4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
48 #include <linux/swapops.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/vmscan.h>
56 * reclaim_mode determines how the inactive list is shrunk
57 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
58 * RECLAIM_MODE_ASYNC: Do not block
59 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
60 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
61 * page from the LRU and reclaim all pages within a
62 * naturally aligned range
63 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
64 * order-0 pages and then compact the zone
66 typedef unsigned __bitwise__ reclaim_mode_t
;
67 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
68 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
69 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
70 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
71 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74 /* Incremented by the number of inactive pages that were scanned */
75 unsigned long nr_scanned
;
77 /* Number of pages freed so far during a call to shrink_zones() */
78 unsigned long nr_reclaimed
;
80 /* How many pages shrink_list() should reclaim */
81 unsigned long nr_to_reclaim
;
83 unsigned long hibernation_mode
;
85 /* This context's GFP mask */
90 /* Can mapped pages be reclaimed? */
93 /* Can pages be swapped as part of reclaim? */
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode
;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup
*mem_cgroup
;
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 nodemask_t
*nodemask
;
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
121 if ((_page)->lru.prev != _base) { \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
135 if ((_page)->lru.prev != _base) { \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 * From 0 .. 100. Higher means more swappy.
149 int vm_swappiness
= 60;
150 long vm_total_pages
; /* The total number of pages which the VM controls */
152 static LIST_HEAD(shrinker_list
);
153 static DECLARE_RWSEM(shrinker_rwsem
);
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #define scanning_global_lru(sc) (1)
161 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
162 struct scan_control
*sc
)
164 if (!scanning_global_lru(sc
))
165 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
167 return &zone
->reclaim_stat
;
170 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
171 struct scan_control
*sc
, enum lru_list lru
)
173 if (!scanning_global_lru(sc
))
174 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
176 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
181 * Add a shrinker callback to be called from the vm
183 void register_shrinker(struct shrinker
*shrinker
)
186 down_write(&shrinker_rwsem
);
187 list_add_tail(&shrinker
->list
, &shrinker_list
);
188 up_write(&shrinker_rwsem
);
190 EXPORT_SYMBOL(register_shrinker
);
195 void unregister_shrinker(struct shrinker
*shrinker
)
197 down_write(&shrinker_rwsem
);
198 list_del(&shrinker
->list
);
199 up_write(&shrinker_rwsem
);
201 EXPORT_SYMBOL(unregister_shrinker
);
203 #define SHRINK_BATCH 128
205 * Call the shrink functions to age shrinkable caches
207 * Here we assume it costs one seek to replace a lru page and that it also
208 * takes a seek to recreate a cache object. With this in mind we age equal
209 * percentages of the lru and ageable caches. This should balance the seeks
210 * generated by these structures.
212 * If the vm encountered mapped pages on the LRU it increase the pressure on
213 * slab to avoid swapping.
215 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217 * `lru_pages' represents the number of on-LRU pages in all the zones which
218 * are eligible for the caller's allocation attempt. It is used for balancing
219 * slab reclaim versus page reclaim.
221 * Returns the number of slab objects which we shrunk.
223 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
224 unsigned long lru_pages
)
226 struct shrinker
*shrinker
;
227 unsigned long ret
= 0;
230 scanned
= SWAP_CLUSTER_MAX
;
232 if (!down_read_trylock(&shrinker_rwsem
))
233 return 1; /* Assume we'll be able to shrink next time */
235 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
236 unsigned long long delta
;
237 unsigned long total_scan
;
238 unsigned long max_pass
;
240 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
241 delta
= (4 * scanned
) / shrinker
->seeks
;
243 do_div(delta
, lru_pages
+ 1);
244 shrinker
->nr
+= delta
;
245 if (shrinker
->nr
< 0) {
246 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
248 shrinker
->shrink
, shrinker
->nr
);
249 shrinker
->nr
= max_pass
;
253 * Avoid risking looping forever due to too large nr value:
254 * never try to free more than twice the estimate number of
257 if (shrinker
->nr
> max_pass
* 2)
258 shrinker
->nr
= max_pass
* 2;
260 total_scan
= shrinker
->nr
;
263 while (total_scan
>= SHRINK_BATCH
) {
264 long this_scan
= SHRINK_BATCH
;
268 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
269 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
271 if (shrink_ret
== -1)
273 if (shrink_ret
< nr_before
)
274 ret
+= nr_before
- shrink_ret
;
275 count_vm_events(SLABS_SCANNED
, this_scan
);
276 total_scan
-= this_scan
;
281 shrinker
->nr
+= total_scan
;
283 up_read(&shrinker_rwsem
);
287 static void set_reclaim_mode(int priority
, struct scan_control
*sc
,
290 reclaim_mode_t syncmode
= sync
? RECLAIM_MODE_SYNC
: RECLAIM_MODE_ASYNC
;
293 * Initially assume we are entering either lumpy reclaim or
294 * reclaim/compaction.Depending on the order, we will either set the
295 * sync mode or just reclaim order-0 pages later.
297 if (COMPACTION_BUILD
)
298 sc
->reclaim_mode
= RECLAIM_MODE_COMPACTION
;
300 sc
->reclaim_mode
= RECLAIM_MODE_LUMPYRECLAIM
;
303 * Avoid using lumpy reclaim or reclaim/compaction if possible by
304 * restricting when its set to either costly allocations or when
305 * under memory pressure
307 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
308 sc
->reclaim_mode
|= syncmode
;
309 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
310 sc
->reclaim_mode
|= syncmode
;
312 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
315 static void reset_reclaim_mode(struct scan_control
*sc
)
317 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
320 static inline int is_page_cache_freeable(struct page
*page
)
323 * A freeable page cache page is referenced only by the caller
324 * that isolated the page, the page cache radix tree and
325 * optional buffer heads at page->private.
327 return page_count(page
) - page_has_private(page
) == 2;
330 static int may_write_to_queue(struct backing_dev_info
*bdi
,
331 struct scan_control
*sc
)
333 if (current
->flags
& PF_SWAPWRITE
)
335 if (!bdi_write_congested(bdi
))
337 if (bdi
== current
->backing_dev_info
)
340 /* lumpy reclaim for hugepage often need a lot of write */
341 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
347 * We detected a synchronous write error writing a page out. Probably
348 * -ENOSPC. We need to propagate that into the address_space for a subsequent
349 * fsync(), msync() or close().
351 * The tricky part is that after writepage we cannot touch the mapping: nothing
352 * prevents it from being freed up. But we have a ref on the page and once
353 * that page is locked, the mapping is pinned.
355 * We're allowed to run sleeping lock_page() here because we know the caller has
358 static void handle_write_error(struct address_space
*mapping
,
359 struct page
*page
, int error
)
361 lock_page_nosync(page
);
362 if (page_mapping(page
) == mapping
)
363 mapping_set_error(mapping
, error
);
367 /* possible outcome of pageout() */
369 /* failed to write page out, page is locked */
371 /* move page to the active list, page is locked */
373 /* page has been sent to the disk successfully, page is unlocked */
375 /* page is clean and locked */
380 * pageout is called by shrink_page_list() for each dirty page.
381 * Calls ->writepage().
383 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
384 struct scan_control
*sc
)
387 * If the page is dirty, only perform writeback if that write
388 * will be non-blocking. To prevent this allocation from being
389 * stalled by pagecache activity. But note that there may be
390 * stalls if we need to run get_block(). We could test
391 * PagePrivate for that.
393 * If this process is currently in __generic_file_aio_write() against
394 * this page's queue, we can perform writeback even if that
397 * If the page is swapcache, write it back even if that would
398 * block, for some throttling. This happens by accident, because
399 * swap_backing_dev_info is bust: it doesn't reflect the
400 * congestion state of the swapdevs. Easy to fix, if needed.
402 if (!is_page_cache_freeable(page
))
406 * Some data journaling orphaned pages can have
407 * page->mapping == NULL while being dirty with clean buffers.
409 if (page_has_private(page
)) {
410 if (try_to_free_buffers(page
)) {
411 ClearPageDirty(page
);
412 printk("%s: orphaned page\n", __func__
);
418 if (mapping
->a_ops
->writepage
== NULL
)
419 return PAGE_ACTIVATE
;
420 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
423 if (clear_page_dirty_for_io(page
)) {
425 struct writeback_control wbc
= {
426 .sync_mode
= WB_SYNC_NONE
,
427 .nr_to_write
= SWAP_CLUSTER_MAX
,
429 .range_end
= LLONG_MAX
,
433 SetPageReclaim(page
);
434 res
= mapping
->a_ops
->writepage(page
, &wbc
);
436 handle_write_error(mapping
, page
, res
);
437 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
438 ClearPageReclaim(page
);
439 return PAGE_ACTIVATE
;
443 * Wait on writeback if requested to. This happens when
444 * direct reclaiming a large contiguous area and the
445 * first attempt to free a range of pages fails.
447 if (PageWriteback(page
) &&
448 (sc
->reclaim_mode
& RECLAIM_MODE_SYNC
))
449 wait_on_page_writeback(page
);
451 if (!PageWriteback(page
)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page
);
455 trace_mm_vmscan_writepage(page
,
456 trace_reclaim_flags(page
, sc
->reclaim_mode
));
457 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
465 * Same as remove_mapping, but if the page is removed from the mapping, it
466 * gets returned with a refcount of 0.
468 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
470 BUG_ON(!PageLocked(page
));
471 BUG_ON(mapping
!= page_mapping(page
));
473 spin_lock_irq(&mapping
->tree_lock
);
475 * The non racy check for a busy page.
477 * Must be careful with the order of the tests. When someone has
478 * a ref to the page, it may be possible that they dirty it then
479 * drop the reference. So if PageDirty is tested before page_count
480 * here, then the following race may occur:
482 * get_user_pages(&page);
483 * [user mapping goes away]
485 * !PageDirty(page) [good]
486 * SetPageDirty(page);
488 * !page_count(page) [good, discard it]
490 * [oops, our write_to data is lost]
492 * Reversing the order of the tests ensures such a situation cannot
493 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
494 * load is not satisfied before that of page->_count.
496 * Note that if SetPageDirty is always performed via set_page_dirty,
497 * and thus under tree_lock, then this ordering is not required.
499 if (!page_freeze_refs(page
, 2))
501 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
502 if (unlikely(PageDirty(page
))) {
503 page_unfreeze_refs(page
, 2);
507 if (PageSwapCache(page
)) {
508 swp_entry_t swap
= { .val
= page_private(page
) };
509 __delete_from_swap_cache(page
);
510 spin_unlock_irq(&mapping
->tree_lock
);
511 swapcache_free(swap
, page
);
513 void (*freepage
)(struct page
*);
515 freepage
= mapping
->a_ops
->freepage
;
517 __remove_from_page_cache(page
);
518 spin_unlock_irq(&mapping
->tree_lock
);
519 mem_cgroup_uncharge_cache_page(page
);
521 if (freepage
!= NULL
)
528 spin_unlock_irq(&mapping
->tree_lock
);
533 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
534 * someone else has a ref on the page, abort and return 0. If it was
535 * successfully detached, return 1. Assumes the caller has a single ref on
538 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
540 if (__remove_mapping(mapping
, page
)) {
542 * Unfreezing the refcount with 1 rather than 2 effectively
543 * drops the pagecache ref for us without requiring another
546 page_unfreeze_refs(page
, 1);
553 * putback_lru_page - put previously isolated page onto appropriate LRU list
554 * @page: page to be put back to appropriate lru list
556 * Add previously isolated @page to appropriate LRU list.
557 * Page may still be unevictable for other reasons.
559 * lru_lock must not be held, interrupts must be enabled.
561 void putback_lru_page(struct page
*page
)
564 int active
= !!TestClearPageActive(page
);
565 int was_unevictable
= PageUnevictable(page
);
567 VM_BUG_ON(PageLRU(page
));
570 ClearPageUnevictable(page
);
572 if (page_evictable(page
, NULL
)) {
574 * For evictable pages, we can use the cache.
575 * In event of a race, worst case is we end up with an
576 * unevictable page on [in]active list.
577 * We know how to handle that.
579 lru
= active
+ page_lru_base_type(page
);
580 lru_cache_add_lru(page
, lru
);
583 * Put unevictable pages directly on zone's unevictable
586 lru
= LRU_UNEVICTABLE
;
587 add_page_to_unevictable_list(page
);
589 * When racing with an mlock clearing (page is
590 * unlocked), make sure that if the other thread does
591 * not observe our setting of PG_lru and fails
592 * isolation, we see PG_mlocked cleared below and move
593 * the page back to the evictable list.
595 * The other side is TestClearPageMlocked().
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
605 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
606 if (!isolate_lru_page(page
)) {
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
616 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
617 count_vm_event(UNEVICTABLE_PGRESCUED
);
618 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
619 count_vm_event(UNEVICTABLE_PGCULLED
);
621 put_page(page
); /* drop ref from isolate */
624 enum page_references
{
626 PAGEREF_RECLAIM_CLEAN
,
631 static enum page_references
page_check_references(struct page
*page
,
632 struct scan_control
*sc
)
634 int referenced_ptes
, referenced_page
;
635 unsigned long vm_flags
;
637 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
638 referenced_page
= TestClearPageReferenced(page
);
640 /* Lumpy reclaim - ignore references */
641 if (sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
)
642 return PAGEREF_RECLAIM
;
645 * Mlock lost the isolation race with us. Let try_to_unmap()
646 * move the page to the unevictable list.
648 if (vm_flags
& VM_LOCKED
)
649 return PAGEREF_RECLAIM
;
651 if (referenced_ptes
) {
653 return PAGEREF_ACTIVATE
;
655 * All mapped pages start out with page table
656 * references from the instantiating fault, so we need
657 * to look twice if a mapped file page is used more
660 * Mark it and spare it for another trip around the
661 * inactive list. Another page table reference will
662 * lead to its activation.
664 * Note: the mark is set for activated pages as well
665 * so that recently deactivated but used pages are
668 SetPageReferenced(page
);
671 return PAGEREF_ACTIVATE
;
676 /* Reclaim if clean, defer dirty pages to writeback */
677 if (referenced_page
&& !PageSwapBacked(page
))
678 return PAGEREF_RECLAIM_CLEAN
;
680 return PAGEREF_RECLAIM
;
683 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
685 struct pagevec freed_pvec
;
686 struct page
*page
, *tmp
;
688 pagevec_init(&freed_pvec
, 1);
690 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
691 list_del(&page
->lru
);
692 if (!pagevec_add(&freed_pvec
, page
)) {
693 __pagevec_free(&freed_pvec
);
694 pagevec_reinit(&freed_pvec
);
698 pagevec_free(&freed_pvec
);
702 * shrink_page_list() returns the number of reclaimed pages
704 static unsigned long shrink_page_list(struct list_head
*page_list
,
706 struct scan_control
*sc
)
708 LIST_HEAD(ret_pages
);
709 LIST_HEAD(free_pages
);
711 unsigned long nr_dirty
= 0;
712 unsigned long nr_congested
= 0;
713 unsigned long nr_reclaimed
= 0;
717 while (!list_empty(page_list
)) {
718 enum page_references references
;
719 struct address_space
*mapping
;
725 page
= lru_to_page(page_list
);
726 list_del(&page
->lru
);
728 if (!trylock_page(page
))
731 VM_BUG_ON(PageActive(page
));
732 VM_BUG_ON(page_zone(page
) != zone
);
736 if (unlikely(!page_evictable(page
, NULL
)))
739 if (!sc
->may_unmap
&& page_mapped(page
))
742 /* Double the slab pressure for mapped and swapcache pages */
743 if (page_mapped(page
) || PageSwapCache(page
))
746 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
747 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
749 if (PageWriteback(page
)) {
751 * Synchronous reclaim is performed in two passes,
752 * first an asynchronous pass over the list to
753 * start parallel writeback, and a second synchronous
754 * pass to wait for the IO to complete. Wait here
755 * for any page for which writeback has already
758 if ((sc
->reclaim_mode
& RECLAIM_MODE_SYNC
) &&
760 wait_on_page_writeback(page
);
767 references
= page_check_references(page
, sc
);
768 switch (references
) {
769 case PAGEREF_ACTIVATE
:
770 goto activate_locked
;
773 case PAGEREF_RECLAIM
:
774 case PAGEREF_RECLAIM_CLEAN
:
775 ; /* try to reclaim the page below */
779 * Anonymous process memory has backing store?
780 * Try to allocate it some swap space here.
782 if (PageAnon(page
) && !PageSwapCache(page
)) {
783 if (!(sc
->gfp_mask
& __GFP_IO
))
785 if (!add_to_swap(page
))
786 goto activate_locked
;
790 mapping
= page_mapping(page
);
793 * The page is mapped into the page tables of one or more
794 * processes. Try to unmap it here.
796 if (page_mapped(page
) && mapping
) {
797 switch (try_to_unmap(page
, TTU_UNMAP
)) {
799 goto activate_locked
;
805 ; /* try to free the page below */
809 if (PageDirty(page
)) {
812 if (references
== PAGEREF_RECLAIM_CLEAN
)
816 if (!sc
->may_writepage
)
819 /* Page is dirty, try to write it out here */
820 switch (pageout(page
, mapping
, sc
)) {
825 goto activate_locked
;
827 if (PageWriteback(page
))
833 * A synchronous write - probably a ramdisk. Go
834 * ahead and try to reclaim the page.
836 if (!trylock_page(page
))
838 if (PageDirty(page
) || PageWriteback(page
))
840 mapping
= page_mapping(page
);
842 ; /* try to free the page below */
847 * If the page has buffers, try to free the buffer mappings
848 * associated with this page. If we succeed we try to free
851 * We do this even if the page is PageDirty().
852 * try_to_release_page() does not perform I/O, but it is
853 * possible for a page to have PageDirty set, but it is actually
854 * clean (all its buffers are clean). This happens if the
855 * buffers were written out directly, with submit_bh(). ext3
856 * will do this, as well as the blockdev mapping.
857 * try_to_release_page() will discover that cleanness and will
858 * drop the buffers and mark the page clean - it can be freed.
860 * Rarely, pages can have buffers and no ->mapping. These are
861 * the pages which were not successfully invalidated in
862 * truncate_complete_page(). We try to drop those buffers here
863 * and if that worked, and the page is no longer mapped into
864 * process address space (page_count == 1) it can be freed.
865 * Otherwise, leave the page on the LRU so it is swappable.
867 if (page_has_private(page
)) {
868 if (!try_to_release_page(page
, sc
->gfp_mask
))
869 goto activate_locked
;
870 if (!mapping
&& page_count(page
) == 1) {
872 if (put_page_testzero(page
))
876 * rare race with speculative reference.
877 * the speculative reference will free
878 * this page shortly, so we may
879 * increment nr_reclaimed here (and
880 * leave it off the LRU).
888 if (!mapping
|| !__remove_mapping(mapping
, page
))
892 * At this point, we have no other references and there is
893 * no way to pick any more up (removed from LRU, removed
894 * from pagecache). Can use non-atomic bitops now (and
895 * we obviously don't have to worry about waking up a process
896 * waiting on the page lock, because there are no references.
898 __clear_page_locked(page
);
903 * Is there need to periodically free_page_list? It would
904 * appear not as the counts should be low
906 list_add(&page
->lru
, &free_pages
);
910 if (PageSwapCache(page
))
911 try_to_free_swap(page
);
913 putback_lru_page(page
);
914 reset_reclaim_mode(sc
);
918 /* Not a candidate for swapping, so reclaim swap space. */
919 if (PageSwapCache(page
) && vm_swap_full())
920 try_to_free_swap(page
);
921 VM_BUG_ON(PageActive(page
));
927 reset_reclaim_mode(sc
);
929 list_add(&page
->lru
, &ret_pages
);
930 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
934 * Tag a zone as congested if all the dirty pages encountered were
935 * backed by a congested BDI. In this case, reclaimers should just
936 * back off and wait for congestion to clear because further reclaim
937 * will encounter the same problem
939 if (nr_dirty
== nr_congested
&& nr_dirty
!= 0)
940 zone_set_flag(zone
, ZONE_CONGESTED
);
942 free_page_list(&free_pages
);
944 list_splice(&ret_pages
, page_list
);
945 count_vm_events(PGACTIVATE
, pgactivate
);
950 * Attempt to remove the specified page from its LRU. Only take this page
951 * if it is of the appropriate PageActive status. Pages which are being
952 * freed elsewhere are also ignored.
954 * page: page to consider
955 * mode: one of the LRU isolation modes defined above
957 * returns 0 on success, -ve errno on failure.
959 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
963 /* Only take pages on the LRU. */
968 * When checking the active state, we need to be sure we are
969 * dealing with comparible boolean values. Take the logical not
972 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
975 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
979 * When this function is being called for lumpy reclaim, we
980 * initially look into all LRU pages, active, inactive and
981 * unevictable; only give shrink_page_list evictable pages.
983 if (PageUnevictable(page
))
988 if (likely(get_page_unless_zero(page
))) {
990 * Be careful not to clear PageLRU until after we're
991 * sure the page is not being freed elsewhere -- the
992 * page release code relies on it.
1002 * zone->lru_lock is heavily contended. Some of the functions that
1003 * shrink the lists perform better by taking out a batch of pages
1004 * and working on them outside the LRU lock.
1006 * For pagecache intensive workloads, this function is the hottest
1007 * spot in the kernel (apart from copy_*_user functions).
1009 * Appropriate locks must be held before calling this function.
1011 * @nr_to_scan: The number of pages to look through on the list.
1012 * @src: The LRU list to pull pages off.
1013 * @dst: The temp list to put pages on to.
1014 * @scanned: The number of pages that were scanned.
1015 * @order: The caller's attempted allocation order
1016 * @mode: One of the LRU isolation modes
1017 * @file: True [1] if isolating file [!anon] pages
1019 * returns how many pages were moved onto *@dst.
1021 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1022 struct list_head
*src
, struct list_head
*dst
,
1023 unsigned long *scanned
, int order
, int mode
, int file
)
1025 unsigned long nr_taken
= 0;
1026 unsigned long nr_lumpy_taken
= 0;
1027 unsigned long nr_lumpy_dirty
= 0;
1028 unsigned long nr_lumpy_failed
= 0;
1031 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1034 unsigned long end_pfn
;
1035 unsigned long page_pfn
;
1038 page
= lru_to_page(src
);
1039 prefetchw_prev_lru_page(page
, src
, flags
);
1041 VM_BUG_ON(!PageLRU(page
));
1043 switch (__isolate_lru_page(page
, mode
, file
)) {
1045 list_move(&page
->lru
, dst
);
1046 mem_cgroup_del_lru(page
);
1047 nr_taken
+= hpage_nr_pages(page
);
1051 /* else it is being freed elsewhere */
1052 list_move(&page
->lru
, src
);
1053 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1064 * Attempt to take all pages in the order aligned region
1065 * surrounding the tag page. Only take those pages of
1066 * the same active state as that tag page. We may safely
1067 * round the target page pfn down to the requested order
1068 * as the mem_map is guarenteed valid out to MAX_ORDER,
1069 * where that page is in a different zone we will detect
1070 * it from its zone id and abort this block scan.
1072 zone_id
= page_zone_id(page
);
1073 page_pfn
= page_to_pfn(page
);
1074 pfn
= page_pfn
& ~((1 << order
) - 1);
1075 end_pfn
= pfn
+ (1 << order
);
1076 for (; pfn
< end_pfn
; pfn
++) {
1077 struct page
*cursor_page
;
1079 /* The target page is in the block, ignore it. */
1080 if (unlikely(pfn
== page_pfn
))
1083 /* Avoid holes within the zone. */
1084 if (unlikely(!pfn_valid_within(pfn
)))
1087 cursor_page
= pfn_to_page(pfn
);
1089 /* Check that we have not crossed a zone boundary. */
1090 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1094 * If we don't have enough swap space, reclaiming of
1095 * anon page which don't already have a swap slot is
1098 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1099 !PageSwapCache(cursor_page
))
1102 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1103 list_move(&cursor_page
->lru
, dst
);
1104 mem_cgroup_del_lru(cursor_page
);
1105 nr_taken
+= hpage_nr_pages(page
);
1107 if (PageDirty(cursor_page
))
1111 /* the page is freed already. */
1112 if (!page_count(cursor_page
))
1118 /* If we break out of the loop above, lumpy reclaim failed */
1125 trace_mm_vmscan_lru_isolate(order
,
1128 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1133 static unsigned long isolate_pages_global(unsigned long nr
,
1134 struct list_head
*dst
,
1135 unsigned long *scanned
, int order
,
1136 int mode
, struct zone
*z
,
1137 int active
, int file
)
1144 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1149 * clear_active_flags() is a helper for shrink_active_list(), clearing
1150 * any active bits from the pages in the list.
1152 static unsigned long clear_active_flags(struct list_head
*page_list
,
1153 unsigned int *count
)
1159 list_for_each_entry(page
, page_list
, lru
) {
1160 int numpages
= hpage_nr_pages(page
);
1161 lru
= page_lru_base_type(page
);
1162 if (PageActive(page
)) {
1164 ClearPageActive(page
);
1165 nr_active
+= numpages
;
1168 count
[lru
] += numpages
;
1175 * isolate_lru_page - tries to isolate a page from its LRU list
1176 * @page: page to isolate from its LRU list
1178 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1179 * vmstat statistic corresponding to whatever LRU list the page was on.
1181 * Returns 0 if the page was removed from an LRU list.
1182 * Returns -EBUSY if the page was not on an LRU list.
1184 * The returned page will have PageLRU() cleared. If it was found on
1185 * the active list, it will have PageActive set. If it was found on
1186 * the unevictable list, it will have the PageUnevictable bit set. That flag
1187 * may need to be cleared by the caller before letting the page go.
1189 * The vmstat statistic corresponding to the list on which the page was
1190 * found will be decremented.
1193 * (1) Must be called with an elevated refcount on the page. This is a
1194 * fundamentnal difference from isolate_lru_pages (which is called
1195 * without a stable reference).
1196 * (2) the lru_lock must not be held.
1197 * (3) interrupts must be enabled.
1199 int isolate_lru_page(struct page
*page
)
1203 if (PageLRU(page
)) {
1204 struct zone
*zone
= page_zone(page
);
1206 spin_lock_irq(&zone
->lru_lock
);
1207 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1208 int lru
= page_lru(page
);
1212 del_page_from_lru_list(zone
, page
, lru
);
1214 spin_unlock_irq(&zone
->lru_lock
);
1220 * Are there way too many processes in the direct reclaim path already?
1222 static int too_many_isolated(struct zone
*zone
, int file
,
1223 struct scan_control
*sc
)
1225 unsigned long inactive
, isolated
;
1227 if (current_is_kswapd())
1230 if (!scanning_global_lru(sc
))
1234 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1235 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1237 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1238 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1241 return isolated
> inactive
;
1245 * TODO: Try merging with migrations version of putback_lru_pages
1247 static noinline_for_stack
void
1248 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1249 unsigned long nr_anon
, unsigned long nr_file
,
1250 struct list_head
*page_list
)
1253 struct pagevec pvec
;
1254 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1256 pagevec_init(&pvec
, 1);
1259 * Put back any unfreeable pages.
1261 spin_lock(&zone
->lru_lock
);
1262 while (!list_empty(page_list
)) {
1264 page
= lru_to_page(page_list
);
1265 VM_BUG_ON(PageLRU(page
));
1266 list_del(&page
->lru
);
1267 if (unlikely(!page_evictable(page
, NULL
))) {
1268 spin_unlock_irq(&zone
->lru_lock
);
1269 putback_lru_page(page
);
1270 spin_lock_irq(&zone
->lru_lock
);
1274 lru
= page_lru(page
);
1275 add_page_to_lru_list(zone
, page
, lru
);
1276 if (is_active_lru(lru
)) {
1277 int file
= is_file_lru(lru
);
1278 int numpages
= hpage_nr_pages(page
);
1279 reclaim_stat
->recent_rotated
[file
] += numpages
;
1281 if (!pagevec_add(&pvec
, page
)) {
1282 spin_unlock_irq(&zone
->lru_lock
);
1283 __pagevec_release(&pvec
);
1284 spin_lock_irq(&zone
->lru_lock
);
1287 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1288 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1290 spin_unlock_irq(&zone
->lru_lock
);
1291 pagevec_release(&pvec
);
1294 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1295 struct scan_control
*sc
,
1296 unsigned long *nr_anon
,
1297 unsigned long *nr_file
,
1298 struct list_head
*isolated_list
)
1300 unsigned long nr_active
;
1301 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1302 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1304 nr_active
= clear_active_flags(isolated_list
, count
);
1305 __count_vm_events(PGDEACTIVATE
, nr_active
);
1307 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1308 -count
[LRU_ACTIVE_FILE
]);
1309 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1310 -count
[LRU_INACTIVE_FILE
]);
1311 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1312 -count
[LRU_ACTIVE_ANON
]);
1313 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1314 -count
[LRU_INACTIVE_ANON
]);
1316 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1317 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1318 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1319 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1321 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1322 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1326 * Returns true if the caller should wait to clean dirty/writeback pages.
1328 * If we are direct reclaiming for contiguous pages and we do not reclaim
1329 * everything in the list, try again and wait for writeback IO to complete.
1330 * This will stall high-order allocations noticeably. Only do that when really
1331 * need to free the pages under high memory pressure.
1333 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1334 unsigned long nr_freed
,
1336 struct scan_control
*sc
)
1338 int lumpy_stall_priority
;
1340 /* kswapd should not stall on sync IO */
1341 if (current_is_kswapd())
1344 /* Only stall on lumpy reclaim */
1345 if (sc
->reclaim_mode
& RECLAIM_MODE_SINGLE
)
1348 /* If we have relaimed everything on the isolated list, no stall */
1349 if (nr_freed
== nr_taken
)
1353 * For high-order allocations, there are two stall thresholds.
1354 * High-cost allocations stall immediately where as lower
1355 * order allocations such as stacks require the scanning
1356 * priority to be much higher before stalling.
1358 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1359 lumpy_stall_priority
= DEF_PRIORITY
;
1361 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1363 return priority
<= lumpy_stall_priority
;
1367 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1368 * of reclaimed pages
1370 static noinline_for_stack
unsigned long
1371 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1372 struct scan_control
*sc
, int priority
, int file
)
1374 LIST_HEAD(page_list
);
1375 unsigned long nr_scanned
;
1376 unsigned long nr_reclaimed
= 0;
1377 unsigned long nr_taken
;
1378 unsigned long nr_anon
;
1379 unsigned long nr_file
;
1381 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1382 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1384 /* We are about to die and free our memory. Return now. */
1385 if (fatal_signal_pending(current
))
1386 return SWAP_CLUSTER_MAX
;
1389 set_reclaim_mode(priority
, sc
, false);
1391 spin_lock_irq(&zone
->lru_lock
);
1393 if (scanning_global_lru(sc
)) {
1394 nr_taken
= isolate_pages_global(nr_to_scan
,
1395 &page_list
, &nr_scanned
, sc
->order
,
1396 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1397 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1399 zone
->pages_scanned
+= nr_scanned
;
1400 if (current_is_kswapd())
1401 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1404 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1407 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1408 &page_list
, &nr_scanned
, sc
->order
,
1409 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1410 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1411 zone
, sc
->mem_cgroup
,
1414 * mem_cgroup_isolate_pages() keeps track of
1415 * scanned pages on its own.
1419 if (nr_taken
== 0) {
1420 spin_unlock_irq(&zone
->lru_lock
);
1424 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1426 spin_unlock_irq(&zone
->lru_lock
);
1428 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1430 /* Check if we should syncronously wait for writeback */
1431 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1432 set_reclaim_mode(priority
, sc
, true);
1433 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1436 local_irq_disable();
1437 if (current_is_kswapd())
1438 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1439 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1441 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1443 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1445 nr_scanned
, nr_reclaimed
,
1447 trace_shrink_flags(file
, sc
->reclaim_mode
));
1448 return nr_reclaimed
;
1452 * This moves pages from the active list to the inactive list.
1454 * We move them the other way if the page is referenced by one or more
1455 * processes, from rmap.
1457 * If the pages are mostly unmapped, the processing is fast and it is
1458 * appropriate to hold zone->lru_lock across the whole operation. But if
1459 * the pages are mapped, the processing is slow (page_referenced()) so we
1460 * should drop zone->lru_lock around each page. It's impossible to balance
1461 * this, so instead we remove the pages from the LRU while processing them.
1462 * It is safe to rely on PG_active against the non-LRU pages in here because
1463 * nobody will play with that bit on a non-LRU page.
1465 * The downside is that we have to touch page->_count against each page.
1466 * But we had to alter page->flags anyway.
1469 static void move_active_pages_to_lru(struct zone
*zone
,
1470 struct list_head
*list
,
1473 unsigned long pgmoved
= 0;
1474 struct pagevec pvec
;
1477 pagevec_init(&pvec
, 1);
1479 while (!list_empty(list
)) {
1480 page
= lru_to_page(list
);
1482 VM_BUG_ON(PageLRU(page
));
1485 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1486 mem_cgroup_add_lru_list(page
, lru
);
1487 pgmoved
+= hpage_nr_pages(page
);
1489 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1490 spin_unlock_irq(&zone
->lru_lock
);
1491 if (buffer_heads_over_limit
)
1492 pagevec_strip(&pvec
);
1493 __pagevec_release(&pvec
);
1494 spin_lock_irq(&zone
->lru_lock
);
1497 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1498 if (!is_active_lru(lru
))
1499 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1502 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1503 struct scan_control
*sc
, int priority
, int file
)
1505 unsigned long nr_taken
;
1506 unsigned long pgscanned
;
1507 unsigned long vm_flags
;
1508 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1509 LIST_HEAD(l_active
);
1510 LIST_HEAD(l_inactive
);
1512 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1513 unsigned long nr_rotated
= 0;
1516 spin_lock_irq(&zone
->lru_lock
);
1517 if (scanning_global_lru(sc
)) {
1518 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1519 &pgscanned
, sc
->order
,
1520 ISOLATE_ACTIVE
, zone
,
1522 zone
->pages_scanned
+= pgscanned
;
1524 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1525 &pgscanned
, sc
->order
,
1526 ISOLATE_ACTIVE
, zone
,
1527 sc
->mem_cgroup
, 1, file
);
1529 * mem_cgroup_isolate_pages() keeps track of
1530 * scanned pages on its own.
1534 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1536 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1538 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1540 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1541 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1542 spin_unlock_irq(&zone
->lru_lock
);
1544 while (!list_empty(&l_hold
)) {
1546 page
= lru_to_page(&l_hold
);
1547 list_del(&page
->lru
);
1549 if (unlikely(!page_evictable(page
, NULL
))) {
1550 putback_lru_page(page
);
1554 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1555 nr_rotated
+= hpage_nr_pages(page
);
1557 * Identify referenced, file-backed active pages and
1558 * give them one more trip around the active list. So
1559 * that executable code get better chances to stay in
1560 * memory under moderate memory pressure. Anon pages
1561 * are not likely to be evicted by use-once streaming
1562 * IO, plus JVM can create lots of anon VM_EXEC pages,
1563 * so we ignore them here.
1565 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1566 list_add(&page
->lru
, &l_active
);
1571 ClearPageActive(page
); /* we are de-activating */
1572 list_add(&page
->lru
, &l_inactive
);
1576 * Move pages back to the lru list.
1578 spin_lock_irq(&zone
->lru_lock
);
1580 * Count referenced pages from currently used mappings as rotated,
1581 * even though only some of them are actually re-activated. This
1582 * helps balance scan pressure between file and anonymous pages in
1585 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1587 move_active_pages_to_lru(zone
, &l_active
,
1588 LRU_ACTIVE
+ file
* LRU_FILE
);
1589 move_active_pages_to_lru(zone
, &l_inactive
,
1590 LRU_BASE
+ file
* LRU_FILE
);
1591 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1592 spin_unlock_irq(&zone
->lru_lock
);
1596 static int inactive_anon_is_low_global(struct zone
*zone
)
1598 unsigned long active
, inactive
;
1600 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1601 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1603 if (inactive
* zone
->inactive_ratio
< active
)
1610 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1611 * @zone: zone to check
1612 * @sc: scan control of this context
1614 * Returns true if the zone does not have enough inactive anon pages,
1615 * meaning some active anon pages need to be deactivated.
1617 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1622 * If we don't have swap space, anonymous page deactivation
1625 if (!total_swap_pages
)
1628 if (scanning_global_lru(sc
))
1629 low
= inactive_anon_is_low_global(zone
);
1631 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1635 static inline int inactive_anon_is_low(struct zone
*zone
,
1636 struct scan_control
*sc
)
1642 static int inactive_file_is_low_global(struct zone
*zone
)
1644 unsigned long active
, inactive
;
1646 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1647 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1649 return (active
> inactive
);
1653 * inactive_file_is_low - check if file pages need to be deactivated
1654 * @zone: zone to check
1655 * @sc: scan control of this context
1657 * When the system is doing streaming IO, memory pressure here
1658 * ensures that active file pages get deactivated, until more
1659 * than half of the file pages are on the inactive list.
1661 * Once we get to that situation, protect the system's working
1662 * set from being evicted by disabling active file page aging.
1664 * This uses a different ratio than the anonymous pages, because
1665 * the page cache uses a use-once replacement algorithm.
1667 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1671 if (scanning_global_lru(sc
))
1672 low
= inactive_file_is_low_global(zone
);
1674 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1678 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1682 return inactive_file_is_low(zone
, sc
);
1684 return inactive_anon_is_low(zone
, sc
);
1687 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1688 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1690 int file
= is_file_lru(lru
);
1692 if (is_active_lru(lru
)) {
1693 if (inactive_list_is_low(zone
, sc
, file
))
1694 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1698 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1702 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1703 * until we collected @swap_cluster_max pages to scan.
1705 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1706 unsigned long *nr_saved_scan
)
1710 *nr_saved_scan
+= nr_to_scan
;
1711 nr
= *nr_saved_scan
;
1713 if (nr
>= SWAP_CLUSTER_MAX
)
1722 * Determine how aggressively the anon and file LRU lists should be
1723 * scanned. The relative value of each set of LRU lists is determined
1724 * by looking at the fraction of the pages scanned we did rotate back
1725 * onto the active list instead of evict.
1727 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1729 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1730 unsigned long *nr
, int priority
)
1732 unsigned long anon
, file
, free
;
1733 unsigned long anon_prio
, file_prio
;
1734 unsigned long ap
, fp
;
1735 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1736 u64 fraction
[2], denominator
;
1740 /* If we have no swap space, do not bother scanning anon pages. */
1741 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1749 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1750 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1751 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1752 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1754 if (scanning_global_lru(sc
)) {
1755 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1756 /* If we have very few page cache pages,
1757 force-scan anon pages. */
1758 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1767 * With swappiness at 100, anonymous and file have the same priority.
1768 * This scanning priority is essentially the inverse of IO cost.
1770 anon_prio
= sc
->swappiness
;
1771 file_prio
= 200 - sc
->swappiness
;
1774 * OK, so we have swap space and a fair amount of page cache
1775 * pages. We use the recently rotated / recently scanned
1776 * ratios to determine how valuable each cache is.
1778 * Because workloads change over time (and to avoid overflow)
1779 * we keep these statistics as a floating average, which ends
1780 * up weighing recent references more than old ones.
1782 * anon in [0], file in [1]
1784 spin_lock_irq(&zone
->lru_lock
);
1785 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1786 reclaim_stat
->recent_scanned
[0] /= 2;
1787 reclaim_stat
->recent_rotated
[0] /= 2;
1790 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1791 reclaim_stat
->recent_scanned
[1] /= 2;
1792 reclaim_stat
->recent_rotated
[1] /= 2;
1796 * The amount of pressure on anon vs file pages is inversely
1797 * proportional to the fraction of recently scanned pages on
1798 * each list that were recently referenced and in active use.
1800 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1801 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1803 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1804 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1805 spin_unlock_irq(&zone
->lru_lock
);
1809 denominator
= ap
+ fp
+ 1;
1811 for_each_evictable_lru(l
) {
1812 int file
= is_file_lru(l
);
1815 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1816 if (priority
|| noswap
) {
1818 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1820 nr
[l
] = nr_scan_try_batch(scan
,
1821 &reclaim_stat
->nr_saved_scan
[l
]);
1826 * Reclaim/compaction depends on a number of pages being freed. To avoid
1827 * disruption to the system, a small number of order-0 pages continue to be
1828 * rotated and reclaimed in the normal fashion. However, by the time we get
1829 * back to the allocator and call try_to_compact_zone(), we ensure that
1830 * there are enough free pages for it to be likely successful
1832 static inline bool should_continue_reclaim(struct zone
*zone
,
1833 unsigned long nr_reclaimed
,
1834 unsigned long nr_scanned
,
1835 struct scan_control
*sc
)
1837 unsigned long pages_for_compaction
;
1838 unsigned long inactive_lru_pages
;
1840 /* If not in reclaim/compaction mode, stop */
1841 if (!(sc
->reclaim_mode
& RECLAIM_MODE_COMPACTION
))
1845 * If we failed to reclaim and have scanned the full list, stop.
1846 * NOTE: Checking just nr_reclaimed would exit reclaim/compaction far
1847 * faster but obviously would be less likely to succeed
1848 * allocation. If this is desirable, use GFP_REPEAT to decide
1849 * if both reclaimed and scanned should be checked or just
1852 if (!nr_reclaimed
&& !nr_scanned
)
1856 * If we have not reclaimed enough pages for compaction and the
1857 * inactive lists are large enough, continue reclaiming
1859 pages_for_compaction
= (2UL << sc
->order
);
1860 inactive_lru_pages
= zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
) +
1861 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1862 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1863 inactive_lru_pages
> pages_for_compaction
)
1866 /* If compaction would go ahead or the allocation would succeed, stop */
1867 switch (compaction_suitable(zone
, sc
->order
)) {
1868 case COMPACT_PARTIAL
:
1869 case COMPACT_CONTINUE
:
1877 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1879 static void shrink_zone(int priority
, struct zone
*zone
,
1880 struct scan_control
*sc
)
1882 unsigned long nr
[NR_LRU_LISTS
];
1883 unsigned long nr_to_scan
;
1885 unsigned long nr_reclaimed
;
1886 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1887 unsigned long nr_scanned
= sc
->nr_scanned
;
1891 get_scan_count(zone
, sc
, nr
, priority
);
1893 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1894 nr
[LRU_INACTIVE_FILE
]) {
1895 for_each_evictable_lru(l
) {
1897 nr_to_scan
= min_t(unsigned long,
1898 nr
[l
], SWAP_CLUSTER_MAX
);
1899 nr
[l
] -= nr_to_scan
;
1901 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1902 zone
, sc
, priority
);
1906 * On large memory systems, scan >> priority can become
1907 * really large. This is fine for the starting priority;
1908 * we want to put equal scanning pressure on each zone.
1909 * However, if the VM has a harder time of freeing pages,
1910 * with multiple processes reclaiming pages, the total
1911 * freeing target can get unreasonably large.
1913 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1916 sc
->nr_reclaimed
+= nr_reclaimed
;
1919 * Even if we did not try to evict anon pages at all, we want to
1920 * rebalance the anon lru active/inactive ratio.
1922 if (inactive_anon_is_low(zone
, sc
))
1923 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1925 /* reclaim/compaction might need reclaim to continue */
1926 if (should_continue_reclaim(zone
, nr_reclaimed
,
1927 sc
->nr_scanned
- nr_scanned
, sc
))
1930 throttle_vm_writeout(sc
->gfp_mask
);
1934 * This is the direct reclaim path, for page-allocating processes. We only
1935 * try to reclaim pages from zones which will satisfy the caller's allocation
1938 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1940 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1942 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1943 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1944 * zone defense algorithm.
1946 * If a zone is deemed to be full of pinned pages then just give it a light
1947 * scan then give up on it.
1949 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1950 struct scan_control
*sc
)
1955 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1956 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1957 if (!populated_zone(zone
))
1960 * Take care memory controller reclaiming has small influence
1963 if (scanning_global_lru(sc
)) {
1964 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1966 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1967 continue; /* Let kswapd poll it */
1970 shrink_zone(priority
, zone
, sc
);
1974 static bool zone_reclaimable(struct zone
*zone
)
1976 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
1980 * As hibernation is going on, kswapd is freezed so that it can't mark
1981 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
1982 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
1984 static bool all_unreclaimable(struct zonelist
*zonelist
,
1985 struct scan_control
*sc
)
1989 bool all_unreclaimable
= true;
1991 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1992 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1993 if (!populated_zone(zone
))
1995 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1997 if (zone_reclaimable(zone
)) {
1998 all_unreclaimable
= false;
2003 return all_unreclaimable
;
2007 * This is the main entry point to direct page reclaim.
2009 * If a full scan of the inactive list fails to free enough memory then we
2010 * are "out of memory" and something needs to be killed.
2012 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2013 * high - the zone may be full of dirty or under-writeback pages, which this
2014 * caller can't do much about. We kick the writeback threads and take explicit
2015 * naps in the hope that some of these pages can be written. But if the
2016 * allocating task holds filesystem locks which prevent writeout this might not
2017 * work, and the allocation attempt will fail.
2019 * returns: 0, if no pages reclaimed
2020 * else, the number of pages reclaimed
2022 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2023 struct scan_control
*sc
)
2026 unsigned long total_scanned
= 0;
2027 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2030 unsigned long writeback_threshold
;
2033 delayacct_freepages_start();
2035 if (scanning_global_lru(sc
))
2036 count_vm_event(ALLOCSTALL
);
2038 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2041 disable_swap_token();
2042 shrink_zones(priority
, zonelist
, sc
);
2044 * Don't shrink slabs when reclaiming memory from
2045 * over limit cgroups
2047 if (scanning_global_lru(sc
)) {
2048 unsigned long lru_pages
= 0;
2049 for_each_zone_zonelist(zone
, z
, zonelist
,
2050 gfp_zone(sc
->gfp_mask
)) {
2051 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2054 lru_pages
+= zone_reclaimable_pages(zone
);
2057 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
2058 if (reclaim_state
) {
2059 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2060 reclaim_state
->reclaimed_slab
= 0;
2063 total_scanned
+= sc
->nr_scanned
;
2064 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2068 * Try to write back as many pages as we just scanned. This
2069 * tends to cause slow streaming writers to write data to the
2070 * disk smoothly, at the dirtying rate, which is nice. But
2071 * that's undesirable in laptop mode, where we *want* lumpy
2072 * writeout. So in laptop mode, write out the whole world.
2074 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2075 if (total_scanned
> writeback_threshold
) {
2076 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2077 sc
->may_writepage
= 1;
2080 /* Take a nap, wait for some writeback to complete */
2081 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2082 priority
< DEF_PRIORITY
- 2) {
2083 struct zone
*preferred_zone
;
2085 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2086 &cpuset_current_mems_allowed
,
2088 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2093 delayacct_freepages_end();
2096 if (sc
->nr_reclaimed
)
2097 return sc
->nr_reclaimed
;
2099 /* top priority shrink_zones still had more to do? don't OOM, then */
2100 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2106 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2107 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2109 unsigned long nr_reclaimed
;
2110 struct scan_control sc
= {
2111 .gfp_mask
= gfp_mask
,
2112 .may_writepage
= !laptop_mode
,
2113 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2116 .swappiness
= vm_swappiness
,
2119 .nodemask
= nodemask
,
2122 trace_mm_vmscan_direct_reclaim_begin(order
,
2126 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2128 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2130 return nr_reclaimed
;
2133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2135 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2136 gfp_t gfp_mask
, bool noswap
,
2137 unsigned int swappiness
,
2140 struct scan_control sc
= {
2141 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2142 .may_writepage
= !laptop_mode
,
2144 .may_swap
= !noswap
,
2145 .swappiness
= swappiness
,
2149 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2150 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2152 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2157 * NOTE: Although we can get the priority field, using it
2158 * here is not a good idea, since it limits the pages we can scan.
2159 * if we don't reclaim here, the shrink_zone from balance_pgdat
2160 * will pick up pages from other mem cgroup's as well. We hack
2161 * the priority and make it zero.
2163 shrink_zone(0, zone
, &sc
);
2165 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2167 return sc
.nr_reclaimed
;
2170 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2173 unsigned int swappiness
)
2175 struct zonelist
*zonelist
;
2176 unsigned long nr_reclaimed
;
2177 struct scan_control sc
= {
2178 .may_writepage
= !laptop_mode
,
2180 .may_swap
= !noswap
,
2181 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2182 .swappiness
= swappiness
,
2184 .mem_cgroup
= mem_cont
,
2185 .nodemask
= NULL
, /* we don't care the placement */
2188 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2189 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2190 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2192 trace_mm_vmscan_memcg_reclaim_begin(0,
2196 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2198 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2200 return nr_reclaimed
;
2205 * pgdat_balanced is used when checking if a node is balanced for high-order
2206 * allocations. Only zones that meet watermarks and are in a zone allowed
2207 * by the callers classzone_idx are added to balanced_pages. The total of
2208 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2209 * for the node to be considered balanced. Forcing all zones to be balanced
2210 * for high orders can cause excessive reclaim when there are imbalanced zones.
2211 * The choice of 25% is due to
2212 * o a 16M DMA zone that is balanced will not balance a zone on any
2213 * reasonable sized machine
2214 * o On all other machines, the top zone must be at least a reasonable
2215 * precentage of the middle zones. For example, on 32-bit x86, highmem
2216 * would need to be at least 256M for it to be balance a whole node.
2217 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2218 * to balance a node on its own. These seemed like reasonable ratios.
2220 static bool pgdat_balanced(pg_data_t
*pgdat
, unsigned long balanced_pages
,
2223 unsigned long present_pages
= 0;
2226 for (i
= 0; i
<= classzone_idx
; i
++)
2227 present_pages
+= pgdat
->node_zones
[i
].present_pages
;
2229 return balanced_pages
> (present_pages
>> 2);
2232 /* is kswapd sleeping prematurely? */
2233 static bool sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
,
2237 unsigned long balanced
= 0;
2238 bool all_zones_ok
= true;
2240 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2244 /* Check the watermark levels */
2245 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2246 struct zone
*zone
= pgdat
->node_zones
+ i
;
2248 if (!populated_zone(zone
))
2252 * balance_pgdat() skips over all_unreclaimable after
2253 * DEF_PRIORITY. Effectively, it considers them balanced so
2254 * they must be considered balanced here as well if kswapd
2257 if (zone
->all_unreclaimable
) {
2258 balanced
+= zone
->present_pages
;
2262 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
),
2264 all_zones_ok
= false;
2266 balanced
+= zone
->present_pages
;
2270 * For high-order requests, the balanced zones must contain at least
2271 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2275 return pgdat_balanced(pgdat
, balanced
, classzone_idx
);
2277 return !all_zones_ok
;
2281 * For kswapd, balance_pgdat() will work across all this node's zones until
2282 * they are all at high_wmark_pages(zone).
2284 * Returns the final order kswapd was reclaiming at
2286 * There is special handling here for zones which are full of pinned pages.
2287 * This can happen if the pages are all mlocked, or if they are all used by
2288 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2289 * What we do is to detect the case where all pages in the zone have been
2290 * scanned twice and there has been zero successful reclaim. Mark the zone as
2291 * dead and from now on, only perform a short scan. Basically we're polling
2292 * the zone for when the problem goes away.
2294 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2295 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2296 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2297 * lower zones regardless of the number of free pages in the lower zones. This
2298 * interoperates with the page allocator fallback scheme to ensure that aging
2299 * of pages is balanced across the zones.
2301 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2305 unsigned long balanced
;
2308 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2309 unsigned long total_scanned
;
2310 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2311 struct scan_control sc
= {
2312 .gfp_mask
= GFP_KERNEL
,
2316 * kswapd doesn't want to be bailed out while reclaim. because
2317 * we want to put equal scanning pressure on each zone.
2319 .nr_to_reclaim
= ULONG_MAX
,
2320 .swappiness
= vm_swappiness
,
2326 sc
.nr_reclaimed
= 0;
2327 sc
.may_writepage
= !laptop_mode
;
2328 count_vm_event(PAGEOUTRUN
);
2330 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2331 unsigned long lru_pages
= 0;
2332 int has_under_min_watermark_zone
= 0;
2334 /* The swap token gets in the way of swapout... */
2336 disable_swap_token();
2342 * Scan in the highmem->dma direction for the highest
2343 * zone which needs scanning
2345 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2346 struct zone
*zone
= pgdat
->node_zones
+ i
;
2348 if (!populated_zone(zone
))
2351 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2355 * Do some background aging of the anon list, to give
2356 * pages a chance to be referenced before reclaiming.
2358 if (inactive_anon_is_low(zone
, &sc
))
2359 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2362 if (!zone_watermark_ok_safe(zone
, order
,
2363 high_wmark_pages(zone
), 0, 0)) {
2372 for (i
= 0; i
<= end_zone
; i
++) {
2373 struct zone
*zone
= pgdat
->node_zones
+ i
;
2375 lru_pages
+= zone_reclaimable_pages(zone
);
2379 * Now scan the zone in the dma->highmem direction, stopping
2380 * at the last zone which needs scanning.
2382 * We do this because the page allocator works in the opposite
2383 * direction. This prevents the page allocator from allocating
2384 * pages behind kswapd's direction of progress, which would
2385 * cause too much scanning of the lower zones.
2387 for (i
= 0; i
<= end_zone
; i
++) {
2389 struct zone
*zone
= pgdat
->node_zones
+ i
;
2392 if (!populated_zone(zone
))
2395 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2401 * Call soft limit reclaim before calling shrink_zone.
2402 * For now we ignore the return value
2404 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2407 * We put equal pressure on every zone, unless one
2408 * zone has way too many pages free already.
2410 if (!zone_watermark_ok_safe(zone
, order
,
2411 8*high_wmark_pages(zone
), end_zone
, 0))
2412 shrink_zone(priority
, zone
, &sc
);
2413 reclaim_state
->reclaimed_slab
= 0;
2414 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2416 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2417 total_scanned
+= sc
.nr_scanned
;
2421 zone_watermark_ok(zone
, 0,
2422 high_wmark_pages(zone
),
2424 !zone_watermark_ok(zone
, order
,
2425 high_wmark_pages(zone
),
2427 compact_zone_order(zone
,
2430 COMPACT_MODE_KSWAPD
);
2434 if (zone
->all_unreclaimable
)
2436 if (!compaction
&& nr_slab
== 0 &&
2437 !zone_reclaimable(zone
))
2438 zone
->all_unreclaimable
= 1;
2440 * If we've done a decent amount of scanning and
2441 * the reclaim ratio is low, start doing writepage
2442 * even in laptop mode
2444 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2445 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2446 sc
.may_writepage
= 1;
2448 if (!zone_watermark_ok_safe(zone
, order
,
2449 high_wmark_pages(zone
), end_zone
, 0)) {
2452 * We are still under min water mark. This
2453 * means that we have a GFP_ATOMIC allocation
2454 * failure risk. Hurry up!
2456 if (!zone_watermark_ok_safe(zone
, order
,
2457 min_wmark_pages(zone
), end_zone
, 0))
2458 has_under_min_watermark_zone
= 1;
2461 * If a zone reaches its high watermark,
2462 * consider it to be no longer congested. It's
2463 * possible there are dirty pages backed by
2464 * congested BDIs but as pressure is relieved,
2465 * spectulatively avoid congestion waits
2467 zone_clear_flag(zone
, ZONE_CONGESTED
);
2468 if (i
<= *classzone_idx
)
2469 balanced
+= zone
->present_pages
;
2473 if (all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))
2474 break; /* kswapd: all done */
2476 * OK, kswapd is getting into trouble. Take a nap, then take
2477 * another pass across the zones.
2479 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2480 if (has_under_min_watermark_zone
)
2481 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2483 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2487 * We do this so kswapd doesn't build up large priorities for
2488 * example when it is freeing in parallel with allocators. It
2489 * matches the direct reclaim path behaviour in terms of impact
2490 * on zone->*_priority.
2492 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2498 * order-0: All zones must meet high watermark for a balanced node
2499 * high-order: Balanced zones must make up at least 25% of the node
2500 * for the node to be balanced
2502 if (!(all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))) {
2508 * Fragmentation may mean that the system cannot be
2509 * rebalanced for high-order allocations in all zones.
2510 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2511 * it means the zones have been fully scanned and are still
2512 * not balanced. For high-order allocations, there is
2513 * little point trying all over again as kswapd may
2516 * Instead, recheck all watermarks at order-0 as they
2517 * are the most important. If watermarks are ok, kswapd will go
2518 * back to sleep. High-order users can still perform direct
2519 * reclaim if they wish.
2521 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2522 order
= sc
.order
= 0;
2528 * If kswapd was reclaiming at a higher order, it has the option of
2529 * sleeping without all zones being balanced. Before it does, it must
2530 * ensure that the watermarks for order-0 on *all* zones are met and
2531 * that the congestion flags are cleared. The congestion flag must
2532 * be cleared as kswapd is the only mechanism that clears the flag
2533 * and it is potentially going to sleep here.
2536 for (i
= 0; i
<= end_zone
; i
++) {
2537 struct zone
*zone
= pgdat
->node_zones
+ i
;
2539 if (!populated_zone(zone
))
2542 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2545 /* Confirm the zone is balanced for order-0 */
2546 if (!zone_watermark_ok(zone
, 0,
2547 high_wmark_pages(zone
), 0, 0)) {
2548 order
= sc
.order
= 0;
2552 /* If balanced, clear the congested flag */
2553 zone_clear_flag(zone
, ZONE_CONGESTED
);
2558 * Return the order we were reclaiming at so sleeping_prematurely()
2559 * makes a decision on the order we were last reclaiming at. However,
2560 * if another caller entered the allocator slow path while kswapd
2561 * was awake, order will remain at the higher level
2563 *classzone_idx
= end_zone
;
2567 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2572 if (freezing(current
) || kthread_should_stop())
2575 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2577 /* Try to sleep for a short interval */
2578 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2579 remaining
= schedule_timeout(HZ
/10);
2580 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2581 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2585 * After a short sleep, check if it was a premature sleep. If not, then
2586 * go fully to sleep until explicitly woken up.
2588 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2589 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2592 * vmstat counters are not perfectly accurate and the estimated
2593 * value for counters such as NR_FREE_PAGES can deviate from the
2594 * true value by nr_online_cpus * threshold. To avoid the zone
2595 * watermarks being breached while under pressure, we reduce the
2596 * per-cpu vmstat threshold while kswapd is awake and restore
2597 * them before going back to sleep.
2599 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2601 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2604 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2606 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2608 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2612 * The background pageout daemon, started as a kernel thread
2613 * from the init process.
2615 * This basically trickles out pages so that we have _some_
2616 * free memory available even if there is no other activity
2617 * that frees anything up. This is needed for things like routing
2618 * etc, where we otherwise might have all activity going on in
2619 * asynchronous contexts that cannot page things out.
2621 * If there are applications that are active memory-allocators
2622 * (most normal use), this basically shouldn't matter.
2624 static int kswapd(void *p
)
2626 unsigned long order
;
2628 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2629 struct task_struct
*tsk
= current
;
2631 struct reclaim_state reclaim_state
= {
2632 .reclaimed_slab
= 0,
2634 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2636 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2638 if (!cpumask_empty(cpumask
))
2639 set_cpus_allowed_ptr(tsk
, cpumask
);
2640 current
->reclaim_state
= &reclaim_state
;
2643 * Tell the memory management that we're a "memory allocator",
2644 * and that if we need more memory we should get access to it
2645 * regardless (see "__alloc_pages()"). "kswapd" should
2646 * never get caught in the normal page freeing logic.
2648 * (Kswapd normally doesn't need memory anyway, but sometimes
2649 * you need a small amount of memory in order to be able to
2650 * page out something else, and this flag essentially protects
2651 * us from recursively trying to free more memory as we're
2652 * trying to free the first piece of memory in the first place).
2654 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2658 classzone_idx
= MAX_NR_ZONES
- 1;
2660 unsigned long new_order
;
2661 int new_classzone_idx
;
2664 new_order
= pgdat
->kswapd_max_order
;
2665 new_classzone_idx
= pgdat
->classzone_idx
;
2666 pgdat
->kswapd_max_order
= 0;
2667 pgdat
->classzone_idx
= MAX_NR_ZONES
- 1;
2668 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
2670 * Don't sleep if someone wants a larger 'order'
2671 * allocation or has tigher zone constraints
2674 classzone_idx
= new_classzone_idx
;
2676 kswapd_try_to_sleep(pgdat
, order
, classzone_idx
);
2677 order
= pgdat
->kswapd_max_order
;
2678 classzone_idx
= pgdat
->classzone_idx
;
2679 pgdat
->kswapd_max_order
= 0;
2680 pgdat
->classzone_idx
= MAX_NR_ZONES
- 1;
2683 ret
= try_to_freeze();
2684 if (kthread_should_stop())
2688 * We can speed up thawing tasks if we don't call balance_pgdat
2689 * after returning from the refrigerator
2692 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2693 order
= balance_pgdat(pgdat
, order
, &classzone_idx
);
2700 * A zone is low on free memory, so wake its kswapd task to service it.
2702 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
2706 if (!populated_zone(zone
))
2709 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2711 pgdat
= zone
->zone_pgdat
;
2712 if (pgdat
->kswapd_max_order
< order
) {
2713 pgdat
->kswapd_max_order
= order
;
2714 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
2716 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2718 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
2721 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2722 wake_up_interruptible(&pgdat
->kswapd_wait
);
2726 * The reclaimable count would be mostly accurate.
2727 * The less reclaimable pages may be
2728 * - mlocked pages, which will be moved to unevictable list when encountered
2729 * - mapped pages, which may require several travels to be reclaimed
2730 * - dirty pages, which is not "instantly" reclaimable
2732 unsigned long global_reclaimable_pages(void)
2736 nr
= global_page_state(NR_ACTIVE_FILE
) +
2737 global_page_state(NR_INACTIVE_FILE
);
2739 if (nr_swap_pages
> 0)
2740 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2741 global_page_state(NR_INACTIVE_ANON
);
2746 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2750 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2751 zone_page_state(zone
, NR_INACTIVE_FILE
);
2753 if (nr_swap_pages
> 0)
2754 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2755 zone_page_state(zone
, NR_INACTIVE_ANON
);
2760 #ifdef CONFIG_HIBERNATION
2762 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2765 * Rather than trying to age LRUs the aim is to preserve the overall
2766 * LRU order by reclaiming preferentially
2767 * inactive > active > active referenced > active mapped
2769 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2771 struct reclaim_state reclaim_state
;
2772 struct scan_control sc
= {
2773 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2777 .nr_to_reclaim
= nr_to_reclaim
,
2778 .hibernation_mode
= 1,
2779 .swappiness
= vm_swappiness
,
2782 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2783 struct task_struct
*p
= current
;
2784 unsigned long nr_reclaimed
;
2786 p
->flags
|= PF_MEMALLOC
;
2787 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2788 reclaim_state
.reclaimed_slab
= 0;
2789 p
->reclaim_state
= &reclaim_state
;
2791 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2793 p
->reclaim_state
= NULL
;
2794 lockdep_clear_current_reclaim_state();
2795 p
->flags
&= ~PF_MEMALLOC
;
2797 return nr_reclaimed
;
2799 #endif /* CONFIG_HIBERNATION */
2801 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2802 not required for correctness. So if the last cpu in a node goes
2803 away, we get changed to run anywhere: as the first one comes back,
2804 restore their cpu bindings. */
2805 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2806 unsigned long action
, void *hcpu
)
2810 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2811 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2812 pg_data_t
*pgdat
= NODE_DATA(nid
);
2813 const struct cpumask
*mask
;
2815 mask
= cpumask_of_node(pgdat
->node_id
);
2817 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2818 /* One of our CPUs online: restore mask */
2819 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2826 * This kswapd start function will be called by init and node-hot-add.
2827 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2829 int kswapd_run(int nid
)
2831 pg_data_t
*pgdat
= NODE_DATA(nid
);
2837 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2838 if (IS_ERR(pgdat
->kswapd
)) {
2839 /* failure at boot is fatal */
2840 BUG_ON(system_state
== SYSTEM_BOOTING
);
2841 printk("Failed to start kswapd on node %d\n",nid
);
2848 * Called by memory hotplug when all memory in a node is offlined.
2850 void kswapd_stop(int nid
)
2852 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2855 kthread_stop(kswapd
);
2858 static int __init
kswapd_init(void)
2863 for_each_node_state(nid
, N_HIGH_MEMORY
)
2865 hotcpu_notifier(cpu_callback
, 0);
2869 module_init(kswapd_init
)
2875 * If non-zero call zone_reclaim when the number of free pages falls below
2878 int zone_reclaim_mode __read_mostly
;
2880 #define RECLAIM_OFF 0
2881 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2882 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2883 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2886 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2887 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2890 #define ZONE_RECLAIM_PRIORITY 4
2893 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2896 int sysctl_min_unmapped_ratio
= 1;
2899 * If the number of slab pages in a zone grows beyond this percentage then
2900 * slab reclaim needs to occur.
2902 int sysctl_min_slab_ratio
= 5;
2904 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2906 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2907 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2908 zone_page_state(zone
, NR_ACTIVE_FILE
);
2911 * It's possible for there to be more file mapped pages than
2912 * accounted for by the pages on the file LRU lists because
2913 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2915 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2918 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2919 static long zone_pagecache_reclaimable(struct zone
*zone
)
2921 long nr_pagecache_reclaimable
;
2925 * If RECLAIM_SWAP is set, then all file pages are considered
2926 * potentially reclaimable. Otherwise, we have to worry about
2927 * pages like swapcache and zone_unmapped_file_pages() provides
2930 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2931 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2933 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2935 /* If we can't clean pages, remove dirty pages from consideration */
2936 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2937 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2939 /* Watch for any possible underflows due to delta */
2940 if (unlikely(delta
> nr_pagecache_reclaimable
))
2941 delta
= nr_pagecache_reclaimable
;
2943 return nr_pagecache_reclaimable
- delta
;
2947 * Try to free up some pages from this zone through reclaim.
2949 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2951 /* Minimum pages needed in order to stay on node */
2952 const unsigned long nr_pages
= 1 << order
;
2953 struct task_struct
*p
= current
;
2954 struct reclaim_state reclaim_state
;
2956 struct scan_control sc
= {
2957 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2958 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2960 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2962 .gfp_mask
= gfp_mask
,
2963 .swappiness
= vm_swappiness
,
2966 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2970 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2971 * and we also need to be able to write out pages for RECLAIM_WRITE
2974 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2975 lockdep_set_current_reclaim_state(gfp_mask
);
2976 reclaim_state
.reclaimed_slab
= 0;
2977 p
->reclaim_state
= &reclaim_state
;
2979 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2981 * Free memory by calling shrink zone with increasing
2982 * priorities until we have enough memory freed.
2984 priority
= ZONE_RECLAIM_PRIORITY
;
2986 shrink_zone(priority
, zone
, &sc
);
2988 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2991 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2992 if (nr_slab_pages0
> zone
->min_slab_pages
) {
2994 * shrink_slab() does not currently allow us to determine how
2995 * many pages were freed in this zone. So we take the current
2996 * number of slab pages and shake the slab until it is reduced
2997 * by the same nr_pages that we used for reclaiming unmapped
3000 * Note that shrink_slab will free memory on all zones and may
3004 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3006 /* No reclaimable slab or very low memory pressure */
3007 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
3010 /* Freed enough memory */
3011 nr_slab_pages1
= zone_page_state(zone
,
3012 NR_SLAB_RECLAIMABLE
);
3013 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3018 * Update nr_reclaimed by the number of slab pages we
3019 * reclaimed from this zone.
3021 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3022 if (nr_slab_pages1
< nr_slab_pages0
)
3023 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3026 p
->reclaim_state
= NULL
;
3027 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3028 lockdep_clear_current_reclaim_state();
3029 return sc
.nr_reclaimed
>= nr_pages
;
3032 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3038 * Zone reclaim reclaims unmapped file backed pages and
3039 * slab pages if we are over the defined limits.
3041 * A small portion of unmapped file backed pages is needed for
3042 * file I/O otherwise pages read by file I/O will be immediately
3043 * thrown out if the zone is overallocated. So we do not reclaim
3044 * if less than a specified percentage of the zone is used by
3045 * unmapped file backed pages.
3047 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3048 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3049 return ZONE_RECLAIM_FULL
;
3051 if (zone
->all_unreclaimable
)
3052 return ZONE_RECLAIM_FULL
;
3055 * Do not scan if the allocation should not be delayed.
3057 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3058 return ZONE_RECLAIM_NOSCAN
;
3061 * Only run zone reclaim on the local zone or on zones that do not
3062 * have associated processors. This will favor the local processor
3063 * over remote processors and spread off node memory allocations
3064 * as wide as possible.
3066 node_id
= zone_to_nid(zone
);
3067 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3068 return ZONE_RECLAIM_NOSCAN
;
3070 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3071 return ZONE_RECLAIM_NOSCAN
;
3073 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3074 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3077 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3084 * page_evictable - test whether a page is evictable
3085 * @page: the page to test
3086 * @vma: the VMA in which the page is or will be mapped, may be NULL
3088 * Test whether page is evictable--i.e., should be placed on active/inactive
3089 * lists vs unevictable list. The vma argument is !NULL when called from the
3090 * fault path to determine how to instantate a new page.
3092 * Reasons page might not be evictable:
3093 * (1) page's mapping marked unevictable
3094 * (2) page is part of an mlocked VMA
3097 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
3100 if (mapping_unevictable(page_mapping(page
)))
3103 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
3110 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3111 * @page: page to check evictability and move to appropriate lru list
3112 * @zone: zone page is in
3114 * Checks a page for evictability and moves the page to the appropriate
3117 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3118 * have PageUnevictable set.
3120 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
3122 VM_BUG_ON(PageActive(page
));
3125 ClearPageUnevictable(page
);
3126 if (page_evictable(page
, NULL
)) {
3127 enum lru_list l
= page_lru_base_type(page
);
3129 __dec_zone_state(zone
, NR_UNEVICTABLE
);
3130 list_move(&page
->lru
, &zone
->lru
[l
].list
);
3131 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
3132 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
3133 __count_vm_event(UNEVICTABLE_PGRESCUED
);
3136 * rotate unevictable list
3138 SetPageUnevictable(page
);
3139 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
3140 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
3141 if (page_evictable(page
, NULL
))
3147 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3148 * @mapping: struct address_space to scan for evictable pages
3150 * Scan all pages in mapping. Check unevictable pages for
3151 * evictability and move them to the appropriate zone lru list.
3153 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
3156 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
3159 struct pagevec pvec
;
3161 if (mapping
->nrpages
== 0)
3164 pagevec_init(&pvec
, 0);
3165 while (next
< end
&&
3166 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
3172 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
3173 struct page
*page
= pvec
.pages
[i
];
3174 pgoff_t page_index
= page
->index
;
3175 struct zone
*pagezone
= page_zone(page
);
3178 if (page_index
> next
)
3182 if (pagezone
!= zone
) {
3184 spin_unlock_irq(&zone
->lru_lock
);
3186 spin_lock_irq(&zone
->lru_lock
);
3189 if (PageLRU(page
) && PageUnevictable(page
))
3190 check_move_unevictable_page(page
, zone
);
3193 spin_unlock_irq(&zone
->lru_lock
);
3194 pagevec_release(&pvec
);
3196 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
3202 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3203 * @zone - zone of which to scan the unevictable list
3205 * Scan @zone's unevictable LRU lists to check for pages that have become
3206 * evictable. Move those that have to @zone's inactive list where they
3207 * become candidates for reclaim, unless shrink_inactive_zone() decides
3208 * to reactivate them. Pages that are still unevictable are rotated
3209 * back onto @zone's unevictable list.
3211 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3212 static void scan_zone_unevictable_pages(struct zone
*zone
)
3214 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
3216 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
3218 while (nr_to_scan
> 0) {
3219 unsigned long batch_size
= min(nr_to_scan
,
3220 SCAN_UNEVICTABLE_BATCH_SIZE
);
3222 spin_lock_irq(&zone
->lru_lock
);
3223 for (scan
= 0; scan
< batch_size
; scan
++) {
3224 struct page
*page
= lru_to_page(l_unevictable
);
3226 if (!trylock_page(page
))
3229 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3231 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3232 check_move_unevictable_page(page
, zone
);
3236 spin_unlock_irq(&zone
->lru_lock
);
3238 nr_to_scan
-= batch_size
;
3244 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3246 * A really big hammer: scan all zones' unevictable LRU lists to check for
3247 * pages that have become evictable. Move those back to the zones'
3248 * inactive list where they become candidates for reclaim.
3249 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3250 * and we add swap to the system. As such, it runs in the context of a task
3251 * that has possibly/probably made some previously unevictable pages
3254 static void scan_all_zones_unevictable_pages(void)
3258 for_each_zone(zone
) {
3259 scan_zone_unevictable_pages(zone
);
3264 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3265 * all nodes' unevictable lists for evictable pages
3267 unsigned long scan_unevictable_pages
;
3269 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3270 void __user
*buffer
,
3271 size_t *length
, loff_t
*ppos
)
3273 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3275 if (write
&& *(unsigned long *)table
->data
)
3276 scan_all_zones_unevictable_pages();
3278 scan_unevictable_pages
= 0;
3284 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3285 * a specified node's per zone unevictable lists for evictable pages.
3288 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3289 struct sysdev_attribute
*attr
,
3292 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3295 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3296 struct sysdev_attribute
*attr
,
3297 const char *buf
, size_t count
)
3299 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3302 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3305 return 1; /* zero is no-op */
3307 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3308 if (!populated_zone(zone
))
3310 scan_zone_unevictable_pages(zone
);
3316 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3317 read_scan_unevictable_node
,
3318 write_scan_unevictable_node
);
3320 int scan_unevictable_register_node(struct node
*node
)
3322 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3325 void scan_unevictable_unregister_node(struct node
*node
)
3327 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);