Staging: hv: storvsc: remove last usage of DPRINT_WARN
[zen-stable.git] / fs / ext4 / extents.c
blob57cf568a98ab652afcfe3581d093d5f2b5758689
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 static int ext4_split_extent(handle_t *handle,
50 struct inode *inode,
51 struct ext4_ext_path *path,
52 struct ext4_map_blocks *map,
53 int split_flag,
54 int flags);
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 struct inode *inode,
58 int needed)
60 int err;
62 if (!ext4_handle_valid(handle))
63 return 0;
64 if (handle->h_buffer_credits > needed)
65 return 0;
66 err = ext4_journal_extend(handle, needed);
67 if (err <= 0)
68 return err;
69 err = ext4_truncate_restart_trans(handle, inode, needed);
70 if (err == 0)
71 err = -EAGAIN;
73 return err;
77 * could return:
78 * - EROFS
79 * - ENOMEM
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 struct ext4_ext_path *path)
84 if (path->p_bh) {
85 /* path points to block */
86 return ext4_journal_get_write_access(handle, path->p_bh);
88 /* path points to leaf/index in inode body */
89 /* we use in-core data, no need to protect them */
90 return 0;
94 * could return:
95 * - EROFS
96 * - ENOMEM
97 * - EIO
99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100 struct ext4_ext_path *path)
102 int err;
103 if (path->p_bh) {
104 /* path points to block */
105 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106 } else {
107 /* path points to leaf/index in inode body */
108 err = ext4_mark_inode_dirty(handle, inode);
110 return err;
113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114 struct ext4_ext_path *path,
115 ext4_lblk_t block)
117 int depth;
119 if (path) {
120 struct ext4_extent *ex;
121 depth = path->p_depth;
124 * Try to predict block placement assuming that we are
125 * filling in a file which will eventually be
126 * non-sparse --- i.e., in the case of libbfd writing
127 * an ELF object sections out-of-order but in a way
128 * the eventually results in a contiguous object or
129 * executable file, or some database extending a table
130 * space file. However, this is actually somewhat
131 * non-ideal if we are writing a sparse file such as
132 * qemu or KVM writing a raw image file that is going
133 * to stay fairly sparse, since it will end up
134 * fragmenting the file system's free space. Maybe we
135 * should have some hueristics or some way to allow
136 * userspace to pass a hint to file system,
137 * especially if the latter case turns out to be
138 * common.
140 ex = path[depth].p_ext;
141 if (ex) {
142 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
145 if (block > ext_block)
146 return ext_pblk + (block - ext_block);
147 else
148 return ext_pblk - (ext_block - block);
151 /* it looks like index is empty;
152 * try to find starting block from index itself */
153 if (path[depth].p_bh)
154 return path[depth].p_bh->b_blocknr;
157 /* OK. use inode's group */
158 return ext4_inode_to_goal_block(inode);
162 * Allocation for a meta data block
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 struct ext4_ext_path *path,
167 struct ext4_extent *ex, int *err, unsigned int flags)
169 ext4_fsblk_t goal, newblock;
171 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 NULL, err);
174 return newblock;
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
179 int size;
181 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 / sizeof(struct ext4_extent);
183 if (!check) {
184 #ifdef AGGRESSIVE_TEST
185 if (size > 6)
186 size = 6;
187 #endif
189 return size;
192 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
194 int size;
196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197 / sizeof(struct ext4_extent_idx);
198 if (!check) {
199 #ifdef AGGRESSIVE_TEST
200 if (size > 5)
201 size = 5;
202 #endif
204 return size;
207 static inline int ext4_ext_space_root(struct inode *inode, int check)
209 int size;
211 size = sizeof(EXT4_I(inode)->i_data);
212 size -= sizeof(struct ext4_extent_header);
213 size /= sizeof(struct ext4_extent);
214 if (!check) {
215 #ifdef AGGRESSIVE_TEST
216 if (size > 3)
217 size = 3;
218 #endif
220 return size;
223 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
225 int size;
227 size = sizeof(EXT4_I(inode)->i_data);
228 size -= sizeof(struct ext4_extent_header);
229 size /= sizeof(struct ext4_extent_idx);
230 if (!check) {
231 #ifdef AGGRESSIVE_TEST
232 if (size > 4)
233 size = 4;
234 #endif
236 return size;
240 * Calculate the number of metadata blocks needed
241 * to allocate @blocks
242 * Worse case is one block per extent
244 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
246 struct ext4_inode_info *ei = EXT4_I(inode);
247 int idxs, num = 0;
249 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 / sizeof(struct ext4_extent_idx));
253 * If the new delayed allocation block is contiguous with the
254 * previous da block, it can share index blocks with the
255 * previous block, so we only need to allocate a new index
256 * block every idxs leaf blocks. At ldxs**2 blocks, we need
257 * an additional index block, and at ldxs**3 blocks, yet
258 * another index blocks.
260 if (ei->i_da_metadata_calc_len &&
261 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
262 if ((ei->i_da_metadata_calc_len % idxs) == 0)
263 num++;
264 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
265 num++;
266 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
267 num++;
268 ei->i_da_metadata_calc_len = 0;
269 } else
270 ei->i_da_metadata_calc_len++;
271 ei->i_da_metadata_calc_last_lblock++;
272 return num;
276 * In the worst case we need a new set of index blocks at
277 * every level of the inode's extent tree.
279 ei->i_da_metadata_calc_len = 1;
280 ei->i_da_metadata_calc_last_lblock = lblock;
281 return ext_depth(inode) + 1;
284 static int
285 ext4_ext_max_entries(struct inode *inode, int depth)
287 int max;
289 if (depth == ext_depth(inode)) {
290 if (depth == 0)
291 max = ext4_ext_space_root(inode, 1);
292 else
293 max = ext4_ext_space_root_idx(inode, 1);
294 } else {
295 if (depth == 0)
296 max = ext4_ext_space_block(inode, 1);
297 else
298 max = ext4_ext_space_block_idx(inode, 1);
301 return max;
304 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
306 ext4_fsblk_t block = ext4_ext_pblock(ext);
307 int len = ext4_ext_get_actual_len(ext);
309 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
312 static int ext4_valid_extent_idx(struct inode *inode,
313 struct ext4_extent_idx *ext_idx)
315 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
317 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
320 static int ext4_valid_extent_entries(struct inode *inode,
321 struct ext4_extent_header *eh,
322 int depth)
324 struct ext4_extent *ext;
325 struct ext4_extent_idx *ext_idx;
326 unsigned short entries;
327 if (eh->eh_entries == 0)
328 return 1;
330 entries = le16_to_cpu(eh->eh_entries);
332 if (depth == 0) {
333 /* leaf entries */
334 ext = EXT_FIRST_EXTENT(eh);
335 while (entries) {
336 if (!ext4_valid_extent(inode, ext))
337 return 0;
338 ext++;
339 entries--;
341 } else {
342 ext_idx = EXT_FIRST_INDEX(eh);
343 while (entries) {
344 if (!ext4_valid_extent_idx(inode, ext_idx))
345 return 0;
346 ext_idx++;
347 entries--;
350 return 1;
353 static int __ext4_ext_check(const char *function, unsigned int line,
354 struct inode *inode, struct ext4_extent_header *eh,
355 int depth)
357 const char *error_msg;
358 int max = 0;
360 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
361 error_msg = "invalid magic";
362 goto corrupted;
364 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
365 error_msg = "unexpected eh_depth";
366 goto corrupted;
368 if (unlikely(eh->eh_max == 0)) {
369 error_msg = "invalid eh_max";
370 goto corrupted;
372 max = ext4_ext_max_entries(inode, depth);
373 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
374 error_msg = "too large eh_max";
375 goto corrupted;
377 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
378 error_msg = "invalid eh_entries";
379 goto corrupted;
381 if (!ext4_valid_extent_entries(inode, eh, depth)) {
382 error_msg = "invalid extent entries";
383 goto corrupted;
385 return 0;
387 corrupted:
388 ext4_error_inode(inode, function, line, 0,
389 "bad header/extent: %s - magic %x, "
390 "entries %u, max %u(%u), depth %u(%u)",
391 error_msg, le16_to_cpu(eh->eh_magic),
392 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
393 max, le16_to_cpu(eh->eh_depth), depth);
395 return -EIO;
398 #define ext4_ext_check(inode, eh, depth) \
399 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
401 int ext4_ext_check_inode(struct inode *inode)
403 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
406 #ifdef EXT_DEBUG
407 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
409 int k, l = path->p_depth;
411 ext_debug("path:");
412 for (k = 0; k <= l; k++, path++) {
413 if (path->p_idx) {
414 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
415 ext4_idx_pblock(path->p_idx));
416 } else if (path->p_ext) {
417 ext_debug(" %d:[%d]%d:%llu ",
418 le32_to_cpu(path->p_ext->ee_block),
419 ext4_ext_is_uninitialized(path->p_ext),
420 ext4_ext_get_actual_len(path->p_ext),
421 ext4_ext_pblock(path->p_ext));
422 } else
423 ext_debug(" []");
425 ext_debug("\n");
428 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
430 int depth = ext_depth(inode);
431 struct ext4_extent_header *eh;
432 struct ext4_extent *ex;
433 int i;
435 if (!path)
436 return;
438 eh = path[depth].p_hdr;
439 ex = EXT_FIRST_EXTENT(eh);
441 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
443 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
444 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
445 ext4_ext_is_uninitialized(ex),
446 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
448 ext_debug("\n");
451 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
452 ext4_fsblk_t newblock, int level)
454 int depth = ext_depth(inode);
455 struct ext4_extent *ex;
457 if (depth != level) {
458 struct ext4_extent_idx *idx;
459 idx = path[level].p_idx;
460 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
461 ext_debug("%d: move %d:%llu in new index %llu\n", level,
462 le32_to_cpu(idx->ei_block),
463 ext4_idx_pblock(idx),
464 newblock);
465 idx++;
468 return;
471 ex = path[depth].p_ext;
472 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
473 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
474 le32_to_cpu(ex->ee_block),
475 ext4_ext_pblock(ex),
476 ext4_ext_is_uninitialized(ex),
477 ext4_ext_get_actual_len(ex),
478 newblock);
479 ex++;
483 #else
484 #define ext4_ext_show_path(inode, path)
485 #define ext4_ext_show_leaf(inode, path)
486 #define ext4_ext_show_move(inode, path, newblock, level)
487 #endif
489 void ext4_ext_drop_refs(struct ext4_ext_path *path)
491 int depth = path->p_depth;
492 int i;
494 for (i = 0; i <= depth; i++, path++)
495 if (path->p_bh) {
496 brelse(path->p_bh);
497 path->p_bh = NULL;
502 * ext4_ext_binsearch_idx:
503 * binary search for the closest index of the given block
504 * the header must be checked before calling this
506 static void
507 ext4_ext_binsearch_idx(struct inode *inode,
508 struct ext4_ext_path *path, ext4_lblk_t block)
510 struct ext4_extent_header *eh = path->p_hdr;
511 struct ext4_extent_idx *r, *l, *m;
514 ext_debug("binsearch for %u(idx): ", block);
516 l = EXT_FIRST_INDEX(eh) + 1;
517 r = EXT_LAST_INDEX(eh);
518 while (l <= r) {
519 m = l + (r - l) / 2;
520 if (block < le32_to_cpu(m->ei_block))
521 r = m - 1;
522 else
523 l = m + 1;
524 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
525 m, le32_to_cpu(m->ei_block),
526 r, le32_to_cpu(r->ei_block));
529 path->p_idx = l - 1;
530 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
531 ext4_idx_pblock(path->p_idx));
533 #ifdef CHECK_BINSEARCH
535 struct ext4_extent_idx *chix, *ix;
536 int k;
538 chix = ix = EXT_FIRST_INDEX(eh);
539 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
540 if (k != 0 &&
541 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
542 printk(KERN_DEBUG "k=%d, ix=0x%p, "
543 "first=0x%p\n", k,
544 ix, EXT_FIRST_INDEX(eh));
545 printk(KERN_DEBUG "%u <= %u\n",
546 le32_to_cpu(ix->ei_block),
547 le32_to_cpu(ix[-1].ei_block));
549 BUG_ON(k && le32_to_cpu(ix->ei_block)
550 <= le32_to_cpu(ix[-1].ei_block));
551 if (block < le32_to_cpu(ix->ei_block))
552 break;
553 chix = ix;
555 BUG_ON(chix != path->p_idx);
557 #endif
562 * ext4_ext_binsearch:
563 * binary search for closest extent of the given block
564 * the header must be checked before calling this
566 static void
567 ext4_ext_binsearch(struct inode *inode,
568 struct ext4_ext_path *path, ext4_lblk_t block)
570 struct ext4_extent_header *eh = path->p_hdr;
571 struct ext4_extent *r, *l, *m;
573 if (eh->eh_entries == 0) {
575 * this leaf is empty:
576 * we get such a leaf in split/add case
578 return;
581 ext_debug("binsearch for %u: ", block);
583 l = EXT_FIRST_EXTENT(eh) + 1;
584 r = EXT_LAST_EXTENT(eh);
586 while (l <= r) {
587 m = l + (r - l) / 2;
588 if (block < le32_to_cpu(m->ee_block))
589 r = m - 1;
590 else
591 l = m + 1;
592 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
593 m, le32_to_cpu(m->ee_block),
594 r, le32_to_cpu(r->ee_block));
597 path->p_ext = l - 1;
598 ext_debug(" -> %d:%llu:[%d]%d ",
599 le32_to_cpu(path->p_ext->ee_block),
600 ext4_ext_pblock(path->p_ext),
601 ext4_ext_is_uninitialized(path->p_ext),
602 ext4_ext_get_actual_len(path->p_ext));
604 #ifdef CHECK_BINSEARCH
606 struct ext4_extent *chex, *ex;
607 int k;
609 chex = ex = EXT_FIRST_EXTENT(eh);
610 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
611 BUG_ON(k && le32_to_cpu(ex->ee_block)
612 <= le32_to_cpu(ex[-1].ee_block));
613 if (block < le32_to_cpu(ex->ee_block))
614 break;
615 chex = ex;
617 BUG_ON(chex != path->p_ext);
619 #endif
623 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
625 struct ext4_extent_header *eh;
627 eh = ext_inode_hdr(inode);
628 eh->eh_depth = 0;
629 eh->eh_entries = 0;
630 eh->eh_magic = EXT4_EXT_MAGIC;
631 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
632 ext4_mark_inode_dirty(handle, inode);
633 ext4_ext_invalidate_cache(inode);
634 return 0;
637 struct ext4_ext_path *
638 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
639 struct ext4_ext_path *path)
641 struct ext4_extent_header *eh;
642 struct buffer_head *bh;
643 short int depth, i, ppos = 0, alloc = 0;
645 eh = ext_inode_hdr(inode);
646 depth = ext_depth(inode);
648 /* account possible depth increase */
649 if (!path) {
650 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
651 GFP_NOFS);
652 if (!path)
653 return ERR_PTR(-ENOMEM);
654 alloc = 1;
656 path[0].p_hdr = eh;
657 path[0].p_bh = NULL;
659 i = depth;
660 /* walk through the tree */
661 while (i) {
662 int need_to_validate = 0;
664 ext_debug("depth %d: num %d, max %d\n",
665 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
667 ext4_ext_binsearch_idx(inode, path + ppos, block);
668 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
669 path[ppos].p_depth = i;
670 path[ppos].p_ext = NULL;
672 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
673 if (unlikely(!bh))
674 goto err;
675 if (!bh_uptodate_or_lock(bh)) {
676 trace_ext4_ext_load_extent(inode, block,
677 path[ppos].p_block);
678 if (bh_submit_read(bh) < 0) {
679 put_bh(bh);
680 goto err;
682 /* validate the extent entries */
683 need_to_validate = 1;
685 eh = ext_block_hdr(bh);
686 ppos++;
687 if (unlikely(ppos > depth)) {
688 put_bh(bh);
689 EXT4_ERROR_INODE(inode,
690 "ppos %d > depth %d", ppos, depth);
691 goto err;
693 path[ppos].p_bh = bh;
694 path[ppos].p_hdr = eh;
695 i--;
697 if (need_to_validate && ext4_ext_check(inode, eh, i))
698 goto err;
701 path[ppos].p_depth = i;
702 path[ppos].p_ext = NULL;
703 path[ppos].p_idx = NULL;
705 /* find extent */
706 ext4_ext_binsearch(inode, path + ppos, block);
707 /* if not an empty leaf */
708 if (path[ppos].p_ext)
709 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
711 ext4_ext_show_path(inode, path);
713 return path;
715 err:
716 ext4_ext_drop_refs(path);
717 if (alloc)
718 kfree(path);
719 return ERR_PTR(-EIO);
723 * ext4_ext_insert_index:
724 * insert new index [@logical;@ptr] into the block at @curp;
725 * check where to insert: before @curp or after @curp
727 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
728 struct ext4_ext_path *curp,
729 int logical, ext4_fsblk_t ptr)
731 struct ext4_extent_idx *ix;
732 int len, err;
734 err = ext4_ext_get_access(handle, inode, curp);
735 if (err)
736 return err;
738 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
739 EXT4_ERROR_INODE(inode,
740 "logical %d == ei_block %d!",
741 logical, le32_to_cpu(curp->p_idx->ei_block));
742 return -EIO;
745 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
746 >= le16_to_cpu(curp->p_hdr->eh_max))) {
747 EXT4_ERROR_INODE(inode,
748 "eh_entries %d >= eh_max %d!",
749 le16_to_cpu(curp->p_hdr->eh_entries),
750 le16_to_cpu(curp->p_hdr->eh_max));
751 return -EIO;
754 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
755 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
756 /* insert after */
757 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
758 len = (len - 1) * sizeof(struct ext4_extent_idx);
759 len = len < 0 ? 0 : len;
760 ext_debug("insert new index %d after: %llu. "
761 "move %d from 0x%p to 0x%p\n",
762 logical, ptr, len,
763 (curp->p_idx + 1), (curp->p_idx + 2));
764 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
766 ix = curp->p_idx + 1;
767 } else {
768 /* insert before */
769 len = len * sizeof(struct ext4_extent_idx);
770 len = len < 0 ? 0 : len;
771 ext_debug("insert new index %d before: %llu. "
772 "move %d from 0x%p to 0x%p\n",
773 logical, ptr, len,
774 curp->p_idx, (curp->p_idx + 1));
775 memmove(curp->p_idx + 1, curp->p_idx, len);
776 ix = curp->p_idx;
779 ix->ei_block = cpu_to_le32(logical);
780 ext4_idx_store_pblock(ix, ptr);
781 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
783 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
784 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
785 return -EIO;
788 err = ext4_ext_dirty(handle, inode, curp);
789 ext4_std_error(inode->i_sb, err);
791 return err;
795 * ext4_ext_split:
796 * inserts new subtree into the path, using free index entry
797 * at depth @at:
798 * - allocates all needed blocks (new leaf and all intermediate index blocks)
799 * - makes decision where to split
800 * - moves remaining extents and index entries (right to the split point)
801 * into the newly allocated blocks
802 * - initializes subtree
804 static int ext4_ext_split(handle_t *handle, struct inode *inode,
805 unsigned int flags,
806 struct ext4_ext_path *path,
807 struct ext4_extent *newext, int at)
809 struct buffer_head *bh = NULL;
810 int depth = ext_depth(inode);
811 struct ext4_extent_header *neh;
812 struct ext4_extent_idx *fidx;
813 int i = at, k, m, a;
814 ext4_fsblk_t newblock, oldblock;
815 __le32 border;
816 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
817 int err = 0;
819 /* make decision: where to split? */
820 /* FIXME: now decision is simplest: at current extent */
822 /* if current leaf will be split, then we should use
823 * border from split point */
824 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
825 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
826 return -EIO;
828 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
829 border = path[depth].p_ext[1].ee_block;
830 ext_debug("leaf will be split."
831 " next leaf starts at %d\n",
832 le32_to_cpu(border));
833 } else {
834 border = newext->ee_block;
835 ext_debug("leaf will be added."
836 " next leaf starts at %d\n",
837 le32_to_cpu(border));
841 * If error occurs, then we break processing
842 * and mark filesystem read-only. index won't
843 * be inserted and tree will be in consistent
844 * state. Next mount will repair buffers too.
848 * Get array to track all allocated blocks.
849 * We need this to handle errors and free blocks
850 * upon them.
852 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
853 if (!ablocks)
854 return -ENOMEM;
856 /* allocate all needed blocks */
857 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
858 for (a = 0; a < depth - at; a++) {
859 newblock = ext4_ext_new_meta_block(handle, inode, path,
860 newext, &err, flags);
861 if (newblock == 0)
862 goto cleanup;
863 ablocks[a] = newblock;
866 /* initialize new leaf */
867 newblock = ablocks[--a];
868 if (unlikely(newblock == 0)) {
869 EXT4_ERROR_INODE(inode, "newblock == 0!");
870 err = -EIO;
871 goto cleanup;
873 bh = sb_getblk(inode->i_sb, newblock);
874 if (!bh) {
875 err = -EIO;
876 goto cleanup;
878 lock_buffer(bh);
880 err = ext4_journal_get_create_access(handle, bh);
881 if (err)
882 goto cleanup;
884 neh = ext_block_hdr(bh);
885 neh->eh_entries = 0;
886 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
887 neh->eh_magic = EXT4_EXT_MAGIC;
888 neh->eh_depth = 0;
890 /* move remainder of path[depth] to the new leaf */
891 if (unlikely(path[depth].p_hdr->eh_entries !=
892 path[depth].p_hdr->eh_max)) {
893 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
894 path[depth].p_hdr->eh_entries,
895 path[depth].p_hdr->eh_max);
896 err = -EIO;
897 goto cleanup;
899 /* start copy from next extent */
900 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
901 ext4_ext_show_move(inode, path, newblock, depth);
902 if (m) {
903 struct ext4_extent *ex;
904 ex = EXT_FIRST_EXTENT(neh);
905 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
906 le16_add_cpu(&neh->eh_entries, m);
909 set_buffer_uptodate(bh);
910 unlock_buffer(bh);
912 err = ext4_handle_dirty_metadata(handle, inode, bh);
913 if (err)
914 goto cleanup;
915 brelse(bh);
916 bh = NULL;
918 /* correct old leaf */
919 if (m) {
920 err = ext4_ext_get_access(handle, inode, path + depth);
921 if (err)
922 goto cleanup;
923 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
924 err = ext4_ext_dirty(handle, inode, path + depth);
925 if (err)
926 goto cleanup;
930 /* create intermediate indexes */
931 k = depth - at - 1;
932 if (unlikely(k < 0)) {
933 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
934 err = -EIO;
935 goto cleanup;
937 if (k)
938 ext_debug("create %d intermediate indices\n", k);
939 /* insert new index into current index block */
940 /* current depth stored in i var */
941 i = depth - 1;
942 while (k--) {
943 oldblock = newblock;
944 newblock = ablocks[--a];
945 bh = sb_getblk(inode->i_sb, newblock);
946 if (!bh) {
947 err = -EIO;
948 goto cleanup;
950 lock_buffer(bh);
952 err = ext4_journal_get_create_access(handle, bh);
953 if (err)
954 goto cleanup;
956 neh = ext_block_hdr(bh);
957 neh->eh_entries = cpu_to_le16(1);
958 neh->eh_magic = EXT4_EXT_MAGIC;
959 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
960 neh->eh_depth = cpu_to_le16(depth - i);
961 fidx = EXT_FIRST_INDEX(neh);
962 fidx->ei_block = border;
963 ext4_idx_store_pblock(fidx, oldblock);
965 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
966 i, newblock, le32_to_cpu(border), oldblock);
968 /* move remainder of path[i] to the new index block */
969 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
970 EXT_LAST_INDEX(path[i].p_hdr))) {
971 EXT4_ERROR_INODE(inode,
972 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
973 le32_to_cpu(path[i].p_ext->ee_block));
974 err = -EIO;
975 goto cleanup;
977 /* start copy indexes */
978 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
979 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
980 EXT_MAX_INDEX(path[i].p_hdr));
981 ext4_ext_show_move(inode, path, newblock, i);
982 if (m) {
983 memmove(++fidx, path[i].p_idx,
984 sizeof(struct ext4_extent_idx) * m);
985 le16_add_cpu(&neh->eh_entries, m);
987 set_buffer_uptodate(bh);
988 unlock_buffer(bh);
990 err = ext4_handle_dirty_metadata(handle, inode, bh);
991 if (err)
992 goto cleanup;
993 brelse(bh);
994 bh = NULL;
996 /* correct old index */
997 if (m) {
998 err = ext4_ext_get_access(handle, inode, path + i);
999 if (err)
1000 goto cleanup;
1001 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1002 err = ext4_ext_dirty(handle, inode, path + i);
1003 if (err)
1004 goto cleanup;
1007 i--;
1010 /* insert new index */
1011 err = ext4_ext_insert_index(handle, inode, path + at,
1012 le32_to_cpu(border), newblock);
1014 cleanup:
1015 if (bh) {
1016 if (buffer_locked(bh))
1017 unlock_buffer(bh);
1018 brelse(bh);
1021 if (err) {
1022 /* free all allocated blocks in error case */
1023 for (i = 0; i < depth; i++) {
1024 if (!ablocks[i])
1025 continue;
1026 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1027 EXT4_FREE_BLOCKS_METADATA);
1030 kfree(ablocks);
1032 return err;
1036 * ext4_ext_grow_indepth:
1037 * implements tree growing procedure:
1038 * - allocates new block
1039 * - moves top-level data (index block or leaf) into the new block
1040 * - initializes new top-level, creating index that points to the
1041 * just created block
1043 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1044 unsigned int flags,
1045 struct ext4_ext_path *path,
1046 struct ext4_extent *newext)
1048 struct ext4_ext_path *curp = path;
1049 struct ext4_extent_header *neh;
1050 struct buffer_head *bh;
1051 ext4_fsblk_t newblock;
1052 int err = 0;
1054 newblock = ext4_ext_new_meta_block(handle, inode, path,
1055 newext, &err, flags);
1056 if (newblock == 0)
1057 return err;
1059 bh = sb_getblk(inode->i_sb, newblock);
1060 if (!bh) {
1061 err = -EIO;
1062 ext4_std_error(inode->i_sb, err);
1063 return err;
1065 lock_buffer(bh);
1067 err = ext4_journal_get_create_access(handle, bh);
1068 if (err) {
1069 unlock_buffer(bh);
1070 goto out;
1073 /* move top-level index/leaf into new block */
1074 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1076 /* set size of new block */
1077 neh = ext_block_hdr(bh);
1078 /* old root could have indexes or leaves
1079 * so calculate e_max right way */
1080 if (ext_depth(inode))
1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1082 else
1083 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1084 neh->eh_magic = EXT4_EXT_MAGIC;
1085 set_buffer_uptodate(bh);
1086 unlock_buffer(bh);
1088 err = ext4_handle_dirty_metadata(handle, inode, bh);
1089 if (err)
1090 goto out;
1092 /* create index in new top-level index: num,max,pointer */
1093 err = ext4_ext_get_access(handle, inode, curp);
1094 if (err)
1095 goto out;
1097 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1098 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1099 curp->p_hdr->eh_entries = cpu_to_le16(1);
1100 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1102 if (path[0].p_hdr->eh_depth)
1103 curp->p_idx->ei_block =
1104 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1105 else
1106 curp->p_idx->ei_block =
1107 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1108 ext4_idx_store_pblock(curp->p_idx, newblock);
1110 neh = ext_inode_hdr(inode);
1111 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1112 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1113 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1114 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1116 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1117 err = ext4_ext_dirty(handle, inode, curp);
1118 out:
1119 brelse(bh);
1121 return err;
1125 * ext4_ext_create_new_leaf:
1126 * finds empty index and adds new leaf.
1127 * if no free index is found, then it requests in-depth growing.
1129 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1130 unsigned int flags,
1131 struct ext4_ext_path *path,
1132 struct ext4_extent *newext)
1134 struct ext4_ext_path *curp;
1135 int depth, i, err = 0;
1137 repeat:
1138 i = depth = ext_depth(inode);
1140 /* walk up to the tree and look for free index entry */
1141 curp = path + depth;
1142 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1143 i--;
1144 curp--;
1147 /* we use already allocated block for index block,
1148 * so subsequent data blocks should be contiguous */
1149 if (EXT_HAS_FREE_INDEX(curp)) {
1150 /* if we found index with free entry, then use that
1151 * entry: create all needed subtree and add new leaf */
1152 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1153 if (err)
1154 goto out;
1156 /* refill path */
1157 ext4_ext_drop_refs(path);
1158 path = ext4_ext_find_extent(inode,
1159 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1160 path);
1161 if (IS_ERR(path))
1162 err = PTR_ERR(path);
1163 } else {
1164 /* tree is full, time to grow in depth */
1165 err = ext4_ext_grow_indepth(handle, inode, flags,
1166 path, newext);
1167 if (err)
1168 goto out;
1170 /* refill path */
1171 ext4_ext_drop_refs(path);
1172 path = ext4_ext_find_extent(inode,
1173 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174 path);
1175 if (IS_ERR(path)) {
1176 err = PTR_ERR(path);
1177 goto out;
1181 * only first (depth 0 -> 1) produces free space;
1182 * in all other cases we have to split the grown tree
1184 depth = ext_depth(inode);
1185 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186 /* now we need to split */
1187 goto repeat;
1191 out:
1192 return err;
1196 * search the closest allocated block to the left for *logical
1197 * and returns it at @logical + it's physical address at @phys
1198 * if *logical is the smallest allocated block, the function
1199 * returns 0 at @phys
1200 * return value contains 0 (success) or error code
1202 static int ext4_ext_search_left(struct inode *inode,
1203 struct ext4_ext_path *path,
1204 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1206 struct ext4_extent_idx *ix;
1207 struct ext4_extent *ex;
1208 int depth, ee_len;
1210 if (unlikely(path == NULL)) {
1211 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212 return -EIO;
1214 depth = path->p_depth;
1215 *phys = 0;
1217 if (depth == 0 && path->p_ext == NULL)
1218 return 0;
1220 /* usually extent in the path covers blocks smaller
1221 * then *logical, but it can be that extent is the
1222 * first one in the file */
1224 ex = path[depth].p_ext;
1225 ee_len = ext4_ext_get_actual_len(ex);
1226 if (*logical < le32_to_cpu(ex->ee_block)) {
1227 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228 EXT4_ERROR_INODE(inode,
1229 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230 *logical, le32_to_cpu(ex->ee_block));
1231 return -EIO;
1233 while (--depth >= 0) {
1234 ix = path[depth].p_idx;
1235 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236 EXT4_ERROR_INODE(inode,
1237 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238 ix != NULL ? ix->ei_block : 0,
1239 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1241 depth);
1242 return -EIO;
1245 return 0;
1248 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249 EXT4_ERROR_INODE(inode,
1250 "logical %d < ee_block %d + ee_len %d!",
1251 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252 return -EIO;
1255 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1257 return 0;
1261 * search the closest allocated block to the right for *logical
1262 * and returns it at @logical + it's physical address at @phys
1263 * if *logical is the smallest allocated block, the function
1264 * returns 0 at @phys
1265 * return value contains 0 (success) or error code
1267 static int ext4_ext_search_right(struct inode *inode,
1268 struct ext4_ext_path *path,
1269 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1271 struct buffer_head *bh = NULL;
1272 struct ext4_extent_header *eh;
1273 struct ext4_extent_idx *ix;
1274 struct ext4_extent *ex;
1275 ext4_fsblk_t block;
1276 int depth; /* Note, NOT eh_depth; depth from top of tree */
1277 int ee_len;
1279 if (unlikely(path == NULL)) {
1280 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1281 return -EIO;
1283 depth = path->p_depth;
1284 *phys = 0;
1286 if (depth == 0 && path->p_ext == NULL)
1287 return 0;
1289 /* usually extent in the path covers blocks smaller
1290 * then *logical, but it can be that extent is the
1291 * first one in the file */
1293 ex = path[depth].p_ext;
1294 ee_len = ext4_ext_get_actual_len(ex);
1295 if (*logical < le32_to_cpu(ex->ee_block)) {
1296 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1297 EXT4_ERROR_INODE(inode,
1298 "first_extent(path[%d].p_hdr) != ex",
1299 depth);
1300 return -EIO;
1302 while (--depth >= 0) {
1303 ix = path[depth].p_idx;
1304 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1305 EXT4_ERROR_INODE(inode,
1306 "ix != EXT_FIRST_INDEX *logical %d!",
1307 *logical);
1308 return -EIO;
1311 *logical = le32_to_cpu(ex->ee_block);
1312 *phys = ext4_ext_pblock(ex);
1313 return 0;
1316 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1317 EXT4_ERROR_INODE(inode,
1318 "logical %d < ee_block %d + ee_len %d!",
1319 *logical, le32_to_cpu(ex->ee_block), ee_len);
1320 return -EIO;
1323 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1324 /* next allocated block in this leaf */
1325 ex++;
1326 *logical = le32_to_cpu(ex->ee_block);
1327 *phys = ext4_ext_pblock(ex);
1328 return 0;
1331 /* go up and search for index to the right */
1332 while (--depth >= 0) {
1333 ix = path[depth].p_idx;
1334 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1335 goto got_index;
1338 /* we've gone up to the root and found no index to the right */
1339 return 0;
1341 got_index:
1342 /* we've found index to the right, let's
1343 * follow it and find the closest allocated
1344 * block to the right */
1345 ix++;
1346 block = ext4_idx_pblock(ix);
1347 while (++depth < path->p_depth) {
1348 bh = sb_bread(inode->i_sb, block);
1349 if (bh == NULL)
1350 return -EIO;
1351 eh = ext_block_hdr(bh);
1352 /* subtract from p_depth to get proper eh_depth */
1353 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1354 put_bh(bh);
1355 return -EIO;
1357 ix = EXT_FIRST_INDEX(eh);
1358 block = ext4_idx_pblock(ix);
1359 put_bh(bh);
1362 bh = sb_bread(inode->i_sb, block);
1363 if (bh == NULL)
1364 return -EIO;
1365 eh = ext_block_hdr(bh);
1366 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1367 put_bh(bh);
1368 return -EIO;
1370 ex = EXT_FIRST_EXTENT(eh);
1371 *logical = le32_to_cpu(ex->ee_block);
1372 *phys = ext4_ext_pblock(ex);
1373 put_bh(bh);
1374 return 0;
1378 * ext4_ext_next_allocated_block:
1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380 * NOTE: it considers block number from index entry as
1381 * allocated block. Thus, index entries have to be consistent
1382 * with leaves.
1384 static ext4_lblk_t
1385 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1387 int depth;
1389 BUG_ON(path == NULL);
1390 depth = path->p_depth;
1392 if (depth == 0 && path->p_ext == NULL)
1393 return EXT_MAX_BLOCKS;
1395 while (depth >= 0) {
1396 if (depth == path->p_depth) {
1397 /* leaf */
1398 if (path[depth].p_ext !=
1399 EXT_LAST_EXTENT(path[depth].p_hdr))
1400 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1401 } else {
1402 /* index */
1403 if (path[depth].p_idx !=
1404 EXT_LAST_INDEX(path[depth].p_hdr))
1405 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1407 depth--;
1410 return EXT_MAX_BLOCKS;
1414 * ext4_ext_next_leaf_block:
1415 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1417 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1419 int depth;
1421 BUG_ON(path == NULL);
1422 depth = path->p_depth;
1424 /* zero-tree has no leaf blocks at all */
1425 if (depth == 0)
1426 return EXT_MAX_BLOCKS;
1428 /* go to index block */
1429 depth--;
1431 while (depth >= 0) {
1432 if (path[depth].p_idx !=
1433 EXT_LAST_INDEX(path[depth].p_hdr))
1434 return (ext4_lblk_t)
1435 le32_to_cpu(path[depth].p_idx[1].ei_block);
1436 depth--;
1439 return EXT_MAX_BLOCKS;
1443 * ext4_ext_correct_indexes:
1444 * if leaf gets modified and modified extent is first in the leaf,
1445 * then we have to correct all indexes above.
1446 * TODO: do we need to correct tree in all cases?
1448 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1449 struct ext4_ext_path *path)
1451 struct ext4_extent_header *eh;
1452 int depth = ext_depth(inode);
1453 struct ext4_extent *ex;
1454 __le32 border;
1455 int k, err = 0;
1457 eh = path[depth].p_hdr;
1458 ex = path[depth].p_ext;
1460 if (unlikely(ex == NULL || eh == NULL)) {
1461 EXT4_ERROR_INODE(inode,
1462 "ex %p == NULL or eh %p == NULL", ex, eh);
1463 return -EIO;
1466 if (depth == 0) {
1467 /* there is no tree at all */
1468 return 0;
1471 if (ex != EXT_FIRST_EXTENT(eh)) {
1472 /* we correct tree if first leaf got modified only */
1473 return 0;
1477 * TODO: we need correction if border is smaller than current one
1479 k = depth - 1;
1480 border = path[depth].p_ext->ee_block;
1481 err = ext4_ext_get_access(handle, inode, path + k);
1482 if (err)
1483 return err;
1484 path[k].p_idx->ei_block = border;
1485 err = ext4_ext_dirty(handle, inode, path + k);
1486 if (err)
1487 return err;
1489 while (k--) {
1490 /* change all left-side indexes */
1491 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1492 break;
1493 err = ext4_ext_get_access(handle, inode, path + k);
1494 if (err)
1495 break;
1496 path[k].p_idx->ei_block = border;
1497 err = ext4_ext_dirty(handle, inode, path + k);
1498 if (err)
1499 break;
1502 return err;
1506 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1507 struct ext4_extent *ex2)
1509 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1512 * Make sure that either both extents are uninitialized, or
1513 * both are _not_.
1515 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1516 return 0;
1518 if (ext4_ext_is_uninitialized(ex1))
1519 max_len = EXT_UNINIT_MAX_LEN;
1520 else
1521 max_len = EXT_INIT_MAX_LEN;
1523 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1524 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1526 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1527 le32_to_cpu(ex2->ee_block))
1528 return 0;
1531 * To allow future support for preallocated extents to be added
1532 * as an RO_COMPAT feature, refuse to merge to extents if
1533 * this can result in the top bit of ee_len being set.
1535 if (ext1_ee_len + ext2_ee_len > max_len)
1536 return 0;
1537 #ifdef AGGRESSIVE_TEST
1538 if (ext1_ee_len >= 4)
1539 return 0;
1540 #endif
1542 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1543 return 1;
1544 return 0;
1548 * This function tries to merge the "ex" extent to the next extent in the tree.
1549 * It always tries to merge towards right. If you want to merge towards
1550 * left, pass "ex - 1" as argument instead of "ex".
1551 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1552 * 1 if they got merged.
1554 static int ext4_ext_try_to_merge_right(struct inode *inode,
1555 struct ext4_ext_path *path,
1556 struct ext4_extent *ex)
1558 struct ext4_extent_header *eh;
1559 unsigned int depth, len;
1560 int merge_done = 0;
1561 int uninitialized = 0;
1563 depth = ext_depth(inode);
1564 BUG_ON(path[depth].p_hdr == NULL);
1565 eh = path[depth].p_hdr;
1567 while (ex < EXT_LAST_EXTENT(eh)) {
1568 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1569 break;
1570 /* merge with next extent! */
1571 if (ext4_ext_is_uninitialized(ex))
1572 uninitialized = 1;
1573 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1574 + ext4_ext_get_actual_len(ex + 1));
1575 if (uninitialized)
1576 ext4_ext_mark_uninitialized(ex);
1578 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1579 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1580 * sizeof(struct ext4_extent);
1581 memmove(ex + 1, ex + 2, len);
1583 le16_add_cpu(&eh->eh_entries, -1);
1584 merge_done = 1;
1585 WARN_ON(eh->eh_entries == 0);
1586 if (!eh->eh_entries)
1587 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1590 return merge_done;
1594 * This function tries to merge the @ex extent to neighbours in the tree.
1595 * return 1 if merge left else 0.
1597 static int ext4_ext_try_to_merge(struct inode *inode,
1598 struct ext4_ext_path *path,
1599 struct ext4_extent *ex) {
1600 struct ext4_extent_header *eh;
1601 unsigned int depth;
1602 int merge_done = 0;
1603 int ret = 0;
1605 depth = ext_depth(inode);
1606 BUG_ON(path[depth].p_hdr == NULL);
1607 eh = path[depth].p_hdr;
1609 if (ex > EXT_FIRST_EXTENT(eh))
1610 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1612 if (!merge_done)
1613 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1615 return ret;
1619 * check if a portion of the "newext" extent overlaps with an
1620 * existing extent.
1622 * If there is an overlap discovered, it updates the length of the newext
1623 * such that there will be no overlap, and then returns 1.
1624 * If there is no overlap found, it returns 0.
1626 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1627 struct ext4_extent *newext,
1628 struct ext4_ext_path *path)
1630 ext4_lblk_t b1, b2;
1631 unsigned int depth, len1;
1632 unsigned int ret = 0;
1634 b1 = le32_to_cpu(newext->ee_block);
1635 len1 = ext4_ext_get_actual_len(newext);
1636 depth = ext_depth(inode);
1637 if (!path[depth].p_ext)
1638 goto out;
1639 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1642 * get the next allocated block if the extent in the path
1643 * is before the requested block(s)
1645 if (b2 < b1) {
1646 b2 = ext4_ext_next_allocated_block(path);
1647 if (b2 == EXT_MAX_BLOCKS)
1648 goto out;
1651 /* check for wrap through zero on extent logical start block*/
1652 if (b1 + len1 < b1) {
1653 len1 = EXT_MAX_BLOCKS - b1;
1654 newext->ee_len = cpu_to_le16(len1);
1655 ret = 1;
1658 /* check for overlap */
1659 if (b1 + len1 > b2) {
1660 newext->ee_len = cpu_to_le16(b2 - b1);
1661 ret = 1;
1663 out:
1664 return ret;
1668 * ext4_ext_insert_extent:
1669 * tries to merge requsted extent into the existing extent or
1670 * inserts requested extent as new one into the tree,
1671 * creating new leaf in the no-space case.
1673 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1674 struct ext4_ext_path *path,
1675 struct ext4_extent *newext, int flag)
1677 struct ext4_extent_header *eh;
1678 struct ext4_extent *ex, *fex;
1679 struct ext4_extent *nearex; /* nearest extent */
1680 struct ext4_ext_path *npath = NULL;
1681 int depth, len, err;
1682 ext4_lblk_t next;
1683 unsigned uninitialized = 0;
1684 int flags = 0;
1686 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1687 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1688 return -EIO;
1690 depth = ext_depth(inode);
1691 ex = path[depth].p_ext;
1692 if (unlikely(path[depth].p_hdr == NULL)) {
1693 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1694 return -EIO;
1697 /* try to insert block into found extent and return */
1698 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1699 && ext4_can_extents_be_merged(inode, ex, newext)) {
1700 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1701 ext4_ext_is_uninitialized(newext),
1702 ext4_ext_get_actual_len(newext),
1703 le32_to_cpu(ex->ee_block),
1704 ext4_ext_is_uninitialized(ex),
1705 ext4_ext_get_actual_len(ex),
1706 ext4_ext_pblock(ex));
1707 err = ext4_ext_get_access(handle, inode, path + depth);
1708 if (err)
1709 return err;
1712 * ext4_can_extents_be_merged should have checked that either
1713 * both extents are uninitialized, or both aren't. Thus we
1714 * need to check only one of them here.
1716 if (ext4_ext_is_uninitialized(ex))
1717 uninitialized = 1;
1718 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1719 + ext4_ext_get_actual_len(newext));
1720 if (uninitialized)
1721 ext4_ext_mark_uninitialized(ex);
1722 eh = path[depth].p_hdr;
1723 nearex = ex;
1724 goto merge;
1727 depth = ext_depth(inode);
1728 eh = path[depth].p_hdr;
1729 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1730 goto has_space;
1732 /* probably next leaf has space for us? */
1733 fex = EXT_LAST_EXTENT(eh);
1734 next = EXT_MAX_BLOCKS;
1735 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1736 next = ext4_ext_next_leaf_block(path);
1737 if (next != EXT_MAX_BLOCKS) {
1738 ext_debug("next leaf block - %d\n", next);
1739 BUG_ON(npath != NULL);
1740 npath = ext4_ext_find_extent(inode, next, NULL);
1741 if (IS_ERR(npath))
1742 return PTR_ERR(npath);
1743 BUG_ON(npath->p_depth != path->p_depth);
1744 eh = npath[depth].p_hdr;
1745 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1746 ext_debug("next leaf isn't full(%d)\n",
1747 le16_to_cpu(eh->eh_entries));
1748 path = npath;
1749 goto has_space;
1751 ext_debug("next leaf has no free space(%d,%d)\n",
1752 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1756 * There is no free space in the found leaf.
1757 * We're gonna add a new leaf in the tree.
1759 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1760 flags = EXT4_MB_USE_ROOT_BLOCKS;
1761 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1762 if (err)
1763 goto cleanup;
1764 depth = ext_depth(inode);
1765 eh = path[depth].p_hdr;
1767 has_space:
1768 nearex = path[depth].p_ext;
1770 err = ext4_ext_get_access(handle, inode, path + depth);
1771 if (err)
1772 goto cleanup;
1774 if (!nearex) {
1775 /* there is no extent in this leaf, create first one */
1776 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1777 le32_to_cpu(newext->ee_block),
1778 ext4_ext_pblock(newext),
1779 ext4_ext_is_uninitialized(newext),
1780 ext4_ext_get_actual_len(newext));
1781 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1782 } else if (le32_to_cpu(newext->ee_block)
1783 > le32_to_cpu(nearex->ee_block)) {
1784 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1785 if (nearex != EXT_LAST_EXTENT(eh)) {
1786 len = EXT_MAX_EXTENT(eh) - nearex;
1787 len = (len - 1) * sizeof(struct ext4_extent);
1788 len = len < 0 ? 0 : len;
1789 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1790 "move %d from 0x%p to 0x%p\n",
1791 le32_to_cpu(newext->ee_block),
1792 ext4_ext_pblock(newext),
1793 ext4_ext_is_uninitialized(newext),
1794 ext4_ext_get_actual_len(newext),
1795 nearex, len, nearex + 1, nearex + 2);
1796 memmove(nearex + 2, nearex + 1, len);
1798 path[depth].p_ext = nearex + 1;
1799 } else {
1800 BUG_ON(newext->ee_block == nearex->ee_block);
1801 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1802 len = len < 0 ? 0 : len;
1803 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1804 "move %d from 0x%p to 0x%p\n",
1805 le32_to_cpu(newext->ee_block),
1806 ext4_ext_pblock(newext),
1807 ext4_ext_is_uninitialized(newext),
1808 ext4_ext_get_actual_len(newext),
1809 nearex, len, nearex, nearex + 1);
1810 memmove(nearex + 1, nearex, len);
1811 path[depth].p_ext = nearex;
1814 le16_add_cpu(&eh->eh_entries, 1);
1815 nearex = path[depth].p_ext;
1816 nearex->ee_block = newext->ee_block;
1817 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1818 nearex->ee_len = newext->ee_len;
1820 merge:
1821 /* try to merge extents to the right */
1822 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1823 ext4_ext_try_to_merge(inode, path, nearex);
1825 /* try to merge extents to the left */
1827 /* time to correct all indexes above */
1828 err = ext4_ext_correct_indexes(handle, inode, path);
1829 if (err)
1830 goto cleanup;
1832 err = ext4_ext_dirty(handle, inode, path + depth);
1834 cleanup:
1835 if (npath) {
1836 ext4_ext_drop_refs(npath);
1837 kfree(npath);
1839 ext4_ext_invalidate_cache(inode);
1840 return err;
1843 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1844 ext4_lblk_t num, ext_prepare_callback func,
1845 void *cbdata)
1847 struct ext4_ext_path *path = NULL;
1848 struct ext4_ext_cache cbex;
1849 struct ext4_extent *ex;
1850 ext4_lblk_t next, start = 0, end = 0;
1851 ext4_lblk_t last = block + num;
1852 int depth, exists, err = 0;
1854 BUG_ON(func == NULL);
1855 BUG_ON(inode == NULL);
1857 while (block < last && block != EXT_MAX_BLOCKS) {
1858 num = last - block;
1859 /* find extent for this block */
1860 down_read(&EXT4_I(inode)->i_data_sem);
1861 path = ext4_ext_find_extent(inode, block, path);
1862 up_read(&EXT4_I(inode)->i_data_sem);
1863 if (IS_ERR(path)) {
1864 err = PTR_ERR(path);
1865 path = NULL;
1866 break;
1869 depth = ext_depth(inode);
1870 if (unlikely(path[depth].p_hdr == NULL)) {
1871 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1872 err = -EIO;
1873 break;
1875 ex = path[depth].p_ext;
1876 next = ext4_ext_next_allocated_block(path);
1878 exists = 0;
1879 if (!ex) {
1880 /* there is no extent yet, so try to allocate
1881 * all requested space */
1882 start = block;
1883 end = block + num;
1884 } else if (le32_to_cpu(ex->ee_block) > block) {
1885 /* need to allocate space before found extent */
1886 start = block;
1887 end = le32_to_cpu(ex->ee_block);
1888 if (block + num < end)
1889 end = block + num;
1890 } else if (block >= le32_to_cpu(ex->ee_block)
1891 + ext4_ext_get_actual_len(ex)) {
1892 /* need to allocate space after found extent */
1893 start = block;
1894 end = block + num;
1895 if (end >= next)
1896 end = next;
1897 } else if (block >= le32_to_cpu(ex->ee_block)) {
1899 * some part of requested space is covered
1900 * by found extent
1902 start = block;
1903 end = le32_to_cpu(ex->ee_block)
1904 + ext4_ext_get_actual_len(ex);
1905 if (block + num < end)
1906 end = block + num;
1907 exists = 1;
1908 } else {
1909 BUG();
1911 BUG_ON(end <= start);
1913 if (!exists) {
1914 cbex.ec_block = start;
1915 cbex.ec_len = end - start;
1916 cbex.ec_start = 0;
1917 } else {
1918 cbex.ec_block = le32_to_cpu(ex->ee_block);
1919 cbex.ec_len = ext4_ext_get_actual_len(ex);
1920 cbex.ec_start = ext4_ext_pblock(ex);
1923 if (unlikely(cbex.ec_len == 0)) {
1924 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1925 err = -EIO;
1926 break;
1928 err = func(inode, next, &cbex, ex, cbdata);
1929 ext4_ext_drop_refs(path);
1931 if (err < 0)
1932 break;
1934 if (err == EXT_REPEAT)
1935 continue;
1936 else if (err == EXT_BREAK) {
1937 err = 0;
1938 break;
1941 if (ext_depth(inode) != depth) {
1942 /* depth was changed. we have to realloc path */
1943 kfree(path);
1944 path = NULL;
1947 block = cbex.ec_block + cbex.ec_len;
1950 if (path) {
1951 ext4_ext_drop_refs(path);
1952 kfree(path);
1955 return err;
1958 static void
1959 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1960 __u32 len, ext4_fsblk_t start)
1962 struct ext4_ext_cache *cex;
1963 BUG_ON(len == 0);
1964 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1965 cex = &EXT4_I(inode)->i_cached_extent;
1966 cex->ec_block = block;
1967 cex->ec_len = len;
1968 cex->ec_start = start;
1969 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1973 * ext4_ext_put_gap_in_cache:
1974 * calculate boundaries of the gap that the requested block fits into
1975 * and cache this gap
1977 static void
1978 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1979 ext4_lblk_t block)
1981 int depth = ext_depth(inode);
1982 unsigned long len;
1983 ext4_lblk_t lblock;
1984 struct ext4_extent *ex;
1986 ex = path[depth].p_ext;
1987 if (ex == NULL) {
1988 /* there is no extent yet, so gap is [0;-] */
1989 lblock = 0;
1990 len = EXT_MAX_BLOCKS;
1991 ext_debug("cache gap(whole file):");
1992 } else if (block < le32_to_cpu(ex->ee_block)) {
1993 lblock = block;
1994 len = le32_to_cpu(ex->ee_block) - block;
1995 ext_debug("cache gap(before): %u [%u:%u]",
1996 block,
1997 le32_to_cpu(ex->ee_block),
1998 ext4_ext_get_actual_len(ex));
1999 } else if (block >= le32_to_cpu(ex->ee_block)
2000 + ext4_ext_get_actual_len(ex)) {
2001 ext4_lblk_t next;
2002 lblock = le32_to_cpu(ex->ee_block)
2003 + ext4_ext_get_actual_len(ex);
2005 next = ext4_ext_next_allocated_block(path);
2006 ext_debug("cache gap(after): [%u:%u] %u",
2007 le32_to_cpu(ex->ee_block),
2008 ext4_ext_get_actual_len(ex),
2009 block);
2010 BUG_ON(next == lblock);
2011 len = next - lblock;
2012 } else {
2013 lblock = len = 0;
2014 BUG();
2017 ext_debug(" -> %u:%lu\n", lblock, len);
2018 ext4_ext_put_in_cache(inode, lblock, len, 0);
2022 * ext4_ext_check_cache()
2023 * Checks to see if the given block is in the cache.
2024 * If it is, the cached extent is stored in the given
2025 * cache extent pointer. If the cached extent is a hole,
2026 * this routine should be used instead of
2027 * ext4_ext_in_cache if the calling function needs to
2028 * know the size of the hole.
2030 * @inode: The files inode
2031 * @block: The block to look for in the cache
2032 * @ex: Pointer where the cached extent will be stored
2033 * if it contains block
2035 * Return 0 if cache is invalid; 1 if the cache is valid
2037 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2038 struct ext4_ext_cache *ex){
2039 struct ext4_ext_cache *cex;
2040 struct ext4_sb_info *sbi;
2041 int ret = 0;
2044 * We borrow i_block_reservation_lock to protect i_cached_extent
2046 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2047 cex = &EXT4_I(inode)->i_cached_extent;
2048 sbi = EXT4_SB(inode->i_sb);
2050 /* has cache valid data? */
2051 if (cex->ec_len == 0)
2052 goto errout;
2054 if (in_range(block, cex->ec_block, cex->ec_len)) {
2055 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2056 ext_debug("%u cached by %u:%u:%llu\n",
2057 block,
2058 cex->ec_block, cex->ec_len, cex->ec_start);
2059 ret = 1;
2061 errout:
2062 if (!ret)
2063 sbi->extent_cache_misses++;
2064 else
2065 sbi->extent_cache_hits++;
2066 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2067 return ret;
2071 * ext4_ext_in_cache()
2072 * Checks to see if the given block is in the cache.
2073 * If it is, the cached extent is stored in the given
2074 * extent pointer.
2076 * @inode: The files inode
2077 * @block: The block to look for in the cache
2078 * @ex: Pointer where the cached extent will be stored
2079 * if it contains block
2081 * Return 0 if cache is invalid; 1 if the cache is valid
2083 static int
2084 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2085 struct ext4_extent *ex)
2087 struct ext4_ext_cache cex;
2088 int ret = 0;
2090 if (ext4_ext_check_cache(inode, block, &cex)) {
2091 ex->ee_block = cpu_to_le32(cex.ec_block);
2092 ext4_ext_store_pblock(ex, cex.ec_start);
2093 ex->ee_len = cpu_to_le16(cex.ec_len);
2094 ret = 1;
2097 return ret;
2102 * ext4_ext_rm_idx:
2103 * removes index from the index block.
2105 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2106 struct ext4_ext_path *path)
2108 int err;
2109 ext4_fsblk_t leaf;
2111 /* free index block */
2112 path--;
2113 leaf = ext4_idx_pblock(path->p_idx);
2114 if (unlikely(path->p_hdr->eh_entries == 0)) {
2115 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2116 return -EIO;
2118 err = ext4_ext_get_access(handle, inode, path);
2119 if (err)
2120 return err;
2122 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2123 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2124 len *= sizeof(struct ext4_extent_idx);
2125 memmove(path->p_idx, path->p_idx + 1, len);
2128 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2129 err = ext4_ext_dirty(handle, inode, path);
2130 if (err)
2131 return err;
2132 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2133 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2134 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2135 return err;
2139 * ext4_ext_calc_credits_for_single_extent:
2140 * This routine returns max. credits that needed to insert an extent
2141 * to the extent tree.
2142 * When pass the actual path, the caller should calculate credits
2143 * under i_data_sem.
2145 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2146 struct ext4_ext_path *path)
2148 if (path) {
2149 int depth = ext_depth(inode);
2150 int ret = 0;
2152 /* probably there is space in leaf? */
2153 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2154 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2157 * There are some space in the leaf tree, no
2158 * need to account for leaf block credit
2160 * bitmaps and block group descriptor blocks
2161 * and other metadat blocks still need to be
2162 * accounted.
2164 /* 1 bitmap, 1 block group descriptor */
2165 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2166 return ret;
2170 return ext4_chunk_trans_blocks(inode, nrblocks);
2174 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2176 * if nrblocks are fit in a single extent (chunk flag is 1), then
2177 * in the worse case, each tree level index/leaf need to be changed
2178 * if the tree split due to insert a new extent, then the old tree
2179 * index/leaf need to be updated too
2181 * If the nrblocks are discontiguous, they could cause
2182 * the whole tree split more than once, but this is really rare.
2184 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2186 int index;
2187 int depth = ext_depth(inode);
2189 if (chunk)
2190 index = depth * 2;
2191 else
2192 index = depth * 3;
2194 return index;
2197 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2198 struct ext4_extent *ex,
2199 ext4_lblk_t from, ext4_lblk_t to)
2201 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2202 int flags = EXT4_FREE_BLOCKS_FORGET;
2204 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2205 flags |= EXT4_FREE_BLOCKS_METADATA;
2206 #ifdef EXTENTS_STATS
2208 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2209 spin_lock(&sbi->s_ext_stats_lock);
2210 sbi->s_ext_blocks += ee_len;
2211 sbi->s_ext_extents++;
2212 if (ee_len < sbi->s_ext_min)
2213 sbi->s_ext_min = ee_len;
2214 if (ee_len > sbi->s_ext_max)
2215 sbi->s_ext_max = ee_len;
2216 if (ext_depth(inode) > sbi->s_depth_max)
2217 sbi->s_depth_max = ext_depth(inode);
2218 spin_unlock(&sbi->s_ext_stats_lock);
2220 #endif
2221 if (from >= le32_to_cpu(ex->ee_block)
2222 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2223 /* tail removal */
2224 ext4_lblk_t num;
2225 ext4_fsblk_t start;
2227 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2228 start = ext4_ext_pblock(ex) + ee_len - num;
2229 ext_debug("free last %u blocks starting %llu\n", num, start);
2230 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2231 } else if (from == le32_to_cpu(ex->ee_block)
2232 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2233 /* head removal */
2234 ext4_lblk_t num;
2235 ext4_fsblk_t start;
2237 num = to - from;
2238 start = ext4_ext_pblock(ex);
2240 ext_debug("free first %u blocks starting %llu\n", num, start);
2241 ext4_free_blocks(handle, inode, 0, start, num, flags);
2243 } else {
2244 printk(KERN_INFO "strange request: removal(2) "
2245 "%u-%u from %u:%u\n",
2246 from, to, le32_to_cpu(ex->ee_block), ee_len);
2248 return 0;
2253 * ext4_ext_rm_leaf() Removes the extents associated with the
2254 * blocks appearing between "start" and "end", and splits the extents
2255 * if "start" and "end" appear in the same extent
2257 * @handle: The journal handle
2258 * @inode: The files inode
2259 * @path: The path to the leaf
2260 * @start: The first block to remove
2261 * @end: The last block to remove
2263 static int
2264 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2265 struct ext4_ext_path *path, ext4_lblk_t start,
2266 ext4_lblk_t end)
2268 int err = 0, correct_index = 0;
2269 int depth = ext_depth(inode), credits;
2270 struct ext4_extent_header *eh;
2271 ext4_lblk_t a, b, block;
2272 unsigned num;
2273 ext4_lblk_t ex_ee_block;
2274 unsigned short ex_ee_len;
2275 unsigned uninitialized = 0;
2276 struct ext4_extent *ex;
2277 struct ext4_map_blocks map;
2279 /* the header must be checked already in ext4_ext_remove_space() */
2280 ext_debug("truncate since %u in leaf\n", start);
2281 if (!path[depth].p_hdr)
2282 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2283 eh = path[depth].p_hdr;
2284 if (unlikely(path[depth].p_hdr == NULL)) {
2285 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2286 return -EIO;
2288 /* find where to start removing */
2289 ex = EXT_LAST_EXTENT(eh);
2291 ex_ee_block = le32_to_cpu(ex->ee_block);
2292 ex_ee_len = ext4_ext_get_actual_len(ex);
2294 while (ex >= EXT_FIRST_EXTENT(eh) &&
2295 ex_ee_block + ex_ee_len > start) {
2297 if (ext4_ext_is_uninitialized(ex))
2298 uninitialized = 1;
2299 else
2300 uninitialized = 0;
2302 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2303 uninitialized, ex_ee_len);
2304 path[depth].p_ext = ex;
2306 a = ex_ee_block > start ? ex_ee_block : start;
2307 b = ex_ee_block+ex_ee_len - 1 < end ?
2308 ex_ee_block+ex_ee_len - 1 : end;
2310 ext_debug(" border %u:%u\n", a, b);
2312 /* If this extent is beyond the end of the hole, skip it */
2313 if (end <= ex_ee_block) {
2314 ex--;
2315 ex_ee_block = le32_to_cpu(ex->ee_block);
2316 ex_ee_len = ext4_ext_get_actual_len(ex);
2317 continue;
2318 } else if (a != ex_ee_block &&
2319 b != ex_ee_block + ex_ee_len - 1) {
2321 * If this is a truncate, then this condition should
2322 * never happen because at least one of the end points
2323 * needs to be on the edge of the extent.
2325 if (end == EXT_MAX_BLOCKS - 1) {
2326 ext_debug(" bad truncate %u:%u\n",
2327 start, end);
2328 block = 0;
2329 num = 0;
2330 err = -EIO;
2331 goto out;
2334 * else this is a hole punch, so the extent needs to
2335 * be split since neither edge of the hole is on the
2336 * extent edge
2338 else{
2339 map.m_pblk = ext4_ext_pblock(ex);
2340 map.m_lblk = ex_ee_block;
2341 map.m_len = b - ex_ee_block;
2343 err = ext4_split_extent(handle,
2344 inode, path, &map, 0,
2345 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2346 EXT4_GET_BLOCKS_PRE_IO);
2348 if (err < 0)
2349 goto out;
2351 ex_ee_len = ext4_ext_get_actual_len(ex);
2353 b = ex_ee_block+ex_ee_len - 1 < end ?
2354 ex_ee_block+ex_ee_len - 1 : end;
2356 /* Then remove tail of this extent */
2357 block = ex_ee_block;
2358 num = a - block;
2360 } else if (a != ex_ee_block) {
2361 /* remove tail of the extent */
2362 block = ex_ee_block;
2363 num = a - block;
2364 } else if (b != ex_ee_block + ex_ee_len - 1) {
2365 /* remove head of the extent */
2366 block = b;
2367 num = ex_ee_block + ex_ee_len - b;
2370 * If this is a truncate, this condition
2371 * should never happen
2373 if (end == EXT_MAX_BLOCKS - 1) {
2374 ext_debug(" bad truncate %u:%u\n",
2375 start, end);
2376 err = -EIO;
2377 goto out;
2379 } else {
2380 /* remove whole extent: excellent! */
2381 block = ex_ee_block;
2382 num = 0;
2383 if (a != ex_ee_block) {
2384 ext_debug(" bad truncate %u:%u\n",
2385 start, end);
2386 err = -EIO;
2387 goto out;
2390 if (b != ex_ee_block + ex_ee_len - 1) {
2391 ext_debug(" bad truncate %u:%u\n",
2392 start, end);
2393 err = -EIO;
2394 goto out;
2399 * 3 for leaf, sb, and inode plus 2 (bmap and group
2400 * descriptor) for each block group; assume two block
2401 * groups plus ex_ee_len/blocks_per_block_group for
2402 * the worst case
2404 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2405 if (ex == EXT_FIRST_EXTENT(eh)) {
2406 correct_index = 1;
2407 credits += (ext_depth(inode)) + 1;
2409 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2411 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2412 if (err)
2413 goto out;
2415 err = ext4_ext_get_access(handle, inode, path + depth);
2416 if (err)
2417 goto out;
2419 err = ext4_remove_blocks(handle, inode, ex, a, b);
2420 if (err)
2421 goto out;
2423 if (num == 0) {
2424 /* this extent is removed; mark slot entirely unused */
2425 ext4_ext_store_pblock(ex, 0);
2426 } else if (block != ex_ee_block) {
2428 * If this was a head removal, then we need to update
2429 * the physical block since it is now at a different
2430 * location
2432 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2435 ex->ee_block = cpu_to_le32(block);
2436 ex->ee_len = cpu_to_le16(num);
2438 * Do not mark uninitialized if all the blocks in the
2439 * extent have been removed.
2441 if (uninitialized && num)
2442 ext4_ext_mark_uninitialized(ex);
2444 err = ext4_ext_dirty(handle, inode, path + depth);
2445 if (err)
2446 goto out;
2449 * If the extent was completely released,
2450 * we need to remove it from the leaf
2452 if (num == 0) {
2453 if (end != EXT_MAX_BLOCKS - 1) {
2455 * For hole punching, we need to scoot all the
2456 * extents up when an extent is removed so that
2457 * we dont have blank extents in the middle
2459 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2460 sizeof(struct ext4_extent));
2462 /* Now get rid of the one at the end */
2463 memset(EXT_LAST_EXTENT(eh), 0,
2464 sizeof(struct ext4_extent));
2466 le16_add_cpu(&eh->eh_entries, -1);
2469 ext_debug("new extent: %u:%u:%llu\n", block, num,
2470 ext4_ext_pblock(ex));
2471 ex--;
2472 ex_ee_block = le32_to_cpu(ex->ee_block);
2473 ex_ee_len = ext4_ext_get_actual_len(ex);
2476 if (correct_index && eh->eh_entries)
2477 err = ext4_ext_correct_indexes(handle, inode, path);
2479 /* if this leaf is free, then we should
2480 * remove it from index block above */
2481 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2482 err = ext4_ext_rm_idx(handle, inode, path + depth);
2484 out:
2485 return err;
2489 * ext4_ext_more_to_rm:
2490 * returns 1 if current index has to be freed (even partial)
2492 static int
2493 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2495 BUG_ON(path->p_idx == NULL);
2497 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2498 return 0;
2501 * if truncate on deeper level happened, it wasn't partial,
2502 * so we have to consider current index for truncation
2504 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2505 return 0;
2506 return 1;
2509 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2511 struct super_block *sb = inode->i_sb;
2512 int depth = ext_depth(inode);
2513 struct ext4_ext_path *path;
2514 handle_t *handle;
2515 int i, err;
2517 ext_debug("truncate since %u\n", start);
2519 /* probably first extent we're gonna free will be last in block */
2520 handle = ext4_journal_start(inode, depth + 1);
2521 if (IS_ERR(handle))
2522 return PTR_ERR(handle);
2524 again:
2525 ext4_ext_invalidate_cache(inode);
2528 * We start scanning from right side, freeing all the blocks
2529 * after i_size and walking into the tree depth-wise.
2531 depth = ext_depth(inode);
2532 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2533 if (path == NULL) {
2534 ext4_journal_stop(handle);
2535 return -ENOMEM;
2537 path[0].p_depth = depth;
2538 path[0].p_hdr = ext_inode_hdr(inode);
2539 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2540 err = -EIO;
2541 goto out;
2543 i = err = 0;
2545 while (i >= 0 && err == 0) {
2546 if (i == depth) {
2547 /* this is leaf block */
2548 err = ext4_ext_rm_leaf(handle, inode, path,
2549 start, EXT_MAX_BLOCKS - 1);
2550 /* root level has p_bh == NULL, brelse() eats this */
2551 brelse(path[i].p_bh);
2552 path[i].p_bh = NULL;
2553 i--;
2554 continue;
2557 /* this is index block */
2558 if (!path[i].p_hdr) {
2559 ext_debug("initialize header\n");
2560 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2563 if (!path[i].p_idx) {
2564 /* this level hasn't been touched yet */
2565 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2566 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2567 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2568 path[i].p_hdr,
2569 le16_to_cpu(path[i].p_hdr->eh_entries));
2570 } else {
2571 /* we were already here, see at next index */
2572 path[i].p_idx--;
2575 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2576 i, EXT_FIRST_INDEX(path[i].p_hdr),
2577 path[i].p_idx);
2578 if (ext4_ext_more_to_rm(path + i)) {
2579 struct buffer_head *bh;
2580 /* go to the next level */
2581 ext_debug("move to level %d (block %llu)\n",
2582 i + 1, ext4_idx_pblock(path[i].p_idx));
2583 memset(path + i + 1, 0, sizeof(*path));
2584 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2585 if (!bh) {
2586 /* should we reset i_size? */
2587 err = -EIO;
2588 break;
2590 if (WARN_ON(i + 1 > depth)) {
2591 err = -EIO;
2592 break;
2594 if (ext4_ext_check(inode, ext_block_hdr(bh),
2595 depth - i - 1)) {
2596 err = -EIO;
2597 break;
2599 path[i + 1].p_bh = bh;
2601 /* save actual number of indexes since this
2602 * number is changed at the next iteration */
2603 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2604 i++;
2605 } else {
2606 /* we finished processing this index, go up */
2607 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2608 /* index is empty, remove it;
2609 * handle must be already prepared by the
2610 * truncatei_leaf() */
2611 err = ext4_ext_rm_idx(handle, inode, path + i);
2613 /* root level has p_bh == NULL, brelse() eats this */
2614 brelse(path[i].p_bh);
2615 path[i].p_bh = NULL;
2616 i--;
2617 ext_debug("return to level %d\n", i);
2621 /* TODO: flexible tree reduction should be here */
2622 if (path->p_hdr->eh_entries == 0) {
2624 * truncate to zero freed all the tree,
2625 * so we need to correct eh_depth
2627 err = ext4_ext_get_access(handle, inode, path);
2628 if (err == 0) {
2629 ext_inode_hdr(inode)->eh_depth = 0;
2630 ext_inode_hdr(inode)->eh_max =
2631 cpu_to_le16(ext4_ext_space_root(inode, 0));
2632 err = ext4_ext_dirty(handle, inode, path);
2635 out:
2636 ext4_ext_drop_refs(path);
2637 kfree(path);
2638 if (err == -EAGAIN)
2639 goto again;
2640 ext4_journal_stop(handle);
2642 return err;
2646 * called at mount time
2648 void ext4_ext_init(struct super_block *sb)
2651 * possible initialization would be here
2654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2655 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2656 printk(KERN_INFO "EXT4-fs: file extents enabled");
2657 #ifdef AGGRESSIVE_TEST
2658 printk(", aggressive tests");
2659 #endif
2660 #ifdef CHECK_BINSEARCH
2661 printk(", check binsearch");
2662 #endif
2663 #ifdef EXTENTS_STATS
2664 printk(", stats");
2665 #endif
2666 printk("\n");
2667 #endif
2668 #ifdef EXTENTS_STATS
2669 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2670 EXT4_SB(sb)->s_ext_min = 1 << 30;
2671 EXT4_SB(sb)->s_ext_max = 0;
2672 #endif
2677 * called at umount time
2679 void ext4_ext_release(struct super_block *sb)
2681 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2682 return;
2684 #ifdef EXTENTS_STATS
2685 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2686 struct ext4_sb_info *sbi = EXT4_SB(sb);
2687 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2688 sbi->s_ext_blocks, sbi->s_ext_extents,
2689 sbi->s_ext_blocks / sbi->s_ext_extents);
2690 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2691 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2693 #endif
2696 /* FIXME!! we need to try to merge to left or right after zero-out */
2697 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2699 ext4_fsblk_t ee_pblock;
2700 unsigned int ee_len;
2701 int ret;
2703 ee_len = ext4_ext_get_actual_len(ex);
2704 ee_pblock = ext4_ext_pblock(ex);
2706 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2707 if (ret > 0)
2708 ret = 0;
2710 return ret;
2714 * used by extent splitting.
2716 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2717 due to ENOSPC */
2718 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2719 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2722 * ext4_split_extent_at() splits an extent at given block.
2724 * @handle: the journal handle
2725 * @inode: the file inode
2726 * @path: the path to the extent
2727 * @split: the logical block where the extent is splitted.
2728 * @split_flags: indicates if the extent could be zeroout if split fails, and
2729 * the states(init or uninit) of new extents.
2730 * @flags: flags used to insert new extent to extent tree.
2733 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2734 * of which are deterimined by split_flag.
2736 * There are two cases:
2737 * a> the extent are splitted into two extent.
2738 * b> split is not needed, and just mark the extent.
2740 * return 0 on success.
2742 static int ext4_split_extent_at(handle_t *handle,
2743 struct inode *inode,
2744 struct ext4_ext_path *path,
2745 ext4_lblk_t split,
2746 int split_flag,
2747 int flags)
2749 ext4_fsblk_t newblock;
2750 ext4_lblk_t ee_block;
2751 struct ext4_extent *ex, newex, orig_ex;
2752 struct ext4_extent *ex2 = NULL;
2753 unsigned int ee_len, depth;
2754 int err = 0;
2756 ext_debug("ext4_split_extents_at: inode %lu, logical"
2757 "block %llu\n", inode->i_ino, (unsigned long long)split);
2759 ext4_ext_show_leaf(inode, path);
2761 depth = ext_depth(inode);
2762 ex = path[depth].p_ext;
2763 ee_block = le32_to_cpu(ex->ee_block);
2764 ee_len = ext4_ext_get_actual_len(ex);
2765 newblock = split - ee_block + ext4_ext_pblock(ex);
2767 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2769 err = ext4_ext_get_access(handle, inode, path + depth);
2770 if (err)
2771 goto out;
2773 if (split == ee_block) {
2775 * case b: block @split is the block that the extent begins with
2776 * then we just change the state of the extent, and splitting
2777 * is not needed.
2779 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2780 ext4_ext_mark_uninitialized(ex);
2781 else
2782 ext4_ext_mark_initialized(ex);
2784 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2785 ext4_ext_try_to_merge(inode, path, ex);
2787 err = ext4_ext_dirty(handle, inode, path + depth);
2788 goto out;
2791 /* case a */
2792 memcpy(&orig_ex, ex, sizeof(orig_ex));
2793 ex->ee_len = cpu_to_le16(split - ee_block);
2794 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2795 ext4_ext_mark_uninitialized(ex);
2798 * path may lead to new leaf, not to original leaf any more
2799 * after ext4_ext_insert_extent() returns,
2801 err = ext4_ext_dirty(handle, inode, path + depth);
2802 if (err)
2803 goto fix_extent_len;
2805 ex2 = &newex;
2806 ex2->ee_block = cpu_to_le32(split);
2807 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2808 ext4_ext_store_pblock(ex2, newblock);
2809 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2810 ext4_ext_mark_uninitialized(ex2);
2812 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2813 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2814 err = ext4_ext_zeroout(inode, &orig_ex);
2815 if (err)
2816 goto fix_extent_len;
2817 /* update the extent length and mark as initialized */
2818 ex->ee_len = cpu_to_le32(ee_len);
2819 ext4_ext_try_to_merge(inode, path, ex);
2820 err = ext4_ext_dirty(handle, inode, path + depth);
2821 goto out;
2822 } else if (err)
2823 goto fix_extent_len;
2825 out:
2826 ext4_ext_show_leaf(inode, path);
2827 return err;
2829 fix_extent_len:
2830 ex->ee_len = orig_ex.ee_len;
2831 ext4_ext_dirty(handle, inode, path + depth);
2832 return err;
2836 * ext4_split_extents() splits an extent and mark extent which is covered
2837 * by @map as split_flags indicates
2839 * It may result in splitting the extent into multiple extents (upto three)
2840 * There are three possibilities:
2841 * a> There is no split required
2842 * b> Splits in two extents: Split is happening at either end of the extent
2843 * c> Splits in three extents: Somone is splitting in middle of the extent
2846 static int ext4_split_extent(handle_t *handle,
2847 struct inode *inode,
2848 struct ext4_ext_path *path,
2849 struct ext4_map_blocks *map,
2850 int split_flag,
2851 int flags)
2853 ext4_lblk_t ee_block;
2854 struct ext4_extent *ex;
2855 unsigned int ee_len, depth;
2856 int err = 0;
2857 int uninitialized;
2858 int split_flag1, flags1;
2860 depth = ext_depth(inode);
2861 ex = path[depth].p_ext;
2862 ee_block = le32_to_cpu(ex->ee_block);
2863 ee_len = ext4_ext_get_actual_len(ex);
2864 uninitialized = ext4_ext_is_uninitialized(ex);
2866 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2867 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2868 EXT4_EXT_MAY_ZEROOUT : 0;
2869 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870 if (uninitialized)
2871 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2872 EXT4_EXT_MARK_UNINIT2;
2873 err = ext4_split_extent_at(handle, inode, path,
2874 map->m_lblk + map->m_len, split_flag1, flags1);
2875 if (err)
2876 goto out;
2879 ext4_ext_drop_refs(path);
2880 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2881 if (IS_ERR(path))
2882 return PTR_ERR(path);
2884 if (map->m_lblk >= ee_block) {
2885 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2886 EXT4_EXT_MAY_ZEROOUT : 0;
2887 if (uninitialized)
2888 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2889 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2890 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2891 err = ext4_split_extent_at(handle, inode, path,
2892 map->m_lblk, split_flag1, flags);
2893 if (err)
2894 goto out;
2897 ext4_ext_show_leaf(inode, path);
2898 out:
2899 return err ? err : map->m_len;
2902 #define EXT4_EXT_ZERO_LEN 7
2904 * This function is called by ext4_ext_map_blocks() if someone tries to write
2905 * to an uninitialized extent. It may result in splitting the uninitialized
2906 * extent into multiple extents (up to three - one initialized and two
2907 * uninitialized).
2908 * There are three possibilities:
2909 * a> There is no split required: Entire extent should be initialized
2910 * b> Splits in two extents: Write is happening at either end of the extent
2911 * c> Splits in three extents: Somone is writing in middle of the extent
2913 static int ext4_ext_convert_to_initialized(handle_t *handle,
2914 struct inode *inode,
2915 struct ext4_map_blocks *map,
2916 struct ext4_ext_path *path)
2918 struct ext4_map_blocks split_map;
2919 struct ext4_extent zero_ex;
2920 struct ext4_extent *ex;
2921 ext4_lblk_t ee_block, eof_block;
2922 unsigned int allocated, ee_len, depth;
2923 int err = 0;
2924 int split_flag = 0;
2926 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2927 "block %llu, max_blocks %u\n", inode->i_ino,
2928 (unsigned long long)map->m_lblk, map->m_len);
2930 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2931 inode->i_sb->s_blocksize_bits;
2932 if (eof_block < map->m_lblk + map->m_len)
2933 eof_block = map->m_lblk + map->m_len;
2935 depth = ext_depth(inode);
2936 ex = path[depth].p_ext;
2937 ee_block = le32_to_cpu(ex->ee_block);
2938 ee_len = ext4_ext_get_actual_len(ex);
2939 allocated = ee_len - (map->m_lblk - ee_block);
2941 WARN_ON(map->m_lblk < ee_block);
2943 * It is safe to convert extent to initialized via explicit
2944 * zeroout only if extent is fully insde i_size or new_size.
2946 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2948 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2949 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2950 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2951 err = ext4_ext_zeroout(inode, ex);
2952 if (err)
2953 goto out;
2955 err = ext4_ext_get_access(handle, inode, path + depth);
2956 if (err)
2957 goto out;
2958 ext4_ext_mark_initialized(ex);
2959 ext4_ext_try_to_merge(inode, path, ex);
2960 err = ext4_ext_dirty(handle, inode, path + depth);
2961 goto out;
2965 * four cases:
2966 * 1. split the extent into three extents.
2967 * 2. split the extent into two extents, zeroout the first half.
2968 * 3. split the extent into two extents, zeroout the second half.
2969 * 4. split the extent into two extents with out zeroout.
2971 split_map.m_lblk = map->m_lblk;
2972 split_map.m_len = map->m_len;
2974 if (allocated > map->m_len) {
2975 if (allocated <= EXT4_EXT_ZERO_LEN &&
2976 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2977 /* case 3 */
2978 zero_ex.ee_block =
2979 cpu_to_le32(map->m_lblk);
2980 zero_ex.ee_len = cpu_to_le16(allocated);
2981 ext4_ext_store_pblock(&zero_ex,
2982 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2983 err = ext4_ext_zeroout(inode, &zero_ex);
2984 if (err)
2985 goto out;
2986 split_map.m_lblk = map->m_lblk;
2987 split_map.m_len = allocated;
2988 } else if ((map->m_lblk - ee_block + map->m_len <
2989 EXT4_EXT_ZERO_LEN) &&
2990 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2991 /* case 2 */
2992 if (map->m_lblk != ee_block) {
2993 zero_ex.ee_block = ex->ee_block;
2994 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2995 ee_block);
2996 ext4_ext_store_pblock(&zero_ex,
2997 ext4_ext_pblock(ex));
2998 err = ext4_ext_zeroout(inode, &zero_ex);
2999 if (err)
3000 goto out;
3003 split_map.m_lblk = ee_block;
3004 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3005 allocated = map->m_len;
3009 allocated = ext4_split_extent(handle, inode, path,
3010 &split_map, split_flag, 0);
3011 if (allocated < 0)
3012 err = allocated;
3014 out:
3015 return err ? err : allocated;
3019 * This function is called by ext4_ext_map_blocks() from
3020 * ext4_get_blocks_dio_write() when DIO to write
3021 * to an uninitialized extent.
3023 * Writing to an uninitialized extent may result in splitting the uninitialized
3024 * extent into multiple /initialized uninitialized extents (up to three)
3025 * There are three possibilities:
3026 * a> There is no split required: Entire extent should be uninitialized
3027 * b> Splits in two extents: Write is happening at either end of the extent
3028 * c> Splits in three extents: Somone is writing in middle of the extent
3030 * One of more index blocks maybe needed if the extent tree grow after
3031 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3032 * complete, we need to split the uninitialized extent before DIO submit
3033 * the IO. The uninitialized extent called at this time will be split
3034 * into three uninitialized extent(at most). After IO complete, the part
3035 * being filled will be convert to initialized by the end_io callback function
3036 * via ext4_convert_unwritten_extents().
3038 * Returns the size of uninitialized extent to be written on success.
3040 static int ext4_split_unwritten_extents(handle_t *handle,
3041 struct inode *inode,
3042 struct ext4_map_blocks *map,
3043 struct ext4_ext_path *path,
3044 int flags)
3046 ext4_lblk_t eof_block;
3047 ext4_lblk_t ee_block;
3048 struct ext4_extent *ex;
3049 unsigned int ee_len;
3050 int split_flag = 0, depth;
3052 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3053 "block %llu, max_blocks %u\n", inode->i_ino,
3054 (unsigned long long)map->m_lblk, map->m_len);
3056 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3057 inode->i_sb->s_blocksize_bits;
3058 if (eof_block < map->m_lblk + map->m_len)
3059 eof_block = map->m_lblk + map->m_len;
3061 * It is safe to convert extent to initialized via explicit
3062 * zeroout only if extent is fully insde i_size or new_size.
3064 depth = ext_depth(inode);
3065 ex = path[depth].p_ext;
3066 ee_block = le32_to_cpu(ex->ee_block);
3067 ee_len = ext4_ext_get_actual_len(ex);
3069 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3070 split_flag |= EXT4_EXT_MARK_UNINIT2;
3072 flags |= EXT4_GET_BLOCKS_PRE_IO;
3073 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3076 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3077 struct inode *inode,
3078 struct ext4_ext_path *path)
3080 struct ext4_extent *ex;
3081 int depth;
3082 int err = 0;
3084 depth = ext_depth(inode);
3085 ex = path[depth].p_ext;
3087 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3088 "block %llu, max_blocks %u\n", inode->i_ino,
3089 (unsigned long long)le32_to_cpu(ex->ee_block),
3090 ext4_ext_get_actual_len(ex));
3092 err = ext4_ext_get_access(handle, inode, path + depth);
3093 if (err)
3094 goto out;
3095 /* first mark the extent as initialized */
3096 ext4_ext_mark_initialized(ex);
3098 /* note: ext4_ext_correct_indexes() isn't needed here because
3099 * borders are not changed
3101 ext4_ext_try_to_merge(inode, path, ex);
3103 /* Mark modified extent as dirty */
3104 err = ext4_ext_dirty(handle, inode, path + depth);
3105 out:
3106 ext4_ext_show_leaf(inode, path);
3107 return err;
3110 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3111 sector_t block, int count)
3113 int i;
3114 for (i = 0; i < count; i++)
3115 unmap_underlying_metadata(bdev, block + i);
3119 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3121 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3122 ext4_lblk_t lblk,
3123 struct ext4_ext_path *path,
3124 unsigned int len)
3126 int i, depth;
3127 struct ext4_extent_header *eh;
3128 struct ext4_extent *last_ex;
3130 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3131 return 0;
3133 depth = ext_depth(inode);
3134 eh = path[depth].p_hdr;
3136 if (unlikely(!eh->eh_entries)) {
3137 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3138 "EOFBLOCKS_FL set");
3139 return -EIO;
3141 last_ex = EXT_LAST_EXTENT(eh);
3143 * We should clear the EOFBLOCKS_FL flag if we are writing the
3144 * last block in the last extent in the file. We test this by
3145 * first checking to see if the caller to
3146 * ext4_ext_get_blocks() was interested in the last block (or
3147 * a block beyond the last block) in the current extent. If
3148 * this turns out to be false, we can bail out from this
3149 * function immediately.
3151 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3152 ext4_ext_get_actual_len(last_ex))
3153 return 0;
3155 * If the caller does appear to be planning to write at or
3156 * beyond the end of the current extent, we then test to see
3157 * if the current extent is the last extent in the file, by
3158 * checking to make sure it was reached via the rightmost node
3159 * at each level of the tree.
3161 for (i = depth-1; i >= 0; i--)
3162 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3163 return 0;
3164 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3165 return ext4_mark_inode_dirty(handle, inode);
3168 static int
3169 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3170 struct ext4_map_blocks *map,
3171 struct ext4_ext_path *path, int flags,
3172 unsigned int allocated, ext4_fsblk_t newblock)
3174 int ret = 0;
3175 int err = 0;
3176 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3178 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3179 "block %llu, max_blocks %u, flags %d, allocated %u",
3180 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3181 flags, allocated);
3182 ext4_ext_show_leaf(inode, path);
3184 /* get_block() before submit the IO, split the extent */
3185 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3186 ret = ext4_split_unwritten_extents(handle, inode, map,
3187 path, flags);
3189 * Flag the inode(non aio case) or end_io struct (aio case)
3190 * that this IO needs to conversion to written when IO is
3191 * completed
3193 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3194 io->flag = EXT4_IO_END_UNWRITTEN;
3195 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3196 } else
3197 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3198 if (ext4_should_dioread_nolock(inode))
3199 map->m_flags |= EXT4_MAP_UNINIT;
3200 goto out;
3202 /* IO end_io complete, convert the filled extent to written */
3203 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3204 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3205 path);
3206 if (ret >= 0) {
3207 ext4_update_inode_fsync_trans(handle, inode, 1);
3208 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3209 path, map->m_len);
3210 } else
3211 err = ret;
3212 goto out2;
3214 /* buffered IO case */
3216 * repeat fallocate creation request
3217 * we already have an unwritten extent
3219 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3220 goto map_out;
3222 /* buffered READ or buffered write_begin() lookup */
3223 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3225 * We have blocks reserved already. We
3226 * return allocated blocks so that delalloc
3227 * won't do block reservation for us. But
3228 * the buffer head will be unmapped so that
3229 * a read from the block returns 0s.
3231 map->m_flags |= EXT4_MAP_UNWRITTEN;
3232 goto out1;
3235 /* buffered write, writepage time, convert*/
3236 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3237 if (ret >= 0) {
3238 ext4_update_inode_fsync_trans(handle, inode, 1);
3239 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3240 map->m_len);
3241 if (err < 0)
3242 goto out2;
3245 out:
3246 if (ret <= 0) {
3247 err = ret;
3248 goto out2;
3249 } else
3250 allocated = ret;
3251 map->m_flags |= EXT4_MAP_NEW;
3253 * if we allocated more blocks than requested
3254 * we need to make sure we unmap the extra block
3255 * allocated. The actual needed block will get
3256 * unmapped later when we find the buffer_head marked
3257 * new.
3259 if (allocated > map->m_len) {
3260 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3261 newblock + map->m_len,
3262 allocated - map->m_len);
3263 allocated = map->m_len;
3267 * If we have done fallocate with the offset that is already
3268 * delayed allocated, we would have block reservation
3269 * and quota reservation done in the delayed write path.
3270 * But fallocate would have already updated quota and block
3271 * count for this offset. So cancel these reservation
3273 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3274 ext4_da_update_reserve_space(inode, allocated, 0);
3276 map_out:
3277 map->m_flags |= EXT4_MAP_MAPPED;
3278 out1:
3279 if (allocated > map->m_len)
3280 allocated = map->m_len;
3281 ext4_ext_show_leaf(inode, path);
3282 map->m_pblk = newblock;
3283 map->m_len = allocated;
3284 out2:
3285 if (path) {
3286 ext4_ext_drop_refs(path);
3287 kfree(path);
3289 return err ? err : allocated;
3293 * Block allocation/map/preallocation routine for extents based files
3296 * Need to be called with
3297 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3298 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3300 * return > 0, number of of blocks already mapped/allocated
3301 * if create == 0 and these are pre-allocated blocks
3302 * buffer head is unmapped
3303 * otherwise blocks are mapped
3305 * return = 0, if plain look up failed (blocks have not been allocated)
3306 * buffer head is unmapped
3308 * return < 0, error case.
3310 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3311 struct ext4_map_blocks *map, int flags)
3313 struct ext4_ext_path *path = NULL;
3314 struct ext4_extent newex, *ex;
3315 ext4_fsblk_t newblock = 0;
3316 int err = 0, depth, ret;
3317 unsigned int allocated = 0;
3318 unsigned int punched_out = 0;
3319 unsigned int result = 0;
3320 struct ext4_allocation_request ar;
3321 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3322 struct ext4_map_blocks punch_map;
3324 ext_debug("blocks %u/%u requested for inode %lu\n",
3325 map->m_lblk, map->m_len, inode->i_ino);
3326 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3328 /* check in cache */
3329 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3330 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3331 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3332 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3334 * block isn't allocated yet and
3335 * user doesn't want to allocate it
3337 goto out2;
3339 /* we should allocate requested block */
3340 } else {
3341 /* block is already allocated */
3342 newblock = map->m_lblk
3343 - le32_to_cpu(newex.ee_block)
3344 + ext4_ext_pblock(&newex);
3345 /* number of remaining blocks in the extent */
3346 allocated = ext4_ext_get_actual_len(&newex) -
3347 (map->m_lblk - le32_to_cpu(newex.ee_block));
3348 goto out;
3352 /* find extent for this block */
3353 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3354 if (IS_ERR(path)) {
3355 err = PTR_ERR(path);
3356 path = NULL;
3357 goto out2;
3360 depth = ext_depth(inode);
3363 * consistent leaf must not be empty;
3364 * this situation is possible, though, _during_ tree modification;
3365 * this is why assert can't be put in ext4_ext_find_extent()
3367 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3368 EXT4_ERROR_INODE(inode, "bad extent address "
3369 "lblock: %lu, depth: %d pblock %lld",
3370 (unsigned long) map->m_lblk, depth,
3371 path[depth].p_block);
3372 err = -EIO;
3373 goto out2;
3376 ex = path[depth].p_ext;
3377 if (ex) {
3378 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3379 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3380 unsigned short ee_len;
3383 * Uninitialized extents are treated as holes, except that
3384 * we split out initialized portions during a write.
3386 ee_len = ext4_ext_get_actual_len(ex);
3387 /* if found extent covers block, simply return it */
3388 if (in_range(map->m_lblk, ee_block, ee_len)) {
3389 newblock = map->m_lblk - ee_block + ee_start;
3390 /* number of remaining blocks in the extent */
3391 allocated = ee_len - (map->m_lblk - ee_block);
3392 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3393 ee_block, ee_len, newblock);
3395 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3397 * Do not put uninitialized extent
3398 * in the cache
3400 if (!ext4_ext_is_uninitialized(ex)) {
3401 ext4_ext_put_in_cache(inode, ee_block,
3402 ee_len, ee_start);
3403 goto out;
3405 ret = ext4_ext_handle_uninitialized_extents(
3406 handle, inode, map, path, flags,
3407 allocated, newblock);
3408 return ret;
3412 * Punch out the map length, but only to the
3413 * end of the extent
3415 punched_out = allocated < map->m_len ?
3416 allocated : map->m_len;
3419 * Sense extents need to be converted to
3420 * uninitialized, they must fit in an
3421 * uninitialized extent
3423 if (punched_out > EXT_UNINIT_MAX_LEN)
3424 punched_out = EXT_UNINIT_MAX_LEN;
3426 punch_map.m_lblk = map->m_lblk;
3427 punch_map.m_pblk = newblock;
3428 punch_map.m_len = punched_out;
3429 punch_map.m_flags = 0;
3431 /* Check to see if the extent needs to be split */
3432 if (punch_map.m_len != ee_len ||
3433 punch_map.m_lblk != ee_block) {
3435 ret = ext4_split_extent(handle, inode,
3436 path, &punch_map, 0,
3437 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3438 EXT4_GET_BLOCKS_PRE_IO);
3440 if (ret < 0) {
3441 err = ret;
3442 goto out2;
3445 * find extent for the block at
3446 * the start of the hole
3448 ext4_ext_drop_refs(path);
3449 kfree(path);
3451 path = ext4_ext_find_extent(inode,
3452 map->m_lblk, NULL);
3453 if (IS_ERR(path)) {
3454 err = PTR_ERR(path);
3455 path = NULL;
3456 goto out2;
3459 depth = ext_depth(inode);
3460 ex = path[depth].p_ext;
3461 ee_len = ext4_ext_get_actual_len(ex);
3462 ee_block = le32_to_cpu(ex->ee_block);
3463 ee_start = ext4_ext_pblock(ex);
3467 ext4_ext_mark_uninitialized(ex);
3469 ext4_ext_invalidate_cache(inode);
3471 err = ext4_ext_rm_leaf(handle, inode, path,
3472 map->m_lblk, map->m_lblk + punched_out);
3474 if (!err && path->p_hdr->eh_entries == 0) {
3476 * Punch hole freed all of this sub tree,
3477 * so we need to correct eh_depth
3479 err = ext4_ext_get_access(handle, inode, path);
3480 if (err == 0) {
3481 ext_inode_hdr(inode)->eh_depth = 0;
3482 ext_inode_hdr(inode)->eh_max =
3483 cpu_to_le16(ext4_ext_space_root(
3484 inode, 0));
3486 err = ext4_ext_dirty(
3487 handle, inode, path);
3491 goto out2;
3496 * requested block isn't allocated yet;
3497 * we couldn't try to create block if create flag is zero
3499 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3501 * put just found gap into cache to speed up
3502 * subsequent requests
3504 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3505 goto out2;
3508 * Okay, we need to do block allocation.
3511 /* find neighbour allocated blocks */
3512 ar.lleft = map->m_lblk;
3513 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3514 if (err)
3515 goto out2;
3516 ar.lright = map->m_lblk;
3517 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3518 if (err)
3519 goto out2;
3522 * See if request is beyond maximum number of blocks we can have in
3523 * a single extent. For an initialized extent this limit is
3524 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3525 * EXT_UNINIT_MAX_LEN.
3527 if (map->m_len > EXT_INIT_MAX_LEN &&
3528 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3529 map->m_len = EXT_INIT_MAX_LEN;
3530 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3531 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3532 map->m_len = EXT_UNINIT_MAX_LEN;
3534 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3535 newex.ee_block = cpu_to_le32(map->m_lblk);
3536 newex.ee_len = cpu_to_le16(map->m_len);
3537 err = ext4_ext_check_overlap(inode, &newex, path);
3538 if (err)
3539 allocated = ext4_ext_get_actual_len(&newex);
3540 else
3541 allocated = map->m_len;
3543 /* allocate new block */
3544 ar.inode = inode;
3545 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3546 ar.logical = map->m_lblk;
3547 ar.len = allocated;
3548 if (S_ISREG(inode->i_mode))
3549 ar.flags = EXT4_MB_HINT_DATA;
3550 else
3551 /* disable in-core preallocation for non-regular files */
3552 ar.flags = 0;
3553 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3554 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3555 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3556 if (!newblock)
3557 goto out2;
3558 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3559 ar.goal, newblock, allocated);
3561 /* try to insert new extent into found leaf and return */
3562 ext4_ext_store_pblock(&newex, newblock);
3563 newex.ee_len = cpu_to_le16(ar.len);
3564 /* Mark uninitialized */
3565 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3566 ext4_ext_mark_uninitialized(&newex);
3568 * io_end structure was created for every IO write to an
3569 * uninitialized extent. To avoid unnecessary conversion,
3570 * here we flag the IO that really needs the conversion.
3571 * For non asycn direct IO case, flag the inode state
3572 * that we need to perform conversion when IO is done.
3574 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3575 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3576 io->flag = EXT4_IO_END_UNWRITTEN;
3577 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3578 } else
3579 ext4_set_inode_state(inode,
3580 EXT4_STATE_DIO_UNWRITTEN);
3582 if (ext4_should_dioread_nolock(inode))
3583 map->m_flags |= EXT4_MAP_UNINIT;
3586 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3587 if (!err)
3588 err = ext4_ext_insert_extent(handle, inode, path,
3589 &newex, flags);
3590 if (err) {
3591 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3592 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3593 /* free data blocks we just allocated */
3594 /* not a good idea to call discard here directly,
3595 * but otherwise we'd need to call it every free() */
3596 ext4_discard_preallocations(inode);
3597 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3598 ext4_ext_get_actual_len(&newex), fb_flags);
3599 goto out2;
3602 /* previous routine could use block we allocated */
3603 newblock = ext4_ext_pblock(&newex);
3604 allocated = ext4_ext_get_actual_len(&newex);
3605 if (allocated > map->m_len)
3606 allocated = map->m_len;
3607 map->m_flags |= EXT4_MAP_NEW;
3610 * Update reserved blocks/metadata blocks after successful
3611 * block allocation which had been deferred till now.
3613 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3614 ext4_da_update_reserve_space(inode, allocated, 1);
3617 * Cache the extent and update transaction to commit on fdatasync only
3618 * when it is _not_ an uninitialized extent.
3620 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3621 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3622 ext4_update_inode_fsync_trans(handle, inode, 1);
3623 } else
3624 ext4_update_inode_fsync_trans(handle, inode, 0);
3625 out:
3626 if (allocated > map->m_len)
3627 allocated = map->m_len;
3628 ext4_ext_show_leaf(inode, path);
3629 map->m_flags |= EXT4_MAP_MAPPED;
3630 map->m_pblk = newblock;
3631 map->m_len = allocated;
3632 out2:
3633 if (path) {
3634 ext4_ext_drop_refs(path);
3635 kfree(path);
3637 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3638 newblock, map->m_len, err ? err : allocated);
3640 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3641 punched_out : allocated;
3643 return err ? err : result;
3646 void ext4_ext_truncate(struct inode *inode)
3648 struct address_space *mapping = inode->i_mapping;
3649 struct super_block *sb = inode->i_sb;
3650 ext4_lblk_t last_block;
3651 handle_t *handle;
3652 int err = 0;
3655 * finish any pending end_io work so we won't run the risk of
3656 * converting any truncated blocks to initialized later
3658 ext4_flush_completed_IO(inode);
3661 * probably first extent we're gonna free will be last in block
3663 err = ext4_writepage_trans_blocks(inode);
3664 handle = ext4_journal_start(inode, err);
3665 if (IS_ERR(handle))
3666 return;
3668 if (inode->i_size & (sb->s_blocksize - 1))
3669 ext4_block_truncate_page(handle, mapping, inode->i_size);
3671 if (ext4_orphan_add(handle, inode))
3672 goto out_stop;
3674 down_write(&EXT4_I(inode)->i_data_sem);
3675 ext4_ext_invalidate_cache(inode);
3677 ext4_discard_preallocations(inode);
3680 * TODO: optimization is possible here.
3681 * Probably we need not scan at all,
3682 * because page truncation is enough.
3685 /* we have to know where to truncate from in crash case */
3686 EXT4_I(inode)->i_disksize = inode->i_size;
3687 ext4_mark_inode_dirty(handle, inode);
3689 last_block = (inode->i_size + sb->s_blocksize - 1)
3690 >> EXT4_BLOCK_SIZE_BITS(sb);
3691 err = ext4_ext_remove_space(inode, last_block);
3693 /* In a multi-transaction truncate, we only make the final
3694 * transaction synchronous.
3696 if (IS_SYNC(inode))
3697 ext4_handle_sync(handle);
3699 up_write(&EXT4_I(inode)->i_data_sem);
3701 out_stop:
3703 * If this was a simple ftruncate() and the file will remain alive,
3704 * then we need to clear up the orphan record which we created above.
3705 * However, if this was a real unlink then we were called by
3706 * ext4_delete_inode(), and we allow that function to clean up the
3707 * orphan info for us.
3709 if (inode->i_nlink)
3710 ext4_orphan_del(handle, inode);
3712 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3713 ext4_mark_inode_dirty(handle, inode);
3714 ext4_journal_stop(handle);
3717 static void ext4_falloc_update_inode(struct inode *inode,
3718 int mode, loff_t new_size, int update_ctime)
3720 struct timespec now;
3722 if (update_ctime) {
3723 now = current_fs_time(inode->i_sb);
3724 if (!timespec_equal(&inode->i_ctime, &now))
3725 inode->i_ctime = now;
3728 * Update only when preallocation was requested beyond
3729 * the file size.
3731 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3732 if (new_size > i_size_read(inode))
3733 i_size_write(inode, new_size);
3734 if (new_size > EXT4_I(inode)->i_disksize)
3735 ext4_update_i_disksize(inode, new_size);
3736 } else {
3738 * Mark that we allocate beyond EOF so the subsequent truncate
3739 * can proceed even if the new size is the same as i_size.
3741 if (new_size > i_size_read(inode))
3742 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3748 * preallocate space for a file. This implements ext4's fallocate file
3749 * operation, which gets called from sys_fallocate system call.
3750 * For block-mapped files, posix_fallocate should fall back to the method
3751 * of writing zeroes to the required new blocks (the same behavior which is
3752 * expected for file systems which do not support fallocate() system call).
3754 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3756 struct inode *inode = file->f_path.dentry->d_inode;
3757 handle_t *handle;
3758 loff_t new_size;
3759 unsigned int max_blocks;
3760 int ret = 0;
3761 int ret2 = 0;
3762 int retries = 0;
3763 struct ext4_map_blocks map;
3764 unsigned int credits, blkbits = inode->i_blkbits;
3767 * currently supporting (pre)allocate mode for extent-based
3768 * files _only_
3770 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3771 return -EOPNOTSUPP;
3773 /* Return error if mode is not supported */
3774 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3775 return -EOPNOTSUPP;
3777 if (mode & FALLOC_FL_PUNCH_HOLE)
3778 return ext4_punch_hole(file, offset, len);
3780 trace_ext4_fallocate_enter(inode, offset, len, mode);
3781 map.m_lblk = offset >> blkbits;
3783 * We can't just convert len to max_blocks because
3784 * If blocksize = 4096 offset = 3072 and len = 2048
3786 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3787 - map.m_lblk;
3789 * credits to insert 1 extent into extent tree
3791 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3792 mutex_lock(&inode->i_mutex);
3793 ret = inode_newsize_ok(inode, (len + offset));
3794 if (ret) {
3795 mutex_unlock(&inode->i_mutex);
3796 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3797 return ret;
3799 retry:
3800 while (ret >= 0 && ret < max_blocks) {
3801 map.m_lblk = map.m_lblk + ret;
3802 map.m_len = max_blocks = max_blocks - ret;
3803 handle = ext4_journal_start(inode, credits);
3804 if (IS_ERR(handle)) {
3805 ret = PTR_ERR(handle);
3806 break;
3808 ret = ext4_map_blocks(handle, inode, &map,
3809 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3810 EXT4_GET_BLOCKS_NO_NORMALIZE);
3811 if (ret <= 0) {
3812 #ifdef EXT4FS_DEBUG
3813 WARN_ON(ret <= 0);
3814 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3815 "returned error inode#%lu, block=%u, "
3816 "max_blocks=%u", __func__,
3817 inode->i_ino, map.m_lblk, max_blocks);
3818 #endif
3819 ext4_mark_inode_dirty(handle, inode);
3820 ret2 = ext4_journal_stop(handle);
3821 break;
3823 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3824 blkbits) >> blkbits))
3825 new_size = offset + len;
3826 else
3827 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
3829 ext4_falloc_update_inode(inode, mode, new_size,
3830 (map.m_flags & EXT4_MAP_NEW));
3831 ext4_mark_inode_dirty(handle, inode);
3832 ret2 = ext4_journal_stop(handle);
3833 if (ret2)
3834 break;
3836 if (ret == -ENOSPC &&
3837 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3838 ret = 0;
3839 goto retry;
3841 mutex_unlock(&inode->i_mutex);
3842 trace_ext4_fallocate_exit(inode, offset, max_blocks,
3843 ret > 0 ? ret2 : ret);
3844 return ret > 0 ? ret2 : ret;
3848 * This function convert a range of blocks to written extents
3849 * The caller of this function will pass the start offset and the size.
3850 * all unwritten extents within this range will be converted to
3851 * written extents.
3853 * This function is called from the direct IO end io call back
3854 * function, to convert the fallocated extents after IO is completed.
3855 * Returns 0 on success.
3857 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3858 ssize_t len)
3860 handle_t *handle;
3861 unsigned int max_blocks;
3862 int ret = 0;
3863 int ret2 = 0;
3864 struct ext4_map_blocks map;
3865 unsigned int credits, blkbits = inode->i_blkbits;
3867 map.m_lblk = offset >> blkbits;
3869 * We can't just convert len to max_blocks because
3870 * If blocksize = 4096 offset = 3072 and len = 2048
3872 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3873 map.m_lblk);
3875 * credits to insert 1 extent into extent tree
3877 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3878 while (ret >= 0 && ret < max_blocks) {
3879 map.m_lblk += ret;
3880 map.m_len = (max_blocks -= ret);
3881 handle = ext4_journal_start(inode, credits);
3882 if (IS_ERR(handle)) {
3883 ret = PTR_ERR(handle);
3884 break;
3886 ret = ext4_map_blocks(handle, inode, &map,
3887 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3888 if (ret <= 0) {
3889 WARN_ON(ret <= 0);
3890 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3891 "returned error inode#%lu, block=%u, "
3892 "max_blocks=%u", __func__,
3893 inode->i_ino, map.m_lblk, map.m_len);
3895 ext4_mark_inode_dirty(handle, inode);
3896 ret2 = ext4_journal_stop(handle);
3897 if (ret <= 0 || ret2 )
3898 break;
3900 return ret > 0 ? ret2 : ret;
3904 * Callback function called for each extent to gather FIEMAP information.
3906 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3907 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3908 void *data)
3910 __u64 logical;
3911 __u64 physical;
3912 __u64 length;
3913 __u32 flags = 0;
3914 int ret = 0;
3915 struct fiemap_extent_info *fieinfo = data;
3916 unsigned char blksize_bits;
3918 blksize_bits = inode->i_sb->s_blocksize_bits;
3919 logical = (__u64)newex->ec_block << blksize_bits;
3921 if (newex->ec_start == 0) {
3923 * No extent in extent-tree contains block @newex->ec_start,
3924 * then the block may stay in 1)a hole or 2)delayed-extent.
3926 * Holes or delayed-extents are processed as follows.
3927 * 1. lookup dirty pages with specified range in pagecache.
3928 * If no page is got, then there is no delayed-extent and
3929 * return with EXT_CONTINUE.
3930 * 2. find the 1st mapped buffer,
3931 * 3. check if the mapped buffer is both in the request range
3932 * and a delayed buffer. If not, there is no delayed-extent,
3933 * then return.
3934 * 4. a delayed-extent is found, the extent will be collected.
3936 ext4_lblk_t end = 0;
3937 pgoff_t last_offset;
3938 pgoff_t offset;
3939 pgoff_t index;
3940 pgoff_t start_index = 0;
3941 struct page **pages = NULL;
3942 struct buffer_head *bh = NULL;
3943 struct buffer_head *head = NULL;
3944 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3946 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3947 if (pages == NULL)
3948 return -ENOMEM;
3950 offset = logical >> PAGE_SHIFT;
3951 repeat:
3952 last_offset = offset;
3953 head = NULL;
3954 ret = find_get_pages_tag(inode->i_mapping, &offset,
3955 PAGECACHE_TAG_DIRTY, nr_pages, pages);
3957 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3958 /* First time, try to find a mapped buffer. */
3959 if (ret == 0) {
3960 out:
3961 for (index = 0; index < ret; index++)
3962 page_cache_release(pages[index]);
3963 /* just a hole. */
3964 kfree(pages);
3965 return EXT_CONTINUE;
3967 index = 0;
3969 next_page:
3970 /* Try to find the 1st mapped buffer. */
3971 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3972 blksize_bits;
3973 if (!page_has_buffers(pages[index]))
3974 goto out;
3975 head = page_buffers(pages[index]);
3976 if (!head)
3977 goto out;
3979 index++;
3980 bh = head;
3981 do {
3982 if (end >= newex->ec_block +
3983 newex->ec_len)
3984 /* The buffer is out of
3985 * the request range.
3987 goto out;
3989 if (buffer_mapped(bh) &&
3990 end >= newex->ec_block) {
3991 start_index = index - 1;
3992 /* get the 1st mapped buffer. */
3993 goto found_mapped_buffer;
3996 bh = bh->b_this_page;
3997 end++;
3998 } while (bh != head);
4000 /* No mapped buffer in the range found in this page,
4001 * We need to look up next page.
4003 if (index >= ret) {
4004 /* There is no page left, but we need to limit
4005 * newex->ec_len.
4007 newex->ec_len = end - newex->ec_block;
4008 goto out;
4010 goto next_page;
4011 } else {
4012 /*Find contiguous delayed buffers. */
4013 if (ret > 0 && pages[0]->index == last_offset)
4014 head = page_buffers(pages[0]);
4015 bh = head;
4016 index = 1;
4017 start_index = 0;
4020 found_mapped_buffer:
4021 if (bh != NULL && buffer_delay(bh)) {
4022 /* 1st or contiguous delayed buffer found. */
4023 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4025 * 1st delayed buffer found, record
4026 * the start of extent.
4028 flags |= FIEMAP_EXTENT_DELALLOC;
4029 newex->ec_block = end;
4030 logical = (__u64)end << blksize_bits;
4032 /* Find contiguous delayed buffers. */
4033 do {
4034 if (!buffer_delay(bh))
4035 goto found_delayed_extent;
4036 bh = bh->b_this_page;
4037 end++;
4038 } while (bh != head);
4040 for (; index < ret; index++) {
4041 if (!page_has_buffers(pages[index])) {
4042 bh = NULL;
4043 break;
4045 head = page_buffers(pages[index]);
4046 if (!head) {
4047 bh = NULL;
4048 break;
4051 if (pages[index]->index !=
4052 pages[start_index]->index + index
4053 - start_index) {
4054 /* Blocks are not contiguous. */
4055 bh = NULL;
4056 break;
4058 bh = head;
4059 do {
4060 if (!buffer_delay(bh))
4061 /* Delayed-extent ends. */
4062 goto found_delayed_extent;
4063 bh = bh->b_this_page;
4064 end++;
4065 } while (bh != head);
4067 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4068 /* a hole found. */
4069 goto out;
4071 found_delayed_extent:
4072 newex->ec_len = min(end - newex->ec_block,
4073 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4074 if (ret == nr_pages && bh != NULL &&
4075 newex->ec_len < EXT_INIT_MAX_LEN &&
4076 buffer_delay(bh)) {
4077 /* Have not collected an extent and continue. */
4078 for (index = 0; index < ret; index++)
4079 page_cache_release(pages[index]);
4080 goto repeat;
4083 for (index = 0; index < ret; index++)
4084 page_cache_release(pages[index]);
4085 kfree(pages);
4088 physical = (__u64)newex->ec_start << blksize_bits;
4089 length = (__u64)newex->ec_len << blksize_bits;
4091 if (ex && ext4_ext_is_uninitialized(ex))
4092 flags |= FIEMAP_EXTENT_UNWRITTEN;
4094 if (next == EXT_MAX_BLOCKS)
4095 flags |= FIEMAP_EXTENT_LAST;
4097 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4098 length, flags);
4099 if (ret < 0)
4100 return ret;
4101 if (ret == 1)
4102 return EXT_BREAK;
4103 return EXT_CONTINUE;
4106 /* fiemap flags we can handle specified here */
4107 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4109 static int ext4_xattr_fiemap(struct inode *inode,
4110 struct fiemap_extent_info *fieinfo)
4112 __u64 physical = 0;
4113 __u64 length;
4114 __u32 flags = FIEMAP_EXTENT_LAST;
4115 int blockbits = inode->i_sb->s_blocksize_bits;
4116 int error = 0;
4118 /* in-inode? */
4119 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4120 struct ext4_iloc iloc;
4121 int offset; /* offset of xattr in inode */
4123 error = ext4_get_inode_loc(inode, &iloc);
4124 if (error)
4125 return error;
4126 physical = iloc.bh->b_blocknr << blockbits;
4127 offset = EXT4_GOOD_OLD_INODE_SIZE +
4128 EXT4_I(inode)->i_extra_isize;
4129 physical += offset;
4130 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4131 flags |= FIEMAP_EXTENT_DATA_INLINE;
4132 brelse(iloc.bh);
4133 } else { /* external block */
4134 physical = EXT4_I(inode)->i_file_acl << blockbits;
4135 length = inode->i_sb->s_blocksize;
4138 if (physical)
4139 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4140 length, flags);
4141 return (error < 0 ? error : 0);
4145 * ext4_ext_punch_hole
4147 * Punches a hole of "length" bytes in a file starting
4148 * at byte "offset"
4150 * @inode: The inode of the file to punch a hole in
4151 * @offset: The starting byte offset of the hole
4152 * @length: The length of the hole
4154 * Returns the number of blocks removed or negative on err
4156 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4158 struct inode *inode = file->f_path.dentry->d_inode;
4159 struct super_block *sb = inode->i_sb;
4160 struct ext4_ext_cache cache_ex;
4161 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4162 struct address_space *mapping = inode->i_mapping;
4163 struct ext4_map_blocks map;
4164 handle_t *handle;
4165 loff_t first_block_offset, last_block_offset, block_len;
4166 loff_t first_page, last_page, first_page_offset, last_page_offset;
4167 int ret, credits, blocks_released, err = 0;
4169 first_block = (offset + sb->s_blocksize - 1) >>
4170 EXT4_BLOCK_SIZE_BITS(sb);
4171 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4173 first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4174 last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4176 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4177 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4179 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4180 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4183 * Write out all dirty pages to avoid race conditions
4184 * Then release them.
4186 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4187 err = filemap_write_and_wait_range(mapping,
4188 first_page_offset == 0 ? 0 : first_page_offset-1,
4189 last_page_offset);
4191 if (err)
4192 return err;
4195 /* Now release the pages */
4196 if (last_page_offset > first_page_offset) {
4197 truncate_inode_pages_range(mapping, first_page_offset,
4198 last_page_offset-1);
4201 /* finish any pending end_io work */
4202 ext4_flush_completed_IO(inode);
4204 credits = ext4_writepage_trans_blocks(inode);
4205 handle = ext4_journal_start(inode, credits);
4206 if (IS_ERR(handle))
4207 return PTR_ERR(handle);
4209 err = ext4_orphan_add(handle, inode);
4210 if (err)
4211 goto out;
4214 * Now we need to zero out the un block aligned data.
4215 * If the file is smaller than a block, just
4216 * zero out the middle
4218 if (first_block > last_block)
4219 ext4_block_zero_page_range(handle, mapping, offset, length);
4220 else {
4221 /* zero out the head of the hole before the first block */
4222 block_len = first_block_offset - offset;
4223 if (block_len > 0)
4224 ext4_block_zero_page_range(handle, mapping,
4225 offset, block_len);
4227 /* zero out the tail of the hole after the last block */
4228 block_len = offset + length - last_block_offset;
4229 if (block_len > 0) {
4230 ext4_block_zero_page_range(handle, mapping,
4231 last_block_offset, block_len);
4235 /* If there are no blocks to remove, return now */
4236 if (first_block >= last_block)
4237 goto out;
4239 down_write(&EXT4_I(inode)->i_data_sem);
4240 ext4_ext_invalidate_cache(inode);
4241 ext4_discard_preallocations(inode);
4244 * Loop over all the blocks and identify blocks
4245 * that need to be punched out
4247 iblock = first_block;
4248 blocks_released = 0;
4249 while (iblock < last_block) {
4250 max_blocks = last_block - iblock;
4251 num_blocks = 1;
4252 memset(&map, 0, sizeof(map));
4253 map.m_lblk = iblock;
4254 map.m_len = max_blocks;
4255 ret = ext4_ext_map_blocks(handle, inode, &map,
4256 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4258 if (ret > 0) {
4259 blocks_released += ret;
4260 num_blocks = ret;
4261 } else if (ret == 0) {
4263 * If map blocks could not find the block,
4264 * then it is in a hole. If the hole was
4265 * not already cached, then map blocks should
4266 * put it in the cache. So we can get the hole
4267 * out of the cache
4269 memset(&cache_ex, 0, sizeof(cache_ex));
4270 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4271 !cache_ex.ec_start) {
4273 /* The hole is cached */
4274 num_blocks = cache_ex.ec_block +
4275 cache_ex.ec_len - iblock;
4277 } else {
4278 /* The block could not be identified */
4279 err = -EIO;
4280 break;
4282 } else {
4283 /* Map blocks error */
4284 err = ret;
4285 break;
4288 if (num_blocks == 0) {
4289 /* This condition should never happen */
4290 ext_debug("Block lookup failed");
4291 err = -EIO;
4292 break;
4295 iblock += num_blocks;
4298 if (blocks_released > 0) {
4299 ext4_ext_invalidate_cache(inode);
4300 ext4_discard_preallocations(inode);
4303 if (IS_SYNC(inode))
4304 ext4_handle_sync(handle);
4306 up_write(&EXT4_I(inode)->i_data_sem);
4308 out:
4309 ext4_orphan_del(handle, inode);
4310 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4311 ext4_mark_inode_dirty(handle, inode);
4312 ext4_journal_stop(handle);
4313 return err;
4315 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4316 __u64 start, __u64 len)
4318 ext4_lblk_t start_blk;
4319 int error = 0;
4321 /* fallback to generic here if not in extents fmt */
4322 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4323 return generic_block_fiemap(inode, fieinfo, start, len,
4324 ext4_get_block);
4326 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4327 return -EBADR;
4329 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4330 error = ext4_xattr_fiemap(inode, fieinfo);
4331 } else {
4332 ext4_lblk_t len_blks;
4333 __u64 last_blk;
4335 start_blk = start >> inode->i_sb->s_blocksize_bits;
4336 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4337 if (last_blk >= EXT_MAX_BLOCKS)
4338 last_blk = EXT_MAX_BLOCKS-1;
4339 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4342 * Walk the extent tree gathering extent information.
4343 * ext4_ext_fiemap_cb will push extents back to user.
4345 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4346 ext4_ext_fiemap_cb, fieinfo);
4349 return error;