staging: usbip: bugfixes related to kthread conversion
[zen-stable.git] / net / ipv4 / fib_trie.c
blobb92c86f6e9b3e92d44e127f9df39b21b55fb2868
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
84 #define MAX_STAT_DEPTH 32
86 #define KEYLENGTH (8*sizeof(t_key))
88 typedef unsigned int t_key;
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
129 struct rt_trie_node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
141 #endif
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
153 struct trie {
154 struct rt_trie_node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
175 static const int sync_pages = 128;
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180 static inline struct tnode *node_parent(struct rt_trie_node *node)
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
187 struct tnode *ret = node_parent(node);
189 return rcu_dereference_rtnl(ret);
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
203 BUG_ON(i >= 1U << tn->bits);
205 return tn->child[i];
208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
210 struct rt_trie_node *ret = tnode_get_child(tn, i);
212 return rcu_dereference_rtnl(ret);
215 static inline int tnode_child_length(const struct tnode *tn)
217 return 1 << tn->bits;
220 static inline t_key mask_pfx(t_key k, unsigned int l)
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
227 if (offset < KEYLENGTH)
228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 else
230 return 0;
233 static inline int tkey_equals(t_key a, t_key b)
235 return a == b;
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
248 t_key diff = a ^ b;
249 int i = offset;
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
254 i++;
255 return i;
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
263 Consider a node 'n' and its parent 'tp'.
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
270 correct key path.
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
282 Example:
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
296 n->bits = 4
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
321 static inline void check_tnode(const struct tnode *tn)
323 WARN_ON(tn && tn->pos+tn->bits > 32);
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
331 static void __alias_free_mem(struct rcu_head *head)
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
339 call_rcu(&fa->rcu, __alias_free_mem);
342 static void __leaf_free_rcu(struct rcu_head *head)
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
348 static inline void free_leaf(struct leaf *l)
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
353 static void __leaf_info_free_rcu(struct rcu_head *head)
355 kfree(container_of(head, struct leaf_info, rcu));
358 static inline void free_leaf_info(struct leaf_info *leaf)
360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
363 static struct tnode *tnode_alloc(size_t size)
365 if (size <= PAGE_SIZE)
366 return kzalloc(size, GFP_KERNEL);
367 else
368 return vzalloc(size);
371 static void __tnode_vfree(struct work_struct *arg)
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
377 static void __tnode_free_rcu(struct rcu_head *head)
379 struct tnode *tn = container_of(head, struct tnode, rcu);
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct rt_trie_node *) << tn->bits);
383 if (size <= PAGE_SIZE)
384 kfree(tn);
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
391 static inline void tnode_free(struct tnode *tn)
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
396 call_rcu(&tn->rcu, __tnode_free_rcu);
399 static void tnode_free_safe(struct tnode *tn)
401 BUG_ON(IS_LEAF(tn));
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct rt_trie_node *) << tn->bits);
408 static void tnode_free_flush(void)
410 struct tnode *tn;
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
424 static struct leaf *leaf_new(void)
426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
431 return l;
434 static struct leaf_info *leaf_info_new(int plen)
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
441 return li;
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
447 struct tnode *tn = tnode_alloc(sz);
449 if (tn) {
450 tn->parent = T_TNODE;
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct rt_trie_node) << bits);
460 return tn;
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
470 if (n == NULL || IS_LEAF(n))
471 return 0;
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct rt_trie_node *n)
479 tnode_put_child_reorg(tn, i, n, -1);
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
488 int wasfull)
490 struct rt_trie_node *chi = tn->child[i];
491 int isfull;
493 BUG_ON(i >= 1<<tn->bits);
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
501 /* update fullChildren */
502 if (wasfull == -1)
503 wasfull = tnode_full(tn, chi);
505 isfull = tnode_full(tn, n);
506 if (wasfull && !isfull)
507 tn->full_children--;
508 else if (!wasfull && isfull)
509 tn->full_children++;
511 if (n)
512 node_set_parent(n, tn);
514 rcu_assign_pointer(tn->child[i], n);
517 #define MAX_WORK 10
518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
520 int i;
521 struct tnode *old_tn;
522 int inflate_threshold_use;
523 int halve_threshold_use;
524 int max_work;
526 if (!tn)
527 return NULL;
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
534 tnode_free_safe(tn);
535 return NULL;
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
539 goto one_child;
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
566 * A clearer way to write this would be:
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 * tn->full_children;
572 * new_child_length = tnode_child_length(tn) * 2;
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
578 * ...and so on, tho it would mess up the while () loop.
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
597 * shorten again:
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
604 check_tnode(tn);
606 /* Keep root node larger */
608 if (!node_parent((struct rt_trie_node *)tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 } else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
622 old_tn = tn;
623 tn = inflate(t, tn);
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
634 check_tnode(tn);
636 /* Return if at least one inflate is run */
637 if (max_work != MAX_WORK)
638 return (struct rt_trie_node *) tn;
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct rt_trie_node *n;
668 n = tn->child[i];
669 if (!n)
670 continue;
672 /* compress one level */
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
679 return (struct rt_trie_node *) tn;
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
688 pr_debug("In inflate\n");
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
726 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
737 /* An empty child */
738 if (node == NULL)
739 continue;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
761 tnode_free_safe(inode);
762 continue;
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
785 * bit to zero.
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
791 BUG_ON(!left);
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
796 BUG_ON(!right);
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
806 tnode_free_safe(inode);
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
812 int size = tnode_child_length(tn);
813 int j;
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
819 tnode_free(tn);
821 return ERR_PTR(-ENOMEM);
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 struct tnode *oldtnode = tn;
828 struct rt_trie_node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
832 pr_debug("In halve\n");
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
856 if (!newn)
857 goto nomem;
859 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
894 int size = tnode_child_length(tn);
895 int j;
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
901 tnode_free(tn);
903 return ERR_PTR(-ENOMEM);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
920 return NULL;
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 struct leaf_info *li = find_leaf_info(l, plen);
927 if (!li)
928 return NULL;
930 return &li->falh;
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
945 last = li;
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 /* rcu_read_lock needs to be hold by caller from readside */
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
959 int pos;
960 struct tnode *tn;
961 struct rt_trie_node *n;
963 pos = 0;
964 n = rcu_dereference_rtnl(t->trie);
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
969 check_tnode(tn);
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
980 /* Case we have found a leaf. Compare prefixes */
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
985 return NULL;
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
990 int wasfull;
991 t_key cindex, key;
992 struct tnode *tp;
994 key = tn->key;
996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct rt_trie_node *)tn, wasfull);
1004 tp = node_parent((struct rt_trie_node *) tn);
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1008 tnode_free_flush();
1009 if (!tp)
1010 break;
1011 tn = tp;
1014 /* Handle last (top) tnode */
1015 if (IS_TNODE(tn))
1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019 tnode_free_flush();
1022 /* only used from updater-side */
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct rt_trie_node *n;
1029 struct leaf *l;
1030 int missbit;
1031 struct list_head *fa_head = NULL;
1032 struct leaf_info *li;
1033 t_key cindex;
1035 pos = 0;
1036 n = t->trie;
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
1040 * and we should just put our new leaf in that.
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 * not be the parent's 'pos'+'bits'!
1045 * If it does match the current key, get pos/bits from it, extract
1046 * the index from our key, push the T_TNODE and walk the tree.
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
1053 * If it doesn't, we need to replace it with a T_TNODE.
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
1059 check_tnode(tn);
1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 tp = tn;
1063 pos = tn->pos + tn->bits;
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
1069 BUG_ON(n && node_parent(n) != tn);
1070 } else
1071 break;
1075 * n ----> NULL, LEAF or TNODE
1077 * tp is n's (parent) ----> NULL or TNODE
1080 BUG_ON(tp && IS_LEAF(tp));
1082 /* Case 1: n is a leaf. Compare prefixes */
1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 l = (struct leaf *) n;
1086 li = leaf_info_new(plen);
1088 if (!li)
1089 return NULL;
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1095 l = leaf_new();
1097 if (!l)
1098 return NULL;
1100 l->key = key;
1101 li = leaf_info_new(plen);
1103 if (!li) {
1104 free_leaf(l);
1105 return NULL;
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1111 if (t->trie && n == NULL) {
1112 /* Case 2: n is NULL, and will just insert a new leaf */
1114 node_set_parent((struct rt_trie_node *)l, tp);
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1121 * Add a new tnode here
1122 * first tnode need some special handling
1125 if (tp)
1126 pos = tp->pos+tp->bits;
1127 else
1128 pos = 0;
1130 if (n) {
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
1133 } else {
1134 newpos = 0;
1135 tn = tnode_new(key, newpos, 1); /* First tnode */
1138 if (!tn) {
1139 free_leaf_info(li);
1140 free_leaf(l);
1141 return NULL;
1144 node_set_parent((struct rt_trie_node *)tn, tp);
1146 missbit = tkey_extract_bits(key, newpos, 1);
1147 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1148 put_child(t, tn, 1-missbit, n);
1150 if (tp) {
1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct rt_trie_node *)tn);
1154 } else {
1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1156 tp = tn;
1160 if (tp && tp->pos + tp->bits > 32)
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
1165 /* Rebalance the trie */
1167 trie_rebalance(t, tp);
1168 done:
1169 return fa_head;
1173 * Caller must hold RTNL.
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
1179 struct list_head *fa_head = NULL;
1180 struct fib_info *fi;
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1187 if (plen > 32)
1188 return -EINVAL;
1190 key = ntohl(cfg->fc_dst);
1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1194 mask = ntohl(inet_make_mask(plen));
1196 if (key & ~mask)
1197 return -EINVAL;
1199 key = key & mask;
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
1204 goto err;
1207 l = fib_find_node(t, key);
1208 fa = NULL;
1210 if (l) {
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
1230 err = -EEXIST;
1231 if (cfg->fc_nlflags & NLM_F_EXCL)
1232 goto out;
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_info == fi) {
1249 fa_match = fa;
1250 break;
1254 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1255 struct fib_info *fi_drop;
1256 u8 state;
1258 fa = fa_first;
1259 if (fa_match) {
1260 if (fa == fa_match)
1261 err = 0;
1262 goto out;
1264 err = -ENOBUFS;
1265 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1266 if (new_fa == NULL)
1267 goto out;
1269 fi_drop = fa->fa_info;
1270 new_fa->fa_tos = fa->fa_tos;
1271 new_fa->fa_info = fi;
1272 new_fa->fa_type = cfg->fc_type;
1273 state = fa->fa_state;
1274 new_fa->fa_state = state & ~FA_S_ACCESSED;
1276 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1277 alias_free_mem_rcu(fa);
1279 fib_release_info(fi_drop);
1280 if (state & FA_S_ACCESSED)
1281 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1282 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1283 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1285 goto succeeded;
1287 /* Error if we find a perfect match which
1288 * uses the same scope, type, and nexthop
1289 * information.
1291 if (fa_match)
1292 goto out;
1294 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1295 fa = fa_first;
1297 err = -ENOENT;
1298 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1299 goto out;
1301 err = -ENOBUFS;
1302 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1303 if (new_fa == NULL)
1304 goto out;
1306 new_fa->fa_info = fi;
1307 new_fa->fa_tos = tos;
1308 new_fa->fa_type = cfg->fc_type;
1309 new_fa->fa_state = 0;
1311 * Insert new entry to the list.
1314 if (!fa_head) {
1315 fa_head = fib_insert_node(t, key, plen);
1316 if (unlikely(!fa_head)) {
1317 err = -ENOMEM;
1318 goto out_free_new_fa;
1322 list_add_tail_rcu(&new_fa->fa_list,
1323 (fa ? &fa->fa_list : fa_head));
1325 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1326 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1327 &cfg->fc_nlinfo, 0);
1328 succeeded:
1329 return 0;
1331 out_free_new_fa:
1332 kmem_cache_free(fn_alias_kmem, new_fa);
1333 out:
1334 fib_release_info(fi);
1335 err:
1336 return err;
1339 /* should be called with rcu_read_lock */
1340 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1341 t_key key, const struct flowi4 *flp,
1342 struct fib_result *res, int fib_flags)
1344 struct leaf_info *li;
1345 struct hlist_head *hhead = &l->list;
1346 struct hlist_node *node;
1348 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1349 struct fib_alias *fa;
1350 int plen = li->plen;
1351 __be32 mask = inet_make_mask(plen);
1353 if (l->key != (key & ntohl(mask)))
1354 continue;
1356 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1357 struct fib_info *fi = fa->fa_info;
1358 int nhsel, err;
1360 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1361 continue;
1362 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1363 continue;
1364 fib_alias_accessed(fa);
1365 err = fib_props[fa->fa_type].error;
1366 if (err) {
1367 #ifdef CONFIG_IP_FIB_TRIE_STATS
1368 t->stats.semantic_match_passed++;
1369 #endif
1370 return err;
1372 if (fi->fib_flags & RTNH_F_DEAD)
1373 continue;
1374 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1375 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1377 if (nh->nh_flags & RTNH_F_DEAD)
1378 continue;
1379 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1380 continue;
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 t->stats.semantic_match_passed++;
1384 #endif
1385 res->prefixlen = plen;
1386 res->nh_sel = nhsel;
1387 res->type = fa->fa_type;
1388 res->scope = fa->fa_info->fib_scope;
1389 res->fi = fi;
1390 res->table = tb;
1391 res->fa_head = &li->falh;
1392 if (!(fib_flags & FIB_LOOKUP_NOREF))
1393 atomic_inc(&res->fi->fib_clntref);
1394 return 0;
1398 #ifdef CONFIG_IP_FIB_TRIE_STATS
1399 t->stats.semantic_match_miss++;
1400 #endif
1403 return 1;
1406 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1407 struct fib_result *res, int fib_flags)
1409 struct trie *t = (struct trie *) tb->tb_data;
1410 int ret;
1411 struct rt_trie_node *n;
1412 struct tnode *pn;
1413 unsigned int pos, bits;
1414 t_key key = ntohl(flp->daddr);
1415 unsigned int chopped_off;
1416 t_key cindex = 0;
1417 unsigned int current_prefix_length = KEYLENGTH;
1418 struct tnode *cn;
1419 t_key pref_mismatch;
1421 rcu_read_lock();
1423 n = rcu_dereference(t->trie);
1424 if (!n)
1425 goto failed;
1427 #ifdef CONFIG_IP_FIB_TRIE_STATS
1428 t->stats.gets++;
1429 #endif
1431 /* Just a leaf? */
1432 if (IS_LEAF(n)) {
1433 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1434 goto found;
1437 pn = (struct tnode *) n;
1438 chopped_off = 0;
1440 while (pn) {
1441 pos = pn->pos;
1442 bits = pn->bits;
1444 if (!chopped_off)
1445 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1446 pos, bits);
1448 n = tnode_get_child_rcu(pn, cindex);
1450 if (n == NULL) {
1451 #ifdef CONFIG_IP_FIB_TRIE_STATS
1452 t->stats.null_node_hit++;
1453 #endif
1454 goto backtrace;
1457 if (IS_LEAF(n)) {
1458 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1459 if (ret > 0)
1460 goto backtrace;
1461 goto found;
1464 cn = (struct tnode *)n;
1467 * It's a tnode, and we can do some extra checks here if we
1468 * like, to avoid descending into a dead-end branch.
1469 * This tnode is in the parent's child array at index
1470 * key[p_pos..p_pos+p_bits] but potentially with some bits
1471 * chopped off, so in reality the index may be just a
1472 * subprefix, padded with zero at the end.
1473 * We can also take a look at any skipped bits in this
1474 * tnode - everything up to p_pos is supposed to be ok,
1475 * and the non-chopped bits of the index (se previous
1476 * paragraph) are also guaranteed ok, but the rest is
1477 * considered unknown.
1479 * The skipped bits are key[pos+bits..cn->pos].
1482 /* If current_prefix_length < pos+bits, we are already doing
1483 * actual prefix matching, which means everything from
1484 * pos+(bits-chopped_off) onward must be zero along some
1485 * branch of this subtree - otherwise there is *no* valid
1486 * prefix present. Here we can only check the skipped
1487 * bits. Remember, since we have already indexed into the
1488 * parent's child array, we know that the bits we chopped of
1489 * *are* zero.
1492 /* NOTA BENE: Checking only skipped bits
1493 for the new node here */
1495 if (current_prefix_length < pos+bits) {
1496 if (tkey_extract_bits(cn->key, current_prefix_length,
1497 cn->pos - current_prefix_length)
1498 || !(cn->child[0]))
1499 goto backtrace;
1503 * If chopped_off=0, the index is fully validated and we
1504 * only need to look at the skipped bits for this, the new,
1505 * tnode. What we actually want to do is to find out if
1506 * these skipped bits match our key perfectly, or if we will
1507 * have to count on finding a matching prefix further down,
1508 * because if we do, we would like to have some way of
1509 * verifying the existence of such a prefix at this point.
1512 /* The only thing we can do at this point is to verify that
1513 * any such matching prefix can indeed be a prefix to our
1514 * key, and if the bits in the node we are inspecting that
1515 * do not match our key are not ZERO, this cannot be true.
1516 * Thus, find out where there is a mismatch (before cn->pos)
1517 * and verify that all the mismatching bits are zero in the
1518 * new tnode's key.
1522 * Note: We aren't very concerned about the piece of
1523 * the key that precede pn->pos+pn->bits, since these
1524 * have already been checked. The bits after cn->pos
1525 * aren't checked since these are by definition
1526 * "unknown" at this point. Thus, what we want to see
1527 * is if we are about to enter the "prefix matching"
1528 * state, and in that case verify that the skipped
1529 * bits that will prevail throughout this subtree are
1530 * zero, as they have to be if we are to find a
1531 * matching prefix.
1534 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1537 * In short: If skipped bits in this node do not match
1538 * the search key, enter the "prefix matching"
1539 * state.directly.
1541 if (pref_mismatch) {
1542 int mp = KEYLENGTH - fls(pref_mismatch);
1544 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1545 goto backtrace;
1547 if (current_prefix_length >= cn->pos)
1548 current_prefix_length = mp;
1551 pn = (struct tnode *)n; /* Descend */
1552 chopped_off = 0;
1553 continue;
1555 backtrace:
1556 chopped_off++;
1558 /* As zero don't change the child key (cindex) */
1559 while ((chopped_off <= pn->bits)
1560 && !(cindex & (1<<(chopped_off-1))))
1561 chopped_off++;
1563 /* Decrease current_... with bits chopped off */
1564 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1565 current_prefix_length = pn->pos + pn->bits
1566 - chopped_off;
1569 * Either we do the actual chop off according or if we have
1570 * chopped off all bits in this tnode walk up to our parent.
1573 if (chopped_off <= pn->bits) {
1574 cindex &= ~(1 << (chopped_off-1));
1575 } else {
1576 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1577 if (!parent)
1578 goto failed;
1580 /* Get Child's index */
1581 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1582 pn = parent;
1583 chopped_off = 0;
1585 #ifdef CONFIG_IP_FIB_TRIE_STATS
1586 t->stats.backtrack++;
1587 #endif
1588 goto backtrace;
1591 failed:
1592 ret = 1;
1593 found:
1594 rcu_read_unlock();
1595 return ret;
1599 * Remove the leaf and return parent.
1601 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1603 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1605 pr_debug("entering trie_leaf_remove(%p)\n", l);
1607 if (tp) {
1608 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1609 put_child(t, (struct tnode *)tp, cindex, NULL);
1610 trie_rebalance(t, tp);
1611 } else
1612 rcu_assign_pointer(t->trie, NULL);
1614 free_leaf(l);
1618 * Caller must hold RTNL.
1620 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1622 struct trie *t = (struct trie *) tb->tb_data;
1623 u32 key, mask;
1624 int plen = cfg->fc_dst_len;
1625 u8 tos = cfg->fc_tos;
1626 struct fib_alias *fa, *fa_to_delete;
1627 struct list_head *fa_head;
1628 struct leaf *l;
1629 struct leaf_info *li;
1631 if (plen > 32)
1632 return -EINVAL;
1634 key = ntohl(cfg->fc_dst);
1635 mask = ntohl(inet_make_mask(plen));
1637 if (key & ~mask)
1638 return -EINVAL;
1640 key = key & mask;
1641 l = fib_find_node(t, key);
1643 if (!l)
1644 return -ESRCH;
1646 fa_head = get_fa_head(l, plen);
1647 fa = fib_find_alias(fa_head, tos, 0);
1649 if (!fa)
1650 return -ESRCH;
1652 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1654 fa_to_delete = NULL;
1655 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1656 list_for_each_entry_continue(fa, fa_head, fa_list) {
1657 struct fib_info *fi = fa->fa_info;
1659 if (fa->fa_tos != tos)
1660 break;
1662 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1663 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1664 fa->fa_info->fib_scope == cfg->fc_scope) &&
1665 (!cfg->fc_prefsrc ||
1666 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1667 (!cfg->fc_protocol ||
1668 fi->fib_protocol == cfg->fc_protocol) &&
1669 fib_nh_match(cfg, fi) == 0) {
1670 fa_to_delete = fa;
1671 break;
1675 if (!fa_to_delete)
1676 return -ESRCH;
1678 fa = fa_to_delete;
1679 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1680 &cfg->fc_nlinfo, 0);
1682 l = fib_find_node(t, key);
1683 li = find_leaf_info(l, plen);
1685 list_del_rcu(&fa->fa_list);
1687 if (list_empty(fa_head)) {
1688 hlist_del_rcu(&li->hlist);
1689 free_leaf_info(li);
1692 if (hlist_empty(&l->list))
1693 trie_leaf_remove(t, l);
1695 if (fa->fa_state & FA_S_ACCESSED)
1696 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1698 fib_release_info(fa->fa_info);
1699 alias_free_mem_rcu(fa);
1700 return 0;
1703 static int trie_flush_list(struct list_head *head)
1705 struct fib_alias *fa, *fa_node;
1706 int found = 0;
1708 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1709 struct fib_info *fi = fa->fa_info;
1711 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1712 list_del_rcu(&fa->fa_list);
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
1715 found++;
1718 return found;
1721 static int trie_flush_leaf(struct leaf *l)
1723 int found = 0;
1724 struct hlist_head *lih = &l->list;
1725 struct hlist_node *node, *tmp;
1726 struct leaf_info *li = NULL;
1728 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1729 found += trie_flush_list(&li->falh);
1731 if (list_empty(&li->falh)) {
1732 hlist_del_rcu(&li->hlist);
1733 free_leaf_info(li);
1736 return found;
1740 * Scan for the next right leaf starting at node p->child[idx]
1741 * Since we have back pointer, no recursion necessary.
1743 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1745 do {
1746 t_key idx;
1748 if (c)
1749 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1750 else
1751 idx = 0;
1753 while (idx < 1u << p->bits) {
1754 c = tnode_get_child_rcu(p, idx++);
1755 if (!c)
1756 continue;
1758 if (IS_LEAF(c)) {
1759 prefetch(p->child[idx]);
1760 return (struct leaf *) c;
1763 /* Rescan start scanning in new node */
1764 p = (struct tnode *) c;
1765 idx = 0;
1768 /* Node empty, walk back up to parent */
1769 c = (struct rt_trie_node *) p;
1770 } while ((p = node_parent_rcu(c)) != NULL);
1772 return NULL; /* Root of trie */
1775 static struct leaf *trie_firstleaf(struct trie *t)
1777 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1779 if (!n)
1780 return NULL;
1782 if (IS_LEAF(n)) /* trie is just a leaf */
1783 return (struct leaf *) n;
1785 return leaf_walk_rcu(n, NULL);
1788 static struct leaf *trie_nextleaf(struct leaf *l)
1790 struct rt_trie_node *c = (struct rt_trie_node *) l;
1791 struct tnode *p = node_parent_rcu(c);
1793 if (!p)
1794 return NULL; /* trie with just one leaf */
1796 return leaf_walk_rcu(p, c);
1799 static struct leaf *trie_leafindex(struct trie *t, int index)
1801 struct leaf *l = trie_firstleaf(t);
1803 while (l && index-- > 0)
1804 l = trie_nextleaf(l);
1806 return l;
1811 * Caller must hold RTNL.
1813 int fib_table_flush(struct fib_table *tb)
1815 struct trie *t = (struct trie *) tb->tb_data;
1816 struct leaf *l, *ll = NULL;
1817 int found = 0;
1819 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1820 found += trie_flush_leaf(l);
1822 if (ll && hlist_empty(&ll->list))
1823 trie_leaf_remove(t, ll);
1824 ll = l;
1827 if (ll && hlist_empty(&ll->list))
1828 trie_leaf_remove(t, ll);
1830 pr_debug("trie_flush found=%d\n", found);
1831 return found;
1834 void fib_free_table(struct fib_table *tb)
1836 kfree(tb);
1839 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1840 struct fib_table *tb,
1841 struct sk_buff *skb, struct netlink_callback *cb)
1843 int i, s_i;
1844 struct fib_alias *fa;
1845 __be32 xkey = htonl(key);
1847 s_i = cb->args[5];
1848 i = 0;
1850 /* rcu_read_lock is hold by caller */
1852 list_for_each_entry_rcu(fa, fah, fa_list) {
1853 if (i < s_i) {
1854 i++;
1855 continue;
1858 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1859 cb->nlh->nlmsg_seq,
1860 RTM_NEWROUTE,
1861 tb->tb_id,
1862 fa->fa_type,
1863 xkey,
1864 plen,
1865 fa->fa_tos,
1866 fa->fa_info, NLM_F_MULTI) < 0) {
1867 cb->args[5] = i;
1868 return -1;
1870 i++;
1872 cb->args[5] = i;
1873 return skb->len;
1876 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1877 struct sk_buff *skb, struct netlink_callback *cb)
1879 struct leaf_info *li;
1880 struct hlist_node *node;
1881 int i, s_i;
1883 s_i = cb->args[4];
1884 i = 0;
1886 /* rcu_read_lock is hold by caller */
1887 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1888 if (i < s_i) {
1889 i++;
1890 continue;
1893 if (i > s_i)
1894 cb->args[5] = 0;
1896 if (list_empty(&li->falh))
1897 continue;
1899 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1900 cb->args[4] = i;
1901 return -1;
1903 i++;
1906 cb->args[4] = i;
1907 return skb->len;
1910 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1911 struct netlink_callback *cb)
1913 struct leaf *l;
1914 struct trie *t = (struct trie *) tb->tb_data;
1915 t_key key = cb->args[2];
1916 int count = cb->args[3];
1918 rcu_read_lock();
1919 /* Dump starting at last key.
1920 * Note: 0.0.0.0/0 (ie default) is first key.
1922 if (count == 0)
1923 l = trie_firstleaf(t);
1924 else {
1925 /* Normally, continue from last key, but if that is missing
1926 * fallback to using slow rescan
1928 l = fib_find_node(t, key);
1929 if (!l)
1930 l = trie_leafindex(t, count);
1933 while (l) {
1934 cb->args[2] = l->key;
1935 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1936 cb->args[3] = count;
1937 rcu_read_unlock();
1938 return -1;
1941 ++count;
1942 l = trie_nextleaf(l);
1943 memset(&cb->args[4], 0,
1944 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1946 cb->args[3] = count;
1947 rcu_read_unlock();
1949 return skb->len;
1952 void __init fib_trie_init(void)
1954 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1955 sizeof(struct fib_alias),
1956 0, SLAB_PANIC, NULL);
1958 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1959 max(sizeof(struct leaf),
1960 sizeof(struct leaf_info)),
1961 0, SLAB_PANIC, NULL);
1965 struct fib_table *fib_trie_table(u32 id)
1967 struct fib_table *tb;
1968 struct trie *t;
1970 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1971 GFP_KERNEL);
1972 if (tb == NULL)
1973 return NULL;
1975 tb->tb_id = id;
1976 tb->tb_default = -1;
1978 t = (struct trie *) tb->tb_data;
1979 memset(t, 0, sizeof(*t));
1981 if (id == RT_TABLE_LOCAL)
1982 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1984 return tb;
1987 #ifdef CONFIG_PROC_FS
1988 /* Depth first Trie walk iterator */
1989 struct fib_trie_iter {
1990 struct seq_net_private p;
1991 struct fib_table *tb;
1992 struct tnode *tnode;
1993 unsigned int index;
1994 unsigned int depth;
1997 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1999 struct tnode *tn = iter->tnode;
2000 unsigned int cindex = iter->index;
2001 struct tnode *p;
2003 /* A single entry routing table */
2004 if (!tn)
2005 return NULL;
2007 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2008 iter->tnode, iter->index, iter->depth);
2009 rescan:
2010 while (cindex < (1<<tn->bits)) {
2011 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2013 if (n) {
2014 if (IS_LEAF(n)) {
2015 iter->tnode = tn;
2016 iter->index = cindex + 1;
2017 } else {
2018 /* push down one level */
2019 iter->tnode = (struct tnode *) n;
2020 iter->index = 0;
2021 ++iter->depth;
2023 return n;
2026 ++cindex;
2029 /* Current node exhausted, pop back up */
2030 p = node_parent_rcu((struct rt_trie_node *)tn);
2031 if (p) {
2032 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2033 tn = p;
2034 --iter->depth;
2035 goto rescan;
2038 /* got root? */
2039 return NULL;
2042 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2043 struct trie *t)
2045 struct rt_trie_node *n;
2047 if (!t)
2048 return NULL;
2050 n = rcu_dereference(t->trie);
2051 if (!n)
2052 return NULL;
2054 if (IS_TNODE(n)) {
2055 iter->tnode = (struct tnode *) n;
2056 iter->index = 0;
2057 iter->depth = 1;
2058 } else {
2059 iter->tnode = NULL;
2060 iter->index = 0;
2061 iter->depth = 0;
2064 return n;
2067 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2069 struct rt_trie_node *n;
2070 struct fib_trie_iter iter;
2072 memset(s, 0, sizeof(*s));
2074 rcu_read_lock();
2075 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2076 if (IS_LEAF(n)) {
2077 struct leaf *l = (struct leaf *)n;
2078 struct leaf_info *li;
2079 struct hlist_node *tmp;
2081 s->leaves++;
2082 s->totdepth += iter.depth;
2083 if (iter.depth > s->maxdepth)
2084 s->maxdepth = iter.depth;
2086 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2087 ++s->prefixes;
2088 } else {
2089 const struct tnode *tn = (const struct tnode *) n;
2090 int i;
2092 s->tnodes++;
2093 if (tn->bits < MAX_STAT_DEPTH)
2094 s->nodesizes[tn->bits]++;
2096 for (i = 0; i < (1<<tn->bits); i++)
2097 if (!tn->child[i])
2098 s->nullpointers++;
2101 rcu_read_unlock();
2105 * This outputs /proc/net/fib_triestats
2107 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2109 unsigned int i, max, pointers, bytes, avdepth;
2111 if (stat->leaves)
2112 avdepth = stat->totdepth*100 / stat->leaves;
2113 else
2114 avdepth = 0;
2116 seq_printf(seq, "\tAver depth: %u.%02d\n",
2117 avdepth / 100, avdepth % 100);
2118 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2120 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2121 bytes = sizeof(struct leaf) * stat->leaves;
2123 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2124 bytes += sizeof(struct leaf_info) * stat->prefixes;
2126 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2127 bytes += sizeof(struct tnode) * stat->tnodes;
2129 max = MAX_STAT_DEPTH;
2130 while (max > 0 && stat->nodesizes[max-1] == 0)
2131 max--;
2133 pointers = 0;
2134 for (i = 1; i <= max; i++)
2135 if (stat->nodesizes[i] != 0) {
2136 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2137 pointers += (1<<i) * stat->nodesizes[i];
2139 seq_putc(seq, '\n');
2140 seq_printf(seq, "\tPointers: %u\n", pointers);
2142 bytes += sizeof(struct rt_trie_node *) * pointers;
2143 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2144 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2147 #ifdef CONFIG_IP_FIB_TRIE_STATS
2148 static void trie_show_usage(struct seq_file *seq,
2149 const struct trie_use_stats *stats)
2151 seq_printf(seq, "\nCounters:\n---------\n");
2152 seq_printf(seq, "gets = %u\n", stats->gets);
2153 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2154 seq_printf(seq, "semantic match passed = %u\n",
2155 stats->semantic_match_passed);
2156 seq_printf(seq, "semantic match miss = %u\n",
2157 stats->semantic_match_miss);
2158 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2159 seq_printf(seq, "skipped node resize = %u\n\n",
2160 stats->resize_node_skipped);
2162 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2164 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2166 if (tb->tb_id == RT_TABLE_LOCAL)
2167 seq_puts(seq, "Local:\n");
2168 else if (tb->tb_id == RT_TABLE_MAIN)
2169 seq_puts(seq, "Main:\n");
2170 else
2171 seq_printf(seq, "Id %d:\n", tb->tb_id);
2175 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2177 struct net *net = (struct net *)seq->private;
2178 unsigned int h;
2180 seq_printf(seq,
2181 "Basic info: size of leaf:"
2182 " %Zd bytes, size of tnode: %Zd bytes.\n",
2183 sizeof(struct leaf), sizeof(struct tnode));
2185 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2186 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2187 struct hlist_node *node;
2188 struct fib_table *tb;
2190 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2191 struct trie *t = (struct trie *) tb->tb_data;
2192 struct trie_stat stat;
2194 if (!t)
2195 continue;
2197 fib_table_print(seq, tb);
2199 trie_collect_stats(t, &stat);
2200 trie_show_stats(seq, &stat);
2201 #ifdef CONFIG_IP_FIB_TRIE_STATS
2202 trie_show_usage(seq, &t->stats);
2203 #endif
2207 return 0;
2210 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2212 return single_open_net(inode, file, fib_triestat_seq_show);
2215 static const struct file_operations fib_triestat_fops = {
2216 .owner = THIS_MODULE,
2217 .open = fib_triestat_seq_open,
2218 .read = seq_read,
2219 .llseek = seq_lseek,
2220 .release = single_release_net,
2223 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2225 struct fib_trie_iter *iter = seq->private;
2226 struct net *net = seq_file_net(seq);
2227 loff_t idx = 0;
2228 unsigned int h;
2230 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2231 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2232 struct hlist_node *node;
2233 struct fib_table *tb;
2235 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2236 struct rt_trie_node *n;
2238 for (n = fib_trie_get_first(iter,
2239 (struct trie *) tb->tb_data);
2240 n; n = fib_trie_get_next(iter))
2241 if (pos == idx++) {
2242 iter->tb = tb;
2243 return n;
2248 return NULL;
2251 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2252 __acquires(RCU)
2254 rcu_read_lock();
2255 return fib_trie_get_idx(seq, *pos);
2258 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2260 struct fib_trie_iter *iter = seq->private;
2261 struct net *net = seq_file_net(seq);
2262 struct fib_table *tb = iter->tb;
2263 struct hlist_node *tb_node;
2264 unsigned int h;
2265 struct rt_trie_node *n;
2267 ++*pos;
2268 /* next node in same table */
2269 n = fib_trie_get_next(iter);
2270 if (n)
2271 return n;
2273 /* walk rest of this hash chain */
2274 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2275 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2276 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2282 /* new hash chain */
2283 while (++h < FIB_TABLE_HASHSZ) {
2284 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2285 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2286 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2287 if (n)
2288 goto found;
2291 return NULL;
2293 found:
2294 iter->tb = tb;
2295 return n;
2298 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2299 __releases(RCU)
2301 rcu_read_unlock();
2304 static void seq_indent(struct seq_file *seq, int n)
2306 while (n-- > 0)
2307 seq_puts(seq, " ");
2310 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2312 switch (s) {
2313 case RT_SCOPE_UNIVERSE: return "universe";
2314 case RT_SCOPE_SITE: return "site";
2315 case RT_SCOPE_LINK: return "link";
2316 case RT_SCOPE_HOST: return "host";
2317 case RT_SCOPE_NOWHERE: return "nowhere";
2318 default:
2319 snprintf(buf, len, "scope=%d", s);
2320 return buf;
2324 static const char *const rtn_type_names[__RTN_MAX] = {
2325 [RTN_UNSPEC] = "UNSPEC",
2326 [RTN_UNICAST] = "UNICAST",
2327 [RTN_LOCAL] = "LOCAL",
2328 [RTN_BROADCAST] = "BROADCAST",
2329 [RTN_ANYCAST] = "ANYCAST",
2330 [RTN_MULTICAST] = "MULTICAST",
2331 [RTN_BLACKHOLE] = "BLACKHOLE",
2332 [RTN_UNREACHABLE] = "UNREACHABLE",
2333 [RTN_PROHIBIT] = "PROHIBIT",
2334 [RTN_THROW] = "THROW",
2335 [RTN_NAT] = "NAT",
2336 [RTN_XRESOLVE] = "XRESOLVE",
2339 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2341 if (t < __RTN_MAX && rtn_type_names[t])
2342 return rtn_type_names[t];
2343 snprintf(buf, len, "type %u", t);
2344 return buf;
2347 /* Pretty print the trie */
2348 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2350 const struct fib_trie_iter *iter = seq->private;
2351 struct rt_trie_node *n = v;
2353 if (!node_parent_rcu(n))
2354 fib_table_print(seq, iter->tb);
2356 if (IS_TNODE(n)) {
2357 struct tnode *tn = (struct tnode *) n;
2358 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2360 seq_indent(seq, iter->depth-1);
2361 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2362 &prf, tn->pos, tn->bits, tn->full_children,
2363 tn->empty_children);
2365 } else {
2366 struct leaf *l = (struct leaf *) n;
2367 struct leaf_info *li;
2368 struct hlist_node *node;
2369 __be32 val = htonl(l->key);
2371 seq_indent(seq, iter->depth);
2372 seq_printf(seq, " |-- %pI4\n", &val);
2374 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2375 struct fib_alias *fa;
2377 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2378 char buf1[32], buf2[32];
2380 seq_indent(seq, iter->depth+1);
2381 seq_printf(seq, " /%d %s %s", li->plen,
2382 rtn_scope(buf1, sizeof(buf1),
2383 fa->fa_info->fib_scope),
2384 rtn_type(buf2, sizeof(buf2),
2385 fa->fa_type));
2386 if (fa->fa_tos)
2387 seq_printf(seq, " tos=%d", fa->fa_tos);
2388 seq_putc(seq, '\n');
2393 return 0;
2396 static const struct seq_operations fib_trie_seq_ops = {
2397 .start = fib_trie_seq_start,
2398 .next = fib_trie_seq_next,
2399 .stop = fib_trie_seq_stop,
2400 .show = fib_trie_seq_show,
2403 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2405 return seq_open_net(inode, file, &fib_trie_seq_ops,
2406 sizeof(struct fib_trie_iter));
2409 static const struct file_operations fib_trie_fops = {
2410 .owner = THIS_MODULE,
2411 .open = fib_trie_seq_open,
2412 .read = seq_read,
2413 .llseek = seq_lseek,
2414 .release = seq_release_net,
2417 struct fib_route_iter {
2418 struct seq_net_private p;
2419 struct trie *main_trie;
2420 loff_t pos;
2421 t_key key;
2424 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2426 struct leaf *l = NULL;
2427 struct trie *t = iter->main_trie;
2429 /* use cache location of last found key */
2430 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2431 pos -= iter->pos;
2432 else {
2433 iter->pos = 0;
2434 l = trie_firstleaf(t);
2437 while (l && pos-- > 0) {
2438 iter->pos++;
2439 l = trie_nextleaf(l);
2442 if (l)
2443 iter->key = pos; /* remember it */
2444 else
2445 iter->pos = 0; /* forget it */
2447 return l;
2450 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2451 __acquires(RCU)
2453 struct fib_route_iter *iter = seq->private;
2454 struct fib_table *tb;
2456 rcu_read_lock();
2457 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2458 if (!tb)
2459 return NULL;
2461 iter->main_trie = (struct trie *) tb->tb_data;
2462 if (*pos == 0)
2463 return SEQ_START_TOKEN;
2464 else
2465 return fib_route_get_idx(iter, *pos - 1);
2468 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2470 struct fib_route_iter *iter = seq->private;
2471 struct leaf *l = v;
2473 ++*pos;
2474 if (v == SEQ_START_TOKEN) {
2475 iter->pos = 0;
2476 l = trie_firstleaf(iter->main_trie);
2477 } else {
2478 iter->pos++;
2479 l = trie_nextleaf(l);
2482 if (l)
2483 iter->key = l->key;
2484 else
2485 iter->pos = 0;
2486 return l;
2489 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2490 __releases(RCU)
2492 rcu_read_unlock();
2495 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2497 unsigned int flags = 0;
2499 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2500 flags = RTF_REJECT;
2501 if (fi && fi->fib_nh->nh_gw)
2502 flags |= RTF_GATEWAY;
2503 if (mask == htonl(0xFFFFFFFF))
2504 flags |= RTF_HOST;
2505 flags |= RTF_UP;
2506 return flags;
2510 * This outputs /proc/net/route.
2511 * The format of the file is not supposed to be changed
2512 * and needs to be same as fib_hash output to avoid breaking
2513 * legacy utilities
2515 static int fib_route_seq_show(struct seq_file *seq, void *v)
2517 struct leaf *l = v;
2518 struct leaf_info *li;
2519 struct hlist_node *node;
2521 if (v == SEQ_START_TOKEN) {
2522 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2523 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2524 "\tWindow\tIRTT");
2525 return 0;
2528 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2529 struct fib_alias *fa;
2530 __be32 mask, prefix;
2532 mask = inet_make_mask(li->plen);
2533 prefix = htonl(l->key);
2535 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2536 const struct fib_info *fi = fa->fa_info;
2537 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2538 int len;
2540 if (fa->fa_type == RTN_BROADCAST
2541 || fa->fa_type == RTN_MULTICAST)
2542 continue;
2544 if (fi)
2545 seq_printf(seq,
2546 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2547 "%d\t%08X\t%d\t%u\t%u%n",
2548 fi->fib_dev ? fi->fib_dev->name : "*",
2549 prefix,
2550 fi->fib_nh->nh_gw, flags, 0, 0,
2551 fi->fib_priority,
2552 mask,
2553 (fi->fib_advmss ?
2554 fi->fib_advmss + 40 : 0),
2555 fi->fib_window,
2556 fi->fib_rtt >> 3, &len);
2557 else
2558 seq_printf(seq,
2559 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
2561 prefix, 0, flags, 0, 0, 0,
2562 mask, 0, 0, 0, &len);
2564 seq_printf(seq, "%*s\n", 127 - len, "");
2568 return 0;
2571 static const struct seq_operations fib_route_seq_ops = {
2572 .start = fib_route_seq_start,
2573 .next = fib_route_seq_next,
2574 .stop = fib_route_seq_stop,
2575 .show = fib_route_seq_show,
2578 static int fib_route_seq_open(struct inode *inode, struct file *file)
2580 return seq_open_net(inode, file, &fib_route_seq_ops,
2581 sizeof(struct fib_route_iter));
2584 static const struct file_operations fib_route_fops = {
2585 .owner = THIS_MODULE,
2586 .open = fib_route_seq_open,
2587 .read = seq_read,
2588 .llseek = seq_lseek,
2589 .release = seq_release_net,
2592 int __net_init fib_proc_init(struct net *net)
2594 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2595 goto out1;
2597 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2598 &fib_triestat_fops))
2599 goto out2;
2601 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2602 goto out3;
2604 return 0;
2606 out3:
2607 proc_net_remove(net, "fib_triestat");
2608 out2:
2609 proc_net_remove(net, "fib_trie");
2610 out1:
2611 return -ENOMEM;
2614 void __net_exit fib_proc_exit(struct net *net)
2616 proc_net_remove(net, "fib_trie");
2617 proc_net_remove(net, "fib_triestat");
2618 proc_net_remove(net, "route");
2621 #endif /* CONFIG_PROC_FS */