2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
19 * Implemented EFI runtime services and virtual mode calls. --davidm
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #include <asm/tlbflush.h>
46 extern efi_status_t
efi_call_phys (void *, ...);
50 static efi_runtime_services_t
*runtime
;
51 static u64 mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
53 #define efi_call_virt(f, args...) (*(f))(args)
55 #define STUB_GET_TIME(prefix, adjust_arg) \
57 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
59 struct ia64_fpreg fr[6]; \
60 efi_time_cap_t *atc = NULL; \
64 atc = adjust_arg(tc); \
65 ia64_save_scratch_fpregs(fr); \
66 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
67 adjust_arg(tm), atc); \
68 ia64_load_scratch_fpregs(fr); \
72 #define STUB_SET_TIME(prefix, adjust_arg) \
74 prefix##_set_time (efi_time_t *tm) \
76 struct ia64_fpreg fr[6]; \
79 ia64_save_scratch_fpregs(fr); \
80 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
82 ia64_load_scratch_fpregs(fr); \
86 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
88 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
91 struct ia64_fpreg fr[6]; \
94 ia64_save_scratch_fpregs(fr); \
95 ret = efi_call_##prefix( \
96 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
97 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
98 ia64_load_scratch_fpregs(fr); \
102 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
103 static efi_status_t \
104 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
106 struct ia64_fpreg fr[6]; \
107 efi_time_t *atm = NULL; \
111 atm = adjust_arg(tm); \
112 ia64_save_scratch_fpregs(fr); \
113 ret = efi_call_##prefix( \
114 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
116 ia64_load_scratch_fpregs(fr); \
120 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
121 static efi_status_t \
122 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
123 unsigned long *data_size, void *data) \
125 struct ia64_fpreg fr[6]; \
130 aattr = adjust_arg(attr); \
131 ia64_save_scratch_fpregs(fr); \
132 ret = efi_call_##prefix( \
133 (efi_get_variable_t *) __va(runtime->get_variable), \
134 adjust_arg(name), adjust_arg(vendor), aattr, \
135 adjust_arg(data_size), adjust_arg(data)); \
136 ia64_load_scratch_fpregs(fr); \
140 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
141 static efi_status_t \
142 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
143 efi_guid_t *vendor) \
145 struct ia64_fpreg fr[6]; \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix( \
150 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
151 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
152 ia64_load_scratch_fpregs(fr); \
156 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
157 static efi_status_t \
158 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
159 u32 attr, unsigned long data_size, \
162 struct ia64_fpreg fr[6]; \
165 ia64_save_scratch_fpregs(fr); \
166 ret = efi_call_##prefix( \
167 (efi_set_variable_t *) __va(runtime->set_variable), \
168 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
170 ia64_load_scratch_fpregs(fr); \
174 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
175 static efi_status_t \
176 prefix##_get_next_high_mono_count (u32 *count) \
178 struct ia64_fpreg fr[6]; \
181 ia64_save_scratch_fpregs(fr); \
182 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
183 __va(runtime->get_next_high_mono_count), \
184 adjust_arg(count)); \
185 ia64_load_scratch_fpregs(fr); \
189 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
191 prefix##_reset_system (int reset_type, efi_status_t status, \
192 unsigned long data_size, efi_char16_t *data) \
194 struct ia64_fpreg fr[6]; \
195 efi_char16_t *adata = NULL; \
198 adata = adjust_arg(data); \
200 ia64_save_scratch_fpregs(fr); \
202 (efi_reset_system_t *) __va(runtime->reset_system), \
203 reset_type, status, data_size, adata); \
204 /* should not return, but just in case... */ \
205 ia64_load_scratch_fpregs(fr); \
208 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
210 STUB_GET_TIME(phys
, phys_ptr
)
211 STUB_SET_TIME(phys
, phys_ptr
)
212 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
213 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
214 STUB_GET_VARIABLE(phys
, phys_ptr
)
215 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
216 STUB_SET_VARIABLE(phys
, phys_ptr
)
217 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
218 STUB_RESET_SYSTEM(phys
, phys_ptr
)
222 STUB_GET_TIME(virt
, id
)
223 STUB_SET_TIME(virt
, id
)
224 STUB_GET_WAKEUP_TIME(virt
, id
)
225 STUB_SET_WAKEUP_TIME(virt
, id
)
226 STUB_GET_VARIABLE(virt
, id
)
227 STUB_GET_NEXT_VARIABLE(virt
, id
)
228 STUB_SET_VARIABLE(virt
, id
)
229 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
230 STUB_RESET_SYSTEM(virt
, id
)
233 efi_gettimeofday (struct timespec
*ts
)
237 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
238 memset(ts
, 0, sizeof(*ts
));
242 ts
->tv_sec
= mktime(tm
.year
, tm
.month
, tm
.day
,
243 tm
.hour
, tm
.minute
, tm
.second
);
244 ts
->tv_nsec
= tm
.nanosecond
;
248 is_memory_available (efi_memory_desc_t
*md
)
250 if (!(md
->attribute
& EFI_MEMORY_WB
))
254 case EFI_LOADER_CODE
:
255 case EFI_LOADER_DATA
:
256 case EFI_BOOT_SERVICES_CODE
:
257 case EFI_BOOT_SERVICES_DATA
:
258 case EFI_CONVENTIONAL_MEMORY
:
264 typedef struct kern_memdesc
{
270 static kern_memdesc_t
*kern_memmap
;
272 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
275 kmd_end(kern_memdesc_t
*kmd
)
277 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
281 efi_md_end(efi_memory_desc_t
*md
)
283 return (md
->phys_addr
+ efi_md_size(md
));
287 efi_wb(efi_memory_desc_t
*md
)
289 return (md
->attribute
& EFI_MEMORY_WB
);
293 efi_uc(efi_memory_desc_t
*md
)
295 return (md
->attribute
& EFI_MEMORY_UC
);
299 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
302 u64 start
, end
, voff
;
304 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
305 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
306 if (k
->attribute
!= attr
)
308 start
= PAGE_ALIGN(k
->start
);
309 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
311 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
317 * Walk the EFI memory map and call CALLBACK once for each EFI memory
318 * descriptor that has memory that is available for OS use.
321 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
323 walk(callback
, arg
, EFI_MEMORY_WB
);
327 * Walk the EFI memory map and call CALLBACK once for each EFI memory
328 * descriptor that has memory that is available for uncached allocator.
331 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
333 walk(callback
, arg
, EFI_MEMORY_UC
);
337 * Look for the PAL_CODE region reported by EFI and map it using an
338 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
339 * Abstraction Layer chapter 11 in ADAG
342 efi_get_pal_addr (void)
344 void *efi_map_start
, *efi_map_end
, *p
;
345 efi_memory_desc_t
*md
;
347 int pal_code_count
= 0;
350 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
351 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
352 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
354 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
356 if (md
->type
!= EFI_PAL_CODE
)
359 if (++pal_code_count
> 1) {
360 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
361 "dropped @ %llx\n", md
->phys_addr
);
365 * The only ITLB entry in region 7 that is used is the one
366 * installed by __start(). That entry covers a 64MB range.
368 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
369 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
372 * We must check that the PAL mapping won't overlap with the
375 * PAL code is guaranteed to be aligned on a power of 2 between
376 * 4k and 256KB and that only one ITR is needed to map it. This
377 * implies that the PAL code is always aligned on its size,
378 * i.e., the closest matching page size supported by the TLB.
379 * Therefore PAL code is guaranteed never to cross a 64MB unless
380 * it is bigger than 64MB (very unlikely!). So for now the
381 * following test is enough to determine whether or not we need
382 * a dedicated ITR for the PAL code.
384 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
385 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
390 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
391 panic("Whoa! PAL code size bigger than a granule!");
394 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
396 printk(KERN_INFO
"CPU %d: mapping PAL code "
397 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
398 smp_processor_id(), md
->phys_addr
,
399 md
->phys_addr
+ efi_md_size(md
),
400 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
402 return __va(md
->phys_addr
);
404 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
410 static u8 __init
palo_checksum(u8
*buffer
, u32 length
)
413 u8
*end
= buffer
+ length
;
416 sum
= (u8
) (sum
+ *(buffer
++));
422 * Parse and handle PALO table which is published at:
423 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
425 static void __init
handle_palo(unsigned long palo_phys
)
427 struct palo_table
*palo
= __va(palo_phys
);
430 if (strncmp(palo
->signature
, PALO_SIG
, sizeof(PALO_SIG
) - 1)) {
431 printk(KERN_INFO
"PALO signature incorrect.\n");
435 checksum
= palo_checksum((u8
*)palo
, palo
->length
);
437 printk(KERN_INFO
"PALO checksum incorrect.\n");
441 setup_ptcg_sem(palo
->max_tlb_purges
, NPTCG_FROM_PALO
);
445 efi_map_pal_code (void)
447 void *pal_vaddr
= efi_get_pal_addr ();
454 * Cannot write to CRx with PSR.ic=1
456 psr
= ia64_clear_ic();
457 ia64_itr(0x1, IA64_TR_PALCODE
,
458 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
459 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
461 paravirt_dv_serialize_data();
462 ia64_set_psr(psr
); /* restore psr */
468 void *efi_map_start
, *efi_map_end
;
469 efi_config_table_t
*config_tables
;
472 char *cp
, vendor
[100] = "unknown";
474 unsigned long palo_phys
;
477 * It's too early to be able to use the standard kernel command line
480 for (cp
= boot_command_line
; *cp
; ) {
481 if (memcmp(cp
, "mem=", 4) == 0) {
482 mem_limit
= memparse(cp
+ 4, &cp
);
483 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
484 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
485 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
486 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
488 while (*cp
!= ' ' && *cp
)
495 printk(KERN_INFO
"Ignoring memory below %lluMB\n",
497 if (max_addr
!= ~0UL)
498 printk(KERN_INFO
"Ignoring memory above %lluMB\n",
501 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
504 * Verify the EFI Table
506 if (efi
.systab
== NULL
)
507 panic("Whoa! Can't find EFI system table.\n");
508 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
509 panic("Whoa! EFI system table signature incorrect\n");
510 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
511 printk(KERN_WARNING
"Warning: EFI system table version "
512 "%d.%02d, expected 1.00 or greater\n",
513 efi
.systab
->hdr
.revision
>> 16,
514 efi
.systab
->hdr
.revision
& 0xffff);
516 config_tables
= __va(efi
.systab
->tables
);
518 /* Show what we know for posterity */
519 c16
= __va(efi
.systab
->fw_vendor
);
521 for (i
= 0;i
< (int) sizeof(vendor
) - 1 && *c16
; ++i
)
526 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
527 efi
.systab
->hdr
.revision
>> 16,
528 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
530 efi
.mps
= EFI_INVALID_TABLE_ADDR
;
531 efi
.acpi
= EFI_INVALID_TABLE_ADDR
;
532 efi
.acpi20
= EFI_INVALID_TABLE_ADDR
;
533 efi
.smbios
= EFI_INVALID_TABLE_ADDR
;
534 efi
.sal_systab
= EFI_INVALID_TABLE_ADDR
;
535 efi
.boot_info
= EFI_INVALID_TABLE_ADDR
;
536 efi
.hcdp
= EFI_INVALID_TABLE_ADDR
;
537 efi
.uga
= EFI_INVALID_TABLE_ADDR
;
539 palo_phys
= EFI_INVALID_TABLE_ADDR
;
541 for (i
= 0; i
< (int) efi
.systab
->nr_tables
; i
++) {
542 if (efi_guidcmp(config_tables
[i
].guid
, MPS_TABLE_GUID
) == 0) {
543 efi
.mps
= config_tables
[i
].table
;
544 printk(" MPS=0x%lx", config_tables
[i
].table
);
545 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_20_TABLE_GUID
) == 0) {
546 efi
.acpi20
= config_tables
[i
].table
;
547 printk(" ACPI 2.0=0x%lx", config_tables
[i
].table
);
548 } else if (efi_guidcmp(config_tables
[i
].guid
, ACPI_TABLE_GUID
) == 0) {
549 efi
.acpi
= config_tables
[i
].table
;
550 printk(" ACPI=0x%lx", config_tables
[i
].table
);
551 } else if (efi_guidcmp(config_tables
[i
].guid
, SMBIOS_TABLE_GUID
) == 0) {
552 efi
.smbios
= config_tables
[i
].table
;
553 printk(" SMBIOS=0x%lx", config_tables
[i
].table
);
554 } else if (efi_guidcmp(config_tables
[i
].guid
, SAL_SYSTEM_TABLE_GUID
) == 0) {
555 efi
.sal_systab
= config_tables
[i
].table
;
556 printk(" SALsystab=0x%lx", config_tables
[i
].table
);
557 } else if (efi_guidcmp(config_tables
[i
].guid
, HCDP_TABLE_GUID
) == 0) {
558 efi
.hcdp
= config_tables
[i
].table
;
559 printk(" HCDP=0x%lx", config_tables
[i
].table
);
560 } else if (efi_guidcmp(config_tables
[i
].guid
,
561 PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID
) == 0) {
562 palo_phys
= config_tables
[i
].table
;
563 printk(" PALO=0x%lx", config_tables
[i
].table
);
568 if (palo_phys
!= EFI_INVALID_TABLE_ADDR
)
569 handle_palo(palo_phys
);
571 runtime
= __va(efi
.systab
->runtime
);
572 efi
.get_time
= phys_get_time
;
573 efi
.set_time
= phys_set_time
;
574 efi
.get_wakeup_time
= phys_get_wakeup_time
;
575 efi
.set_wakeup_time
= phys_set_wakeup_time
;
576 efi
.get_variable
= phys_get_variable
;
577 efi
.get_next_variable
= phys_get_next_variable
;
578 efi
.set_variable
= phys_set_variable
;
579 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
580 efi
.reset_system
= phys_reset_system
;
582 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
583 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
584 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
587 /* print EFI memory map: */
589 efi_memory_desc_t
*md
;
592 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
593 ++i
, p
+= efi_desc_size
)
599 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
601 if ((size
>> 40) > 0) {
604 } else if ((size
>> 30) > 0) {
607 } else if ((size
>> 20) > 0) {
615 printk("mem%02d: type=%2u, attr=0x%016lx, "
616 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
617 i
, md
->type
, md
->attribute
, md
->phys_addr
,
618 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
624 efi_enter_virtual_mode();
628 efi_enter_virtual_mode (void)
630 void *efi_map_start
, *efi_map_end
, *p
;
631 efi_memory_desc_t
*md
;
635 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
636 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
637 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
639 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
641 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
643 * Some descriptors have multiple bits set, so the
644 * order of the tests is relevant.
646 if (md
->attribute
& EFI_MEMORY_WB
) {
647 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
648 } else if (md
->attribute
& EFI_MEMORY_UC
) {
649 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
650 } else if (md
->attribute
& EFI_MEMORY_WC
) {
652 md
->virt_addr
= ia64_remap(md
->phys_addr
,
660 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
661 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
663 } else if (md
->attribute
& EFI_MEMORY_WT
) {
665 md
->virt_addr
= ia64_remap(md
->phys_addr
,
673 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
674 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
680 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
681 ia64_boot_param
->efi_memmap_size
,
683 ia64_boot_param
->efi_memdesc_version
,
684 ia64_boot_param
->efi_memmap
);
685 if (status
!= EFI_SUCCESS
) {
686 printk(KERN_WARNING
"warning: unable to switch EFI into "
687 "virtual mode (status=%lu)\n", status
);
692 * Now that EFI is in virtual mode, we call the EFI functions more
695 efi
.get_time
= virt_get_time
;
696 efi
.set_time
= virt_set_time
;
697 efi
.get_wakeup_time
= virt_get_wakeup_time
;
698 efi
.set_wakeup_time
= virt_set_wakeup_time
;
699 efi
.get_variable
= virt_get_variable
;
700 efi
.get_next_variable
= virt_get_next_variable
;
701 efi
.set_variable
= virt_set_variable
;
702 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
703 efi
.reset_system
= virt_reset_system
;
707 * Walk the EFI memory map looking for the I/O port range. There can only be
708 * one entry of this type, other I/O port ranges should be described via ACPI.
711 efi_get_iobase (void)
713 void *efi_map_start
, *efi_map_end
, *p
;
714 efi_memory_desc_t
*md
;
717 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
718 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
719 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
721 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
723 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
724 if (md
->attribute
& EFI_MEMORY_UC
)
725 return md
->phys_addr
;
731 static struct kern_memdesc
*
732 kern_memory_descriptor (unsigned long phys_addr
)
734 struct kern_memdesc
*md
;
736 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
737 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
743 static efi_memory_desc_t
*
744 efi_memory_descriptor (unsigned long phys_addr
)
746 void *efi_map_start
, *efi_map_end
, *p
;
747 efi_memory_desc_t
*md
;
750 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
751 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
752 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
754 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
757 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
764 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
766 void *efi_map_start
, *efi_map_end
, *p
;
767 efi_memory_desc_t
*md
;
771 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
772 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
773 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
775 end
= phys_addr
+ size
;
777 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
779 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
786 efi_mem_type (unsigned long phys_addr
)
788 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
796 efi_mem_attributes (unsigned long phys_addr
)
798 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
801 return md
->attribute
;
804 EXPORT_SYMBOL(efi_mem_attributes
);
807 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
809 unsigned long end
= phys_addr
+ size
;
810 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
817 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
818 * the kernel that firmware needs this region mapped.
820 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
822 unsigned long md_end
= efi_md_end(md
);
827 md
= efi_memory_descriptor(md_end
);
828 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
831 return 0; /* never reached */
835 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
837 unsigned long end
= phys_addr
+ size
;
838 struct kern_memdesc
*md
;
842 * This is a hack for ioremap calls before we set up kern_memmap.
843 * Maybe we should do efi_memmap_init() earlier instead.
846 attr
= efi_mem_attribute(phys_addr
, size
);
847 if (attr
& EFI_MEMORY_WB
)
848 return EFI_MEMORY_WB
;
852 md
= kern_memory_descriptor(phys_addr
);
856 attr
= md
->attribute
;
858 unsigned long md_end
= kmd_end(md
);
863 md
= kern_memory_descriptor(md_end
);
864 if (!md
|| md
->attribute
!= attr
)
867 return 0; /* never reached */
869 EXPORT_SYMBOL(kern_mem_attribute
);
872 valid_phys_addr_range (unsigned long phys_addr
, unsigned long size
)
877 * /dev/mem reads and writes use copy_to_user(), which implicitly
878 * uses a granule-sized kernel identity mapping. It's really
879 * only safe to do this for regions in kern_memmap. For more
880 * details, see Documentation/ia64/aliasing.txt.
882 attr
= kern_mem_attribute(phys_addr
, size
);
883 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
889 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
891 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
894 attr
= efi_mem_attribute(phys_addr
, size
);
897 * /dev/mem mmap uses normal user pages, so we don't need the entire
898 * granule, but the entire region we're mapping must support the same
901 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
905 * Intel firmware doesn't tell us about all the MMIO regions, so
906 * in general we have to allow mmap requests. But if EFI *does*
907 * tell us about anything inside this region, we should deny it.
908 * The user can always map a smaller region to avoid the overlap.
910 if (efi_memmap_intersects(phys_addr
, size
))
917 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
920 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
924 * For /dev/mem mmap, we use user mappings, but if the region is
925 * in kern_memmap (and hence may be covered by a kernel mapping),
926 * we must use the same attribute as the kernel mapping.
928 attr
= kern_mem_attribute(phys_addr
, size
);
929 if (attr
& EFI_MEMORY_WB
)
930 return pgprot_cacheable(vma_prot
);
931 else if (attr
& EFI_MEMORY_UC
)
932 return pgprot_noncached(vma_prot
);
935 * Some chipsets don't support UC access to memory. If
936 * WB is supported, we prefer that.
938 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
939 return pgprot_cacheable(vma_prot
);
941 return pgprot_noncached(vma_prot
);
945 efi_uart_console_only(void)
948 char *s
, name
[] = "ConOut";
949 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
950 efi_char16_t
*utf16
, name_utf16
[32];
951 unsigned char data
[1024];
952 unsigned long size
= sizeof(data
);
953 struct efi_generic_dev_path
*hdr
, *end_addr
;
956 /* Convert to UTF-16 */
960 *utf16
++ = *s
++ & 0x7f;
963 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
964 if (status
!= EFI_SUCCESS
) {
965 printk(KERN_ERR
"No EFI %s variable?\n", name
);
969 hdr
= (struct efi_generic_dev_path
*) data
;
970 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
971 while (hdr
< end_addr
) {
972 if (hdr
->type
== EFI_DEV_MSG
&&
973 hdr
->sub_type
== EFI_DEV_MSG_UART
)
975 else if (hdr
->type
== EFI_DEV_END_PATH
||
976 hdr
->type
== EFI_DEV_END_PATH2
) {
979 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
983 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
985 printk(KERN_ERR
"Malformed %s value\n", name
);
990 * Look for the first granule aligned memory descriptor memory
991 * that is big enough to hold EFI memory map. Make sure this
992 * descriptor is atleast granule sized so it does not get trimmed
994 struct kern_memdesc
*
995 find_memmap_space (void)
997 u64 contig_low
=0, contig_high
=0;
999 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1000 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1001 u64 space_needed
, efi_desc_size
;
1002 unsigned long total_mem
= 0;
1004 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1005 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1006 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1009 * Worst case: we need 3 kernel descriptors for each efi descriptor
1010 * (if every entry has a WB part in the middle, and UC head and tail),
1011 * plus one for the end marker.
1013 space_needed
= sizeof(kern_memdesc_t
) *
1014 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
1016 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1021 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1022 efi_md_end(pmd
) != md
->phys_addr
) {
1023 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1024 contig_high
= efi_md_end(md
);
1025 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1026 q
+= efi_desc_size
) {
1028 if (!efi_wb(check_md
))
1030 if (contig_high
!= check_md
->phys_addr
)
1032 contig_high
= efi_md_end(check_md
);
1034 contig_high
= GRANULEROUNDDOWN(contig_high
);
1036 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
1039 /* Round ends inward to granule boundaries */
1040 as
= max(contig_low
, md
->phys_addr
);
1041 ae
= min(contig_high
, efi_md_end(md
));
1043 /* keep within max_addr= and min_addr= command line arg */
1044 as
= max(as
, min_addr
);
1045 ae
= min(ae
, max_addr
);
1049 /* avoid going over mem= command line arg */
1050 if (total_mem
+ (ae
- as
) > mem_limit
)
1051 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1056 if (ae
- as
> space_needed
)
1059 if (p
>= efi_map_end
)
1060 panic("Can't allocate space for kernel memory descriptors");
1066 * Walk the EFI memory map and gather all memory available for kernel
1067 * to use. We can allocate partial granules only if the unavailable
1068 * parts exist, and are WB.
1071 efi_memmap_init(u64
*s
, u64
*e
)
1073 struct kern_memdesc
*k
, *prev
= NULL
;
1074 u64 contig_low
=0, contig_high
=0;
1076 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1077 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1079 unsigned long total_mem
= 0;
1081 k
= kern_memmap
= find_memmap_space();
1083 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1084 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1085 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1087 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1091 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1092 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1093 k
->attribute
= EFI_MEMORY_UC
;
1094 k
->start
= md
->phys_addr
;
1095 k
->num_pages
= md
->num_pages
;
1100 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1101 efi_md_end(pmd
) != md
->phys_addr
) {
1102 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1103 contig_high
= efi_md_end(md
);
1104 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1105 q
+= efi_desc_size
) {
1107 if (!efi_wb(check_md
))
1109 if (contig_high
!= check_md
->phys_addr
)
1111 contig_high
= efi_md_end(check_md
);
1113 contig_high
= GRANULEROUNDDOWN(contig_high
);
1115 if (!is_memory_available(md
))
1118 #ifdef CONFIG_CRASH_DUMP
1119 /* saved_max_pfn should ignore max_addr= command line arg */
1120 if (saved_max_pfn
< (efi_md_end(md
) >> PAGE_SHIFT
))
1121 saved_max_pfn
= (efi_md_end(md
) >> PAGE_SHIFT
);
1124 * Round ends inward to granule boundaries
1125 * Give trimmings to uncached allocator
1127 if (md
->phys_addr
< contig_low
) {
1128 lim
= min(efi_md_end(md
), contig_low
);
1130 if (k
> kern_memmap
&&
1131 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1132 kmd_end(k
-1) == md
->phys_addr
) {
1134 (lim
- md
->phys_addr
)
1137 k
->attribute
= EFI_MEMORY_UC
;
1138 k
->start
= md
->phys_addr
;
1139 k
->num_pages
= (lim
- md
->phys_addr
)
1148 if (efi_md_end(md
) > contig_high
) {
1149 lim
= max(md
->phys_addr
, contig_high
);
1151 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1152 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1153 kmd_end(k
-1) == md
->phys_addr
) {
1154 (k
-1)->num_pages
+= md
->num_pages
;
1156 k
->attribute
= EFI_MEMORY_UC
;
1158 k
->num_pages
= (efi_md_end(md
) - lim
)
1165 ae
= efi_md_end(md
);
1167 /* keep within max_addr= and min_addr= command line arg */
1168 as
= max(as
, min_addr
);
1169 ae
= min(ae
, max_addr
);
1173 /* avoid going over mem= command line arg */
1174 if (total_mem
+ (ae
- as
) > mem_limit
)
1175 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1179 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1180 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1181 total_mem
+= ae
- as
;
1184 k
->attribute
= EFI_MEMORY_WB
;
1186 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1187 total_mem
+= ae
- as
;
1190 k
->start
= ~0L; /* end-marker */
1192 /* reserve the memory we are using for kern_memmap */
1193 *s
= (u64
)kern_memmap
;
1200 efi_initialize_iomem_resources(struct resource
*code_resource
,
1201 struct resource
*data_resource
,
1202 struct resource
*bss_resource
)
1204 struct resource
*res
;
1205 void *efi_map_start
, *efi_map_end
, *p
;
1206 efi_memory_desc_t
*md
;
1209 unsigned long flags
;
1211 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1212 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1213 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1217 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1220 if (md
->num_pages
== 0) /* should not happen */
1223 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1226 case EFI_MEMORY_MAPPED_IO
:
1227 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1230 case EFI_LOADER_CODE
:
1231 case EFI_LOADER_DATA
:
1232 case EFI_BOOT_SERVICES_DATA
:
1233 case EFI_BOOT_SERVICES_CODE
:
1234 case EFI_CONVENTIONAL_MEMORY
:
1235 if (md
->attribute
& EFI_MEMORY_WP
) {
1236 name
= "System ROM";
1237 flags
|= IORESOURCE_READONLY
;
1238 } else if (md
->attribute
== EFI_MEMORY_UC
)
1239 name
= "Uncached RAM";
1241 name
= "System RAM";
1244 case EFI_ACPI_MEMORY_NVS
:
1245 name
= "ACPI Non-volatile Storage";
1248 case EFI_UNUSABLE_MEMORY
:
1250 flags
|= IORESOURCE_DISABLED
;
1253 case EFI_RESERVED_TYPE
:
1254 case EFI_RUNTIME_SERVICES_CODE
:
1255 case EFI_RUNTIME_SERVICES_DATA
:
1256 case EFI_ACPI_RECLAIM_MEMORY
:
1262 if ((res
= kzalloc(sizeof(struct resource
),
1263 GFP_KERNEL
)) == NULL
) {
1265 "failed to allocate resource for iomem\n");
1270 res
->start
= md
->phys_addr
;
1271 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1274 if (insert_resource(&iomem_resource
, res
) < 0)
1278 * We don't know which region contains
1279 * kernel data so we try it repeatedly and
1280 * let the resource manager test it.
1282 insert_resource(res
, code_resource
);
1283 insert_resource(res
, data_resource
);
1284 insert_resource(res
, bss_resource
);
1286 insert_resource(res
, &efi_memmap_res
);
1287 insert_resource(res
, &boot_param_res
);
1288 if (crashk_res
.end
> crashk_res
.start
)
1289 insert_resource(res
, &crashk_res
);
1296 /* find a block of memory aligned to 64M exclude reserved regions
1297 rsvd_regions are sorted
1299 unsigned long __init
1300 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1304 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1305 void *efi_map_start
, *efi_map_end
, *p
;
1306 efi_memory_desc_t
*md
;
1309 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1310 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1311 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1313 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1317 start
= ALIGN(md
->phys_addr
, alignment
);
1318 end
= efi_md_end(md
);
1319 for (i
= 0; i
< n
; i
++) {
1320 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1321 if (__pa(r
[i
].start
) > start
+ size
)
1323 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1325 __pa(r
[i
+1].start
) < start
+ size
)
1331 if (end
> start
+ size
)
1336 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1341 #ifdef CONFIG_CRASH_DUMP
1342 /* locate the size find a the descriptor at a certain address */
1343 unsigned long __init
1344 vmcore_find_descriptor_size (unsigned long address
)
1346 void *efi_map_start
, *efi_map_end
, *p
;
1347 efi_memory_desc_t
*md
;
1349 unsigned long ret
= 0;
1351 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1352 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1353 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1355 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1357 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1358 && md
->phys_addr
== address
) {
1359 ret
= efi_md_size(md
);
1365 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");