2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 #define emul_to_vcpu(ctxt) \
69 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
72 * - enable syscall per default because its emulated by KVM
73 * - enable LME and LMA per default on 64 bit KVM
77 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
79 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
86 static void process_nmi(struct kvm_vcpu
*vcpu
);
88 struct kvm_x86_ops
*kvm_x86_ops
;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
91 static bool ignore_msrs
= 0;
92 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
94 bool kvm_has_tsc_control
;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
96 u32 kvm_max_guest_tsc_khz
;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
99 #define KVM_NR_SHARED_MSRS 16
101 struct kvm_shared_msrs_global
{
103 u32 msrs
[KVM_NR_SHARED_MSRS
];
106 struct kvm_shared_msrs
{
107 struct user_return_notifier urn
;
109 struct kvm_shared_msr_values
{
112 } values
[KVM_NR_SHARED_MSRS
];
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
118 struct kvm_stats_debugfs_item debugfs_entries
[] = {
119 { "pf_fixed", VCPU_STAT(pf_fixed
) },
120 { "pf_guest", VCPU_STAT(pf_guest
) },
121 { "tlb_flush", VCPU_STAT(tlb_flush
) },
122 { "invlpg", VCPU_STAT(invlpg
) },
123 { "exits", VCPU_STAT(exits
) },
124 { "io_exits", VCPU_STAT(io_exits
) },
125 { "mmio_exits", VCPU_STAT(mmio_exits
) },
126 { "signal_exits", VCPU_STAT(signal_exits
) },
127 { "irq_window", VCPU_STAT(irq_window_exits
) },
128 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
129 { "halt_exits", VCPU_STAT(halt_exits
) },
130 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
131 { "hypercalls", VCPU_STAT(hypercalls
) },
132 { "request_irq", VCPU_STAT(request_irq_exits
) },
133 { "irq_exits", VCPU_STAT(irq_exits
) },
134 { "host_state_reload", VCPU_STAT(host_state_reload
) },
135 { "efer_reload", VCPU_STAT(efer_reload
) },
136 { "fpu_reload", VCPU_STAT(fpu_reload
) },
137 { "insn_emulation", VCPU_STAT(insn_emulation
) },
138 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
139 { "irq_injections", VCPU_STAT(irq_injections
) },
140 { "nmi_injections", VCPU_STAT(nmi_injections
) },
141 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
142 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
143 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
144 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
145 { "mmu_flooded", VM_STAT(mmu_flooded
) },
146 { "mmu_recycled", VM_STAT(mmu_recycled
) },
147 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
148 { "mmu_unsync", VM_STAT(mmu_unsync
) },
149 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
150 { "largepages", VM_STAT(lpages
) },
154 u64 __read_mostly host_xcr0
;
156 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
161 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
162 vcpu
->arch
.apf
.gfns
[i
] = ~0;
165 static void kvm_on_user_return(struct user_return_notifier
*urn
)
168 struct kvm_shared_msrs
*locals
169 = container_of(urn
, struct kvm_shared_msrs
, urn
);
170 struct kvm_shared_msr_values
*values
;
172 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
173 values
= &locals
->values
[slot
];
174 if (values
->host
!= values
->curr
) {
175 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
176 values
->curr
= values
->host
;
179 locals
->registered
= false;
180 user_return_notifier_unregister(urn
);
183 static void shared_msr_update(unsigned slot
, u32 msr
)
185 struct kvm_shared_msrs
*smsr
;
188 smsr
= &__get_cpu_var(shared_msrs
);
189 /* only read, and nobody should modify it at this time,
190 * so don't need lock */
191 if (slot
>= shared_msrs_global
.nr
) {
192 printk(KERN_ERR
"kvm: invalid MSR slot!");
195 rdmsrl_safe(msr
, &value
);
196 smsr
->values
[slot
].host
= value
;
197 smsr
->values
[slot
].curr
= value
;
200 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
202 if (slot
>= shared_msrs_global
.nr
)
203 shared_msrs_global
.nr
= slot
+ 1;
204 shared_msrs_global
.msrs
[slot
] = msr
;
205 /* we need ensured the shared_msr_global have been updated */
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
210 static void kvm_shared_msr_cpu_online(void)
214 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
215 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
218 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
220 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
222 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
224 smsr
->values
[slot
].curr
= value
;
225 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
226 if (!smsr
->registered
) {
227 smsr
->urn
.on_user_return
= kvm_on_user_return
;
228 user_return_notifier_register(&smsr
->urn
);
229 smsr
->registered
= true;
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
234 static void drop_user_return_notifiers(void *ignore
)
236 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
238 if (smsr
->registered
)
239 kvm_on_user_return(&smsr
->urn
);
242 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
244 if (irqchip_in_kernel(vcpu
->kvm
))
245 return vcpu
->arch
.apic_base
;
247 return vcpu
->arch
.apic_base
;
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
251 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
253 /* TODO: reserve bits check */
254 if (irqchip_in_kernel(vcpu
->kvm
))
255 kvm_lapic_set_base(vcpu
, data
);
257 vcpu
->arch
.apic_base
= data
;
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
261 #define EXCPT_BENIGN 0
262 #define EXCPT_CONTRIBUTORY 1
265 static int exception_class(int vector
)
275 return EXCPT_CONTRIBUTORY
;
282 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
283 unsigned nr
, bool has_error
, u32 error_code
,
289 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
291 if (!vcpu
->arch
.exception
.pending
) {
293 vcpu
->arch
.exception
.pending
= true;
294 vcpu
->arch
.exception
.has_error_code
= has_error
;
295 vcpu
->arch
.exception
.nr
= nr
;
296 vcpu
->arch
.exception
.error_code
= error_code
;
297 vcpu
->arch
.exception
.reinject
= reinject
;
301 /* to check exception */
302 prev_nr
= vcpu
->arch
.exception
.nr
;
303 if (prev_nr
== DF_VECTOR
) {
304 /* triple fault -> shutdown */
305 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
308 class1
= exception_class(prev_nr
);
309 class2
= exception_class(nr
);
310 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
311 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
312 /* generate double fault per SDM Table 5-5 */
313 vcpu
->arch
.exception
.pending
= true;
314 vcpu
->arch
.exception
.has_error_code
= true;
315 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
316 vcpu
->arch
.exception
.error_code
= 0;
318 /* replace previous exception with a new one in a hope
319 that instruction re-execution will regenerate lost
324 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
326 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
328 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
330 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
332 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
336 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
339 kvm_inject_gp(vcpu
, 0);
341 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
345 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
347 ++vcpu
->stat
.pf_guest
;
348 vcpu
->arch
.cr2
= fault
->address
;
349 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
353 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
355 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
356 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
358 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
361 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
363 atomic_inc(&vcpu
->arch
.nmi_queued
);
364 kvm_make_request(KVM_REQ_NMI
, vcpu
);
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
368 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
370 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
374 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
376 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
381 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
382 * a #GP and return false.
384 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
386 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
388 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
391 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
394 * This function will be used to read from the physical memory of the currently
395 * running guest. The difference to kvm_read_guest_page is that this function
396 * can read from guest physical or from the guest's guest physical memory.
398 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
399 gfn_t ngfn
, void *data
, int offset
, int len
,
405 ngpa
= gfn_to_gpa(ngfn
);
406 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
407 if (real_gfn
== UNMAPPED_GVA
)
410 real_gfn
= gpa_to_gfn(real_gfn
);
412 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
416 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
417 void *data
, int offset
, int len
, u32 access
)
419 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
420 data
, offset
, len
, access
);
424 * Load the pae pdptrs. Return true is they are all valid.
426 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
428 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
429 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
432 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
434 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
435 offset
* sizeof(u64
), sizeof(pdpte
),
436 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
441 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
442 if (is_present_gpte(pdpte
[i
]) &&
443 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
450 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
451 __set_bit(VCPU_EXREG_PDPTR
,
452 (unsigned long *)&vcpu
->arch
.regs_avail
);
453 __set_bit(VCPU_EXREG_PDPTR
,
454 (unsigned long *)&vcpu
->arch
.regs_dirty
);
459 EXPORT_SYMBOL_GPL(load_pdptrs
);
461 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
463 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
469 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
472 if (!test_bit(VCPU_EXREG_PDPTR
,
473 (unsigned long *)&vcpu
->arch
.regs_avail
))
476 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
477 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
478 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
479 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
482 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
488 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
490 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
491 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
492 X86_CR0_CD
| X86_CR0_NW
;
497 if (cr0
& 0xffffffff00000000UL
)
501 cr0
&= ~CR0_RESERVED_BITS
;
503 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
506 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
509 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
511 if ((vcpu
->arch
.efer
& EFER_LME
)) {
516 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
521 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
526 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
528 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
529 kvm_clear_async_pf_completion_queue(vcpu
);
530 kvm_async_pf_hash_reset(vcpu
);
533 if ((cr0
^ old_cr0
) & update_bits
)
534 kvm_mmu_reset_context(vcpu
);
537 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
539 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
541 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
543 EXPORT_SYMBOL_GPL(kvm_lmsw
);
545 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
549 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
550 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
553 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
555 if (!(xcr0
& XSTATE_FP
))
557 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
559 if (xcr0
& ~host_xcr0
)
561 vcpu
->arch
.xcr0
= xcr0
;
562 vcpu
->guest_xcr0_loaded
= 0;
566 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
568 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
569 kvm_inject_gp(vcpu
, 0);
574 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
576 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
578 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
579 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
580 X86_CR4_PAE
| X86_CR4_SMEP
;
581 if (cr4
& CR4_RESERVED_BITS
)
584 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
587 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
590 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
593 if (is_long_mode(vcpu
)) {
594 if (!(cr4
& X86_CR4_PAE
))
596 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
597 && ((cr4
^ old_cr4
) & pdptr_bits
)
598 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
602 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
605 if ((cr4
^ old_cr4
) & pdptr_bits
)
606 kvm_mmu_reset_context(vcpu
);
608 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
609 kvm_update_cpuid(vcpu
);
613 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
615 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
617 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
618 kvm_mmu_sync_roots(vcpu
);
619 kvm_mmu_flush_tlb(vcpu
);
623 if (is_long_mode(vcpu
)) {
624 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
628 if (cr3
& CR3_PAE_RESERVED_BITS
)
630 if (is_paging(vcpu
) &&
631 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
635 * We don't check reserved bits in nonpae mode, because
636 * this isn't enforced, and VMware depends on this.
641 * Does the new cr3 value map to physical memory? (Note, we
642 * catch an invalid cr3 even in real-mode, because it would
643 * cause trouble later on when we turn on paging anyway.)
645 * A real CPU would silently accept an invalid cr3 and would
646 * attempt to use it - with largely undefined (and often hard
647 * to debug) behavior on the guest side.
649 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
651 vcpu
->arch
.cr3
= cr3
;
652 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
653 vcpu
->arch
.mmu
.new_cr3(vcpu
);
656 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
658 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
660 if (cr8
& CR8_RESERVED_BITS
)
662 if (irqchip_in_kernel(vcpu
->kvm
))
663 kvm_lapic_set_tpr(vcpu
, cr8
);
665 vcpu
->arch
.cr8
= cr8
;
668 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
670 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
672 if (irqchip_in_kernel(vcpu
->kvm
))
673 return kvm_lapic_get_cr8(vcpu
);
675 return vcpu
->arch
.cr8
;
677 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
679 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
683 vcpu
->arch
.db
[dr
] = val
;
684 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
685 vcpu
->arch
.eff_db
[dr
] = val
;
688 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
692 if (val
& 0xffffffff00000000ULL
)
694 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
697 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
701 if (val
& 0xffffffff00000000ULL
)
703 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
704 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
705 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
706 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
714 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
718 res
= __kvm_set_dr(vcpu
, dr
, val
);
720 kvm_queue_exception(vcpu
, UD_VECTOR
);
722 kvm_inject_gp(vcpu
, 0);
726 EXPORT_SYMBOL_GPL(kvm_set_dr
);
728 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
732 *val
= vcpu
->arch
.db
[dr
];
735 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
739 *val
= vcpu
->arch
.dr6
;
742 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
746 *val
= vcpu
->arch
.dr7
;
753 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
755 if (_kvm_get_dr(vcpu
, dr
, val
)) {
756 kvm_queue_exception(vcpu
, UD_VECTOR
);
761 EXPORT_SYMBOL_GPL(kvm_get_dr
);
763 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
765 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
769 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
772 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
773 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
776 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
779 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
780 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
782 * This list is modified at module load time to reflect the
783 * capabilities of the host cpu. This capabilities test skips MSRs that are
784 * kvm-specific. Those are put in the beginning of the list.
787 #define KVM_SAVE_MSRS_BEGIN 9
788 static u32 msrs_to_save
[] = {
789 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
790 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
791 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
792 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
793 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
796 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
798 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
801 static unsigned num_msrs_to_save
;
803 static u32 emulated_msrs
[] = {
804 MSR_IA32_TSCDEADLINE
,
805 MSR_IA32_MISC_ENABLE
,
810 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
812 u64 old_efer
= vcpu
->arch
.efer
;
814 if (efer
& efer_reserved_bits
)
818 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
821 if (efer
& EFER_FFXSR
) {
822 struct kvm_cpuid_entry2
*feat
;
824 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
825 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
829 if (efer
& EFER_SVME
) {
830 struct kvm_cpuid_entry2
*feat
;
832 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
833 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
838 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
840 kvm_x86_ops
->set_efer(vcpu
, efer
);
842 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
844 /* Update reserved bits */
845 if ((efer
^ old_efer
) & EFER_NX
)
846 kvm_mmu_reset_context(vcpu
);
851 void kvm_enable_efer_bits(u64 mask
)
853 efer_reserved_bits
&= ~mask
;
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
859 * Writes msr value into into the appropriate "register".
860 * Returns 0 on success, non-0 otherwise.
861 * Assumes vcpu_load() was already called.
863 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
865 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
869 * Adapt set_msr() to msr_io()'s calling convention
871 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
873 return kvm_set_msr(vcpu
, index
, *data
);
876 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
880 struct pvclock_wall_clock wc
;
881 struct timespec boot
;
886 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
891 ++version
; /* first time write, random junk */
895 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
898 * The guest calculates current wall clock time by adding
899 * system time (updated by kvm_guest_time_update below) to the
900 * wall clock specified here. guest system time equals host
901 * system time for us, thus we must fill in host boot time here.
905 wc
.sec
= boot
.tv_sec
;
906 wc
.nsec
= boot
.tv_nsec
;
907 wc
.version
= version
;
909 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
912 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
915 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
917 uint32_t quotient
, remainder
;
919 /* Don't try to replace with do_div(), this one calculates
920 * "(dividend << 32) / divisor" */
922 : "=a" (quotient
), "=d" (remainder
)
923 : "0" (0), "1" (dividend
), "r" (divisor
) );
927 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
928 s8
*pshift
, u32
*pmultiplier
)
935 tps64
= base_khz
* 1000LL;
936 scaled64
= scaled_khz
* 1000LL;
937 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
942 tps32
= (uint32_t)tps64
;
943 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
944 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
952 *pmultiplier
= div_frac(scaled64
, tps32
);
954 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
958 static inline u64
get_kernel_ns(void)
962 WARN_ON(preemptible());
964 monotonic_to_bootbased(&ts
);
965 return timespec_to_ns(&ts
);
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
969 unsigned long max_tsc_khz
;
971 static inline int kvm_tsc_changes_freq(void)
974 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
975 cpufreq_quick_get(cpu
) != 0;
980 u64
vcpu_tsc_khz(struct kvm_vcpu
*vcpu
)
982 if (vcpu
->arch
.virtual_tsc_khz
)
983 return vcpu
->arch
.virtual_tsc_khz
;
985 return __this_cpu_read(cpu_tsc_khz
);
988 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
992 WARN_ON(preemptible());
993 if (kvm_tsc_changes_freq())
994 printk_once(KERN_WARNING
995 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996 ret
= nsec
* vcpu_tsc_khz(vcpu
);
997 do_div(ret
, USEC_PER_SEC
);
1001 static void kvm_init_tsc_catchup(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1003 /* Compute a scale to convert nanoseconds in TSC cycles */
1004 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1005 &vcpu
->arch
.tsc_catchup_shift
,
1006 &vcpu
->arch
.tsc_catchup_mult
);
1009 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1011 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1012 vcpu
->arch
.tsc_catchup_mult
,
1013 vcpu
->arch
.tsc_catchup_shift
);
1014 tsc
+= vcpu
->arch
.last_tsc_write
;
1018 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1020 struct kvm
*kvm
= vcpu
->kvm
;
1021 u64 offset
, ns
, elapsed
;
1022 unsigned long flags
;
1025 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1026 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1027 ns
= get_kernel_ns();
1028 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1029 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1034 * Special case: close write to TSC within 5 seconds of
1035 * another CPU is interpreted as an attempt to synchronize
1036 * The 5 seconds is to accommodate host load / swapping as
1037 * well as any reset of TSC during the boot process.
1039 * In that case, for a reliable TSC, we can match TSC offsets,
1040 * or make a best guest using elapsed value.
1042 if (sdiff
< nsec_to_cycles(vcpu
, 5ULL * NSEC_PER_SEC
) &&
1043 elapsed
< 5ULL * NSEC_PER_SEC
) {
1044 if (!check_tsc_unstable()) {
1045 offset
= kvm
->arch
.last_tsc_offset
;
1046 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1048 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1050 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1052 ns
= kvm
->arch
.last_tsc_nsec
;
1054 kvm
->arch
.last_tsc_nsec
= ns
;
1055 kvm
->arch
.last_tsc_write
= data
;
1056 kvm
->arch
.last_tsc_offset
= offset
;
1057 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1058 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1060 /* Reset of TSC must disable overshoot protection below */
1061 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1062 vcpu
->arch
.last_tsc_write
= data
;
1063 vcpu
->arch
.last_tsc_nsec
= ns
;
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1067 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1069 unsigned long flags
;
1070 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1072 unsigned long this_tsc_khz
;
1073 s64 kernel_ns
, max_kernel_ns
;
1076 /* Keep irq disabled to prevent changes to the clock */
1077 local_irq_save(flags
);
1078 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
);
1079 kernel_ns
= get_kernel_ns();
1080 this_tsc_khz
= vcpu_tsc_khz(v
);
1081 if (unlikely(this_tsc_khz
== 0)) {
1082 local_irq_restore(flags
);
1083 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1088 * We may have to catch up the TSC to match elapsed wall clock
1089 * time for two reasons, even if kvmclock is used.
1090 * 1) CPU could have been running below the maximum TSC rate
1091 * 2) Broken TSC compensation resets the base at each VCPU
1092 * entry to avoid unknown leaps of TSC even when running
1093 * again on the same CPU. This may cause apparent elapsed
1094 * time to disappear, and the guest to stand still or run
1097 if (vcpu
->tsc_catchup
) {
1098 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1099 if (tsc
> tsc_timestamp
) {
1100 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1101 tsc_timestamp
= tsc
;
1105 local_irq_restore(flags
);
1107 if (!vcpu
->time_page
)
1111 * Time as measured by the TSC may go backwards when resetting the base
1112 * tsc_timestamp. The reason for this is that the TSC resolution is
1113 * higher than the resolution of the other clock scales. Thus, many
1114 * possible measurments of the TSC correspond to one measurement of any
1115 * other clock, and so a spread of values is possible. This is not a
1116 * problem for the computation of the nanosecond clock; with TSC rates
1117 * around 1GHZ, there can only be a few cycles which correspond to one
1118 * nanosecond value, and any path through this code will inevitably
1119 * take longer than that. However, with the kernel_ns value itself,
1120 * the precision may be much lower, down to HZ granularity. If the
1121 * first sampling of TSC against kernel_ns ends in the low part of the
1122 * range, and the second in the high end of the range, we can get:
1124 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1126 * As the sampling errors potentially range in the thousands of cycles,
1127 * it is possible such a time value has already been observed by the
1128 * guest. To protect against this, we must compute the system time as
1129 * observed by the guest and ensure the new system time is greater.
1132 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1133 max_kernel_ns
= vcpu
->last_guest_tsc
-
1134 vcpu
->hv_clock
.tsc_timestamp
;
1135 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1136 vcpu
->hv_clock
.tsc_to_system_mul
,
1137 vcpu
->hv_clock
.tsc_shift
);
1138 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1141 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1142 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1143 &vcpu
->hv_clock
.tsc_shift
,
1144 &vcpu
->hv_clock
.tsc_to_system_mul
);
1145 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1148 if (max_kernel_ns
> kernel_ns
)
1149 kernel_ns
= max_kernel_ns
;
1151 /* With all the info we got, fill in the values */
1152 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1153 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1154 vcpu
->last_kernel_ns
= kernel_ns
;
1155 vcpu
->last_guest_tsc
= tsc_timestamp
;
1156 vcpu
->hv_clock
.flags
= 0;
1159 * The interface expects us to write an even number signaling that the
1160 * update is finished. Since the guest won't see the intermediate
1161 * state, we just increase by 2 at the end.
1163 vcpu
->hv_clock
.version
+= 2;
1165 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1167 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1168 sizeof(vcpu
->hv_clock
));
1170 kunmap_atomic(shared_kaddr
, KM_USER0
);
1172 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1176 static bool msr_mtrr_valid(unsigned msr
)
1179 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1180 case MSR_MTRRfix64K_00000
:
1181 case MSR_MTRRfix16K_80000
:
1182 case MSR_MTRRfix16K_A0000
:
1183 case MSR_MTRRfix4K_C0000
:
1184 case MSR_MTRRfix4K_C8000
:
1185 case MSR_MTRRfix4K_D0000
:
1186 case MSR_MTRRfix4K_D8000
:
1187 case MSR_MTRRfix4K_E0000
:
1188 case MSR_MTRRfix4K_E8000
:
1189 case MSR_MTRRfix4K_F0000
:
1190 case MSR_MTRRfix4K_F8000
:
1191 case MSR_MTRRdefType
:
1192 case MSR_IA32_CR_PAT
:
1200 static bool valid_pat_type(unsigned t
)
1202 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1205 static bool valid_mtrr_type(unsigned t
)
1207 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1210 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1214 if (!msr_mtrr_valid(msr
))
1217 if (msr
== MSR_IA32_CR_PAT
) {
1218 for (i
= 0; i
< 8; i
++)
1219 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1222 } else if (msr
== MSR_MTRRdefType
) {
1225 return valid_mtrr_type(data
& 0xff);
1226 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1227 for (i
= 0; i
< 8 ; i
++)
1228 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1233 /* variable MTRRs */
1234 return valid_mtrr_type(data
& 0xff);
1237 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1239 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1241 if (!mtrr_valid(vcpu
, msr
, data
))
1244 if (msr
== MSR_MTRRdefType
) {
1245 vcpu
->arch
.mtrr_state
.def_type
= data
;
1246 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1247 } else if (msr
== MSR_MTRRfix64K_00000
)
1249 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1250 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1251 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1252 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1253 else if (msr
== MSR_IA32_CR_PAT
)
1254 vcpu
->arch
.pat
= data
;
1255 else { /* Variable MTRRs */
1256 int idx
, is_mtrr_mask
;
1259 idx
= (msr
- 0x200) / 2;
1260 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1263 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1266 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1270 kvm_mmu_reset_context(vcpu
);
1274 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1276 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1277 unsigned bank_num
= mcg_cap
& 0xff;
1280 case MSR_IA32_MCG_STATUS
:
1281 vcpu
->arch
.mcg_status
= data
;
1283 case MSR_IA32_MCG_CTL
:
1284 if (!(mcg_cap
& MCG_CTL_P
))
1286 if (data
!= 0 && data
!= ~(u64
)0)
1288 vcpu
->arch
.mcg_ctl
= data
;
1291 if (msr
>= MSR_IA32_MC0_CTL
&&
1292 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1293 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1294 /* only 0 or all 1s can be written to IA32_MCi_CTL
1295 * some Linux kernels though clear bit 10 in bank 4 to
1296 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297 * this to avoid an uncatched #GP in the guest
1299 if ((offset
& 0x3) == 0 &&
1300 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1302 vcpu
->arch
.mce_banks
[offset
] = data
;
1310 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1312 struct kvm
*kvm
= vcpu
->kvm
;
1313 int lm
= is_long_mode(vcpu
);
1314 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1315 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1316 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1317 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1318 u32 page_num
= data
& ~PAGE_MASK
;
1319 u64 page_addr
= data
& PAGE_MASK
;
1324 if (page_num
>= blob_size
)
1327 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1332 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1341 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1343 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1346 static bool kvm_hv_msr_partition_wide(u32 msr
)
1350 case HV_X64_MSR_GUEST_OS_ID
:
1351 case HV_X64_MSR_HYPERCALL
:
1359 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1361 struct kvm
*kvm
= vcpu
->kvm
;
1364 case HV_X64_MSR_GUEST_OS_ID
:
1365 kvm
->arch
.hv_guest_os_id
= data
;
1366 /* setting guest os id to zero disables hypercall page */
1367 if (!kvm
->arch
.hv_guest_os_id
)
1368 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1370 case HV_X64_MSR_HYPERCALL
: {
1375 /* if guest os id is not set hypercall should remain disabled */
1376 if (!kvm
->arch
.hv_guest_os_id
)
1378 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1379 kvm
->arch
.hv_hypercall
= data
;
1382 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1383 addr
= gfn_to_hva(kvm
, gfn
);
1384 if (kvm_is_error_hva(addr
))
1386 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1387 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1388 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1390 kvm
->arch
.hv_hypercall
= data
;
1394 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1395 "data 0x%llx\n", msr
, data
);
1401 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1404 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1407 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1408 vcpu
->arch
.hv_vapic
= data
;
1411 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1412 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1413 if (kvm_is_error_hva(addr
))
1415 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1417 vcpu
->arch
.hv_vapic
= data
;
1420 case HV_X64_MSR_EOI
:
1421 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1422 case HV_X64_MSR_ICR
:
1423 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1424 case HV_X64_MSR_TPR
:
1425 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1427 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1428 "data 0x%llx\n", msr
, data
);
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1437 gpa_t gpa
= data
& ~0x3f;
1439 /* Bits 2:5 are resrved, Should be zero */
1443 vcpu
->arch
.apf
.msr_val
= data
;
1445 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1446 kvm_clear_async_pf_completion_queue(vcpu
);
1447 kvm_async_pf_hash_reset(vcpu
);
1451 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1454 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1455 kvm_async_pf_wakeup_all(vcpu
);
1459 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1461 if (vcpu
->arch
.time_page
) {
1462 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1463 vcpu
->arch
.time_page
= NULL
;
1467 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1471 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1474 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1475 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1476 vcpu
->arch
.st
.accum_steal
= delta
;
1479 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1481 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1484 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1485 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1488 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1489 vcpu
->arch
.st
.steal
.version
+= 2;
1490 vcpu
->arch
.st
.accum_steal
= 0;
1492 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1493 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1496 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1500 return set_efer(vcpu
, data
);
1502 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1503 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1505 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1510 case MSR_FAM10H_MMIO_CONF_BASE
:
1512 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1517 case MSR_AMD64_NB_CFG
:
1519 case MSR_IA32_DEBUGCTLMSR
:
1521 /* We support the non-activated case already */
1523 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1524 /* Values other than LBR and BTF are vendor-specific,
1525 thus reserved and should throw a #GP */
1528 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1531 case MSR_IA32_UCODE_REV
:
1532 case MSR_IA32_UCODE_WRITE
:
1533 case MSR_VM_HSAVE_PA
:
1534 case MSR_AMD64_PATCH_LOADER
:
1536 case 0x200 ... 0x2ff:
1537 return set_msr_mtrr(vcpu
, msr
, data
);
1538 case MSR_IA32_APICBASE
:
1539 kvm_set_apic_base(vcpu
, data
);
1541 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1542 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1543 case MSR_IA32_TSCDEADLINE
:
1544 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
1546 case MSR_IA32_MISC_ENABLE
:
1547 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1549 case MSR_KVM_WALL_CLOCK_NEW
:
1550 case MSR_KVM_WALL_CLOCK
:
1551 vcpu
->kvm
->arch
.wall_clock
= data
;
1552 kvm_write_wall_clock(vcpu
->kvm
, data
);
1554 case MSR_KVM_SYSTEM_TIME_NEW
:
1555 case MSR_KVM_SYSTEM_TIME
: {
1556 kvmclock_reset(vcpu
);
1558 vcpu
->arch
.time
= data
;
1559 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1561 /* we verify if the enable bit is set... */
1565 /* ...but clean it before doing the actual write */
1566 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1568 vcpu
->arch
.time_page
=
1569 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1571 if (is_error_page(vcpu
->arch
.time_page
)) {
1572 kvm_release_page_clean(vcpu
->arch
.time_page
);
1573 vcpu
->arch
.time_page
= NULL
;
1577 case MSR_KVM_ASYNC_PF_EN
:
1578 if (kvm_pv_enable_async_pf(vcpu
, data
))
1581 case MSR_KVM_STEAL_TIME
:
1583 if (unlikely(!sched_info_on()))
1586 if (data
& KVM_STEAL_RESERVED_MASK
)
1589 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1590 data
& KVM_STEAL_VALID_BITS
))
1593 vcpu
->arch
.st
.msr_val
= data
;
1595 if (!(data
& KVM_MSR_ENABLED
))
1598 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1601 accumulate_steal_time(vcpu
);
1604 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1608 case MSR_IA32_MCG_CTL
:
1609 case MSR_IA32_MCG_STATUS
:
1610 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1611 return set_msr_mce(vcpu
, msr
, data
);
1613 /* Performance counters are not protected by a CPUID bit,
1614 * so we should check all of them in the generic path for the sake of
1615 * cross vendor migration.
1616 * Writing a zero into the event select MSRs disables them,
1617 * which we perfectly emulate ;-). Any other value should be at least
1618 * reported, some guests depend on them.
1620 case MSR_K7_EVNTSEL0
:
1621 case MSR_K7_EVNTSEL1
:
1622 case MSR_K7_EVNTSEL2
:
1623 case MSR_K7_EVNTSEL3
:
1625 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1626 "0x%x data 0x%llx\n", msr
, data
);
1628 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1629 * so we ignore writes to make it happy.
1631 case MSR_K7_PERFCTR0
:
1632 case MSR_K7_PERFCTR1
:
1633 case MSR_K7_PERFCTR2
:
1634 case MSR_K7_PERFCTR3
:
1635 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1636 "0x%x data 0x%llx\n", msr
, data
);
1638 case MSR_K7_CLK_CTL
:
1640 * Ignore all writes to this no longer documented MSR.
1641 * Writes are only relevant for old K7 processors,
1642 * all pre-dating SVM, but a recommended workaround from
1643 * AMD for these chips. It is possible to speicify the
1644 * affected processor models on the command line, hence
1645 * the need to ignore the workaround.
1648 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1649 if (kvm_hv_msr_partition_wide(msr
)) {
1651 mutex_lock(&vcpu
->kvm
->lock
);
1652 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1653 mutex_unlock(&vcpu
->kvm
->lock
);
1656 return set_msr_hyperv(vcpu
, msr
, data
);
1658 case MSR_IA32_BBL_CR_CTL3
:
1659 /* Drop writes to this legacy MSR -- see rdmsr
1660 * counterpart for further detail.
1662 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1665 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1666 return xen_hvm_config(vcpu
, data
);
1667 if (kvm_pmu_msr(vcpu
, msr
))
1668 return kvm_pmu_set_msr(vcpu
, msr
, data
);
1670 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1674 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1681 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1685 * Reads an msr value (of 'msr_index') into 'pdata'.
1686 * Returns 0 on success, non-0 otherwise.
1687 * Assumes vcpu_load() was already called.
1689 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1691 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1694 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1696 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1698 if (!msr_mtrr_valid(msr
))
1701 if (msr
== MSR_MTRRdefType
)
1702 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1703 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1704 else if (msr
== MSR_MTRRfix64K_00000
)
1706 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1707 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1708 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1709 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1710 else if (msr
== MSR_IA32_CR_PAT
)
1711 *pdata
= vcpu
->arch
.pat
;
1712 else { /* Variable MTRRs */
1713 int idx
, is_mtrr_mask
;
1716 idx
= (msr
- 0x200) / 2;
1717 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1720 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1723 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1730 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1733 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1734 unsigned bank_num
= mcg_cap
& 0xff;
1737 case MSR_IA32_P5_MC_ADDR
:
1738 case MSR_IA32_P5_MC_TYPE
:
1741 case MSR_IA32_MCG_CAP
:
1742 data
= vcpu
->arch
.mcg_cap
;
1744 case MSR_IA32_MCG_CTL
:
1745 if (!(mcg_cap
& MCG_CTL_P
))
1747 data
= vcpu
->arch
.mcg_ctl
;
1749 case MSR_IA32_MCG_STATUS
:
1750 data
= vcpu
->arch
.mcg_status
;
1753 if (msr
>= MSR_IA32_MC0_CTL
&&
1754 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1755 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1756 data
= vcpu
->arch
.mce_banks
[offset
];
1765 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1768 struct kvm
*kvm
= vcpu
->kvm
;
1771 case HV_X64_MSR_GUEST_OS_ID
:
1772 data
= kvm
->arch
.hv_guest_os_id
;
1774 case HV_X64_MSR_HYPERCALL
:
1775 data
= kvm
->arch
.hv_hypercall
;
1778 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1786 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1791 case HV_X64_MSR_VP_INDEX
: {
1794 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1799 case HV_X64_MSR_EOI
:
1800 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1801 case HV_X64_MSR_ICR
:
1802 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1803 case HV_X64_MSR_TPR
:
1804 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1805 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1806 data
= vcpu
->arch
.hv_vapic
;
1809 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1816 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1821 case MSR_IA32_PLATFORM_ID
:
1822 case MSR_IA32_EBL_CR_POWERON
:
1823 case MSR_IA32_DEBUGCTLMSR
:
1824 case MSR_IA32_LASTBRANCHFROMIP
:
1825 case MSR_IA32_LASTBRANCHTOIP
:
1826 case MSR_IA32_LASTINTFROMIP
:
1827 case MSR_IA32_LASTINTTOIP
:
1830 case MSR_VM_HSAVE_PA
:
1831 case MSR_K7_EVNTSEL0
:
1832 case MSR_K7_PERFCTR0
:
1833 case MSR_K8_INT_PENDING_MSG
:
1834 case MSR_AMD64_NB_CFG
:
1835 case MSR_FAM10H_MMIO_CONF_BASE
:
1838 case MSR_IA32_UCODE_REV
:
1839 data
= 0x100000000ULL
;
1842 data
= 0x500 | KVM_NR_VAR_MTRR
;
1844 case 0x200 ... 0x2ff:
1845 return get_msr_mtrr(vcpu
, msr
, pdata
);
1846 case 0xcd: /* fsb frequency */
1850 * MSR_EBC_FREQUENCY_ID
1851 * Conservative value valid for even the basic CPU models.
1852 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1853 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1854 * and 266MHz for model 3, or 4. Set Core Clock
1855 * Frequency to System Bus Frequency Ratio to 1 (bits
1856 * 31:24) even though these are only valid for CPU
1857 * models > 2, however guests may end up dividing or
1858 * multiplying by zero otherwise.
1860 case MSR_EBC_FREQUENCY_ID
:
1863 case MSR_IA32_APICBASE
:
1864 data
= kvm_get_apic_base(vcpu
);
1866 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1867 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1869 case MSR_IA32_TSCDEADLINE
:
1870 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
1872 case MSR_IA32_MISC_ENABLE
:
1873 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1875 case MSR_IA32_PERF_STATUS
:
1876 /* TSC increment by tick */
1878 /* CPU multiplier */
1879 data
|= (((uint64_t)4ULL) << 40);
1882 data
= vcpu
->arch
.efer
;
1884 case MSR_KVM_WALL_CLOCK
:
1885 case MSR_KVM_WALL_CLOCK_NEW
:
1886 data
= vcpu
->kvm
->arch
.wall_clock
;
1888 case MSR_KVM_SYSTEM_TIME
:
1889 case MSR_KVM_SYSTEM_TIME_NEW
:
1890 data
= vcpu
->arch
.time
;
1892 case MSR_KVM_ASYNC_PF_EN
:
1893 data
= vcpu
->arch
.apf
.msr_val
;
1895 case MSR_KVM_STEAL_TIME
:
1896 data
= vcpu
->arch
.st
.msr_val
;
1898 case MSR_IA32_P5_MC_ADDR
:
1899 case MSR_IA32_P5_MC_TYPE
:
1900 case MSR_IA32_MCG_CAP
:
1901 case MSR_IA32_MCG_CTL
:
1902 case MSR_IA32_MCG_STATUS
:
1903 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1904 return get_msr_mce(vcpu
, msr
, pdata
);
1905 case MSR_K7_CLK_CTL
:
1907 * Provide expected ramp-up count for K7. All other
1908 * are set to zero, indicating minimum divisors for
1911 * This prevents guest kernels on AMD host with CPU
1912 * type 6, model 8 and higher from exploding due to
1913 * the rdmsr failing.
1917 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1918 if (kvm_hv_msr_partition_wide(msr
)) {
1920 mutex_lock(&vcpu
->kvm
->lock
);
1921 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1922 mutex_unlock(&vcpu
->kvm
->lock
);
1925 return get_msr_hyperv(vcpu
, msr
, pdata
);
1927 case MSR_IA32_BBL_CR_CTL3
:
1928 /* This legacy MSR exists but isn't fully documented in current
1929 * silicon. It is however accessed by winxp in very narrow
1930 * scenarios where it sets bit #19, itself documented as
1931 * a "reserved" bit. Best effort attempt to source coherent
1932 * read data here should the balance of the register be
1933 * interpreted by the guest:
1935 * L2 cache control register 3: 64GB range, 256KB size,
1936 * enabled, latency 0x1, configured
1941 if (kvm_pmu_msr(vcpu
, msr
))
1942 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
1944 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1947 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1955 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1958 * Read or write a bunch of msrs. All parameters are kernel addresses.
1960 * @return number of msrs set successfully.
1962 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1963 struct kvm_msr_entry
*entries
,
1964 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1965 unsigned index
, u64
*data
))
1969 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1970 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1971 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1973 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1979 * Read or write a bunch of msrs. Parameters are user addresses.
1981 * @return number of msrs set successfully.
1983 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
1984 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1985 unsigned index
, u64
*data
),
1988 struct kvm_msrs msrs
;
1989 struct kvm_msr_entry
*entries
;
1994 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
1998 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2001 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2002 entries
= memdup_user(user_msrs
->entries
, size
);
2003 if (IS_ERR(entries
)) {
2004 r
= PTR_ERR(entries
);
2008 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2013 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2024 int kvm_dev_ioctl_check_extension(long ext
)
2029 case KVM_CAP_IRQCHIP
:
2031 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2032 case KVM_CAP_SET_TSS_ADDR
:
2033 case KVM_CAP_EXT_CPUID
:
2034 case KVM_CAP_CLOCKSOURCE
:
2036 case KVM_CAP_NOP_IO_DELAY
:
2037 case KVM_CAP_MP_STATE
:
2038 case KVM_CAP_SYNC_MMU
:
2039 case KVM_CAP_USER_NMI
:
2040 case KVM_CAP_REINJECT_CONTROL
:
2041 case KVM_CAP_IRQ_INJECT_STATUS
:
2042 case KVM_CAP_ASSIGN_DEV_IRQ
:
2044 case KVM_CAP_IOEVENTFD
:
2046 case KVM_CAP_PIT_STATE2
:
2047 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2048 case KVM_CAP_XEN_HVM
:
2049 case KVM_CAP_ADJUST_CLOCK
:
2050 case KVM_CAP_VCPU_EVENTS
:
2051 case KVM_CAP_HYPERV
:
2052 case KVM_CAP_HYPERV_VAPIC
:
2053 case KVM_CAP_HYPERV_SPIN
:
2054 case KVM_CAP_PCI_SEGMENT
:
2055 case KVM_CAP_DEBUGREGS
:
2056 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2058 case KVM_CAP_ASYNC_PF
:
2059 case KVM_CAP_GET_TSC_KHZ
:
2062 case KVM_CAP_COALESCED_MMIO
:
2063 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2066 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2068 case KVM_CAP_NR_VCPUS
:
2069 r
= KVM_SOFT_MAX_VCPUS
;
2071 case KVM_CAP_MAX_VCPUS
:
2074 case KVM_CAP_NR_MEMSLOTS
:
2075 r
= KVM_MEMORY_SLOTS
;
2077 case KVM_CAP_PV_MMU
: /* obsolete */
2081 r
= iommu_present(&pci_bus_type
);
2084 r
= KVM_MAX_MCE_BANKS
;
2089 case KVM_CAP_TSC_CONTROL
:
2090 r
= kvm_has_tsc_control
;
2092 case KVM_CAP_TSC_DEADLINE_TIMER
:
2093 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2103 long kvm_arch_dev_ioctl(struct file
*filp
,
2104 unsigned int ioctl
, unsigned long arg
)
2106 void __user
*argp
= (void __user
*)arg
;
2110 case KVM_GET_MSR_INDEX_LIST
: {
2111 struct kvm_msr_list __user
*user_msr_list
= argp
;
2112 struct kvm_msr_list msr_list
;
2116 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2119 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2120 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2123 if (n
< msr_list
.nmsrs
)
2126 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2127 num_msrs_to_save
* sizeof(u32
)))
2129 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2131 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2136 case KVM_GET_SUPPORTED_CPUID
: {
2137 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2138 struct kvm_cpuid2 cpuid
;
2141 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2143 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2144 cpuid_arg
->entries
);
2149 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2154 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2157 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2159 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2171 static void wbinvd_ipi(void *garbage
)
2176 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2178 return vcpu
->kvm
->arch
.iommu_domain
&&
2179 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2182 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2184 /* Address WBINVD may be executed by guest */
2185 if (need_emulate_wbinvd(vcpu
)) {
2186 if (kvm_x86_ops
->has_wbinvd_exit())
2187 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2188 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2189 smp_call_function_single(vcpu
->cpu
,
2190 wbinvd_ipi
, NULL
, 1);
2193 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2194 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2195 /* Make sure TSC doesn't go backwards */
2199 tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2200 tsc_delta
= !vcpu
->arch
.last_guest_tsc
? 0 :
2201 tsc
- vcpu
->arch
.last_guest_tsc
;
2204 mark_tsc_unstable("KVM discovered backwards TSC");
2205 if (check_tsc_unstable()) {
2206 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2207 vcpu
->arch
.tsc_catchup
= 1;
2209 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2210 if (vcpu
->cpu
!= cpu
)
2211 kvm_migrate_timers(vcpu
);
2215 accumulate_steal_time(vcpu
);
2216 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2219 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2221 kvm_x86_ops
->vcpu_put(vcpu
);
2222 kvm_put_guest_fpu(vcpu
);
2223 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2226 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2227 struct kvm_lapic_state
*s
)
2229 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2234 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2235 struct kvm_lapic_state
*s
)
2237 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2238 kvm_apic_post_state_restore(vcpu
);
2239 update_cr8_intercept(vcpu
);
2244 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2245 struct kvm_interrupt
*irq
)
2247 if (irq
->irq
< 0 || irq
->irq
>= 256)
2249 if (irqchip_in_kernel(vcpu
->kvm
))
2252 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2253 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2258 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2260 kvm_inject_nmi(vcpu
);
2265 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2266 struct kvm_tpr_access_ctl
*tac
)
2270 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2274 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2278 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2281 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2283 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2286 vcpu
->arch
.mcg_cap
= mcg_cap
;
2287 /* Init IA32_MCG_CTL to all 1s */
2288 if (mcg_cap
& MCG_CTL_P
)
2289 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2290 /* Init IA32_MCi_CTL to all 1s */
2291 for (bank
= 0; bank
< bank_num
; bank
++)
2292 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2297 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2298 struct kvm_x86_mce
*mce
)
2300 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2301 unsigned bank_num
= mcg_cap
& 0xff;
2302 u64
*banks
= vcpu
->arch
.mce_banks
;
2304 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2307 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2308 * reporting is disabled
2310 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2311 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2313 banks
+= 4 * mce
->bank
;
2315 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2316 * reporting is disabled for the bank
2318 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2320 if (mce
->status
& MCI_STATUS_UC
) {
2321 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2322 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2323 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2326 if (banks
[1] & MCI_STATUS_VAL
)
2327 mce
->status
|= MCI_STATUS_OVER
;
2328 banks
[2] = mce
->addr
;
2329 banks
[3] = mce
->misc
;
2330 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2331 banks
[1] = mce
->status
;
2332 kvm_queue_exception(vcpu
, MC_VECTOR
);
2333 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2334 || !(banks
[1] & MCI_STATUS_UC
)) {
2335 if (banks
[1] & MCI_STATUS_VAL
)
2336 mce
->status
|= MCI_STATUS_OVER
;
2337 banks
[2] = mce
->addr
;
2338 banks
[3] = mce
->misc
;
2339 banks
[1] = mce
->status
;
2341 banks
[1] |= MCI_STATUS_OVER
;
2345 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2346 struct kvm_vcpu_events
*events
)
2349 events
->exception
.injected
=
2350 vcpu
->arch
.exception
.pending
&&
2351 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2352 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2353 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2354 events
->exception
.pad
= 0;
2355 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2357 events
->interrupt
.injected
=
2358 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2359 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2360 events
->interrupt
.soft
= 0;
2361 events
->interrupt
.shadow
=
2362 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2363 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2365 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2366 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2367 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2368 events
->nmi
.pad
= 0;
2370 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2372 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2373 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2374 | KVM_VCPUEVENT_VALID_SHADOW
);
2375 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2378 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2379 struct kvm_vcpu_events
*events
)
2381 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2382 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2383 | KVM_VCPUEVENT_VALID_SHADOW
))
2387 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2388 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2389 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2390 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2392 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2393 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2394 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2395 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2396 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2397 events
->interrupt
.shadow
);
2399 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2400 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2401 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2402 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2404 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2405 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2407 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2412 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2413 struct kvm_debugregs
*dbgregs
)
2415 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2416 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2417 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2419 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2422 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2423 struct kvm_debugregs
*dbgregs
)
2428 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2429 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2430 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2435 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2436 struct kvm_xsave
*guest_xsave
)
2439 memcpy(guest_xsave
->region
,
2440 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2443 memcpy(guest_xsave
->region
,
2444 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2445 sizeof(struct i387_fxsave_struct
));
2446 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2451 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2452 struct kvm_xsave
*guest_xsave
)
2455 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2458 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2459 guest_xsave
->region
, xstate_size
);
2461 if (xstate_bv
& ~XSTATE_FPSSE
)
2463 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2464 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2469 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2470 struct kvm_xcrs
*guest_xcrs
)
2472 if (!cpu_has_xsave
) {
2473 guest_xcrs
->nr_xcrs
= 0;
2477 guest_xcrs
->nr_xcrs
= 1;
2478 guest_xcrs
->flags
= 0;
2479 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2480 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2483 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2484 struct kvm_xcrs
*guest_xcrs
)
2491 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2494 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2495 /* Only support XCR0 currently */
2496 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2497 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2498 guest_xcrs
->xcrs
[0].value
);
2506 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2507 unsigned int ioctl
, unsigned long arg
)
2509 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2510 void __user
*argp
= (void __user
*)arg
;
2513 struct kvm_lapic_state
*lapic
;
2514 struct kvm_xsave
*xsave
;
2515 struct kvm_xcrs
*xcrs
;
2521 case KVM_GET_LAPIC
: {
2523 if (!vcpu
->arch
.apic
)
2525 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2530 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2534 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2539 case KVM_SET_LAPIC
: {
2541 if (!vcpu
->arch
.apic
)
2543 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
2544 if (IS_ERR(u
.lapic
)) {
2545 r
= PTR_ERR(u
.lapic
);
2549 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2555 case KVM_INTERRUPT
: {
2556 struct kvm_interrupt irq
;
2559 if (copy_from_user(&irq
, argp
, sizeof irq
))
2561 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2568 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2574 case KVM_SET_CPUID
: {
2575 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2576 struct kvm_cpuid cpuid
;
2579 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2581 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2586 case KVM_SET_CPUID2
: {
2587 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2588 struct kvm_cpuid2 cpuid
;
2591 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2593 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2594 cpuid_arg
->entries
);
2599 case KVM_GET_CPUID2
: {
2600 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2601 struct kvm_cpuid2 cpuid
;
2604 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2606 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2607 cpuid_arg
->entries
);
2611 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2617 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2620 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2622 case KVM_TPR_ACCESS_REPORTING
: {
2623 struct kvm_tpr_access_ctl tac
;
2626 if (copy_from_user(&tac
, argp
, sizeof tac
))
2628 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2632 if (copy_to_user(argp
, &tac
, sizeof tac
))
2637 case KVM_SET_VAPIC_ADDR
: {
2638 struct kvm_vapic_addr va
;
2641 if (!irqchip_in_kernel(vcpu
->kvm
))
2644 if (copy_from_user(&va
, argp
, sizeof va
))
2647 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2650 case KVM_X86_SETUP_MCE
: {
2654 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2656 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2659 case KVM_X86_SET_MCE
: {
2660 struct kvm_x86_mce mce
;
2663 if (copy_from_user(&mce
, argp
, sizeof mce
))
2665 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2668 case KVM_GET_VCPU_EVENTS
: {
2669 struct kvm_vcpu_events events
;
2671 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2674 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2679 case KVM_SET_VCPU_EVENTS
: {
2680 struct kvm_vcpu_events events
;
2683 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2686 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2689 case KVM_GET_DEBUGREGS
: {
2690 struct kvm_debugregs dbgregs
;
2692 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2695 if (copy_to_user(argp
, &dbgregs
,
2696 sizeof(struct kvm_debugregs
)))
2701 case KVM_SET_DEBUGREGS
: {
2702 struct kvm_debugregs dbgregs
;
2705 if (copy_from_user(&dbgregs
, argp
,
2706 sizeof(struct kvm_debugregs
)))
2709 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2712 case KVM_GET_XSAVE
: {
2713 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2718 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
2721 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
2726 case KVM_SET_XSAVE
: {
2727 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
2728 if (IS_ERR(u
.xsave
)) {
2729 r
= PTR_ERR(u
.xsave
);
2733 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
2736 case KVM_GET_XCRS
: {
2737 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2742 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
2745 if (copy_to_user(argp
, u
.xcrs
,
2746 sizeof(struct kvm_xcrs
)))
2751 case KVM_SET_XCRS
: {
2752 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
2753 if (IS_ERR(u
.xcrs
)) {
2754 r
= PTR_ERR(u
.xcrs
);
2758 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
2761 case KVM_SET_TSC_KHZ
: {
2765 if (!kvm_has_tsc_control
)
2768 user_tsc_khz
= (u32
)arg
;
2770 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
2773 kvm_x86_ops
->set_tsc_khz(vcpu
, user_tsc_khz
);
2778 case KVM_GET_TSC_KHZ
: {
2780 if (check_tsc_unstable())
2783 r
= vcpu_tsc_khz(vcpu
);
2795 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
2799 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
2801 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
2805 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
2808 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
2812 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
2813 u32 kvm_nr_mmu_pages
)
2815 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
2818 mutex_lock(&kvm
->slots_lock
);
2819 spin_lock(&kvm
->mmu_lock
);
2821 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
2822 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
2824 spin_unlock(&kvm
->mmu_lock
);
2825 mutex_unlock(&kvm
->slots_lock
);
2829 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
2831 return kvm
->arch
.n_max_mmu_pages
;
2834 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2839 switch (chip
->chip_id
) {
2840 case KVM_IRQCHIP_PIC_MASTER
:
2841 memcpy(&chip
->chip
.pic
,
2842 &pic_irqchip(kvm
)->pics
[0],
2843 sizeof(struct kvm_pic_state
));
2845 case KVM_IRQCHIP_PIC_SLAVE
:
2846 memcpy(&chip
->chip
.pic
,
2847 &pic_irqchip(kvm
)->pics
[1],
2848 sizeof(struct kvm_pic_state
));
2850 case KVM_IRQCHIP_IOAPIC
:
2851 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
2860 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2865 switch (chip
->chip_id
) {
2866 case KVM_IRQCHIP_PIC_MASTER
:
2867 spin_lock(&pic_irqchip(kvm
)->lock
);
2868 memcpy(&pic_irqchip(kvm
)->pics
[0],
2870 sizeof(struct kvm_pic_state
));
2871 spin_unlock(&pic_irqchip(kvm
)->lock
);
2873 case KVM_IRQCHIP_PIC_SLAVE
:
2874 spin_lock(&pic_irqchip(kvm
)->lock
);
2875 memcpy(&pic_irqchip(kvm
)->pics
[1],
2877 sizeof(struct kvm_pic_state
));
2878 spin_unlock(&pic_irqchip(kvm
)->lock
);
2880 case KVM_IRQCHIP_IOAPIC
:
2881 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
2887 kvm_pic_update_irq(pic_irqchip(kvm
));
2891 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2895 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2896 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2897 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2901 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2905 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2906 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2907 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2908 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2912 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2916 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2917 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2918 sizeof(ps
->channels
));
2919 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2920 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2921 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
2925 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2927 int r
= 0, start
= 0;
2928 u32 prev_legacy
, cur_legacy
;
2929 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2930 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2931 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2932 if (!prev_legacy
&& cur_legacy
)
2934 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2935 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2936 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2937 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2938 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2942 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2943 struct kvm_reinject_control
*control
)
2945 if (!kvm
->arch
.vpit
)
2947 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2948 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2949 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2954 * write_protect_slot - write protect a slot for dirty logging
2955 * @kvm: the kvm instance
2956 * @memslot: the slot we protect
2957 * @dirty_bitmap: the bitmap indicating which pages are dirty
2958 * @nr_dirty_pages: the number of dirty pages
2960 * We have two ways to find all sptes to protect:
2961 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2962 * checks ones that have a spte mapping a page in the slot.
2963 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2965 * Generally speaking, if there are not so many dirty pages compared to the
2966 * number of shadow pages, we should use the latter.
2968 * Note that letting others write into a page marked dirty in the old bitmap
2969 * by using the remaining tlb entry is not a problem. That page will become
2970 * write protected again when we flush the tlb and then be reported dirty to
2971 * the user space by copying the old bitmap.
2973 static void write_protect_slot(struct kvm
*kvm
,
2974 struct kvm_memory_slot
*memslot
,
2975 unsigned long *dirty_bitmap
,
2976 unsigned long nr_dirty_pages
)
2978 /* Not many dirty pages compared to # of shadow pages. */
2979 if (nr_dirty_pages
< kvm
->arch
.n_used_mmu_pages
) {
2980 unsigned long gfn_offset
;
2982 for_each_set_bit(gfn_offset
, dirty_bitmap
, memslot
->npages
) {
2983 unsigned long gfn
= memslot
->base_gfn
+ gfn_offset
;
2985 spin_lock(&kvm
->mmu_lock
);
2986 kvm_mmu_rmap_write_protect(kvm
, gfn
, memslot
);
2987 spin_unlock(&kvm
->mmu_lock
);
2989 kvm_flush_remote_tlbs(kvm
);
2991 spin_lock(&kvm
->mmu_lock
);
2992 kvm_mmu_slot_remove_write_access(kvm
, memslot
->id
);
2993 spin_unlock(&kvm
->mmu_lock
);
2998 * Get (and clear) the dirty memory log for a memory slot.
3000 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3001 struct kvm_dirty_log
*log
)
3004 struct kvm_memory_slot
*memslot
;
3005 unsigned long n
, nr_dirty_pages
;
3007 mutex_lock(&kvm
->slots_lock
);
3010 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3013 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3015 if (!memslot
->dirty_bitmap
)
3018 n
= kvm_dirty_bitmap_bytes(memslot
);
3019 nr_dirty_pages
= memslot
->nr_dirty_pages
;
3021 /* If nothing is dirty, don't bother messing with page tables. */
3022 if (nr_dirty_pages
) {
3023 struct kvm_memslots
*slots
, *old_slots
;
3024 unsigned long *dirty_bitmap
, *dirty_bitmap_head
;
3026 dirty_bitmap
= memslot
->dirty_bitmap
;
3027 dirty_bitmap_head
= memslot
->dirty_bitmap_head
;
3028 if (dirty_bitmap
== dirty_bitmap_head
)
3029 dirty_bitmap_head
+= n
/ sizeof(long);
3030 memset(dirty_bitmap_head
, 0, n
);
3033 slots
= kmemdup(kvm
->memslots
, sizeof(*kvm
->memslots
), GFP_KERNEL
);
3037 memslot
= id_to_memslot(slots
, log
->slot
);
3038 memslot
->nr_dirty_pages
= 0;
3039 memslot
->dirty_bitmap
= dirty_bitmap_head
;
3040 update_memslots(slots
, NULL
);
3042 old_slots
= kvm
->memslots
;
3043 rcu_assign_pointer(kvm
->memslots
, slots
);
3044 synchronize_srcu_expedited(&kvm
->srcu
);
3047 write_protect_slot(kvm
, memslot
, dirty_bitmap
, nr_dirty_pages
);
3050 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3054 if (clear_user(log
->dirty_bitmap
, n
))
3060 mutex_unlock(&kvm
->slots_lock
);
3064 long kvm_arch_vm_ioctl(struct file
*filp
,
3065 unsigned int ioctl
, unsigned long arg
)
3067 struct kvm
*kvm
= filp
->private_data
;
3068 void __user
*argp
= (void __user
*)arg
;
3071 * This union makes it completely explicit to gcc-3.x
3072 * that these two variables' stack usage should be
3073 * combined, not added together.
3076 struct kvm_pit_state ps
;
3077 struct kvm_pit_state2 ps2
;
3078 struct kvm_pit_config pit_config
;
3082 case KVM_SET_TSS_ADDR
:
3083 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3087 case KVM_SET_IDENTITY_MAP_ADDR
: {
3091 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3093 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3098 case KVM_SET_NR_MMU_PAGES
:
3099 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3103 case KVM_GET_NR_MMU_PAGES
:
3104 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3106 case KVM_CREATE_IRQCHIP
: {
3107 struct kvm_pic
*vpic
;
3109 mutex_lock(&kvm
->lock
);
3112 goto create_irqchip_unlock
;
3114 vpic
= kvm_create_pic(kvm
);
3116 r
= kvm_ioapic_init(kvm
);
3118 mutex_lock(&kvm
->slots_lock
);
3119 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3121 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3123 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3125 mutex_unlock(&kvm
->slots_lock
);
3127 goto create_irqchip_unlock
;
3130 goto create_irqchip_unlock
;
3132 kvm
->arch
.vpic
= vpic
;
3134 r
= kvm_setup_default_irq_routing(kvm
);
3136 mutex_lock(&kvm
->slots_lock
);
3137 mutex_lock(&kvm
->irq_lock
);
3138 kvm_ioapic_destroy(kvm
);
3139 kvm_destroy_pic(kvm
);
3140 mutex_unlock(&kvm
->irq_lock
);
3141 mutex_unlock(&kvm
->slots_lock
);
3143 create_irqchip_unlock
:
3144 mutex_unlock(&kvm
->lock
);
3147 case KVM_CREATE_PIT
:
3148 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3150 case KVM_CREATE_PIT2
:
3152 if (copy_from_user(&u
.pit_config
, argp
,
3153 sizeof(struct kvm_pit_config
)))
3156 mutex_lock(&kvm
->slots_lock
);
3159 goto create_pit_unlock
;
3161 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3165 mutex_unlock(&kvm
->slots_lock
);
3167 case KVM_IRQ_LINE_STATUS
:
3168 case KVM_IRQ_LINE
: {
3169 struct kvm_irq_level irq_event
;
3172 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3175 if (irqchip_in_kernel(kvm
)) {
3177 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3178 irq_event
.irq
, irq_event
.level
);
3179 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3181 irq_event
.status
= status
;
3182 if (copy_to_user(argp
, &irq_event
,
3190 case KVM_GET_IRQCHIP
: {
3191 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3192 struct kvm_irqchip
*chip
;
3194 chip
= memdup_user(argp
, sizeof(*chip
));
3201 if (!irqchip_in_kernel(kvm
))
3202 goto get_irqchip_out
;
3203 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3205 goto get_irqchip_out
;
3207 if (copy_to_user(argp
, chip
, sizeof *chip
))
3208 goto get_irqchip_out
;
3216 case KVM_SET_IRQCHIP
: {
3217 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3218 struct kvm_irqchip
*chip
;
3220 chip
= memdup_user(argp
, sizeof(*chip
));
3227 if (!irqchip_in_kernel(kvm
))
3228 goto set_irqchip_out
;
3229 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3231 goto set_irqchip_out
;
3241 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3244 if (!kvm
->arch
.vpit
)
3246 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3250 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3257 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3260 if (!kvm
->arch
.vpit
)
3262 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3268 case KVM_GET_PIT2
: {
3270 if (!kvm
->arch
.vpit
)
3272 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3276 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3281 case KVM_SET_PIT2
: {
3283 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3286 if (!kvm
->arch
.vpit
)
3288 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3294 case KVM_REINJECT_CONTROL
: {
3295 struct kvm_reinject_control control
;
3297 if (copy_from_user(&control
, argp
, sizeof(control
)))
3299 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3305 case KVM_XEN_HVM_CONFIG
: {
3307 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3308 sizeof(struct kvm_xen_hvm_config
)))
3311 if (kvm
->arch
.xen_hvm_config
.flags
)
3316 case KVM_SET_CLOCK
: {
3317 struct kvm_clock_data user_ns
;
3322 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3330 local_irq_disable();
3331 now_ns
= get_kernel_ns();
3332 delta
= user_ns
.clock
- now_ns
;
3334 kvm
->arch
.kvmclock_offset
= delta
;
3337 case KVM_GET_CLOCK
: {
3338 struct kvm_clock_data user_ns
;
3341 local_irq_disable();
3342 now_ns
= get_kernel_ns();
3343 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3346 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3349 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3362 static void kvm_init_msr_list(void)
3367 /* skip the first msrs in the list. KVM-specific */
3368 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3369 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3372 msrs_to_save
[j
] = msrs_to_save
[i
];
3375 num_msrs_to_save
= j
;
3378 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3386 if (!(vcpu
->arch
.apic
&&
3387 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3388 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3399 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3406 if (!(vcpu
->arch
.apic
&&
3407 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3408 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3410 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3420 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3421 struct kvm_segment
*var
, int seg
)
3423 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3426 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3427 struct kvm_segment
*var
, int seg
)
3429 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3432 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3435 struct x86_exception exception
;
3437 BUG_ON(!mmu_is_nested(vcpu
));
3439 /* NPT walks are always user-walks */
3440 access
|= PFERR_USER_MASK
;
3441 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3446 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3447 struct x86_exception
*exception
)
3449 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3450 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3453 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3454 struct x86_exception
*exception
)
3456 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3457 access
|= PFERR_FETCH_MASK
;
3458 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3461 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3462 struct x86_exception
*exception
)
3464 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3465 access
|= PFERR_WRITE_MASK
;
3466 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3469 /* uses this to access any guest's mapped memory without checking CPL */
3470 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3471 struct x86_exception
*exception
)
3473 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3476 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3477 struct kvm_vcpu
*vcpu
, u32 access
,
3478 struct x86_exception
*exception
)
3481 int r
= X86EMUL_CONTINUE
;
3484 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3486 unsigned offset
= addr
& (PAGE_SIZE
-1);
3487 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3490 if (gpa
== UNMAPPED_GVA
)
3491 return X86EMUL_PROPAGATE_FAULT
;
3492 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3494 r
= X86EMUL_IO_NEEDED
;
3506 /* used for instruction fetching */
3507 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3508 gva_t addr
, void *val
, unsigned int bytes
,
3509 struct x86_exception
*exception
)
3511 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3512 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3514 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3515 access
| PFERR_FETCH_MASK
,
3519 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3520 gva_t addr
, void *val
, unsigned int bytes
,
3521 struct x86_exception
*exception
)
3523 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3524 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3526 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3529 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3531 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3532 gva_t addr
, void *val
, unsigned int bytes
,
3533 struct x86_exception
*exception
)
3535 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3536 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3539 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3540 gva_t addr
, void *val
,
3542 struct x86_exception
*exception
)
3544 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3546 int r
= X86EMUL_CONTINUE
;
3549 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3552 unsigned offset
= addr
& (PAGE_SIZE
-1);
3553 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3556 if (gpa
== UNMAPPED_GVA
)
3557 return X86EMUL_PROPAGATE_FAULT
;
3558 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3560 r
= X86EMUL_IO_NEEDED
;
3571 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
3573 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
3574 gpa_t
*gpa
, struct x86_exception
*exception
,
3577 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3579 if (vcpu_match_mmio_gva(vcpu
, gva
) &&
3580 check_write_user_access(vcpu
, write
, access
,
3581 vcpu
->arch
.access
)) {
3582 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
3583 (gva
& (PAGE_SIZE
- 1));
3584 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
3589 access
|= PFERR_WRITE_MASK
;
3591 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3593 if (*gpa
== UNMAPPED_GVA
)
3596 /* For APIC access vmexit */
3597 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3600 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
3601 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
3608 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3609 const void *val
, int bytes
)
3613 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3616 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
3620 struct read_write_emulator_ops
{
3621 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
3623 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3624 void *val
, int bytes
);
3625 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3626 int bytes
, void *val
);
3627 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3628 void *val
, int bytes
);
3632 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
3634 if (vcpu
->mmio_read_completed
) {
3635 memcpy(val
, vcpu
->mmio_data
, bytes
);
3636 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3637 vcpu
->mmio_phys_addr
, *(u64
*)val
);
3638 vcpu
->mmio_read_completed
= 0;
3645 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3646 void *val
, int bytes
)
3648 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3651 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3652 void *val
, int bytes
)
3654 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
3657 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
3659 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3660 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
3663 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3664 void *val
, int bytes
)
3666 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3667 return X86EMUL_IO_NEEDED
;
3670 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3671 void *val
, int bytes
)
3673 memcpy(vcpu
->mmio_data
, val
, bytes
);
3674 memcpy(vcpu
->run
->mmio
.data
, vcpu
->mmio_data
, 8);
3675 return X86EMUL_CONTINUE
;
3678 static struct read_write_emulator_ops read_emultor
= {
3679 .read_write_prepare
= read_prepare
,
3680 .read_write_emulate
= read_emulate
,
3681 .read_write_mmio
= vcpu_mmio_read
,
3682 .read_write_exit_mmio
= read_exit_mmio
,
3685 static struct read_write_emulator_ops write_emultor
= {
3686 .read_write_emulate
= write_emulate
,
3687 .read_write_mmio
= write_mmio
,
3688 .read_write_exit_mmio
= write_exit_mmio
,
3692 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
3694 struct x86_exception
*exception
,
3695 struct kvm_vcpu
*vcpu
,
3696 struct read_write_emulator_ops
*ops
)
3700 bool write
= ops
->write
;
3702 if (ops
->read_write_prepare
&&
3703 ops
->read_write_prepare(vcpu
, val
, bytes
))
3704 return X86EMUL_CONTINUE
;
3706 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
3709 return X86EMUL_PROPAGATE_FAULT
;
3711 /* For APIC access vmexit */
3715 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
3716 return X86EMUL_CONTINUE
;
3720 * Is this MMIO handled locally?
3722 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
3723 if (handled
== bytes
)
3724 return X86EMUL_CONTINUE
;
3730 vcpu
->mmio_needed
= 1;
3731 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3732 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3733 vcpu
->mmio_size
= bytes
;
3734 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
3735 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= write
;
3736 vcpu
->mmio_index
= 0;
3738 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
3741 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
3742 void *val
, unsigned int bytes
,
3743 struct x86_exception
*exception
,
3744 struct read_write_emulator_ops
*ops
)
3746 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3748 /* Crossing a page boundary? */
3749 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3752 now
= -addr
& ~PAGE_MASK
;
3753 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
3756 if (rc
!= X86EMUL_CONTINUE
)
3763 return emulator_read_write_onepage(addr
, val
, bytes
, exception
,
3767 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
3771 struct x86_exception
*exception
)
3773 return emulator_read_write(ctxt
, addr
, val
, bytes
,
3774 exception
, &read_emultor
);
3777 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
3781 struct x86_exception
*exception
)
3783 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
3784 exception
, &write_emultor
);
3787 #define CMPXCHG_TYPE(t, ptr, old, new) \
3788 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3790 #ifdef CONFIG_X86_64
3791 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3793 # define CMPXCHG64(ptr, old, new) \
3794 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3797 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
3802 struct x86_exception
*exception
)
3804 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3810 /* guests cmpxchg8b have to be emulated atomically */
3811 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3814 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3816 if (gpa
== UNMAPPED_GVA
||
3817 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3820 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3823 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3824 if (is_error_page(page
)) {
3825 kvm_release_page_clean(page
);
3829 kaddr
= kmap_atomic(page
, KM_USER0
);
3830 kaddr
+= offset_in_page(gpa
);
3833 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3836 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3839 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3842 exchanged
= CMPXCHG64(kaddr
, old
, new);
3847 kunmap_atomic(kaddr
, KM_USER0
);
3848 kvm_release_page_dirty(page
);
3851 return X86EMUL_CMPXCHG_FAILED
;
3853 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
3855 return X86EMUL_CONTINUE
;
3858 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3860 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
3863 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3865 /* TODO: String I/O for in kernel device */
3868 if (vcpu
->arch
.pio
.in
)
3869 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3870 vcpu
->arch
.pio
.size
, pd
);
3872 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3873 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3878 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
3879 unsigned short port
, void *val
,
3880 unsigned int count
, bool in
)
3882 trace_kvm_pio(!in
, port
, size
, count
);
3884 vcpu
->arch
.pio
.port
= port
;
3885 vcpu
->arch
.pio
.in
= in
;
3886 vcpu
->arch
.pio
.count
= count
;
3887 vcpu
->arch
.pio
.size
= size
;
3889 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3890 vcpu
->arch
.pio
.count
= 0;
3894 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3895 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3896 vcpu
->run
->io
.size
= size
;
3897 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3898 vcpu
->run
->io
.count
= count
;
3899 vcpu
->run
->io
.port
= port
;
3904 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
3905 int size
, unsigned short port
, void *val
,
3908 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3911 if (vcpu
->arch
.pio
.count
)
3914 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
3917 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
3918 vcpu
->arch
.pio
.count
= 0;
3925 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
3926 int size
, unsigned short port
,
3927 const void *val
, unsigned int count
)
3929 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3931 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
3932 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
3935 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3937 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
3940 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
3942 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
3945 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3947 if (!need_emulate_wbinvd(vcpu
))
3948 return X86EMUL_CONTINUE
;
3950 if (kvm_x86_ops
->has_wbinvd_exit()) {
3951 int cpu
= get_cpu();
3953 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
3954 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
3955 wbinvd_ipi
, NULL
, 1);
3957 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
3960 return X86EMUL_CONTINUE
;
3962 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
3964 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
3966 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
3969 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
3971 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
3974 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
3977 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
3980 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
3982 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
3985 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
3987 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3988 unsigned long value
;
3992 value
= kvm_read_cr0(vcpu
);
3995 value
= vcpu
->arch
.cr2
;
3998 value
= kvm_read_cr3(vcpu
);
4001 value
= kvm_read_cr4(vcpu
);
4004 value
= kvm_get_cr8(vcpu
);
4007 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4014 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4016 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4021 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4024 vcpu
->arch
.cr2
= val
;
4027 res
= kvm_set_cr3(vcpu
, val
);
4030 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4033 res
= kvm_set_cr8(vcpu
, val
);
4036 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4043 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4045 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4048 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4050 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4053 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4055 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4058 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4060 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4063 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4065 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4068 static unsigned long emulator_get_cached_segment_base(
4069 struct x86_emulate_ctxt
*ctxt
, int seg
)
4071 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4074 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4075 struct desc_struct
*desc
, u32
*base3
,
4078 struct kvm_segment var
;
4080 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4081 *selector
= var
.selector
;
4088 set_desc_limit(desc
, var
.limit
);
4089 set_desc_base(desc
, (unsigned long)var
.base
);
4090 #ifdef CONFIG_X86_64
4092 *base3
= var
.base
>> 32;
4094 desc
->type
= var
.type
;
4096 desc
->dpl
= var
.dpl
;
4097 desc
->p
= var
.present
;
4098 desc
->avl
= var
.avl
;
4106 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4107 struct desc_struct
*desc
, u32 base3
,
4110 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4111 struct kvm_segment var
;
4113 var
.selector
= selector
;
4114 var
.base
= get_desc_base(desc
);
4115 #ifdef CONFIG_X86_64
4116 var
.base
|= ((u64
)base3
) << 32;
4118 var
.limit
= get_desc_limit(desc
);
4120 var
.limit
= (var
.limit
<< 12) | 0xfff;
4121 var
.type
= desc
->type
;
4122 var
.present
= desc
->p
;
4123 var
.dpl
= desc
->dpl
;
4128 var
.avl
= desc
->avl
;
4129 var
.present
= desc
->p
;
4130 var
.unusable
= !var
.present
;
4133 kvm_set_segment(vcpu
, &var
, seg
);
4137 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4138 u32 msr_index
, u64
*pdata
)
4140 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4143 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4144 u32 msr_index
, u64 data
)
4146 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4149 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4150 u32 pmc
, u64
*pdata
)
4152 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4155 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4157 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4160 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4163 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4165 * CR0.TS may reference the host fpu state, not the guest fpu state,
4166 * so it may be clear at this point.
4171 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4176 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4177 struct x86_instruction_info
*info
,
4178 enum x86_intercept_stage stage
)
4180 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4183 static struct x86_emulate_ops emulate_ops
= {
4184 .read_std
= kvm_read_guest_virt_system
,
4185 .write_std
= kvm_write_guest_virt_system
,
4186 .fetch
= kvm_fetch_guest_virt
,
4187 .read_emulated
= emulator_read_emulated
,
4188 .write_emulated
= emulator_write_emulated
,
4189 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4190 .invlpg
= emulator_invlpg
,
4191 .pio_in_emulated
= emulator_pio_in_emulated
,
4192 .pio_out_emulated
= emulator_pio_out_emulated
,
4193 .get_segment
= emulator_get_segment
,
4194 .set_segment
= emulator_set_segment
,
4195 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4196 .get_gdt
= emulator_get_gdt
,
4197 .get_idt
= emulator_get_idt
,
4198 .set_gdt
= emulator_set_gdt
,
4199 .set_idt
= emulator_set_idt
,
4200 .get_cr
= emulator_get_cr
,
4201 .set_cr
= emulator_set_cr
,
4202 .cpl
= emulator_get_cpl
,
4203 .get_dr
= emulator_get_dr
,
4204 .set_dr
= emulator_set_dr
,
4205 .set_msr
= emulator_set_msr
,
4206 .get_msr
= emulator_get_msr
,
4207 .read_pmc
= emulator_read_pmc
,
4208 .halt
= emulator_halt
,
4209 .wbinvd
= emulator_wbinvd
,
4210 .fix_hypercall
= emulator_fix_hypercall
,
4211 .get_fpu
= emulator_get_fpu
,
4212 .put_fpu
= emulator_put_fpu
,
4213 .intercept
= emulator_intercept
,
4216 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4218 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4219 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4220 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4221 vcpu
->arch
.regs_dirty
= ~0;
4224 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4226 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4228 * an sti; sti; sequence only disable interrupts for the first
4229 * instruction. So, if the last instruction, be it emulated or
4230 * not, left the system with the INT_STI flag enabled, it
4231 * means that the last instruction is an sti. We should not
4232 * leave the flag on in this case. The same goes for mov ss
4234 if (!(int_shadow
& mask
))
4235 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4238 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4240 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4241 if (ctxt
->exception
.vector
== PF_VECTOR
)
4242 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4243 else if (ctxt
->exception
.error_code_valid
)
4244 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4245 ctxt
->exception
.error_code
);
4247 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4250 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
,
4251 const unsigned long *regs
)
4253 memset(&ctxt
->twobyte
, 0,
4254 (void *)&ctxt
->regs
- (void *)&ctxt
->twobyte
);
4255 memcpy(ctxt
->regs
, regs
, sizeof(ctxt
->regs
));
4257 ctxt
->fetch
.start
= 0;
4258 ctxt
->fetch
.end
= 0;
4259 ctxt
->io_read
.pos
= 0;
4260 ctxt
->io_read
.end
= 0;
4261 ctxt
->mem_read
.pos
= 0;
4262 ctxt
->mem_read
.end
= 0;
4265 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4267 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4271 * TODO: fix emulate.c to use guest_read/write_register
4272 * instead of direct ->regs accesses, can save hundred cycles
4273 * on Intel for instructions that don't read/change RSP, for
4276 cache_all_regs(vcpu
);
4278 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4280 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4281 ctxt
->eip
= kvm_rip_read(vcpu
);
4282 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4283 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4284 cs_l
? X86EMUL_MODE_PROT64
:
4285 cs_db
? X86EMUL_MODE_PROT32
:
4286 X86EMUL_MODE_PROT16
;
4287 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4289 init_decode_cache(ctxt
, vcpu
->arch
.regs
);
4290 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4293 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4295 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4298 init_emulate_ctxt(vcpu
);
4302 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4303 ret
= emulate_int_real(ctxt
, irq
);
4305 if (ret
!= X86EMUL_CONTINUE
)
4306 return EMULATE_FAIL
;
4308 ctxt
->eip
= ctxt
->_eip
;
4309 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4310 kvm_rip_write(vcpu
, ctxt
->eip
);
4311 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4313 if (irq
== NMI_VECTOR
)
4314 vcpu
->arch
.nmi_pending
= 0;
4316 vcpu
->arch
.interrupt
.pending
= false;
4318 return EMULATE_DONE
;
4320 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4322 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4324 int r
= EMULATE_DONE
;
4326 ++vcpu
->stat
.insn_emulation_fail
;
4327 trace_kvm_emulate_insn_failed(vcpu
);
4328 if (!is_guest_mode(vcpu
)) {
4329 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4330 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4331 vcpu
->run
->internal
.ndata
= 0;
4334 kvm_queue_exception(vcpu
, UD_VECTOR
);
4339 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4347 * if emulation was due to access to shadowed page table
4348 * and it failed try to unshadow page and re-entetr the
4349 * guest to let CPU execute the instruction.
4351 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4354 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4356 if (gpa
== UNMAPPED_GVA
)
4357 return true; /* let cpu generate fault */
4359 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4365 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4366 unsigned long cr2
, int emulation_type
)
4368 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4369 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4371 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4372 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4375 * If the emulation is caused by #PF and it is non-page_table
4376 * writing instruction, it means the VM-EXIT is caused by shadow
4377 * page protected, we can zap the shadow page and retry this
4378 * instruction directly.
4380 * Note: if the guest uses a non-page-table modifying instruction
4381 * on the PDE that points to the instruction, then we will unmap
4382 * the instruction and go to an infinite loop. So, we cache the
4383 * last retried eip and the last fault address, if we meet the eip
4384 * and the address again, we can break out of the potential infinite
4387 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4389 if (!(emulation_type
& EMULTYPE_RETRY
))
4392 if (x86_page_table_writing_insn(ctxt
))
4395 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4398 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4399 vcpu
->arch
.last_retry_addr
= cr2
;
4401 if (!vcpu
->arch
.mmu
.direct_map
)
4402 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4404 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4409 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4416 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4417 bool writeback
= true;
4419 kvm_clear_exception_queue(vcpu
);
4421 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4422 init_emulate_ctxt(vcpu
);
4423 ctxt
->interruptibility
= 0;
4424 ctxt
->have_exception
= false;
4425 ctxt
->perm_ok
= false;
4427 ctxt
->only_vendor_specific_insn
4428 = emulation_type
& EMULTYPE_TRAP_UD
;
4430 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4432 trace_kvm_emulate_insn_start(vcpu
);
4433 ++vcpu
->stat
.insn_emulation
;
4434 if (r
!= EMULATION_OK
) {
4435 if (emulation_type
& EMULTYPE_TRAP_UD
)
4436 return EMULATE_FAIL
;
4437 if (reexecute_instruction(vcpu
, cr2
))
4438 return EMULATE_DONE
;
4439 if (emulation_type
& EMULTYPE_SKIP
)
4440 return EMULATE_FAIL
;
4441 return handle_emulation_failure(vcpu
);
4445 if (emulation_type
& EMULTYPE_SKIP
) {
4446 kvm_rip_write(vcpu
, ctxt
->_eip
);
4447 return EMULATE_DONE
;
4450 if (retry_instruction(ctxt
, cr2
, emulation_type
))
4451 return EMULATE_DONE
;
4453 /* this is needed for vmware backdoor interface to work since it
4454 changes registers values during IO operation */
4455 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4456 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4457 memcpy(ctxt
->regs
, vcpu
->arch
.regs
, sizeof ctxt
->regs
);
4461 r
= x86_emulate_insn(ctxt
);
4463 if (r
== EMULATION_INTERCEPTED
)
4464 return EMULATE_DONE
;
4466 if (r
== EMULATION_FAILED
) {
4467 if (reexecute_instruction(vcpu
, cr2
))
4468 return EMULATE_DONE
;
4470 return handle_emulation_failure(vcpu
);
4473 if (ctxt
->have_exception
) {
4474 inject_emulated_exception(vcpu
);
4476 } else if (vcpu
->arch
.pio
.count
) {
4477 if (!vcpu
->arch
.pio
.in
)
4478 vcpu
->arch
.pio
.count
= 0;
4481 r
= EMULATE_DO_MMIO
;
4482 } else if (vcpu
->mmio_needed
) {
4483 if (!vcpu
->mmio_is_write
)
4485 r
= EMULATE_DO_MMIO
;
4486 } else if (r
== EMULATION_RESTART
)
4492 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4493 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4494 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4495 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4496 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4497 kvm_rip_write(vcpu
, ctxt
->eip
);
4499 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4503 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4505 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4507 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4508 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4509 size
, port
, &val
, 1);
4510 /* do not return to emulator after return from userspace */
4511 vcpu
->arch
.pio
.count
= 0;
4514 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4516 static void tsc_bad(void *info
)
4518 __this_cpu_write(cpu_tsc_khz
, 0);
4521 static void tsc_khz_changed(void *data
)
4523 struct cpufreq_freqs
*freq
= data
;
4524 unsigned long khz
= 0;
4528 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4529 khz
= cpufreq_quick_get(raw_smp_processor_id());
4532 __this_cpu_write(cpu_tsc_khz
, khz
);
4535 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4538 struct cpufreq_freqs
*freq
= data
;
4540 struct kvm_vcpu
*vcpu
;
4541 int i
, send_ipi
= 0;
4544 * We allow guests to temporarily run on slowing clocks,
4545 * provided we notify them after, or to run on accelerating
4546 * clocks, provided we notify them before. Thus time never
4549 * However, we have a problem. We can't atomically update
4550 * the frequency of a given CPU from this function; it is
4551 * merely a notifier, which can be called from any CPU.
4552 * Changing the TSC frequency at arbitrary points in time
4553 * requires a recomputation of local variables related to
4554 * the TSC for each VCPU. We must flag these local variables
4555 * to be updated and be sure the update takes place with the
4556 * new frequency before any guests proceed.
4558 * Unfortunately, the combination of hotplug CPU and frequency
4559 * change creates an intractable locking scenario; the order
4560 * of when these callouts happen is undefined with respect to
4561 * CPU hotplug, and they can race with each other. As such,
4562 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4563 * undefined; you can actually have a CPU frequency change take
4564 * place in between the computation of X and the setting of the
4565 * variable. To protect against this problem, all updates of
4566 * the per_cpu tsc_khz variable are done in an interrupt
4567 * protected IPI, and all callers wishing to update the value
4568 * must wait for a synchronous IPI to complete (which is trivial
4569 * if the caller is on the CPU already). This establishes the
4570 * necessary total order on variable updates.
4572 * Note that because a guest time update may take place
4573 * anytime after the setting of the VCPU's request bit, the
4574 * correct TSC value must be set before the request. However,
4575 * to ensure the update actually makes it to any guest which
4576 * starts running in hardware virtualization between the set
4577 * and the acquisition of the spinlock, we must also ping the
4578 * CPU after setting the request bit.
4582 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4584 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4587 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4589 raw_spin_lock(&kvm_lock
);
4590 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4591 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4592 if (vcpu
->cpu
!= freq
->cpu
)
4594 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4595 if (vcpu
->cpu
!= smp_processor_id())
4599 raw_spin_unlock(&kvm_lock
);
4601 if (freq
->old
< freq
->new && send_ipi
) {
4603 * We upscale the frequency. Must make the guest
4604 * doesn't see old kvmclock values while running with
4605 * the new frequency, otherwise we risk the guest sees
4606 * time go backwards.
4608 * In case we update the frequency for another cpu
4609 * (which might be in guest context) send an interrupt
4610 * to kick the cpu out of guest context. Next time
4611 * guest context is entered kvmclock will be updated,
4612 * so the guest will not see stale values.
4614 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4619 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4620 .notifier_call
= kvmclock_cpufreq_notifier
4623 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4624 unsigned long action
, void *hcpu
)
4626 unsigned int cpu
= (unsigned long)hcpu
;
4630 case CPU_DOWN_FAILED
:
4631 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4633 case CPU_DOWN_PREPARE
:
4634 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4640 static struct notifier_block kvmclock_cpu_notifier_block
= {
4641 .notifier_call
= kvmclock_cpu_notifier
,
4642 .priority
= -INT_MAX
4645 static void kvm_timer_init(void)
4649 max_tsc_khz
= tsc_khz
;
4650 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4651 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4652 #ifdef CONFIG_CPU_FREQ
4653 struct cpufreq_policy policy
;
4654 memset(&policy
, 0, sizeof(policy
));
4656 cpufreq_get_policy(&policy
, cpu
);
4657 if (policy
.cpuinfo
.max_freq
)
4658 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
4661 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4662 CPUFREQ_TRANSITION_NOTIFIER
);
4664 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
4665 for_each_online_cpu(cpu
)
4666 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4669 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4671 int kvm_is_in_guest(void)
4673 return __this_cpu_read(current_vcpu
) != NULL
;
4676 static int kvm_is_user_mode(void)
4680 if (__this_cpu_read(current_vcpu
))
4681 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
4683 return user_mode
!= 0;
4686 static unsigned long kvm_get_guest_ip(void)
4688 unsigned long ip
= 0;
4690 if (__this_cpu_read(current_vcpu
))
4691 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
4696 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4697 .is_in_guest
= kvm_is_in_guest
,
4698 .is_user_mode
= kvm_is_user_mode
,
4699 .get_guest_ip
= kvm_get_guest_ip
,
4702 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4704 __this_cpu_write(current_vcpu
, vcpu
);
4706 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4708 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4710 __this_cpu_write(current_vcpu
, NULL
);
4712 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4714 static void kvm_set_mmio_spte_mask(void)
4717 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
4720 * Set the reserved bits and the present bit of an paging-structure
4721 * entry to generate page fault with PFER.RSV = 1.
4723 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
4726 #ifdef CONFIG_X86_64
4728 * If reserved bit is not supported, clear the present bit to disable
4731 if (maxphyaddr
== 52)
4735 kvm_mmu_set_mmio_spte_mask(mask
);
4738 int kvm_arch_init(void *opaque
)
4741 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4744 printk(KERN_ERR
"kvm: already loaded the other module\n");
4749 if (!ops
->cpu_has_kvm_support()) {
4750 printk(KERN_ERR
"kvm: no hardware support\n");
4754 if (ops
->disabled_by_bios()) {
4755 printk(KERN_ERR
"kvm: disabled by bios\n");
4760 r
= kvm_mmu_module_init();
4764 kvm_set_mmio_spte_mask();
4765 kvm_init_msr_list();
4768 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4769 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4773 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4776 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4784 void kvm_arch_exit(void)
4786 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4788 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4789 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4790 CPUFREQ_TRANSITION_NOTIFIER
);
4791 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4793 kvm_mmu_module_exit();
4796 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4798 ++vcpu
->stat
.halt_exits
;
4799 if (irqchip_in_kernel(vcpu
->kvm
)) {
4800 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4803 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4807 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4809 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4811 u64 param
, ingpa
, outgpa
, ret
;
4812 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4813 bool fast
, longmode
;
4817 * hypercall generates UD from non zero cpl and real mode
4820 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4821 kvm_queue_exception(vcpu
, UD_VECTOR
);
4825 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4826 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4829 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4830 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4831 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4832 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4833 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4834 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4836 #ifdef CONFIG_X86_64
4838 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4839 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4840 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4844 code
= param
& 0xffff;
4845 fast
= (param
>> 16) & 0x1;
4846 rep_cnt
= (param
>> 32) & 0xfff;
4847 rep_idx
= (param
>> 48) & 0xfff;
4849 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4852 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4853 kvm_vcpu_on_spin(vcpu
);
4856 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
4860 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
4862 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4864 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
4865 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
4871 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
4873 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
4876 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
4877 return kvm_hv_hypercall(vcpu
);
4879 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4880 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4881 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4882 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4883 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4885 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
4887 if (!is_long_mode(vcpu
)) {
4895 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
4901 case KVM_HC_VAPIC_POLL_IRQ
:
4909 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4910 ++vcpu
->stat
.hypercalls
;
4913 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
4915 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
4917 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4918 char instruction
[3];
4919 unsigned long rip
= kvm_rip_read(vcpu
);
4922 * Blow out the MMU to ensure that no other VCPU has an active mapping
4923 * to ensure that the updated hypercall appears atomically across all
4926 kvm_mmu_zap_all(vcpu
->kvm
);
4928 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
4930 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
4934 * Check if userspace requested an interrupt window, and that the
4935 * interrupt window is open.
4937 * No need to exit to userspace if we already have an interrupt queued.
4939 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
4941 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
4942 vcpu
->run
->request_interrupt_window
&&
4943 kvm_arch_interrupt_allowed(vcpu
));
4946 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
4948 struct kvm_run
*kvm_run
= vcpu
->run
;
4950 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
4951 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
4952 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
4953 if (irqchip_in_kernel(vcpu
->kvm
))
4954 kvm_run
->ready_for_interrupt_injection
= 1;
4956 kvm_run
->ready_for_interrupt_injection
=
4957 kvm_arch_interrupt_allowed(vcpu
) &&
4958 !kvm_cpu_has_interrupt(vcpu
) &&
4959 !kvm_event_needs_reinjection(vcpu
);
4962 static void vapic_enter(struct kvm_vcpu
*vcpu
)
4964 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
4967 if (!apic
|| !apic
->vapic_addr
)
4970 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
4972 vcpu
->arch
.apic
->vapic_page
= page
;
4975 static void vapic_exit(struct kvm_vcpu
*vcpu
)
4977 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
4980 if (!apic
|| !apic
->vapic_addr
)
4983 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
4984 kvm_release_page_dirty(apic
->vapic_page
);
4985 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
4986 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
4989 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
4993 if (!kvm_x86_ops
->update_cr8_intercept
)
4996 if (!vcpu
->arch
.apic
)
4999 if (!vcpu
->arch
.apic
->vapic_addr
)
5000 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5007 tpr
= kvm_lapic_get_cr8(vcpu
);
5009 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5012 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5014 /* try to reinject previous events if any */
5015 if (vcpu
->arch
.exception
.pending
) {
5016 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5017 vcpu
->arch
.exception
.has_error_code
,
5018 vcpu
->arch
.exception
.error_code
);
5019 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5020 vcpu
->arch
.exception
.has_error_code
,
5021 vcpu
->arch
.exception
.error_code
,
5022 vcpu
->arch
.exception
.reinject
);
5026 if (vcpu
->arch
.nmi_injected
) {
5027 kvm_x86_ops
->set_nmi(vcpu
);
5031 if (vcpu
->arch
.interrupt
.pending
) {
5032 kvm_x86_ops
->set_irq(vcpu
);
5036 /* try to inject new event if pending */
5037 if (vcpu
->arch
.nmi_pending
) {
5038 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5039 --vcpu
->arch
.nmi_pending
;
5040 vcpu
->arch
.nmi_injected
= true;
5041 kvm_x86_ops
->set_nmi(vcpu
);
5043 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5044 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5045 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5047 kvm_x86_ops
->set_irq(vcpu
);
5052 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5054 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5055 !vcpu
->guest_xcr0_loaded
) {
5056 /* kvm_set_xcr() also depends on this */
5057 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5058 vcpu
->guest_xcr0_loaded
= 1;
5062 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5064 if (vcpu
->guest_xcr0_loaded
) {
5065 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5066 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5067 vcpu
->guest_xcr0_loaded
= 0;
5071 static void process_nmi(struct kvm_vcpu
*vcpu
)
5076 * x86 is limited to one NMI running, and one NMI pending after it.
5077 * If an NMI is already in progress, limit further NMIs to just one.
5078 * Otherwise, allow two (and we'll inject the first one immediately).
5080 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5083 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5084 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5085 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5088 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5091 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5092 vcpu
->run
->request_interrupt_window
;
5093 bool req_immediate_exit
= 0;
5095 if (vcpu
->requests
) {
5096 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5097 kvm_mmu_unload(vcpu
);
5098 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5099 __kvm_migrate_timers(vcpu
);
5100 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5101 r
= kvm_guest_time_update(vcpu
);
5105 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5106 kvm_mmu_sync_roots(vcpu
);
5107 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5108 kvm_x86_ops
->tlb_flush(vcpu
);
5109 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5110 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5114 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5115 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5119 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5120 vcpu
->fpu_active
= 0;
5121 kvm_x86_ops
->fpu_deactivate(vcpu
);
5123 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5124 /* Page is swapped out. Do synthetic halt */
5125 vcpu
->arch
.apf
.halted
= true;
5129 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5130 record_steal_time(vcpu
);
5131 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5133 req_immediate_exit
=
5134 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
5135 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5136 kvm_handle_pmu_event(vcpu
);
5137 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5138 kvm_deliver_pmi(vcpu
);
5141 r
= kvm_mmu_reload(vcpu
);
5145 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5146 inject_pending_event(vcpu
);
5148 /* enable NMI/IRQ window open exits if needed */
5149 if (vcpu
->arch
.nmi_pending
)
5150 kvm_x86_ops
->enable_nmi_window(vcpu
);
5151 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5152 kvm_x86_ops
->enable_irq_window(vcpu
);
5154 if (kvm_lapic_enabled(vcpu
)) {
5155 update_cr8_intercept(vcpu
);
5156 kvm_lapic_sync_to_vapic(vcpu
);
5162 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5163 if (vcpu
->fpu_active
)
5164 kvm_load_guest_fpu(vcpu
);
5165 kvm_load_guest_xcr0(vcpu
);
5167 vcpu
->mode
= IN_GUEST_MODE
;
5169 /* We should set ->mode before check ->requests,
5170 * see the comment in make_all_cpus_request.
5174 local_irq_disable();
5176 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5177 || need_resched() || signal_pending(current
)) {
5178 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5182 kvm_x86_ops
->cancel_injection(vcpu
);
5187 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5189 if (req_immediate_exit
)
5190 smp_send_reschedule(vcpu
->cpu
);
5194 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5196 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5197 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5198 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5199 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5202 trace_kvm_entry(vcpu
->vcpu_id
);
5203 kvm_x86_ops
->run(vcpu
);
5206 * If the guest has used debug registers, at least dr7
5207 * will be disabled while returning to the host.
5208 * If we don't have active breakpoints in the host, we don't
5209 * care about the messed up debug address registers. But if
5210 * we have some of them active, restore the old state.
5212 if (hw_breakpoint_active())
5213 hw_breakpoint_restore();
5215 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
5217 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5224 * We must have an instruction between local_irq_enable() and
5225 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5226 * the interrupt shadow. The stat.exits increment will do nicely.
5227 * But we need to prevent reordering, hence this barrier():
5235 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5238 * Profile KVM exit RIPs:
5240 if (unlikely(prof_on
== KVM_PROFILING
)) {
5241 unsigned long rip
= kvm_rip_read(vcpu
);
5242 profile_hit(KVM_PROFILING
, (void *)rip
);
5246 kvm_lapic_sync_from_vapic(vcpu
);
5248 r
= kvm_x86_ops
->handle_exit(vcpu
);
5254 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5257 struct kvm
*kvm
= vcpu
->kvm
;
5259 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5260 pr_debug("vcpu %d received sipi with vector # %x\n",
5261 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5262 kvm_lapic_reset(vcpu
);
5263 r
= kvm_arch_vcpu_reset(vcpu
);
5266 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5269 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5274 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5275 !vcpu
->arch
.apf
.halted
)
5276 r
= vcpu_enter_guest(vcpu
);
5278 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5279 kvm_vcpu_block(vcpu
);
5280 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5281 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5283 switch(vcpu
->arch
.mp_state
) {
5284 case KVM_MP_STATE_HALTED
:
5285 vcpu
->arch
.mp_state
=
5286 KVM_MP_STATE_RUNNABLE
;
5287 case KVM_MP_STATE_RUNNABLE
:
5288 vcpu
->arch
.apf
.halted
= false;
5290 case KVM_MP_STATE_SIPI_RECEIVED
:
5301 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5302 if (kvm_cpu_has_pending_timer(vcpu
))
5303 kvm_inject_pending_timer_irqs(vcpu
);
5305 if (dm_request_for_irq_injection(vcpu
)) {
5307 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5308 ++vcpu
->stat
.request_irq_exits
;
5311 kvm_check_async_pf_completion(vcpu
);
5313 if (signal_pending(current
)) {
5315 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5316 ++vcpu
->stat
.signal_exits
;
5318 if (need_resched()) {
5319 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5321 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5325 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5332 static int complete_mmio(struct kvm_vcpu
*vcpu
)
5334 struct kvm_run
*run
= vcpu
->run
;
5337 if (!(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
))
5340 if (vcpu
->mmio_needed
) {
5341 vcpu
->mmio_needed
= 0;
5342 if (!vcpu
->mmio_is_write
)
5343 memcpy(vcpu
->mmio_data
+ vcpu
->mmio_index
,
5345 vcpu
->mmio_index
+= 8;
5346 if (vcpu
->mmio_index
< vcpu
->mmio_size
) {
5347 run
->exit_reason
= KVM_EXIT_MMIO
;
5348 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
+ vcpu
->mmio_index
;
5349 memcpy(run
->mmio
.data
, vcpu
->mmio_data
+ vcpu
->mmio_index
, 8);
5350 run
->mmio
.len
= min(vcpu
->mmio_size
- vcpu
->mmio_index
, 8);
5351 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5352 vcpu
->mmio_needed
= 1;
5355 if (vcpu
->mmio_is_write
)
5357 vcpu
->mmio_read_completed
= 1;
5359 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5360 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5361 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5362 if (r
!= EMULATE_DONE
)
5367 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5372 if (!tsk_used_math(current
) && init_fpu(current
))
5375 if (vcpu
->sigset_active
)
5376 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5378 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5379 kvm_vcpu_block(vcpu
);
5380 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5385 /* re-sync apic's tpr */
5386 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5387 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5393 r
= complete_mmio(vcpu
);
5397 r
= __vcpu_run(vcpu
);
5400 post_kvm_run_save(vcpu
);
5401 if (vcpu
->sigset_active
)
5402 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5407 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5409 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5411 * We are here if userspace calls get_regs() in the middle of
5412 * instruction emulation. Registers state needs to be copied
5413 * back from emulation context to vcpu. Usrapace shouldn't do
5414 * that usually, but some bad designed PV devices (vmware
5415 * backdoor interface) need this to work
5417 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5418 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5419 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5421 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5422 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5423 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5424 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5425 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5426 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5427 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5428 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5429 #ifdef CONFIG_X86_64
5430 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5431 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5432 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5433 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5434 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5435 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5436 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5437 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5440 regs
->rip
= kvm_rip_read(vcpu
);
5441 regs
->rflags
= kvm_get_rflags(vcpu
);
5446 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5448 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
5449 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5451 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5452 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5453 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5454 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5455 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5456 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5457 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5458 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5459 #ifdef CONFIG_X86_64
5460 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5461 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5462 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5463 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5464 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5465 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5466 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5467 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5470 kvm_rip_write(vcpu
, regs
->rip
);
5471 kvm_set_rflags(vcpu
, regs
->rflags
);
5473 vcpu
->arch
.exception
.pending
= false;
5475 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5480 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5482 struct kvm_segment cs
;
5484 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5488 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5490 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5491 struct kvm_sregs
*sregs
)
5495 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5496 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5497 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5498 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5499 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5500 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5502 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5503 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5505 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5506 sregs
->idt
.limit
= dt
.size
;
5507 sregs
->idt
.base
= dt
.address
;
5508 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5509 sregs
->gdt
.limit
= dt
.size
;
5510 sregs
->gdt
.base
= dt
.address
;
5512 sregs
->cr0
= kvm_read_cr0(vcpu
);
5513 sregs
->cr2
= vcpu
->arch
.cr2
;
5514 sregs
->cr3
= kvm_read_cr3(vcpu
);
5515 sregs
->cr4
= kvm_read_cr4(vcpu
);
5516 sregs
->cr8
= kvm_get_cr8(vcpu
);
5517 sregs
->efer
= vcpu
->arch
.efer
;
5518 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5520 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5522 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5523 set_bit(vcpu
->arch
.interrupt
.nr
,
5524 (unsigned long *)sregs
->interrupt_bitmap
);
5529 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5530 struct kvm_mp_state
*mp_state
)
5532 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5536 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5537 struct kvm_mp_state
*mp_state
)
5539 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5540 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5544 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
5545 bool has_error_code
, u32 error_code
)
5547 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5550 init_emulate_ctxt(vcpu
);
5552 ret
= emulator_task_switch(ctxt
, tss_selector
, reason
,
5553 has_error_code
, error_code
);
5556 return EMULATE_FAIL
;
5558 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5559 kvm_rip_write(vcpu
, ctxt
->eip
);
5560 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5561 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5562 return EMULATE_DONE
;
5564 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5566 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5567 struct kvm_sregs
*sregs
)
5569 int mmu_reset_needed
= 0;
5570 int pending_vec
, max_bits
, idx
;
5573 dt
.size
= sregs
->idt
.limit
;
5574 dt
.address
= sregs
->idt
.base
;
5575 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5576 dt
.size
= sregs
->gdt
.limit
;
5577 dt
.address
= sregs
->gdt
.base
;
5578 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5580 vcpu
->arch
.cr2
= sregs
->cr2
;
5581 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
5582 vcpu
->arch
.cr3
= sregs
->cr3
;
5583 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
5585 kvm_set_cr8(vcpu
, sregs
->cr8
);
5587 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5588 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5589 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5591 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5592 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5593 vcpu
->arch
.cr0
= sregs
->cr0
;
5595 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5596 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5597 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
5598 kvm_update_cpuid(vcpu
);
5600 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5601 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5602 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
5603 mmu_reset_needed
= 1;
5605 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5607 if (mmu_reset_needed
)
5608 kvm_mmu_reset_context(vcpu
);
5610 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
5611 pending_vec
= find_first_bit(
5612 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5613 if (pending_vec
< max_bits
) {
5614 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5615 pr_debug("Set back pending irq %d\n", pending_vec
);
5618 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5619 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5620 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5621 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5622 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5623 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5625 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5626 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5628 update_cr8_intercept(vcpu
);
5630 /* Older userspace won't unhalt the vcpu on reset. */
5631 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5632 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5634 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5636 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5641 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5642 struct kvm_guest_debug
*dbg
)
5644 unsigned long rflags
;
5647 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5649 if (vcpu
->arch
.exception
.pending
)
5651 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5652 kvm_queue_exception(vcpu
, DB_VECTOR
);
5654 kvm_queue_exception(vcpu
, BP_VECTOR
);
5658 * Read rflags as long as potentially injected trace flags are still
5661 rflags
= kvm_get_rflags(vcpu
);
5663 vcpu
->guest_debug
= dbg
->control
;
5664 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5665 vcpu
->guest_debug
= 0;
5667 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5668 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5669 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5670 vcpu
->arch
.switch_db_regs
=
5671 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5673 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5674 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5675 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5678 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5679 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5680 get_segment_base(vcpu
, VCPU_SREG_CS
);
5683 * Trigger an rflags update that will inject or remove the trace
5686 kvm_set_rflags(vcpu
, rflags
);
5688 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5698 * Translate a guest virtual address to a guest physical address.
5700 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5701 struct kvm_translation
*tr
)
5703 unsigned long vaddr
= tr
->linear_address
;
5707 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5708 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5709 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5710 tr
->physical_address
= gpa
;
5711 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5718 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5720 struct i387_fxsave_struct
*fxsave
=
5721 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5723 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5724 fpu
->fcw
= fxsave
->cwd
;
5725 fpu
->fsw
= fxsave
->swd
;
5726 fpu
->ftwx
= fxsave
->twd
;
5727 fpu
->last_opcode
= fxsave
->fop
;
5728 fpu
->last_ip
= fxsave
->rip
;
5729 fpu
->last_dp
= fxsave
->rdp
;
5730 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5737 struct i387_fxsave_struct
*fxsave
=
5738 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5740 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5741 fxsave
->cwd
= fpu
->fcw
;
5742 fxsave
->swd
= fpu
->fsw
;
5743 fxsave
->twd
= fpu
->ftwx
;
5744 fxsave
->fop
= fpu
->last_opcode
;
5745 fxsave
->rip
= fpu
->last_ip
;
5746 fxsave
->rdp
= fpu
->last_dp
;
5747 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5752 int fx_init(struct kvm_vcpu
*vcpu
)
5756 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5760 fpu_finit(&vcpu
->arch
.guest_fpu
);
5763 * Ensure guest xcr0 is valid for loading
5765 vcpu
->arch
.xcr0
= XSTATE_FP
;
5767 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5771 EXPORT_SYMBOL_GPL(fx_init
);
5773 static void fx_free(struct kvm_vcpu
*vcpu
)
5775 fpu_free(&vcpu
->arch
.guest_fpu
);
5778 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5780 if (vcpu
->guest_fpu_loaded
)
5784 * Restore all possible states in the guest,
5785 * and assume host would use all available bits.
5786 * Guest xcr0 would be loaded later.
5788 kvm_put_guest_xcr0(vcpu
);
5789 vcpu
->guest_fpu_loaded
= 1;
5790 unlazy_fpu(current
);
5791 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5795 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5797 kvm_put_guest_xcr0(vcpu
);
5799 if (!vcpu
->guest_fpu_loaded
)
5802 vcpu
->guest_fpu_loaded
= 0;
5803 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5804 ++vcpu
->stat
.fpu_reload
;
5805 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5809 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5811 kvmclock_reset(vcpu
);
5813 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5815 kvm_x86_ops
->vcpu_free(vcpu
);
5818 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
5821 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
5822 printk_once(KERN_WARNING
5823 "kvm: SMP vm created on host with unstable TSC; "
5824 "guest TSC will not be reliable\n");
5825 return kvm_x86_ops
->vcpu_create(kvm
, id
);
5828 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
5832 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
5834 r
= kvm_arch_vcpu_reset(vcpu
);
5836 r
= kvm_mmu_setup(vcpu
);
5842 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
5844 vcpu
->arch
.apf
.msr_val
= 0;
5847 kvm_mmu_unload(vcpu
);
5851 kvm_x86_ops
->vcpu_free(vcpu
);
5854 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
5856 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
5857 vcpu
->arch
.nmi_pending
= 0;
5858 vcpu
->arch
.nmi_injected
= false;
5860 vcpu
->arch
.switch_db_regs
= 0;
5861 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5862 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5863 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5865 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5866 vcpu
->arch
.apf
.msr_val
= 0;
5867 vcpu
->arch
.st
.msr_val
= 0;
5869 kvmclock_reset(vcpu
);
5871 kvm_clear_async_pf_completion_queue(vcpu
);
5872 kvm_async_pf_hash_reset(vcpu
);
5873 vcpu
->arch
.apf
.halted
= false;
5875 kvm_pmu_reset(vcpu
);
5877 return kvm_x86_ops
->vcpu_reset(vcpu
);
5880 int kvm_arch_hardware_enable(void *garbage
)
5883 struct kvm_vcpu
*vcpu
;
5886 kvm_shared_msr_cpu_online();
5887 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5888 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5889 if (vcpu
->cpu
== smp_processor_id())
5890 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5891 return kvm_x86_ops
->hardware_enable(garbage
);
5894 void kvm_arch_hardware_disable(void *garbage
)
5896 kvm_x86_ops
->hardware_disable(garbage
);
5897 drop_user_return_notifiers(garbage
);
5900 int kvm_arch_hardware_setup(void)
5902 return kvm_x86_ops
->hardware_setup();
5905 void kvm_arch_hardware_unsetup(void)
5907 kvm_x86_ops
->hardware_unsetup();
5910 void kvm_arch_check_processor_compat(void *rtn
)
5912 kvm_x86_ops
->check_processor_compatibility(rtn
);
5915 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5921 BUG_ON(vcpu
->kvm
== NULL
);
5924 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
5925 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5926 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5928 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5930 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5935 vcpu
->arch
.pio_data
= page_address(page
);
5937 kvm_init_tsc_catchup(vcpu
, max_tsc_khz
);
5939 r
= kvm_mmu_create(vcpu
);
5941 goto fail_free_pio_data
;
5943 if (irqchip_in_kernel(kvm
)) {
5944 r
= kvm_create_lapic(vcpu
);
5946 goto fail_mmu_destroy
;
5949 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
5951 if (!vcpu
->arch
.mce_banks
) {
5953 goto fail_free_lapic
;
5955 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
5957 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
5958 goto fail_free_mce_banks
;
5960 kvm_async_pf_hash_reset(vcpu
);
5964 fail_free_mce_banks
:
5965 kfree(vcpu
->arch
.mce_banks
);
5967 kvm_free_lapic(vcpu
);
5969 kvm_mmu_destroy(vcpu
);
5971 free_page((unsigned long)vcpu
->arch
.pio_data
);
5976 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
5980 kvm_pmu_destroy(vcpu
);
5981 kfree(vcpu
->arch
.mce_banks
);
5982 kvm_free_lapic(vcpu
);
5983 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5984 kvm_mmu_destroy(vcpu
);
5985 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5986 free_page((unsigned long)vcpu
->arch
.pio_data
);
5989 int kvm_arch_init_vm(struct kvm
*kvm
)
5991 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
5992 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
5994 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5995 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
5997 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6002 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6005 kvm_mmu_unload(vcpu
);
6009 static void kvm_free_vcpus(struct kvm
*kvm
)
6012 struct kvm_vcpu
*vcpu
;
6015 * Unpin any mmu pages first.
6017 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6018 kvm_clear_async_pf_completion_queue(vcpu
);
6019 kvm_unload_vcpu_mmu(vcpu
);
6021 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6022 kvm_arch_vcpu_free(vcpu
);
6024 mutex_lock(&kvm
->lock
);
6025 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6026 kvm
->vcpus
[i
] = NULL
;
6028 atomic_set(&kvm
->online_vcpus
, 0);
6029 mutex_unlock(&kvm
->lock
);
6032 void kvm_arch_sync_events(struct kvm
*kvm
)
6034 kvm_free_all_assigned_devices(kvm
);
6038 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6040 kvm_iommu_unmap_guest(kvm
);
6041 kfree(kvm
->arch
.vpic
);
6042 kfree(kvm
->arch
.vioapic
);
6043 kvm_free_vcpus(kvm
);
6044 if (kvm
->arch
.apic_access_page
)
6045 put_page(kvm
->arch
.apic_access_page
);
6046 if (kvm
->arch
.ept_identity_pagetable
)
6047 put_page(kvm
->arch
.ept_identity_pagetable
);
6050 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6051 struct kvm_memory_slot
*memslot
,
6052 struct kvm_memory_slot old
,
6053 struct kvm_userspace_memory_region
*mem
,
6056 int npages
= memslot
->npages
;
6057 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6059 /* Prevent internal slot pages from being moved by fork()/COW. */
6060 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6061 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6063 /*To keep backward compatibility with older userspace,
6064 *x86 needs to hanlde !user_alloc case.
6067 if (npages
&& !old
.rmap
) {
6068 unsigned long userspace_addr
;
6070 down_write(¤t
->mm
->mmap_sem
);
6071 userspace_addr
= do_mmap(NULL
, 0,
6073 PROT_READ
| PROT_WRITE
,
6076 up_write(¤t
->mm
->mmap_sem
);
6078 if (IS_ERR((void *)userspace_addr
))
6079 return PTR_ERR((void *)userspace_addr
);
6081 memslot
->userspace_addr
= userspace_addr
;
6089 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6090 struct kvm_userspace_memory_region
*mem
,
6091 struct kvm_memory_slot old
,
6095 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6097 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6100 down_write(¤t
->mm
->mmap_sem
);
6101 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6102 old
.npages
* PAGE_SIZE
);
6103 up_write(¤t
->mm
->mmap_sem
);
6106 "kvm_vm_ioctl_set_memory_region: "
6107 "failed to munmap memory\n");
6110 if (!kvm
->arch
.n_requested_mmu_pages
)
6111 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6113 spin_lock(&kvm
->mmu_lock
);
6115 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6116 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6117 spin_unlock(&kvm
->mmu_lock
);
6120 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6122 kvm_mmu_zap_all(kvm
);
6123 kvm_reload_remote_mmus(kvm
);
6126 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6128 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6129 !vcpu
->arch
.apf
.halted
)
6130 || !list_empty_careful(&vcpu
->async_pf
.done
)
6131 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6132 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
6133 (kvm_arch_interrupt_allowed(vcpu
) &&
6134 kvm_cpu_has_interrupt(vcpu
));
6137 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6140 int cpu
= vcpu
->cpu
;
6142 if (waitqueue_active(&vcpu
->wq
)) {
6143 wake_up_interruptible(&vcpu
->wq
);
6144 ++vcpu
->stat
.halt_wakeup
;
6148 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6149 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6150 smp_send_reschedule(cpu
);
6154 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6156 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6159 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6161 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6162 get_segment_base(vcpu
, VCPU_SREG_CS
);
6164 return current_rip
== linear_rip
;
6166 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6168 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6170 unsigned long rflags
;
6172 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6173 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6174 rflags
&= ~X86_EFLAGS_TF
;
6177 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6179 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6181 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6182 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6183 rflags
|= X86_EFLAGS_TF
;
6184 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6185 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6187 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6189 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6193 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6194 is_error_page(work
->page
))
6197 r
= kvm_mmu_reload(vcpu
);
6201 if (!vcpu
->arch
.mmu
.direct_map
&&
6202 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6205 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6208 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6210 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6213 static inline u32
kvm_async_pf_next_probe(u32 key
)
6215 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6218 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6220 u32 key
= kvm_async_pf_hash_fn(gfn
);
6222 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6223 key
= kvm_async_pf_next_probe(key
);
6225 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6228 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6231 u32 key
= kvm_async_pf_hash_fn(gfn
);
6233 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6234 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6235 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6236 key
= kvm_async_pf_next_probe(key
);
6241 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6243 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6246 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6250 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6252 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6254 j
= kvm_async_pf_next_probe(j
);
6255 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6257 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6259 * k lies cyclically in ]i,j]
6261 * |....j i.k.| or |.k..j i...|
6263 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6264 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6269 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6272 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6276 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6277 struct kvm_async_pf
*work
)
6279 struct x86_exception fault
;
6281 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6282 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6284 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6285 (vcpu
->arch
.apf
.send_user_only
&&
6286 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6287 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6288 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6289 fault
.vector
= PF_VECTOR
;
6290 fault
.error_code_valid
= true;
6291 fault
.error_code
= 0;
6292 fault
.nested_page_fault
= false;
6293 fault
.address
= work
->arch
.token
;
6294 kvm_inject_page_fault(vcpu
, &fault
);
6298 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6299 struct kvm_async_pf
*work
)
6301 struct x86_exception fault
;
6303 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6304 if (is_error_page(work
->page
))
6305 work
->arch
.token
= ~0; /* broadcast wakeup */
6307 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6309 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6310 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6311 fault
.vector
= PF_VECTOR
;
6312 fault
.error_code_valid
= true;
6313 fault
.error_code
= 0;
6314 fault
.nested_page_fault
= false;
6315 fault
.address
= work
->arch
.token
;
6316 kvm_inject_page_fault(vcpu
, &fault
);
6318 vcpu
->arch
.apf
.halted
= false;
6321 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6323 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6326 return !kvm_event_needs_reinjection(vcpu
) &&
6327 kvm_x86_ops
->interrupt_allowed(vcpu
);
6330 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6331 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6332 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6333 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6334 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);