4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
24 #include <asm/cputype.h>
26 #include <asm/irq_regs.h>
28 #include <asm/stacktrace.h>
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
39 #define ARMPMU_MAX_HWEVENTS 32
41 static DEFINE_PER_CPU(struct perf_event
* [ARMPMU_MAX_HWEVENTS
], hw_events
);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS
)], used_mask
);
43 static DEFINE_PER_CPU(struct pmu_hw_events
, cpu_hw_events
);
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu
*cpu_pmu
;
51 armpmu_get_pmu_id(void)
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id
);
63 armpmu_get_max_events(void)
68 max_events
= cpu_pmu
->num_events
;
72 EXPORT_SYMBOL_GPL(armpmu_get_max_events
);
74 int perf_num_counters(void)
76 return armpmu_get_max_events();
78 EXPORT_SYMBOL_GPL(perf_num_counters
);
80 #define HW_OP_UNSUPPORTED 0xFFFF
83 PERF_COUNT_HW_CACHE_##_x
85 #define CACHE_OP_UNSUPPORTED 0xFFFF
88 armpmu_map_cache_event(const unsigned (*cache_map
)
89 [PERF_COUNT_HW_CACHE_MAX
]
90 [PERF_COUNT_HW_CACHE_OP_MAX
]
91 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
94 unsigned int cache_type
, cache_op
, cache_result
, ret
;
96 cache_type
= (config
>> 0) & 0xff;
97 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
100 cache_op
= (config
>> 8) & 0xff;
101 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
104 cache_result
= (config
>> 16) & 0xff;
105 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
108 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
110 if (ret
== CACHE_OP_UNSUPPORTED
)
117 armpmu_map_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
119 int mapping
= (*event_map
)[config
];
120 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
124 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
126 return (int)(config
& raw_event_mask
);
129 static int map_cpu_event(struct perf_event
*event
,
130 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
131 const unsigned (*cache_map
)
132 [PERF_COUNT_HW_CACHE_MAX
]
133 [PERF_COUNT_HW_CACHE_OP_MAX
]
134 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
137 u64 config
= event
->attr
.config
;
139 switch (event
->attr
.type
) {
140 case PERF_TYPE_HARDWARE
:
141 return armpmu_map_event(event_map
, config
);
142 case PERF_TYPE_HW_CACHE
:
143 return armpmu_map_cache_event(cache_map
, config
);
145 return armpmu_map_raw_event(raw_event_mask
, config
);
152 armpmu_event_set_period(struct perf_event
*event
,
153 struct hw_perf_event
*hwc
,
156 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
157 s64 left
= local64_read(&hwc
->period_left
);
158 s64 period
= hwc
->sample_period
;
161 if (unlikely(left
<= -period
)) {
163 local64_set(&hwc
->period_left
, left
);
164 hwc
->last_period
= period
;
168 if (unlikely(left
<= 0)) {
170 local64_set(&hwc
->period_left
, left
);
171 hwc
->last_period
= period
;
175 if (left
> (s64
)armpmu
->max_period
)
176 left
= armpmu
->max_period
;
178 local64_set(&hwc
->prev_count
, (u64
)-left
);
180 armpmu
->write_counter(idx
, (u64
)(-left
) & 0xffffffff);
182 perf_event_update_userpage(event
);
188 armpmu_event_update(struct perf_event
*event
,
189 struct hw_perf_event
*hwc
,
190 int idx
, int overflow
)
192 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
193 u64 delta
, prev_raw_count
, new_raw_count
;
196 prev_raw_count
= local64_read(&hwc
->prev_count
);
197 new_raw_count
= armpmu
->read_counter(idx
);
199 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
200 new_raw_count
) != prev_raw_count
)
203 new_raw_count
&= armpmu
->max_period
;
204 prev_raw_count
&= armpmu
->max_period
;
207 delta
= armpmu
->max_period
- prev_raw_count
+ new_raw_count
+ 1;
209 delta
= new_raw_count
- prev_raw_count
;
211 local64_add(delta
, &event
->count
);
212 local64_sub(delta
, &hwc
->period_left
);
214 return new_raw_count
;
218 armpmu_read(struct perf_event
*event
)
220 struct hw_perf_event
*hwc
= &event
->hw
;
222 /* Don't read disabled counters! */
226 armpmu_event_update(event
, hwc
, hwc
->idx
, 0);
230 armpmu_stop(struct perf_event
*event
, int flags
)
232 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
233 struct hw_perf_event
*hwc
= &event
->hw
;
236 * ARM pmu always has to update the counter, so ignore
237 * PERF_EF_UPDATE, see comments in armpmu_start().
239 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
240 armpmu
->disable(hwc
, hwc
->idx
);
241 barrier(); /* why? */
242 armpmu_event_update(event
, hwc
, hwc
->idx
, 0);
243 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
248 armpmu_start(struct perf_event
*event
, int flags
)
250 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
251 struct hw_perf_event
*hwc
= &event
->hw
;
254 * ARM pmu always has to reprogram the period, so ignore
255 * PERF_EF_RELOAD, see the comment below.
257 if (flags
& PERF_EF_RELOAD
)
258 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
262 * Set the period again. Some counters can't be stopped, so when we
263 * were stopped we simply disabled the IRQ source and the counter
264 * may have been left counting. If we don't do this step then we may
265 * get an interrupt too soon or *way* too late if the overflow has
266 * happened since disabling.
268 armpmu_event_set_period(event
, hwc
, hwc
->idx
);
269 armpmu
->enable(hwc
, hwc
->idx
);
273 armpmu_del(struct perf_event
*event
, int flags
)
275 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
276 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
277 struct hw_perf_event
*hwc
= &event
->hw
;
282 armpmu_stop(event
, PERF_EF_UPDATE
);
283 hw_events
->events
[idx
] = NULL
;
284 clear_bit(idx
, hw_events
->used_mask
);
286 perf_event_update_userpage(event
);
290 armpmu_add(struct perf_event
*event
, int flags
)
292 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
293 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
294 struct hw_perf_event
*hwc
= &event
->hw
;
298 perf_pmu_disable(event
->pmu
);
300 /* If we don't have a space for the counter then finish early. */
301 idx
= armpmu
->get_event_idx(hw_events
, hwc
);
308 * If there is an event in the counter we are going to use then make
309 * sure it is disabled.
312 armpmu
->disable(hwc
, idx
);
313 hw_events
->events
[idx
] = event
;
315 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
316 if (flags
& PERF_EF_START
)
317 armpmu_start(event
, PERF_EF_RELOAD
);
319 /* Propagate our changes to the userspace mapping. */
320 perf_event_update_userpage(event
);
323 perf_pmu_enable(event
->pmu
);
328 validate_event(struct pmu_hw_events
*hw_events
,
329 struct perf_event
*event
)
331 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
332 struct hw_perf_event fake_event
= event
->hw
;
333 struct pmu
*leader_pmu
= event
->group_leader
->pmu
;
335 if (event
->pmu
!= leader_pmu
|| event
->state
<= PERF_EVENT_STATE_OFF
)
338 return armpmu
->get_event_idx(hw_events
, &fake_event
) >= 0;
342 validate_group(struct perf_event
*event
)
344 struct perf_event
*sibling
, *leader
= event
->group_leader
;
345 struct pmu_hw_events fake_pmu
;
347 memset(&fake_pmu
, 0, sizeof(fake_pmu
));
349 if (!validate_event(&fake_pmu
, leader
))
352 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
353 if (!validate_event(&fake_pmu
, sibling
))
357 if (!validate_event(&fake_pmu
, event
))
363 static irqreturn_t
armpmu_platform_irq(int irq
, void *dev
)
365 struct arm_pmu
*armpmu
= (struct arm_pmu
*) dev
;
366 struct platform_device
*plat_device
= armpmu
->plat_device
;
367 struct arm_pmu_platdata
*plat
= dev_get_platdata(&plat_device
->dev
);
369 return plat
->handle_irq(irq
, dev
, armpmu
->handle_irq
);
373 armpmu_release_hardware(struct arm_pmu
*armpmu
)
376 struct platform_device
*pmu_device
= armpmu
->plat_device
;
378 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
380 for (i
= 0; i
< irqs
; ++i
) {
381 if (!cpumask_test_and_clear_cpu(i
, &armpmu
->active_irqs
))
383 irq
= platform_get_irq(pmu_device
, i
);
385 free_irq(irq
, armpmu
);
388 release_pmu(armpmu
->type
);
392 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
394 struct arm_pmu_platdata
*plat
;
395 irq_handler_t handle_irq
;
396 int i
, err
, irq
, irqs
;
397 struct platform_device
*pmu_device
= armpmu
->plat_device
;
399 err
= reserve_pmu(armpmu
->type
);
401 pr_warning("unable to reserve pmu\n");
405 plat
= dev_get_platdata(&pmu_device
->dev
);
406 if (plat
&& plat
->handle_irq
)
407 handle_irq
= armpmu_platform_irq
;
409 handle_irq
= armpmu
->handle_irq
;
411 irqs
= min(pmu_device
->num_resources
, num_possible_cpus());
413 pr_err("no irqs for PMUs defined\n");
417 for (i
= 0; i
< irqs
; ++i
) {
419 irq
= platform_get_irq(pmu_device
, i
);
424 * If we have a single PMU interrupt that we can't shift,
425 * assume that we're running on a uniprocessor machine and
426 * continue. Otherwise, continue without this interrupt.
428 if (irq_set_affinity(irq
, cpumask_of(i
)) && irqs
> 1) {
429 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
434 err
= request_irq(irq
, handle_irq
,
435 IRQF_DISABLED
| IRQF_NOBALANCING
,
438 pr_err("unable to request IRQ%d for ARM PMU counters\n",
440 armpmu_release_hardware(armpmu
);
444 cpumask_set_cpu(i
, &armpmu
->active_irqs
);
451 hw_perf_event_destroy(struct perf_event
*event
)
453 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
454 atomic_t
*active_events
= &armpmu
->active_events
;
455 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
457 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
458 armpmu_release_hardware(armpmu
);
459 mutex_unlock(pmu_reserve_mutex
);
464 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
466 return attr
->exclude_idle
|| attr
->exclude_user
||
467 attr
->exclude_kernel
|| attr
->exclude_hv
;
471 __hw_perf_event_init(struct perf_event
*event
)
473 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
474 struct hw_perf_event
*hwc
= &event
->hw
;
477 mapping
= armpmu
->map_event(event
);
480 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
486 * We don't assign an index until we actually place the event onto
487 * hardware. Use -1 to signify that we haven't decided where to put it
488 * yet. For SMP systems, each core has it's own PMU so we can't do any
489 * clever allocation or constraints checking at this point.
492 hwc
->config_base
= 0;
497 * Check whether we need to exclude the counter from certain modes.
499 if ((!armpmu
->set_event_filter
||
500 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
501 event_requires_mode_exclusion(&event
->attr
)) {
502 pr_debug("ARM performance counters do not support "
508 * Store the event encoding into the config_base field.
510 hwc
->config_base
|= (unsigned long)mapping
;
512 if (!hwc
->sample_period
) {
513 hwc
->sample_period
= armpmu
->max_period
;
514 hwc
->last_period
= hwc
->sample_period
;
515 local64_set(&hwc
->period_left
, hwc
->sample_period
);
519 if (event
->group_leader
!= event
) {
520 err
= validate_group(event
);
528 static int armpmu_event_init(struct perf_event
*event
)
530 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
532 atomic_t
*active_events
= &armpmu
->active_events
;
534 if (armpmu
->map_event(event
) == -ENOENT
)
537 event
->destroy
= hw_perf_event_destroy
;
539 if (!atomic_inc_not_zero(active_events
)) {
540 mutex_lock(&armpmu
->reserve_mutex
);
541 if (atomic_read(active_events
) == 0)
542 err
= armpmu_reserve_hardware(armpmu
);
545 atomic_inc(active_events
);
546 mutex_unlock(&armpmu
->reserve_mutex
);
552 err
= __hw_perf_event_init(event
);
554 hw_perf_event_destroy(event
);
559 static void armpmu_enable(struct pmu
*pmu
)
561 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
562 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
563 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
569 static void armpmu_disable(struct pmu
*pmu
)
571 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
575 static void __init
armpmu_init(struct arm_pmu
*armpmu
)
577 atomic_set(&armpmu
->active_events
, 0);
578 mutex_init(&armpmu
->reserve_mutex
);
580 armpmu
->pmu
= (struct pmu
) {
581 .pmu_enable
= armpmu_enable
,
582 .pmu_disable
= armpmu_disable
,
583 .event_init
= armpmu_event_init
,
586 .start
= armpmu_start
,
592 int __init
armpmu_register(struct arm_pmu
*armpmu
, char *name
, int type
)
595 return perf_pmu_register(&armpmu
->pmu
, name
, type
);
598 /* Include the PMU-specific implementations. */
599 #include "perf_event_xscale.c"
600 #include "perf_event_v6.c"
601 #include "perf_event_v7.c"
604 * Ensure the PMU has sane values out of reset.
605 * This requires SMP to be available, so exists as a separate initcall.
610 if (cpu_pmu
&& cpu_pmu
->reset
)
611 return on_each_cpu(cpu_pmu
->reset
, NULL
, 1);
614 arch_initcall(cpu_pmu_reset
);
617 * PMU platform driver and devicetree bindings.
619 static struct of_device_id armpmu_of_device_ids
[] = {
620 {.compatible
= "arm,cortex-a9-pmu"},
621 {.compatible
= "arm,cortex-a8-pmu"},
622 {.compatible
= "arm,arm1136-pmu"},
623 {.compatible
= "arm,arm1176-pmu"},
627 static struct platform_device_id armpmu_plat_device_ids
[] = {
632 static int __devinit
armpmu_device_probe(struct platform_device
*pdev
)
634 cpu_pmu
->plat_device
= pdev
;
638 static struct platform_driver armpmu_driver
= {
641 .of_match_table
= armpmu_of_device_ids
,
643 .probe
= armpmu_device_probe
,
644 .id_table
= armpmu_plat_device_ids
,
647 static int __init
register_pmu_driver(void)
649 return platform_driver_register(&armpmu_driver
);
651 device_initcall(register_pmu_driver
);
653 static struct pmu_hw_events
*armpmu_get_cpu_events(void)
655 return &__get_cpu_var(cpu_hw_events
);
658 static void __init
cpu_pmu_init(struct arm_pmu
*armpmu
)
661 for_each_possible_cpu(cpu
) {
662 struct pmu_hw_events
*events
= &per_cpu(cpu_hw_events
, cpu
);
663 events
->events
= per_cpu(hw_events
, cpu
);
664 events
->used_mask
= per_cpu(used_mask
, cpu
);
665 raw_spin_lock_init(&events
->pmu_lock
);
667 armpmu
->get_hw_events
= armpmu_get_cpu_events
;
668 armpmu
->type
= ARM_PMU_DEVICE_CPU
;
672 * CPU PMU identification and registration.
675 init_hw_perf_events(void)
677 unsigned long cpuid
= read_cpuid_id();
678 unsigned long implementor
= (cpuid
& 0xFF000000) >> 24;
679 unsigned long part_number
= (cpuid
& 0xFFF0);
682 if (0x41 == implementor
) {
683 switch (part_number
) {
684 case 0xB360: /* ARM1136 */
685 case 0xB560: /* ARM1156 */
686 case 0xB760: /* ARM1176 */
687 cpu_pmu
= armv6pmu_init();
689 case 0xB020: /* ARM11mpcore */
690 cpu_pmu
= armv6mpcore_pmu_init();
692 case 0xC080: /* Cortex-A8 */
693 cpu_pmu
= armv7_a8_pmu_init();
695 case 0xC090: /* Cortex-A9 */
696 cpu_pmu
= armv7_a9_pmu_init();
698 case 0xC050: /* Cortex-A5 */
699 cpu_pmu
= armv7_a5_pmu_init();
701 case 0xC0F0: /* Cortex-A15 */
702 cpu_pmu
= armv7_a15_pmu_init();
705 /* Intel CPUs [xscale]. */
706 } else if (0x69 == implementor
) {
707 part_number
= (cpuid
>> 13) & 0x7;
708 switch (part_number
) {
710 cpu_pmu
= xscale1pmu_init();
713 cpu_pmu
= xscale2pmu_init();
719 pr_info("enabled with %s PMU driver, %d counters available\n",
720 cpu_pmu
->name
, cpu_pmu
->num_events
);
721 cpu_pmu_init(cpu_pmu
);
722 armpmu_register(cpu_pmu
, "cpu", PERF_TYPE_RAW
);
724 pr_info("no hardware support available\n");
729 early_initcall(init_hw_perf_events
);
732 * Callchain handling code.
736 * The registers we're interested in are at the end of the variable
737 * length saved register structure. The fp points at the end of this
738 * structure so the address of this struct is:
739 * (struct frame_tail *)(xxx->fp)-1
741 * This code has been adapted from the ARM OProfile support.
744 struct frame_tail __user
*fp
;
747 } __attribute__((packed
));
750 * Get the return address for a single stackframe and return a pointer to the
753 static struct frame_tail __user
*
754 user_backtrace(struct frame_tail __user
*tail
,
755 struct perf_callchain_entry
*entry
)
757 struct frame_tail buftail
;
759 /* Also check accessibility of one struct frame_tail beyond */
760 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
762 if (__copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
)))
765 perf_callchain_store(entry
, buftail
.lr
);
768 * Frame pointers should strictly progress back up the stack
769 * (towards higher addresses).
771 if (tail
+ 1 >= buftail
.fp
)
774 return buftail
.fp
- 1;
778 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
780 struct frame_tail __user
*tail
;
783 tail
= (struct frame_tail __user
*)regs
->ARM_fp
- 1;
785 while ((entry
->nr
< PERF_MAX_STACK_DEPTH
) &&
786 tail
&& !((unsigned long)tail
& 0x3))
787 tail
= user_backtrace(tail
, entry
);
791 * Gets called by walk_stackframe() for every stackframe. This will be called
792 * whist unwinding the stackframe and is like a subroutine return so we use
796 callchain_trace(struct stackframe
*fr
,
799 struct perf_callchain_entry
*entry
= data
;
800 perf_callchain_store(entry
, fr
->pc
);
805 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
807 struct stackframe fr
;
809 fr
.fp
= regs
->ARM_fp
;
810 fr
.sp
= regs
->ARM_sp
;
811 fr
.lr
= regs
->ARM_lr
;
812 fr
.pc
= regs
->ARM_pc
;
813 walk_stackframe(&fr
, callchain_trace
, entry
);