrfs_dir_name_len(leaf
, di
);
667 name
= kmalloc(name_len
, GFP_NOFS
);
668 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
669 btrfs_release_path(root
, path
);
671 inode
= read_one_inode(root
, location
.objectid
);
674 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
677 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
686 * helper function to see if a given name and sequence number found
687 * in an inode back reference are already in a directory and correctly
688 * point to this inode
690 static noinline
int inode_in_dir(struct btrfs_root
*root
,
691 struct btrfs_path
*path
,
692 u64 dirid
, u64 objectid
, u64 index
,
693 const char *name
, int name_len
)
695 struct btrfs_dir_item
*di
;
696 struct btrfs_key location
;
699 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
700 index
, name
, name_len
, 0);
701 if (di
&& !IS_ERR(di
)) {
702 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
703 if (location
.objectid
!= objectid
)
707 btrfs_release_path(root
, path
);
709 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
710 if (di
&& !IS_ERR(di
)) {
711 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
712 if (location
.objectid
!= objectid
)
718 btrfs_release_path(root
, path
);
723 * helper function to check a log tree for a named back reference in
724 * an inode. This is used to decide if a back reference that is
725 * found in the subvolume conflicts with what we find in the log.
727 * inode backreferences may have multiple refs in a single item,
728 * during replay we process one reference at a time, and we don't
729 * want to delete valid links to a file from the subvolume if that
730 * link is also in the log.
732 static noinline
int backref_in_log(struct btrfs_root
*log
,
733 struct btrfs_key
*key
,
734 char *name
, int namelen
)
736 struct btrfs_path
*path
;
737 struct btrfs_inode_ref
*ref
;
739 unsigned long ptr_end
;
740 unsigned long name_ptr
;
746 path
= btrfs_alloc_path();
747 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
751 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
752 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
753 ptr_end
= ptr
+ item_size
;
754 while (ptr
< ptr_end
) {
755 ref
= (struct btrfs_inode_ref
*)ptr
;
756 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
757 if (found_name_len
== namelen
) {
758 name_ptr
= (unsigned long)(ref
+ 1);
759 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
766 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
769 btrfs_free_path(path
);
775 * replay one inode back reference item found in the log tree.
776 * eb, slot and key refer to the buffer and key found in the log tree.
777 * root is the destination we are replaying into, and path is for temp
778 * use by this function. (it should be released on return).
780 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
781 struct btrfs_root
*root
,
782 struct btrfs_root
*log
,
783 struct btrfs_path
*path
,
784 struct extent_buffer
*eb
, int slot
,
785 struct btrfs_key
*key
)
789 struct btrfs_inode_ref
*ref
;
790 struct btrfs_dir_item
*di
;
794 unsigned long ref_ptr
;
795 unsigned long ref_end
;
798 * it is possible that we didn't log all the parent directories
799 * for a given inode. If we don't find the dir, just don't
800 * copy the back ref in. The link count fixup code will take
803 dir
= read_one_inode(root
, key
->offset
);
807 inode
= read_one_inode(root
, key
->objectid
);
810 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
811 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
814 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
816 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
817 name
= kmalloc(namelen
, GFP_NOFS
);
820 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
822 /* if we already have a perfect match, we're done */
823 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
824 btrfs_inode_ref_index(eb
, ref
),
830 * look for a conflicting back reference in the metadata.
831 * if we find one we have to unlink that name of the file
832 * before we add our new link. Later on, we overwrite any
833 * existing back reference, and we don't want to create
834 * dangling pointers in the directory.
837 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
841 struct btrfs_inode_ref
*victim_ref
;
843 unsigned long ptr_end
;
844 struct extent_buffer
*leaf
= path
->nodes
[0];
846 /* are we trying to overwrite a back ref for the root directory
847 * if so, just jump out, we're done
849 if (key
->objectid
== key
->offset
)
852 /* check all the names in this back reference to see
853 * if they are in the log. if so, we allow them to stay
854 * otherwise they must be unlinked as a conflict
856 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
857 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
858 while (ptr
< ptr_end
) {
859 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
860 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
862 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
863 BUG_ON(!victim_name
);
865 read_extent_buffer(leaf
, victim_name
,
866 (unsigned long)(victim_ref
+ 1),
869 if (!backref_in_log(log
, key
, victim_name
,
871 btrfs_inc_nlink(inode
);
872 btrfs_release_path(root
, path
);
874 ret
= btrfs_unlink_inode(trans
, root
, dir
,
878 btrfs_release_path(root
, path
);
882 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
886 btrfs_release_path(root
, path
);
888 /* look for a conflicting sequence number */
889 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
890 btrfs_inode_ref_index(eb
, ref
),
892 if (di
&& !IS_ERR(di
)) {
893 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
896 btrfs_release_path(root
, path
);
899 /* look for a conflicting name */
900 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
902 if (di
&& !IS_ERR(di
)) {
903 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
906 btrfs_release_path(root
, path
);
908 /* insert our name */
909 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
910 btrfs_inode_ref_index(eb
, ref
));
913 btrfs_update_inode(trans
, root
, inode
);
916 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
918 if (ref_ptr
< ref_end
)
921 /* finally write the back reference in the inode */
922 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
926 btrfs_release_path(root
, path
);
932 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
933 struct btrfs_root
*root
, u64 offset
)
936 ret
= btrfs_find_orphan_item(root
, offset
);
938 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
944 * There are a few corners where the link count of the file can't
945 * be properly maintained during replay. So, instead of adding
946 * lots of complexity to the log code, we just scan the backrefs
947 * for any file that has been through replay.
949 * The scan will update the link count on the inode to reflect the
950 * number of back refs found. If it goes down to zero, the iput
951 * will free the inode.
953 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
954 struct btrfs_root
*root
,
957 struct btrfs_path
*path
;
959 struct btrfs_key key
;
962 unsigned long ptr_end
;
965 key
.objectid
= inode
->i_ino
;
966 key
.type
= BTRFS_INODE_REF_KEY
;
967 key
.offset
= (u64
)-1;
969 path
= btrfs_alloc_path();
972 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
976 if (path
->slots
[0] == 0)
980 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
982 if (key
.objectid
!= inode
->i_ino
||
983 key
.type
!= BTRFS_INODE_REF_KEY
)
985 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
986 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
988 while (ptr
< ptr_end
) {
989 struct btrfs_inode_ref
*ref
;
991 ref
= (struct btrfs_inode_ref
*)ptr
;
992 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
994 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1001 btrfs_release_path(root
, path
);
1003 btrfs_release_path(root
, path
);
1004 if (nlink
!= inode
->i_nlink
) {
1005 inode
->i_nlink
= nlink
;
1006 btrfs_update_inode(trans
, root
, inode
);
1008 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1010 if (inode
->i_nlink
== 0) {
1011 if (S_ISDIR(inode
->i_mode
)) {
1012 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1016 ret
= insert_orphan_item(trans
, root
, inode
->i_ino
);
1019 btrfs_free_path(path
);
1024 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1025 struct btrfs_root
*root
,
1026 struct btrfs_path
*path
)
1029 struct btrfs_key key
;
1030 struct inode
*inode
;
1032 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1033 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1034 key
.offset
= (u64
)-1;
1036 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1041 if (path
->slots
[0] == 0)
1046 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1047 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1048 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1051 ret
= btrfs_del_item(trans
, root
, path
);
1054 btrfs_release_path(root
, path
);
1055 inode
= read_one_inode(root
, key
.offset
);
1058 ret
= fixup_inode_link_count(trans
, root
, inode
);
1064 * fixup on a directory may create new entries,
1065 * make sure we always look for the highset possible
1068 key
.offset
= (u64
)-1;
1070 btrfs_release_path(root
, path
);
1076 * record a given inode in the fixup dir so we can check its link
1077 * count when replay is done. The link count is incremented here
1078 * so the inode won't go away until we check it
1080 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1081 struct btrfs_root
*root
,
1082 struct btrfs_path
*path
,
1085 struct btrfs_key key
;
1087 struct inode
*inode
;
1089 inode
= read_one_inode(root
, objectid
);
1092 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1093 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1094 key
.offset
= objectid
;
1096 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1098 btrfs_release_path(root
, path
);
1100 btrfs_inc_nlink(inode
);
1101 btrfs_update_inode(trans
, root
, inode
);
1102 } else if (ret
== -EEXIST
) {
1113 * when replaying the log for a directory, we only insert names
1114 * for inodes that actually exist. This means an fsync on a directory
1115 * does not implicitly fsync all the new files in it
1117 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1118 struct btrfs_root
*root
,
1119 struct btrfs_path
*path
,
1120 u64 dirid
, u64 index
,
1121 char *name
, int name_len
, u8 type
,
1122 struct btrfs_key
*location
)
1124 struct inode
*inode
;
1128 inode
= read_one_inode(root
, location
->objectid
);
1132 dir
= read_one_inode(root
, dirid
);
1137 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1139 /* FIXME, put inode into FIXUP list */
1147 * take a single entry in a log directory item and replay it into
1150 * if a conflicting item exists in the subdirectory already,
1151 * the inode it points to is unlinked and put into the link count
1154 * If a name from the log points to a file or directory that does
1155 * not exist in the FS, it is skipped. fsyncs on directories
1156 * do not force down inodes inside that directory, just changes to the
1157 * names or unlinks in a directory.
1159 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1160 struct btrfs_root
*root
,
1161 struct btrfs_path
*path
,
1162 struct extent_buffer
*eb
,
1163 struct btrfs_dir_item
*di
,
1164 struct btrfs_key
*key
)
1168 struct btrfs_dir_item
*dst_di
;
1169 struct btrfs_key found_key
;
1170 struct btrfs_key log_key
;
1176 dir
= read_one_inode(root
, key
->objectid
);
1179 name_len
= btrfs_dir_name_len(eb
, di
);
1180 name
= kmalloc(name_len
, GFP_NOFS
);
1181 log_type
= btrfs_dir_type(eb
, di
);
1182 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1185 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1186 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1191 btrfs_release_path(root
, path
);
1193 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1194 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1196 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1197 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1204 if (!dst_di
|| IS_ERR(dst_di
)) {
1205 /* we need a sequence number to insert, so we only
1206 * do inserts for the BTRFS_DIR_INDEX_KEY types
1208 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1213 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1214 /* the existing item matches the logged item */
1215 if (found_key
.objectid
== log_key
.objectid
&&
1216 found_key
.type
== log_key
.type
&&
1217 found_key
.offset
== log_key
.offset
&&
1218 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1223 * don't drop the conflicting directory entry if the inode
1224 * for the new entry doesn't exist
1229 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1232 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1235 btrfs_release_path(root
, path
);
1241 btrfs_release_path(root
, path
);
1242 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1243 name
, name_len
, log_type
, &log_key
);
1245 BUG_ON(ret
&& ret
!= -ENOENT
);
1250 * find all the names in a directory item and reconcile them into
1251 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1252 * one name in a directory item, but the same code gets used for
1253 * both directory index types
1255 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1256 struct btrfs_root
*root
,
1257 struct btrfs_path
*path
,
1258 struct extent_buffer
*eb
, int slot
,
1259 struct btrfs_key
*key
)
1262 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1263 struct btrfs_dir_item
*di
;
1266 unsigned long ptr_end
;
1268 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1269 ptr_end
= ptr
+ item_size
;
1270 while (ptr
< ptr_end
) {
1271 di
= (struct btrfs_dir_item
*)ptr
;
1272 name_len
= btrfs_dir_name_len(eb
, di
);
1273 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1275 ptr
= (unsigned long)(di
+ 1);
1282 * directory replay has two parts. There are the standard directory
1283 * items in the log copied from the subvolume, and range items
1284 * created in the log while the subvolume was logged.
1286 * The range items tell us which parts of the key space the log
1287 * is authoritative for. During replay, if a key in the subvolume
1288 * directory is in a logged range item, but not actually in the log
1289 * that means it was deleted from the directory before the fsync
1290 * and should be removed.
1292 static noinline
int find_dir_range(struct btrfs_root
*root
,
1293 struct btrfs_path
*path
,
1294 u64 dirid
, int key_type
,
1295 u64
*start_ret
, u64
*end_ret
)
1297 struct btrfs_key key
;
1299 struct btrfs_dir_log_item
*item
;
1303 if (*start_ret
== (u64
)-1)
1306 key
.objectid
= dirid
;
1307 key
.type
= key_type
;
1308 key
.offset
= *start_ret
;
1310 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1314 if (path
->slots
[0] == 0)
1319 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1321 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1325 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1326 struct btrfs_dir_log_item
);
1327 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1329 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1331 *start_ret
= key
.offset
;
1332 *end_ret
= found_end
;
1337 /* check the next slot in the tree to see if it is a valid item */
1338 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1339 if (path
->slots
[0] >= nritems
) {
1340 ret
= btrfs_next_leaf(root
, path
);
1347 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1349 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1353 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1354 struct btrfs_dir_log_item
);
1355 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1356 *start_ret
= key
.offset
;
1357 *end_ret
= found_end
;
1360 btrfs_release_path(root
, path
);
1365 * this looks for a given directory item in the log. If the directory
1366 * item is not in the log, the item is removed and the inode it points
1369 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1370 struct btrfs_root
*root
,
1371 struct btrfs_root
*log
,
1372 struct btrfs_path
*path
,
1373 struct btrfs_path
*log_path
,
1375 struct btrfs_key
*dir_key
)
1378 struct extent_buffer
*eb
;
1381 struct btrfs_dir_item
*di
;
1382 struct btrfs_dir_item
*log_di
;
1385 unsigned long ptr_end
;
1387 struct inode
*inode
;
1388 struct btrfs_key location
;
1391 eb
= path
->nodes
[0];
1392 slot
= path
->slots
[0];
1393 item_size
= btrfs_item_size_nr(eb
, slot
);
1394 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1395 ptr_end
= ptr
+ item_size
;
1396 while (ptr
< ptr_end
) {
1397 di
= (struct btrfs_dir_item
*)ptr
;
1398 name_len
= btrfs_dir_name_len(eb
, di
);
1399 name
= kmalloc(name_len
, GFP_NOFS
);
1404 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1407 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1408 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1411 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1412 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1418 if (!log_di
|| IS_ERR(log_di
)) {
1419 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1420 btrfs_release_path(root
, path
);
1421 btrfs_release_path(log
, log_path
);
1422 inode
= read_one_inode(root
, location
.objectid
);
1425 ret
= link_to_fixup_dir(trans
, root
,
1426 path
, location
.objectid
);
1428 btrfs_inc_nlink(inode
);
1429 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1435 /* there might still be more names under this key
1436 * check and repeat if required
1438 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1445 btrfs_release_path(log
, log_path
);
1448 ptr
= (unsigned long)(di
+ 1);
1453 btrfs_release_path(root
, path
);
1454 btrfs_release_path(log
, log_path
);
1459 * deletion replay happens before we copy any new directory items
1460 * out of the log or out of backreferences from inodes. It
1461 * scans the log to find ranges of keys that log is authoritative for,
1462 * and then scans the directory to find items in those ranges that are
1463 * not present in the log.
1465 * Anything we don't find in the log is unlinked and removed from the
1468 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1469 struct btrfs_root
*root
,
1470 struct btrfs_root
*log
,
1471 struct btrfs_path
*path
,
1472 u64 dirid
, int del_all
)
1476 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1478 struct btrfs_key dir_key
;
1479 struct btrfs_key found_key
;
1480 struct btrfs_path
*log_path
;
1483 dir_key
.objectid
= dirid
;
1484 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1485 log_path
= btrfs_alloc_path();
1489 dir
= read_one_inode(root
, dirid
);
1490 /* it isn't an error if the inode isn't there, that can happen
1491 * because we replay the deletes before we copy in the inode item
1495 btrfs_free_path(log_path
);
1503 range_end
= (u64
)-1;
1505 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1506 &range_start
, &range_end
);
1511 dir_key
.offset
= range_start
;
1514 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1519 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1520 if (path
->slots
[0] >= nritems
) {
1521 ret
= btrfs_next_leaf(root
, path
);
1525 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1527 if (found_key
.objectid
!= dirid
||
1528 found_key
.type
!= dir_key
.type
)
1531 if (found_key
.offset
> range_end
)
1534 ret
= check_item_in_log(trans
, root
, log
, path
,
1538 if (found_key
.offset
== (u64
)-1)
1540 dir_key
.offset
= found_key
.offset
+ 1;
1542 btrfs_release_path(root
, path
);
1543 if (range_end
== (u64
)-1)
1545 range_start
= range_end
+ 1;
1550 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1551 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1552 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1553 btrfs_release_path(root
, path
);
1557 btrfs_release_path(root
, path
);
1558 btrfs_free_path(log_path
);
1564 * the process_func used to replay items from the log tree. This
1565 * gets called in two different stages. The first stage just looks
1566 * for inodes and makes sure they are all copied into the subvolume.
1568 * The second stage copies all the other item types from the log into
1569 * the subvolume. The two stage approach is slower, but gets rid of
1570 * lots of complexity around inodes referencing other inodes that exist
1571 * only in the log (references come from either directory items or inode
1574 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1575 struct walk_control
*wc
, u64 gen
)
1578 struct btrfs_path
*path
;
1579 struct btrfs_root
*root
= wc
->replay_dest
;
1580 struct btrfs_key key
;
1585 btrfs_read_buffer(eb
, gen
);
1587 level
= btrfs_header_level(eb
);
1592 path
= btrfs_alloc_path();
1595 nritems
= btrfs_header_nritems(eb
);
1596 for (i
= 0; i
< nritems
; i
++) {
1597 btrfs_item_key_to_cpu(eb
, &key
, i
);
1599 /* inode keys are done during the first stage */
1600 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1601 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1602 struct btrfs_inode_item
*inode_item
;
1605 inode_item
= btrfs_item_ptr(eb
, i
,
1606 struct btrfs_inode_item
);
1607 mode
= btrfs_inode_mode(eb
, inode_item
);
1608 if (S_ISDIR(mode
)) {
1609 ret
= replay_dir_deletes(wc
->trans
,
1610 root
, log
, path
, key
.objectid
, 0);
1613 ret
= overwrite_item(wc
->trans
, root
, path
,
1617 /* for regular files, make sure corresponding
1618 * orhpan item exist. extents past the new EOF
1619 * will be truncated later by orphan cleanup.
1621 if (S_ISREG(mode
)) {
1622 ret
= insert_orphan_item(wc
->trans
, root
,
1627 ret
= link_to_fixup_dir(wc
->trans
, root
,
1628 path
, key
.objectid
);
1631 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1634 /* these keys are simply copied */
1635 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1636 ret
= overwrite_item(wc
->trans
, root
, path
,
1639 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1640 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1642 BUG_ON(ret
&& ret
!= -ENOENT
);
1643 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1644 ret
= replay_one_extent(wc
->trans
, root
, path
,
1647 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1648 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1649 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1654 btrfs_free_path(path
);
1658 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1659 struct btrfs_root
*root
,
1660 struct btrfs_path
*path
, int *level
,
1661 struct walk_control
*wc
)
1666 struct extent_buffer
*next
;
1667 struct extent_buffer
*cur
;
1668 struct extent_buffer
*parent
;
1672 WARN_ON(*level
< 0);
1673 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1675 while (*level
> 0) {
1676 WARN_ON(*level
< 0);
1677 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1678 cur
= path
->nodes
[*level
];
1680 if (btrfs_header_level(cur
) != *level
)
1683 if (path
->slots
[*level
] >=
1684 btrfs_header_nritems(cur
))
1687 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1688 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1689 blocksize
= btrfs_level_size(root
, *level
- 1);
1691 parent
= path
->nodes
[*level
];
1692 root_owner
= btrfs_header_owner(parent
);
1694 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1697 wc
->process_func(root
, next
, wc
, ptr_gen
);
1699 path
->slots
[*level
]++;
1701 btrfs_read_buffer(next
, ptr_gen
);
1703 btrfs_tree_lock(next
);
1704 clean_tree_block(trans
, root
, next
);
1705 btrfs_set_lock_blocking(next
);
1706 btrfs_wait_tree_block_writeback(next
);
1707 btrfs_tree_unlock(next
);
1709 WARN_ON(root_owner
!=
1710 BTRFS_TREE_LOG_OBJECTID
);
1711 ret
= btrfs_free_reserved_extent(root
,
1715 free_extent_buffer(next
);
1718 btrfs_read_buffer(next
, ptr_gen
);
1720 WARN_ON(*level
<= 0);
1721 if (path
->nodes
[*level
-1])
1722 free_extent_buffer(path
->nodes
[*level
-1]);
1723 path
->nodes
[*level
-1] = next
;
1724 *level
= btrfs_header_level(next
);
1725 path
->slots
[*level
] = 0;
1728 WARN_ON(*level
< 0);
1729 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1731 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1737 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1738 struct btrfs_root
*root
,
1739 struct btrfs_path
*path
, int *level
,
1740 struct walk_control
*wc
)
1747 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1748 slot
= path
->slots
[i
];
1749 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1752 WARN_ON(*level
== 0);
1755 struct extent_buffer
*parent
;
1756 if (path
->nodes
[*level
] == root
->node
)
1757 parent
= path
->nodes
[*level
];
1759 parent
= path
->nodes
[*level
+ 1];
1761 root_owner
= btrfs_header_owner(parent
);
1762 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1763 btrfs_header_generation(path
->nodes
[*level
]));
1765 struct extent_buffer
*next
;
1767 next
= path
->nodes
[*level
];
1769 btrfs_tree_lock(next
);
1770 clean_tree_block(trans
, root
, next
);
1771 btrfs_set_lock_blocking(next
);
1772 btrfs_wait_tree_block_writeback(next
);
1773 btrfs_tree_unlock(next
);
1775 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1776 ret
= btrfs_free_reserved_extent(root
,
1777 path
->nodes
[*level
]->start
,
1778 path
->nodes
[*level
]->len
);
1781 free_extent_buffer(path
->nodes
[*level
]);
1782 path
->nodes
[*level
] = NULL
;
1790 * drop the reference count on the tree rooted at 'snap'. This traverses
1791 * the tree freeing any blocks that have a ref count of zero after being
1794 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1795 struct btrfs_root
*log
, struct walk_control
*wc
)
1800 struct btrfs_path
*path
;
1804 path
= btrfs_alloc_path();
1807 level
= btrfs_header_level(log
->node
);
1809 path
->nodes
[level
] = log
->node
;
1810 extent_buffer_get(log
->node
);
1811 path
->slots
[level
] = 0;
1814 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1820 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1827 /* was the root node processed? if not, catch it here */
1828 if (path
->nodes
[orig_level
]) {
1829 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1830 btrfs_header_generation(path
->nodes
[orig_level
]));
1832 struct extent_buffer
*next
;
1834 next
= path
->nodes
[orig_level
];
1836 btrfs_tree_lock(next
);
1837 clean_tree_block(trans
, log
, next
);
1838 btrfs_set_lock_blocking(next
);
1839 btrfs_wait_tree_block_writeback(next
);
1840 btrfs_tree_unlock(next
);
1842 WARN_ON(log
->root_key
.objectid
!=
1843 BTRFS_TREE_LOG_OBJECTID
);
1844 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1850 for (i
= 0; i
<= orig_level
; i
++) {
1851 if (path
->nodes
[i
]) {
1852 free_extent_buffer(path
->nodes
[i
]);
1853 path
->nodes
[i
] = NULL
;
1856 btrfs_free_path(path
);
1861 * helper function to update the item for a given subvolumes log root
1862 * in the tree of log roots
1864 static int update_log_root(struct btrfs_trans_handle
*trans
,
1865 struct btrfs_root
*log
)
1869 if (log
->log_transid
== 1) {
1870 /* insert root item on the first sync */
1871 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1872 &log
->root_key
, &log
->root_item
);
1874 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1875 &log
->root_key
, &log
->root_item
);
1880 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1881 struct btrfs_root
*root
, unsigned long transid
)
1884 int index
= transid
% 2;
1887 * we only allow two pending log transactions at a time,
1888 * so we know that if ours is more than 2 older than the
1889 * current transaction, we're done
1892 prepare_to_wait(&root
->log_commit_wait
[index
],
1893 &wait
, TASK_UNINTERRUPTIBLE
);
1894 mutex_unlock(&root
->log_mutex
);
1896 if (root
->fs_info
->last_trans_log_full_commit
!=
1897 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1898 atomic_read(&root
->log_commit
[index
]))
1901 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1902 mutex_lock(&root
->log_mutex
);
1903 } while (root
->log_transid
< transid
+ 2 &&
1904 atomic_read(&root
->log_commit
[index
]));
1908 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1909 struct btrfs_root
*root
)
1912 while (atomic_read(&root
->log_writers
)) {
1913 prepare_to_wait(&root
->log_writer_wait
,
1914 &wait
, TASK_UNINTERRUPTIBLE
);
1915 mutex_unlock(&root
->log_mutex
);
1916 if (root
->fs_info
->last_trans_log_full_commit
!=
1917 trans
->transid
&& atomic_read(&root
->log_writers
))
1919 mutex_lock(&root
->log_mutex
);
1920 finish_wait(&root
->log_writer_wait
, &wait
);
1926 * btrfs_sync_log does sends a given tree log down to the disk and
1927 * updates the super blocks to record it. When this call is done,
1928 * you know that any inodes previously logged are safely on disk only
1931 * Any other return value means you need to call btrfs_commit_transaction.
1932 * Some of the edge cases for fsyncing directories that have had unlinks
1933 * or renames done in the past mean that sometimes the only safe
1934 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1935 * that has happened.
1937 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1938 struct btrfs_root
*root
)
1944 struct btrfs_root
*log
= root
->log_root
;
1945 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1946 unsigned long log_transid
= 0;
1948 mutex_lock(&root
->log_mutex
);
1949 index1
= root
->log_transid
% 2;
1950 if (atomic_read(&root
->log_commit
[index1
])) {
1951 wait_log_commit(trans
, root
, root
->log_transid
);
1952 mutex_unlock(&root
->log_mutex
);
1955 atomic_set(&root
->log_commit
[index1
], 1);
1957 /* wait for previous tree log sync to complete */
1958 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1959 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1962 unsigned long batch
= root
->log_batch
;
1963 if (root
->log_multiple_pids
) {
1964 mutex_unlock(&root
->log_mutex
);
1965 schedule_timeout_uninterruptible(1);
1966 mutex_lock(&root
->log_mutex
);
1968 wait_for_writer(trans
, root
);
1969 if (batch
== root
->log_batch
)
1973 /* bail out if we need to do a full commit */
1974 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
1976 mutex_unlock(&root
->log_mutex
);
1980 log_transid
= root
->log_transid
;
1981 if (log_transid
% 2 == 0)
1982 mark
= EXTENT_DIRTY
;
1986 /* we start IO on all the marked extents here, but we don't actually
1987 * wait for them until later.
1989 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
1992 btrfs_set_root_node(&log
->root_item
, log
->node
);
1994 root
->log_batch
= 0;
1995 root
->log_transid
++;
1996 log
->log_transid
= root
->log_transid
;
1997 root
->log_start_pid
= 0;
2000 * IO has been started, blocks of the log tree have WRITTEN flag set
2001 * in their headers. new modifications of the log will be written to
2002 * new positions. so it's safe to allow log writers to go in.
2004 mutex_unlock(&root
->log_mutex
);
2006 mutex_lock(&log_root_tree
->log_mutex
);
2007 log_root_tree
->log_batch
++;
2008 atomic_inc(&log_root_tree
->log_writers
);
2009 mutex_unlock(&log_root_tree
->log_mutex
);
2011 ret
= update_log_root(trans
, log
);
2013 mutex_lock(&log_root_tree
->log_mutex
);
2014 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2016 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2017 wake_up(&log_root_tree
->log_writer_wait
);
2021 BUG_ON(ret
!= -ENOSPC
);
2022 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2023 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2024 mutex_unlock(&log_root_tree
->log_mutex
);
2029 index2
= log_root_tree
->log_transid
% 2;
2030 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2031 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2032 wait_log_commit(trans
, log_root_tree
,
2033 log_root_tree
->log_transid
);
2034 mutex_unlock(&log_root_tree
->log_mutex
);
2037 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2039 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2040 wait_log_commit(trans
, log_root_tree
,
2041 log_root_tree
->log_transid
- 1);
2044 wait_for_writer(trans
, log_root_tree
);
2047 * now that we've moved on to the tree of log tree roots,
2048 * check the full commit flag again
2050 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2051 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2052 mutex_unlock(&log_root_tree
->log_mutex
);
2054 goto out_wake_log_root
;
2057 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2058 &log_root_tree
->dirty_log_pages
,
2059 EXTENT_DIRTY
| EXTENT_NEW
);
2061 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2063 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2064 log_root_tree
->node
->start
);
2065 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2066 btrfs_header_level(log_root_tree
->node
));
2068 log_root_tree
->log_batch
= 0;
2069 log_root_tree
->log_transid
++;
2072 mutex_unlock(&log_root_tree
->log_mutex
);
2075 * nobody else is going to jump in and write the the ctree
2076 * super here because the log_commit atomic below is protecting
2077 * us. We must be called with a transaction handle pinning
2078 * the running transaction open, so a full commit can't hop
2079 * in and cause problems either.
2081 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2084 mutex_lock(&root
->log_mutex
);
2085 if (root
->last_log_commit
< log_transid
)
2086 root
->last_log_commit
= log_transid
;
2087 mutex_unlock(&root
->log_mutex
);
2090 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2092 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2093 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2095 atomic_set(&root
->log_commit
[index1
], 0);
2097 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2098 wake_up(&root
->log_commit_wait
[index1
]);
2102 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2103 struct btrfs_root
*log
)
2108 struct walk_control wc
= {
2110 .process_func
= process_one_buffer
2113 ret
= walk_log_tree(trans
, log
, &wc
);
2117 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2118 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2122 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2123 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2126 free_extent_buffer(log
->node
);
2131 * free all the extents used by the tree log. This should be called
2132 * at commit time of the full transaction
2134 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2136 if (root
->log_root
) {
2137 free_log_tree(trans
, root
->log_root
);
2138 root
->log_root
= NULL
;
2143 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2144 struct btrfs_fs_info
*fs_info
)
2146 if (fs_info
->log_root_tree
) {
2147 free_log_tree(trans
, fs_info
->log_root_tree
);
2148 fs_info
->log_root_tree
= NULL
;
2154 * If both a file and directory are logged, and unlinks or renames are
2155 * mixed in, we have a few interesting corners:
2157 * create file X in dir Y
2158 * link file X to X.link in dir Y
2160 * unlink file X but leave X.link
2163 * After a crash we would expect only X.link to exist. But file X
2164 * didn't get fsync'd again so the log has back refs for X and X.link.
2166 * We solve this by removing directory entries and inode backrefs from the
2167 * log when a file that was logged in the current transaction is
2168 * unlinked. Any later fsync will include the updated log entries, and
2169 * we'll be able to reconstruct the proper directory items from backrefs.
2171 * This optimizations allows us to avoid relogging the entire inode
2172 * or the entire directory.
2174 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2175 struct btrfs_root
*root
,
2176 const char *name
, int name_len
,
2177 struct inode
*dir
, u64 index
)
2179 struct btrfs_root
*log
;
2180 struct btrfs_dir_item
*di
;
2181 struct btrfs_path
*path
;
2186 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2189 ret
= join_running_log_trans(root
);
2193 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2195 log
= root
->log_root
;
2196 path
= btrfs_alloc_path();
2197 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2198 name
, name_len
, -1);
2204 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2205 bytes_del
+= name_len
;
2208 btrfs_release_path(log
, path
);
2209 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2210 index
, name
, name_len
, -1);
2216 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2217 bytes_del
+= name_len
;
2221 /* update the directory size in the log to reflect the names
2225 struct btrfs_key key
;
2227 key
.objectid
= dir
->i_ino
;
2229 key
.type
= BTRFS_INODE_ITEM_KEY
;
2230 btrfs_release_path(log
, path
);
2232 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2238 struct btrfs_inode_item
*item
;
2241 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2242 struct btrfs_inode_item
);
2243 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2244 if (i_size
> bytes_del
)
2245 i_size
-= bytes_del
;
2248 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2249 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2252 btrfs_release_path(log
, path
);
2255 btrfs_free_path(path
);
2256 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2257 if (ret
== -ENOSPC
) {
2258 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2261 btrfs_end_log_trans(root
);
2266 /* see comments for btrfs_del_dir_entries_in_log */
2267 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2268 struct btrfs_root
*root
,
2269 const char *name
, int name_len
,
2270 struct inode
*inode
, u64 dirid
)
2272 struct btrfs_root
*log
;
2276 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2279 ret
= join_running_log_trans(root
);
2282 log
= root
->log_root
;
2283 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2285 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2287 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2288 if (ret
== -ENOSPC
) {
2289 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2292 btrfs_end_log_trans(root
);
2298 * creates a range item in the log for 'dirid'. first_offset and
2299 * last_offset tell us which parts of the key space the log should
2300 * be considered authoritative for.
2302 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2303 struct btrfs_root
*log
,
2304 struct btrfs_path
*path
,
2305 int key_type
, u64 dirid
,
2306 u64 first_offset
, u64 last_offset
)
2309 struct btrfs_key key
;
2310 struct btrfs_dir_log_item
*item
;
2312 key
.objectid
= dirid
;
2313 key
.offset
= first_offset
;
2314 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2315 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2317 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2318 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2322 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2323 struct btrfs_dir_log_item
);
2324 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2325 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2326 btrfs_release_path(log
, path
);
2331 * log all the items included in the current transaction for a given
2332 * directory. This also creates the range items in the log tree required
2333 * to replay anything deleted before the fsync
2335 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2336 struct btrfs_root
*root
, struct inode
*inode
,
2337 struct btrfs_path
*path
,
2338 struct btrfs_path
*dst_path
, int key_type
,
2339 u64 min_offset
, u64
*last_offset_ret
)
2341 struct btrfs_key min_key
;
2342 struct btrfs_key max_key
;
2343 struct btrfs_root
*log
= root
->log_root
;
2344 struct extent_buffer
*src
;
2349 u64 first_offset
= min_offset
;
2350 u64 last_offset
= (u64
)-1;
2352 log
= root
->log_root
;
2353 max_key
.objectid
= inode
->i_ino
;
2354 max_key
.offset
= (u64
)-1;
2355 max_key
.type
= key_type
;
2357 min_key
.objectid
= inode
->i_ino
;
2358 min_key
.type
= key_type
;
2359 min_key
.offset
= min_offset
;
2361 path
->keep_locks
= 1;
2363 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2364 path
, 0, trans
->transid
);
2367 * we didn't find anything from this transaction, see if there
2368 * is anything at all
2370 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2371 min_key
.type
!= key_type
) {
2372 min_key
.objectid
= inode
->i_ino
;
2373 min_key
.type
= key_type
;
2374 min_key
.offset
= (u64
)-1;
2375 btrfs_release_path(root
, path
);
2376 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2378 btrfs_release_path(root
, path
);
2381 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2383 /* if ret == 0 there are items for this type,
2384 * create a range to tell us the last key of this type.
2385 * otherwise, there are no items in this directory after
2386 * *min_offset, and we create a range to indicate that.
2389 struct btrfs_key tmp
;
2390 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2392 if (key_type
== tmp
.type
)
2393 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2398 /* go backward to find any previous key */
2399 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2401 struct btrfs_key tmp
;
2402 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2403 if (key_type
== tmp
.type
) {
2404 first_offset
= tmp
.offset
;
2405 ret
= overwrite_item(trans
, log
, dst_path
,
2406 path
->nodes
[0], path
->slots
[0],
2414 btrfs_release_path(root
, path
);
2416 /* find the first key from this transaction again */
2417 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2424 * we have a block from this transaction, log every item in it
2425 * from our directory
2428 struct btrfs_key tmp
;
2429 src
= path
->nodes
[0];
2430 nritems
= btrfs_header_nritems(src
);
2431 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2432 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2434 if (min_key
.objectid
!= inode
->i_ino
||
2435 min_key
.type
!= key_type
)
2437 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2444 path
->slots
[0] = nritems
;
2447 * look ahead to the next item and see if it is also
2448 * from this directory and from this transaction
2450 ret
= btrfs_next_leaf(root
, path
);
2452 last_offset
= (u64
)-1;
2455 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2456 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2457 last_offset
= (u64
)-1;
2460 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2461 ret
= overwrite_item(trans
, log
, dst_path
,
2462 path
->nodes
[0], path
->slots
[0],
2467 last_offset
= tmp
.offset
;
2472 btrfs_release_path(root
, path
);
2473 btrfs_release_path(log
, dst_path
);
2476 *last_offset_ret
= last_offset
;
2478 * insert the log range keys to indicate where the log
2481 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2482 inode
->i_ino
, first_offset
,
2491 * logging directories is very similar to logging inodes, We find all the items
2492 * from the current transaction and write them to the log.
2494 * The recovery code scans the directory in the subvolume, and if it finds a
2495 * key in the range logged that is not present in the log tree, then it means
2496 * that dir entry was unlinked during the transaction.
2498 * In order for that scan to work, we must include one key smaller than
2499 * the smallest logged by this transaction and one key larger than the largest
2500 * key logged by this transaction.
2502 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2503 struct btrfs_root
*root
, struct inode
*inode
,
2504 struct btrfs_path
*path
,
2505 struct btrfs_path
*dst_path
)
2510 int key_type
= BTRFS_DIR_ITEM_KEY
;
2516 ret
= log_dir_items(trans
, root
, inode
, path
,
2517 dst_path
, key_type
, min_key
,
2521 if (max_key
== (u64
)-1)
2523 min_key
= max_key
+ 1;
2526 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2527 key_type
= BTRFS_DIR_INDEX_KEY
;
2534 * a helper function to drop items from the log before we relog an
2535 * inode. max_key_type indicates the highest item type to remove.
2536 * This cannot be run for file data extents because it does not
2537 * free the extents they point to.
2539 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2540 struct btrfs_root
*log
,
2541 struct btrfs_path
*path
,
2542 u64 objectid
, int max_key_type
)
2545 struct btrfs_key key
;
2546 struct btrfs_key found_key
;
2548 key
.objectid
= objectid
;
2549 key
.type
= max_key_type
;
2550 key
.offset
= (u64
)-1;
2553 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2558 if (path
->slots
[0] == 0)
2562 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2565 if (found_key
.objectid
!= objectid
)
2568 ret
= btrfs_del_item(trans
, log
, path
);
2570 btrfs_release_path(log
, path
);
2572 btrfs_release_path(log
, path
);
2576 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2577 struct btrfs_root
*log
,
2578 struct btrfs_path
*dst_path
,
2579 struct extent_buffer
*src
,
2580 int start_slot
, int nr
, int inode_only
)
2582 unsigned long src_offset
;
2583 unsigned long dst_offset
;
2584 struct btrfs_file_extent_item
*extent
;
2585 struct btrfs_inode_item
*inode_item
;
2587 struct btrfs_key
*ins_keys
;
2591 struct list_head ordered_sums
;
2593 INIT_LIST_HEAD(&ordered_sums
);
2595 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2596 nr
* sizeof(u32
), GFP_NOFS
);
2597 ins_sizes
= (u32
*)ins_data
;
2598 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2600 for (i
= 0; i
< nr
; i
++) {
2601 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2602 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2604 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2605 ins_keys
, ins_sizes
, nr
);
2611 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2612 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2613 dst_path
->slots
[0]);
2615 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2617 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2618 src_offset
, ins_sizes
[i
]);
2620 if (inode_only
== LOG_INODE_EXISTS
&&
2621 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2622 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2624 struct btrfs_inode_item
);
2625 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2627 /* set the generation to zero so the recover code
2628 * can tell the difference between an logging
2629 * just to say 'this inode exists' and a logging
2630 * to say 'update this inode with these values'
2632 btrfs_set_inode_generation(dst_path
->nodes
[0],
2635 /* take a reference on file data extents so that truncates
2636 * or deletes of this inode don't have to relog the inode
2639 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2641 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2642 struct btrfs_file_extent_item
);
2644 found_type
= btrfs_file_extent_type(src
, extent
);
2645 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2646 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2648 ds
= btrfs_file_extent_disk_bytenr(src
,
2650 /* ds == 0 is a hole */
2654 dl
= btrfs_file_extent_disk_num_bytes(src
,
2656 cs
= btrfs_file_extent_offset(src
, extent
);
2657 cl
= btrfs_file_extent_num_bytes(src
,
2659 if (btrfs_file_extent_compression(src
,
2665 ret
= btrfs_lookup_csums_range(
2666 log
->fs_info
->csum_root
,
2667 ds
+ cs
, ds
+ cs
+ cl
- 1,
2674 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2675 btrfs_release_path(log
, dst_path
);
2679 * we have to do this after the loop above to avoid changing the
2680 * log tree while trying to change the log tree.
2683 while (!list_empty(&ordered_sums
)) {
2684 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2685 struct btrfs_ordered_sum
,
2688 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2689 list_del(&sums
->list
);
2695 /* log a single inode in the tree log.
2696 * At least one parent directory for this inode must exist in the tree
2697 * or be logged already.
2699 * Any items from this inode changed by the current transaction are copied
2700 * to the log tree. An extra reference is taken on any extents in this
2701 * file, allowing us to avoid a whole pile of corner cases around logging
2702 * blocks that have been removed from the tree.
2704 * See LOG_INODE_ALL and related defines for a description of what inode_only
2707 * This handles both files and directories.
2709 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2710 struct btrfs_root
*root
, struct inode
*inode
,
2713 struct btrfs_path
*path
;
2714 struct btrfs_path
*dst_path
;
2715 struct btrfs_key min_key
;
2716 struct btrfs_key max_key
;
2717 struct btrfs_root
*log
= root
->log_root
;
2718 struct extent_buffer
*src
= NULL
;
2722 int ins_start_slot
= 0;
2725 log
= root
->log_root
;
2727 path
= btrfs_alloc_path();
2728 dst_path
= btrfs_alloc_path();
2730 min_key
.objectid
= inode
->i_ino
;
2731 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2734 max_key
.objectid
= inode
->i_ino
;
2736 /* today the code can only do partial logging of directories */
2737 if (!S_ISDIR(inode
->i_mode
))
2738 inode_only
= LOG_INODE_ALL
;
2740 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2741 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2743 max_key
.type
= (u8
)-1;
2744 max_key
.offset
= (u64
)-1;
2746 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2749 * a brute force approach to making sure we get the most uptodate
2750 * copies of everything.
2752 if (S_ISDIR(inode
->i_mode
)) {
2753 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2755 if (inode_only
== LOG_INODE_EXISTS
)
2756 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2757 ret
= drop_objectid_items(trans
, log
, path
,
2758 inode
->i_ino
, max_key_type
);
2760 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2766 path
->keep_locks
= 1;
2770 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2771 path
, 0, trans
->transid
);
2775 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2776 if (min_key
.objectid
!= inode
->i_ino
)
2778 if (min_key
.type
> max_key
.type
)
2781 src
= path
->nodes
[0];
2782 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2785 } else if (!ins_nr
) {
2786 ins_start_slot
= path
->slots
[0];
2791 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2792 ins_nr
, inode_only
);
2798 ins_start_slot
= path
->slots
[0];
2801 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2803 if (path
->slots
[0] < nritems
) {
2804 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2809 ret
= copy_items(trans
, log
, dst_path
, src
,
2811 ins_nr
, inode_only
);
2818 btrfs_release_path(root
, path
);
2820 if (min_key
.offset
< (u64
)-1)
2822 else if (min_key
.type
< (u8
)-1)
2824 else if (min_key
.objectid
< (u64
)-1)
2830 ret
= copy_items(trans
, log
, dst_path
, src
,
2832 ins_nr
, inode_only
);
2840 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2841 btrfs_release_path(root
, path
);
2842 btrfs_release_path(log
, dst_path
);
2843 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2849 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2851 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2853 btrfs_free_path(path
);
2854 btrfs_free_path(dst_path
);
2859 * follow the dentry parent pointers up the chain and see if any
2860 * of the directories in it require a full commit before they can
2861 * be logged. Returns zero if nothing special needs to be done or 1 if
2862 * a full commit is required.
2864 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2865 struct inode
*inode
,
2866 struct dentry
*parent
,
2867 struct super_block
*sb
,
2871 struct btrfs_root
*root
;
2872 struct dentry
*old_parent
= NULL
;
2875 * for regular files, if its inode is already on disk, we don't
2876 * have to worry about the parents at all. This is because
2877 * we can use the last_unlink_trans field to record renames
2878 * and other fun in this file.
2880 if (S_ISREG(inode
->i_mode
) &&
2881 BTRFS_I(inode
)->generation
<= last_committed
&&
2882 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2885 if (!S_ISDIR(inode
->i_mode
)) {
2886 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2888 inode
= parent
->d_inode
;
2892 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2895 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2896 root
= BTRFS_I(inode
)->root
;
2899 * make sure any commits to the log are forced
2900 * to be full commits
2902 root
->fs_info
->last_trans_log_full_commit
=
2908 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2911 if (IS_ROOT(parent
))
2914 parent
= dget_parent(parent
);
2916 old_parent
= parent
;
2917 inode
= parent
->d_inode
;
2925 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2926 struct inode
*inode
)
2928 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2931 mutex_lock(&root
->log_mutex
);
2932 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2933 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2935 mutex_unlock(&root
->log_mutex
);
2941 * helper function around btrfs_log_inode to make sure newly created
2942 * parent directories also end up in the log. A minimal inode and backref
2943 * only logging is done of any parent directories that are older than
2944 * the last committed transaction
2946 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2947 struct btrfs_root
*root
, struct inode
*inode
,
2948 struct dentry
*parent
, int exists_only
)
2950 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2951 struct super_block
*sb
;
2952 struct dentry
*old_parent
= NULL
;
2954 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2958 if (btrfs_test_opt(root
, NOTREELOG
)) {
2963 if (root
->fs_info
->last_trans_log_full_commit
>
2964 root
->fs_info
->last_trans_committed
) {
2969 if (root
!= BTRFS_I(inode
)->root
||
2970 btrfs_root_refs(&root
->root_item
) == 0) {
2975 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2976 sb
, last_committed
);
2980 if (inode_in_log(trans
, inode
)) {
2981 ret
= BTRFS_NO_LOG_SYNC
;
2985 ret
= start_log_trans(trans
, root
);
2989 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2994 * for regular files, if its inode is already on disk, we don't
2995 * have to worry about the parents at all. This is because
2996 * we can use the last_unlink_trans field to record renames
2997 * and other fun in this file.
2999 if (S_ISREG(inode
->i_mode
) &&
3000 BTRFS_I(inode
)->generation
<= last_committed
&&
3001 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3006 inode_only
= LOG_INODE_EXISTS
;
3008 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3011 inode
= parent
->d_inode
;
3012 if (root
!= BTRFS_I(inode
)->root
)
3015 if (BTRFS_I(inode
)->generation
>
3016 root
->fs_info
->last_trans_committed
) {
3017 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3021 if (IS_ROOT(parent
))
3024 parent
= dget_parent(parent
);
3026 old_parent
= parent
;
3032 BUG_ON(ret
!= -ENOSPC
);
3033 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3036 btrfs_end_log_trans(root
);
3042 * it is not safe to log dentry if the chunk root has added new
3043 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3044 * If this returns 1, you must commit the transaction to safely get your
3047 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3048 struct btrfs_root
*root
, struct dentry
*dentry
)
3050 struct dentry
*parent
= dget_parent(dentry
);
3053 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3060 * should be called during mount to recover any replay any log trees
3063 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3066 struct btrfs_path
*path
;
3067 struct btrfs_trans_handle
*trans
;
3068 struct btrfs_key key
;
3069 struct btrfs_key found_key
;
3070 struct btrfs_key tmp_key
;
3071 struct btrfs_root
*log
;
3072 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3073 struct walk_control wc
= {
3074 .process_func
= process_one_buffer
,
3078 fs_info
->log_root_recovering
= 1;
3079 path
= btrfs_alloc_path();
3082 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3087 walk_log_tree(trans
, log_root_tree
, &wc
);
3090 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3091 key
.offset
= (u64
)-1;
3092 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3095 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3099 if (path
->slots
[0] == 0)
3103 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3105 btrfs_release_path(log_root_tree
, path
);
3106 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3109 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3114 tmp_key
.objectid
= found_key
.offset
;
3115 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3116 tmp_key
.offset
= (u64
)-1;
3118 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3119 BUG_ON(!wc
.replay_dest
);
3121 wc
.replay_dest
->log_root
= log
;
3122 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3123 ret
= walk_log_tree(trans
, log
, &wc
);
3126 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3127 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3132 key
.offset
= found_key
.offset
- 1;
3133 wc
.replay_dest
->log_root
= NULL
;
3134 free_extent_buffer(log
->node
);
3135 free_extent_buffer(log
->commit_root
);
3138 if (found_key
.offset
== 0)
3141 btrfs_release_path(log_root_tree
, path
);
3143 /* step one is to pin it all, step two is to replay just inodes */
3146 wc
.process_func
= replay_one_buffer
;
3147 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3150 /* step three is to replay everything */
3151 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3156 btrfs_free_path(path
);
3158 free_extent_buffer(log_root_tree
->node
);
3159 log_root_tree
->log_root
= NULL
;
3160 fs_info
->log_root_recovering
= 0;
3162 /* step 4: commit the transaction, which also unpins the blocks */
3163 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3165 kfree(log_root_tree
);
3170 * there are some corner cases where we want to force a full
3171 * commit instead of allowing a directory to be logged.
3173 * They revolve around files there were unlinked from the directory, and
3174 * this function updates the parent directory so that a full commit is
3175 * properly done if it is fsync'd later after the unlinks are done.
3177 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3178 struct inode
*dir
, struct inode
*inode
,
3182 * when we're logging a file, if it hasn't been renamed
3183 * or unlinked, and its inode is fully committed on disk,
3184 * we don't have to worry about walking up the directory chain
3185 * to log its parents.
3187 * So, we use the last_unlink_trans field to put this transid
3188 * into the file. When the file is logged we check it and
3189 * don't log the parents if the file is fully on disk.
3191 if (S_ISREG(inode
->i_mode
))
3192 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3195 * if this directory was already logged any new
3196 * names for this file/dir will get recorded
3199 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3203 * if the inode we're about to unlink was logged,
3204 * the log will be properly updated for any new names
3206 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3210 * when renaming files across directories, if the directory
3211 * there we're unlinking from gets fsync'd later on, there's
3212 * no way to find the destination directory later and fsync it
3213 * properly. So, we have to be conservative and force commits
3214 * so the new name gets discovered.
3219 /* we can safely do the unlink without any special recording */
3223 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3227 * Call this after adding a new name for a file and it will properly
3228 * update the log to reflect the new name.
3230 * It will return zero if all goes well, and it will return 1 if a
3231 * full transaction commit is required.
3233 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3234 struct inode
*inode
, struct inode
*old_dir
,
3235 struct dentry
*parent
)
3237 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3240 * this will force the logging code to walk the dentry chain
3243 if (S_ISREG(inode
->i_mode
))
3244 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3247 * if this inode hasn't been logged and directory we're renaming it
3248 * from hasn't been logged, we don't need to log it
3250 if (BTRFS_I(inode
)->logged_trans
<=
3251 root
->fs_info
->last_trans_committed
&&
3252 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3253 root
->fs_info
->last_trans_committed
))
3256 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);