2 * arch/alpha/kernel/traps.c
4 * (C) Copyright 1994 Linus Torvalds
8 * This file initializes the trap entry points
11 #include <linux/jiffies.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kallsyms.h>
19 #include <linux/ratelimit.h>
21 #include <asm/gentrap.h>
22 #include <asm/uaccess.h>
23 #include <asm/unaligned.h>
24 #include <asm/sysinfo.h>
25 #include <asm/hwrpb.h>
26 #include <asm/mmu_context.h>
30 /* Work-around for some SRMs which mishandle opDEC faults. */
37 __asm__
__volatile__ (
38 /* Load the address of... */
40 /* A stub instruction fault handler. Just add 4 to the
46 /* Install the instruction fault handler. */
48 " call_pal %[wrent]\n"
49 /* With that in place, the fault from the round-to-minf fp
50 insn will arrive either at the "lda 4" insn (bad) or one
51 past that (good). This places the correct fixup in %0. */
53 " cvttq/svm $f31,$f31\n"
55 : [fix
] "=r" (opDEC_fix
)
56 : [rti
] "n" (PAL_rti
), [wrent
] "n" (PAL_wrent
)
57 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60 printk("opDEC fixup enabled.\n");
64 dik_show_regs(struct pt_regs
*regs
, unsigned long *r9_15
)
66 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
67 regs
->pc
, regs
->r26
, regs
->ps
, print_tainted());
68 print_symbol("pc is at %s\n", regs
->pc
);
69 print_symbol("ra is at %s\n", regs
->r26
);
70 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
71 regs
->r0
, regs
->r1
, regs
->r2
);
72 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
73 regs
->r3
, regs
->r4
, regs
->r5
);
74 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
75 regs
->r6
, regs
->r7
, regs
->r8
);
78 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
79 r9_15
[9], r9_15
[10], r9_15
[11]);
80 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
81 r9_15
[12], r9_15
[13], r9_15
[14]);
82 printk("s6 = %016lx\n", r9_15
[15]);
85 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
86 regs
->r16
, regs
->r17
, regs
->r18
);
87 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
88 regs
->r19
, regs
->r20
, regs
->r21
);
89 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
90 regs
->r22
, regs
->r23
, regs
->r24
);
91 printk("t11= %016lx pv = %016lx at = %016lx\n",
92 regs
->r25
, regs
->r27
, regs
->r28
);
93 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
100 static char * ireg_name
[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
101 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
102 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
103 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
107 dik_show_code(unsigned int *pc
)
112 for (i
= -6; i
< 2; i
++) {
114 if (__get_user(insn
, (unsigned int __user
*)pc
+ i
))
116 printk("%c%08x%c", i
? ' ' : '<', insn
, i
? ' ' : '>');
122 dik_show_trace(unsigned long *sp
)
126 while (0x1ff8 & (unsigned long) sp
) {
127 extern char _stext
[], _etext
[];
128 unsigned long tmp
= *sp
;
130 if (tmp
< (unsigned long) &_stext
)
132 if (tmp
>= (unsigned long) &_etext
)
134 printk("[<%lx>]", tmp
);
135 print_symbol(" %s", tmp
);
145 static int kstack_depth_to_print
= 24;
147 void show_stack(struct task_struct
*task
, unsigned long *sp
)
149 unsigned long *stack
;
153 * debugging aid: "show_stack(NULL);" prints the
154 * back trace for this cpu.
157 sp
=(unsigned long*)&sp
;
160 for(i
=0; i
< kstack_depth_to_print
; i
++) {
161 if (((long) stack
& (THREAD_SIZE
-1)) == 0)
163 if (i
&& ((i
% 4) == 0))
165 printk("%016lx ", *stack
++);
171 void dump_stack(void)
173 show_stack(NULL
, NULL
);
176 EXPORT_SYMBOL(dump_stack
);
179 die_if_kernel(char * str
, struct pt_regs
*regs
, long err
, unsigned long *r9_15
)
184 printk("CPU %d ", hard_smp_processor_id());
186 printk("%s(%d): %s %ld\n", current
->comm
, task_pid_nr(current
), str
, err
);
187 dik_show_regs(regs
, r9_15
);
188 add_taint(TAINT_DIE
);
189 dik_show_trace((unsigned long *)(regs
+1));
190 dik_show_code((unsigned int *)regs
->pc
);
192 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
193 printk("die_if_kernel recursion detected.\n");
200 #ifndef CONFIG_MATHEMU
201 static long dummy_emul(void) { return 0; }
202 long (*alpha_fp_emul_imprecise
)(struct pt_regs
*regs
, unsigned long writemask
)
203 = (void *)dummy_emul
;
204 long (*alpha_fp_emul
) (unsigned long pc
)
205 = (void *)dummy_emul
;
207 long alpha_fp_emul_imprecise(struct pt_regs
*regs
, unsigned long writemask
);
208 long alpha_fp_emul (unsigned long pc
);
212 do_entArith(unsigned long summary
, unsigned long write_mask
,
213 struct pt_regs
*regs
)
215 long si_code
= FPE_FLTINV
;
219 /* Software-completion summary bit is set, so try to
220 emulate the instruction. If the processor supports
221 precise exceptions, we don't have to search. */
222 if (!amask(AMASK_PRECISE_TRAP
))
223 si_code
= alpha_fp_emul(regs
->pc
- 4);
225 si_code
= alpha_fp_emul_imprecise(regs
, write_mask
);
229 die_if_kernel("Arithmetic fault", regs
, 0, NULL
);
231 info
.si_signo
= SIGFPE
;
233 info
.si_code
= si_code
;
234 info
.si_addr
= (void __user
*) regs
->pc
;
235 send_sig_info(SIGFPE
, &info
, current
);
239 do_entIF(unsigned long type
, struct pt_regs
*regs
)
244 if ((regs
->ps
& ~IPL_MAX
) == 0) {
246 const unsigned int *data
247 = (const unsigned int *) regs
->pc
;
248 printk("Kernel bug at %s:%d\n",
249 (const char *)(data
[1] | (long)data
[2] << 32),
252 die_if_kernel((type
== 1 ? "Kernel Bug" : "Instruction fault"),
257 case 0: /* breakpoint */
258 info
.si_signo
= SIGTRAP
;
260 info
.si_code
= TRAP_BRKPT
;
262 info
.si_addr
= (void __user
*) regs
->pc
;
264 if (ptrace_cancel_bpt(current
)) {
265 regs
->pc
-= 4; /* make pc point to former bpt */
268 send_sig_info(SIGTRAP
, &info
, current
);
271 case 1: /* bugcheck */
272 info
.si_signo
= SIGTRAP
;
274 info
.si_code
= __SI_FAULT
;
275 info
.si_addr
= (void __user
*) regs
->pc
;
277 send_sig_info(SIGTRAP
, &info
, current
);
280 case 2: /* gentrap */
281 info
.si_addr
= (void __user
*) regs
->pc
;
282 info
.si_trapno
= regs
->r16
;
283 switch ((long) regs
->r16
) {
340 info
.si_signo
= signo
;
343 info
.si_addr
= (void __user
*) regs
->pc
;
344 send_sig_info(signo
, &info
, current
);
348 if (implver() == IMPLVER_EV4
) {
351 /* The some versions of SRM do not handle
352 the opDEC properly - they return the PC of the
353 opDEC fault, not the instruction after as the
354 Alpha architecture requires. Here we fix it up.
355 We do this by intentionally causing an opDEC
356 fault during the boot sequence and testing if
357 we get the correct PC. If not, we set a flag
358 to correct it every time through. */
359 regs
->pc
+= opDEC_fix
;
361 /* EV4 does not implement anything except normal
362 rounding. Everything else will come here as
363 an illegal instruction. Emulate them. */
364 si_code
= alpha_fp_emul(regs
->pc
- 4);
368 info
.si_signo
= SIGFPE
;
370 info
.si_code
= si_code
;
371 info
.si_addr
= (void __user
*) regs
->pc
;
372 send_sig_info(SIGFPE
, &info
, current
);
378 case 3: /* FEN fault */
379 /* Irritating users can call PAL_clrfen to disable the
380 FPU for the process. The kernel will then trap in
381 do_switch_stack and undo_switch_stack when we try
382 to save and restore the FP registers.
384 Given that GCC by default generates code that uses the
385 FP registers, PAL_clrfen is not useful except for DoS
386 attacks. So turn the bleeding FPU back on and be done
388 current_thread_info()->pcb
.flags
|= 1;
389 __reload_thread(¤t_thread_info()->pcb
);
393 default: /* unexpected instruction-fault type */
397 info
.si_signo
= SIGILL
;
399 info
.si_code
= ILL_ILLOPC
;
400 info
.si_addr
= (void __user
*) regs
->pc
;
401 send_sig_info(SIGILL
, &info
, current
);
404 /* There is an ifdef in the PALcode in MILO that enables a
405 "kernel debugging entry point" as an unprivileged call_pal.
407 We don't want to have anything to do with it, but unfortunately
408 several versions of MILO included in distributions have it enabled,
409 and if we don't put something on the entry point we'll oops. */
412 do_entDbg(struct pt_regs
*regs
)
416 die_if_kernel("Instruction fault", regs
, 0, NULL
);
418 info
.si_signo
= SIGILL
;
420 info
.si_code
= ILL_ILLOPC
;
421 info
.si_addr
= (void __user
*) regs
->pc
;
422 force_sig_info(SIGILL
, &info
, current
);
427 * entUna has a different register layout to be reasonably simple. It
428 * needs access to all the integer registers (the kernel doesn't use
429 * fp-regs), and it needs to have them in order for simpler access.
431 * Due to the non-standard register layout (and because we don't want
432 * to handle floating-point regs), user-mode unaligned accesses are
433 * handled separately by do_entUnaUser below.
435 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
436 * on a gp-register unaligned load/store, something is _very_ wrong
437 * in the kernel anyway..
440 unsigned long regs
[32];
441 unsigned long ps
, pc
, gp
, a0
, a1
, a2
;
444 struct unaligned_stat
{
445 unsigned long count
, va
, pc
;
449 /* Macro for exception fixup code to access integer registers. */
450 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
454 do_entUna(void * va
, unsigned long opcode
, unsigned long reg
,
455 struct allregs
*regs
)
457 long error
, tmp1
, tmp2
, tmp3
, tmp4
;
458 unsigned long pc
= regs
->pc
- 4;
459 unsigned long *_regs
= regs
->regs
;
460 const struct exception_table_entry
*fixup
;
462 unaligned
[0].count
++;
463 unaligned
[0].va
= (unsigned long) va
;
464 unaligned
[0].pc
= pc
;
466 /* We don't want to use the generic get/put unaligned macros as
467 we want to trap exceptions. Only if we actually get an
468 exception will we decide whether we should have caught it. */
471 case 0x0c: /* ldwu */
472 __asm__
__volatile__(
473 "1: ldq_u %1,0(%3)\n"
474 "2: ldq_u %2,1(%3)\n"
478 ".section __ex_table,\"a\"\n"
480 " lda %1,3b-1b(%0)\n"
482 " lda %2,3b-2b(%0)\n"
484 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
488 una_reg(reg
) = tmp1
|tmp2
;
492 __asm__
__volatile__(
493 "1: ldq_u %1,0(%3)\n"
494 "2: ldq_u %2,3(%3)\n"
498 ".section __ex_table,\"a\"\n"
500 " lda %1,3b-1b(%0)\n"
502 " lda %2,3b-2b(%0)\n"
504 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
508 una_reg(reg
) = (int)(tmp1
|tmp2
);
512 __asm__
__volatile__(
513 "1: ldq_u %1,0(%3)\n"
514 "2: ldq_u %2,7(%3)\n"
518 ".section __ex_table,\"a\"\n"
520 " lda %1,3b-1b(%0)\n"
522 " lda %2,3b-2b(%0)\n"
524 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
528 una_reg(reg
) = tmp1
|tmp2
;
531 /* Note that the store sequences do not indicate that they change
532 memory because it _should_ be affecting nothing in this context.
533 (Otherwise we have other, much larger, problems.) */
535 __asm__
__volatile__(
536 "1: ldq_u %2,1(%5)\n"
537 "2: ldq_u %1,0(%5)\n"
544 "3: stq_u %2,1(%5)\n"
545 "4: stq_u %1,0(%5)\n"
547 ".section __ex_table,\"a\"\n"
549 " lda %2,5b-1b(%0)\n"
551 " lda %1,5b-2b(%0)\n"
553 " lda $31,5b-3b(%0)\n"
555 " lda $31,5b-4b(%0)\n"
557 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
558 "=&r"(tmp3
), "=&r"(tmp4
)
559 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
565 __asm__
__volatile__(
566 "1: ldq_u %2,3(%5)\n"
567 "2: ldq_u %1,0(%5)\n"
574 "3: stq_u %2,3(%5)\n"
575 "4: stq_u %1,0(%5)\n"
577 ".section __ex_table,\"a\"\n"
579 " lda %2,5b-1b(%0)\n"
581 " lda %1,5b-2b(%0)\n"
583 " lda $31,5b-3b(%0)\n"
585 " lda $31,5b-4b(%0)\n"
587 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
588 "=&r"(tmp3
), "=&r"(tmp4
)
589 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
595 __asm__
__volatile__(
596 "1: ldq_u %2,7(%5)\n"
597 "2: ldq_u %1,0(%5)\n"
604 "3: stq_u %2,7(%5)\n"
605 "4: stq_u %1,0(%5)\n"
607 ".section __ex_table,\"a\"\n\t"
609 " lda %2,5b-1b(%0)\n"
611 " lda %1,5b-2b(%0)\n"
613 " lda $31,5b-3b(%0)\n"
615 " lda $31,5b-4b(%0)\n"
617 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
618 "=&r"(tmp3
), "=&r"(tmp4
)
619 : "r"(va
), "r"(una_reg(reg
)), "0"(0));
625 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
626 pc
, va
, opcode
, reg
);
630 /* Ok, we caught the exception, but we don't want it. Is there
631 someone to pass it along to? */
632 if ((fixup
= search_exception_tables(pc
)) != 0) {
634 newpc
= fixup_exception(una_reg
, fixup
, pc
);
636 printk("Forwarding unaligned exception at %lx (%lx)\n",
644 * Yikes! No one to forward the exception to.
645 * Since the registers are in a weird format, dump them ourselves.
648 printk("%s(%d): unhandled unaligned exception\n",
649 current
->comm
, task_pid_nr(current
));
651 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
652 pc
, una_reg(26), regs
->ps
);
653 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
654 una_reg(0), una_reg(1), una_reg(2));
655 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
656 una_reg(3), una_reg(4), una_reg(5));
657 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
658 una_reg(6), una_reg(7), una_reg(8));
659 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
660 una_reg(9), una_reg(10), una_reg(11));
661 printk("r12= %016lx r13= %016lx r14= %016lx\n",
662 una_reg(12), una_reg(13), una_reg(14));
663 printk("r15= %016lx\n", una_reg(15));
664 printk("r16= %016lx r17= %016lx r18= %016lx\n",
665 una_reg(16), una_reg(17), una_reg(18));
666 printk("r19= %016lx r20= %016lx r21= %016lx\n",
667 una_reg(19), una_reg(20), una_reg(21));
668 printk("r22= %016lx r23= %016lx r24= %016lx\n",
669 una_reg(22), una_reg(23), una_reg(24));
670 printk("r25= %016lx r27= %016lx r28= %016lx\n",
671 una_reg(25), una_reg(27), una_reg(28));
672 printk("gp = %016lx sp = %p\n", regs
->gp
, regs
+1);
674 dik_show_code((unsigned int *)pc
);
675 dik_show_trace((unsigned long *)(regs
+1));
677 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL
)) {
678 printk("die_if_kernel recursion detected.\n");
686 * Convert an s-floating point value in memory format to the
687 * corresponding value in register format. The exponent
688 * needs to be remapped to preserve non-finite values
689 * (infinities, not-a-numbers, denormals).
691 static inline unsigned long
692 s_mem_to_reg (unsigned long s_mem
)
694 unsigned long frac
= (s_mem
>> 0) & 0x7fffff;
695 unsigned long sign
= (s_mem
>> 31) & 0x1;
696 unsigned long exp_msb
= (s_mem
>> 30) & 0x1;
697 unsigned long exp_low
= (s_mem
>> 23) & 0x7f;
700 exp
= (exp_msb
<< 10) | exp_low
; /* common case */
702 if (exp_low
== 0x7f) {
706 if (exp_low
== 0x00) {
712 return (sign
<< 63) | (exp
<< 52) | (frac
<< 29);
716 * Convert an s-floating point value in register format to the
717 * corresponding value in memory format.
719 static inline unsigned long
720 s_reg_to_mem (unsigned long s_reg
)
722 return ((s_reg
>> 62) << 30) | ((s_reg
<< 5) >> 34);
726 * Handle user-level unaligned fault. Handling user-level unaligned
727 * faults is *extremely* slow and produces nasty messages. A user
728 * program *should* fix unaligned faults ASAP.
730 * Notice that we have (almost) the regular kernel stack layout here,
731 * so finding the appropriate registers is a little more difficult
732 * than in the kernel case.
734 * Finally, we handle regular integer load/stores only. In
735 * particular, load-linked/store-conditionally and floating point
736 * load/stores are not supported. The former make no sense with
737 * unaligned faults (they are guaranteed to fail) and I don't think
738 * the latter will occur in any decent program.
740 * Sigh. We *do* have to handle some FP operations, because GCC will
741 * uses them as temporary storage for integer memory to memory copies.
742 * However, we need to deal with stt/ldt and sts/lds only.
745 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
746 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
747 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
748 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
750 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
751 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
752 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
754 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
756 static int unauser_reg_offsets
[32] = {
757 R(r0
), R(r1
), R(r2
), R(r3
), R(r4
), R(r5
), R(r6
), R(r7
), R(r8
),
758 /* r9 ... r15 are stored in front of regs. */
759 -56, -48, -40, -32, -24, -16, -8,
760 R(r16
), R(r17
), R(r18
),
761 R(r19
), R(r20
), R(r21
), R(r22
), R(r23
), R(r24
), R(r25
), R(r26
),
762 R(r27
), R(r28
), R(gp
),
769 do_entUnaUser(void __user
* va
, unsigned long opcode
,
770 unsigned long reg
, struct pt_regs
*regs
)
772 static DEFINE_RATELIMIT_STATE(ratelimit
, 5 * HZ
, 5);
774 unsigned long tmp1
, tmp2
, tmp3
, tmp4
;
775 unsigned long fake_reg
, *reg_addr
= &fake_reg
;
779 /* Check the UAC bits to decide what the user wants us to do
780 with the unaliged access. */
782 if (!test_thread_flag (TIF_UAC_NOPRINT
)) {
783 if (__ratelimit(&ratelimit
)) {
784 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
785 current
->comm
, task_pid_nr(current
),
786 regs
->pc
- 4, va
, opcode
, reg
);
789 if (test_thread_flag (TIF_UAC_SIGBUS
))
791 /* Not sure why you'd want to use this, but... */
792 if (test_thread_flag (TIF_UAC_NOFIX
))
795 /* Don't bother reading ds in the access check since we already
796 know that this came from the user. Also rely on the fact that
797 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
798 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
801 ++unaligned
[1].count
;
802 unaligned
[1].va
= (unsigned long)va
;
803 unaligned
[1].pc
= regs
->pc
- 4;
805 if ((1L << opcode
) & OP_INT_MASK
) {
806 /* it's an integer load/store */
808 reg_addr
= (unsigned long *)
809 ((char *)regs
+ unauser_reg_offsets
[reg
]);
810 } else if (reg
== 30) {
811 /* usp in PAL regs */
814 /* zero "register" */
819 /* We don't want to use the generic get/put unaligned macros as
820 we want to trap exceptions. Only if we actually get an
821 exception will we decide whether we should have caught it. */
824 case 0x0c: /* ldwu */
825 __asm__
__volatile__(
826 "1: ldq_u %1,0(%3)\n"
827 "2: ldq_u %2,1(%3)\n"
831 ".section __ex_table,\"a\"\n"
833 " lda %1,3b-1b(%0)\n"
835 " lda %2,3b-2b(%0)\n"
837 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
841 *reg_addr
= tmp1
|tmp2
;
845 __asm__
__volatile__(
846 "1: ldq_u %1,0(%3)\n"
847 "2: ldq_u %2,3(%3)\n"
851 ".section __ex_table,\"a\"\n"
853 " lda %1,3b-1b(%0)\n"
855 " lda %2,3b-2b(%0)\n"
857 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
861 alpha_write_fp_reg(reg
, s_mem_to_reg((int)(tmp1
|tmp2
)));
865 __asm__
__volatile__(
866 "1: ldq_u %1,0(%3)\n"
867 "2: ldq_u %2,7(%3)\n"
871 ".section __ex_table,\"a\"\n"
873 " lda %1,3b-1b(%0)\n"
875 " lda %2,3b-2b(%0)\n"
877 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
881 alpha_write_fp_reg(reg
, tmp1
|tmp2
);
885 __asm__
__volatile__(
886 "1: ldq_u %1,0(%3)\n"
887 "2: ldq_u %2,3(%3)\n"
891 ".section __ex_table,\"a\"\n"
893 " lda %1,3b-1b(%0)\n"
895 " lda %2,3b-2b(%0)\n"
897 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
901 *reg_addr
= (int)(tmp1
|tmp2
);
905 __asm__
__volatile__(
906 "1: ldq_u %1,0(%3)\n"
907 "2: ldq_u %2,7(%3)\n"
911 ".section __ex_table,\"a\"\n"
913 " lda %1,3b-1b(%0)\n"
915 " lda %2,3b-2b(%0)\n"
917 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
)
921 *reg_addr
= tmp1
|tmp2
;
924 /* Note that the store sequences do not indicate that they change
925 memory because it _should_ be affecting nothing in this context.
926 (Otherwise we have other, much larger, problems.) */
928 __asm__
__volatile__(
929 "1: ldq_u %2,1(%5)\n"
930 "2: ldq_u %1,0(%5)\n"
937 "3: stq_u %2,1(%5)\n"
938 "4: stq_u %1,0(%5)\n"
940 ".section __ex_table,\"a\"\n"
942 " lda %2,5b-1b(%0)\n"
944 " lda %1,5b-2b(%0)\n"
946 " lda $31,5b-3b(%0)\n"
948 " lda $31,5b-4b(%0)\n"
950 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
951 "=&r"(tmp3
), "=&r"(tmp4
)
952 : "r"(va
), "r"(*reg_addr
), "0"(0));
958 fake_reg
= s_reg_to_mem(alpha_read_fp_reg(reg
));
962 __asm__
__volatile__(
963 "1: ldq_u %2,3(%5)\n"
964 "2: ldq_u %1,0(%5)\n"
971 "3: stq_u %2,3(%5)\n"
972 "4: stq_u %1,0(%5)\n"
974 ".section __ex_table,\"a\"\n"
976 " lda %2,5b-1b(%0)\n"
978 " lda %1,5b-2b(%0)\n"
980 " lda $31,5b-3b(%0)\n"
982 " lda $31,5b-4b(%0)\n"
984 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
985 "=&r"(tmp3
), "=&r"(tmp4
)
986 : "r"(va
), "r"(*reg_addr
), "0"(0));
992 fake_reg
= alpha_read_fp_reg(reg
);
996 __asm__
__volatile__(
997 "1: ldq_u %2,7(%5)\n"
998 "2: ldq_u %1,0(%5)\n"
1005 "3: stq_u %2,7(%5)\n"
1006 "4: stq_u %1,0(%5)\n"
1008 ".section __ex_table,\"a\"\n\t"
1010 " lda %2,5b-1b(%0)\n"
1012 " lda %1,5b-2b(%0)\n"
1014 " lda $31,5b-3b(%0)\n"
1016 " lda $31,5b-4b(%0)\n"
1018 : "=r"(error
), "=&r"(tmp1
), "=&r"(tmp2
),
1019 "=&r"(tmp3
), "=&r"(tmp4
)
1020 : "r"(va
), "r"(*reg_addr
), "0"(0));
1026 /* What instruction were you trying to use, exactly? */
1030 /* Only integer loads should get here; everyone else returns early. */
1036 regs
->pc
-= 4; /* make pc point to faulting insn */
1037 info
.si_signo
= SIGSEGV
;
1040 /* We need to replicate some of the logic in mm/fault.c,
1041 since we don't have access to the fault code in the
1042 exception handling return path. */
1043 if (!__access_ok((unsigned long)va
, 0, USER_DS
))
1044 info
.si_code
= SEGV_ACCERR
;
1046 struct mm_struct
*mm
= current
->mm
;
1047 down_read(&mm
->mmap_sem
);
1048 if (find_vma(mm
, (unsigned long)va
))
1049 info
.si_code
= SEGV_ACCERR
;
1051 info
.si_code
= SEGV_MAPERR
;
1052 up_read(&mm
->mmap_sem
);
1055 send_sig_info(SIGSEGV
, &info
, current
);
1060 info
.si_signo
= SIGBUS
;
1062 info
.si_code
= BUS_ADRALN
;
1064 send_sig_info(SIGBUS
, &info
, current
);
1071 /* Tell PAL-code what global pointer we want in the kernel. */
1072 register unsigned long gptr
__asm__("$29");
1075 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1076 a bug in the handling of the opDEC fault. Fix it up if so. */
1077 if (implver() == IMPLVER_EV4
)