Merge branch 'fixes-modulesplit' into fixes
[zen-stable.git] / arch / tile / mm / homecache.c
blobcbe6f4f9eca3c93c43039be31238fdeb56ee36dc
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * This code maintains the "home" for each page in the system.
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/spinlock.h>
20 #include <linux/list.h>
21 #include <linux/bootmem.h>
22 #include <linux/rmap.h>
23 #include <linux/pagemap.h>
24 #include <linux/mutex.h>
25 #include <linux/interrupt.h>
26 #include <linux/sysctl.h>
27 #include <linux/pagevec.h>
28 #include <linux/ptrace.h>
29 #include <linux/timex.h>
30 #include <linux/cache.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
34 #include <asm/page.h>
35 #include <asm/sections.h>
36 #include <asm/tlbflush.h>
37 #include <asm/pgalloc.h>
38 #include <asm/homecache.h>
40 #include <arch/sim.h>
42 #include "migrate.h"
45 #if CHIP_HAS_COHERENT_LOCAL_CACHE()
48 * The noallocl2 option suppresses all use of the L2 cache to cache
49 * locally from a remote home. There's no point in using it if we
50 * don't have coherent local caching, though.
52 static int __write_once noallocl2;
53 static int __init set_noallocl2(char *str)
55 noallocl2 = 1;
56 return 0;
58 early_param("noallocl2", set_noallocl2);
60 #else
62 #define noallocl2 0
64 #endif
66 /* Provide no-op versions of these routines to keep flush_remote() cleaner. */
67 #define mark_caches_evicted_start() 0
68 #define mark_caches_evicted_finish(mask, timestamp) do {} while (0)
72 * Update the irq_stat for cpus that we are going to interrupt
73 * with TLB or cache flushes. Also handle removing dataplane cpus
74 * from the TLB flush set, and setting dataplane_tlb_state instead.
76 static void hv_flush_update(const struct cpumask *cache_cpumask,
77 struct cpumask *tlb_cpumask,
78 unsigned long tlb_va, unsigned long tlb_length,
79 HV_Remote_ASID *asids, int asidcount)
81 struct cpumask mask;
82 int i, cpu;
84 cpumask_clear(&mask);
85 if (cache_cpumask)
86 cpumask_or(&mask, &mask, cache_cpumask);
87 if (tlb_cpumask && tlb_length) {
88 cpumask_or(&mask, &mask, tlb_cpumask);
91 for (i = 0; i < asidcount; ++i)
92 cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask);
95 * Don't bother to update atomically; losing a count
96 * here is not that critical.
98 for_each_cpu(cpu, &mask)
99 ++per_cpu(irq_stat, cpu).irq_hv_flush_count;
103 * This wrapper function around hv_flush_remote() does several things:
105 * - Provides a return value error-checking panic path, since
106 * there's never any good reason for hv_flush_remote() to fail.
107 * - Accepts a 32-bit PFN rather than a 64-bit PA, which generally
108 * is the type that Linux wants to pass around anyway.
109 * - Centralizes the mark_caches_evicted() handling.
110 * - Canonicalizes that lengths of zero make cpumasks NULL.
111 * - Handles deferring TLB flushes for dataplane tiles.
112 * - Tracks remote interrupts in the per-cpu irq_cpustat_t.
114 * Note that we have to wait until the cache flush completes before
115 * updating the per-cpu last_cache_flush word, since otherwise another
116 * concurrent flush can race, conclude the flush has already
117 * completed, and start to use the page while it's still dirty
118 * remotely (running concurrently with the actual evict, presumably).
120 void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
121 const struct cpumask *cache_cpumask_orig,
122 HV_VirtAddr tlb_va, unsigned long tlb_length,
123 unsigned long tlb_pgsize,
124 const struct cpumask *tlb_cpumask_orig,
125 HV_Remote_ASID *asids, int asidcount)
127 int rc;
128 int timestamp = 0; /* happy compiler */
129 struct cpumask cache_cpumask_copy, tlb_cpumask_copy;
130 struct cpumask *cache_cpumask, *tlb_cpumask;
131 HV_PhysAddr cache_pa;
132 char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5];
134 mb(); /* provided just to simplify "magic hypervisor" mode */
137 * Canonicalize and copy the cpumasks.
139 if (cache_cpumask_orig && cache_control) {
140 cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig);
141 cache_cpumask = &cache_cpumask_copy;
142 } else {
143 cpumask_clear(&cache_cpumask_copy);
144 cache_cpumask = NULL;
146 if (cache_cpumask == NULL)
147 cache_control = 0;
148 if (tlb_cpumask_orig && tlb_length) {
149 cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig);
150 tlb_cpumask = &tlb_cpumask_copy;
151 } else {
152 cpumask_clear(&tlb_cpumask_copy);
153 tlb_cpumask = NULL;
156 hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length,
157 asids, asidcount);
158 cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT;
159 if (cache_control & HV_FLUSH_EVICT_L2)
160 timestamp = mark_caches_evicted_start();
161 rc = hv_flush_remote(cache_pa, cache_control,
162 cpumask_bits(cache_cpumask),
163 tlb_va, tlb_length, tlb_pgsize,
164 cpumask_bits(tlb_cpumask),
165 asids, asidcount);
166 if (cache_control & HV_FLUSH_EVICT_L2)
167 mark_caches_evicted_finish(cache_cpumask, timestamp);
168 if (rc == 0)
169 return;
170 cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy);
171 cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy);
173 pr_err("hv_flush_remote(%#llx, %#lx, %p [%s],"
174 " %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n",
175 cache_pa, cache_control, cache_cpumask, cache_buf,
176 (unsigned long)tlb_va, tlb_length, tlb_pgsize,
177 tlb_cpumask, tlb_buf,
178 asids, asidcount, rc);
179 panic("Unsafe to continue.");
182 void flush_remote_page(struct page *page, int order)
184 int i, pages = (1 << order);
185 for (i = 0; i < pages; ++i, ++page) {
186 void *p = kmap_atomic(page);
187 int hfh = 0;
188 int home = page_home(page);
189 #if CHIP_HAS_CBOX_HOME_MAP()
190 if (home == PAGE_HOME_HASH)
191 hfh = 1;
192 else
193 #endif
194 BUG_ON(home < 0 || home >= NR_CPUS);
195 finv_buffer_remote(p, PAGE_SIZE, hfh);
196 kunmap_atomic(p);
200 void homecache_evict(const struct cpumask *mask)
202 flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
206 * Return a mask of the cpus whose caches currently own these pages.
207 * The return value is whether the pages are all coherently cached
208 * (i.e. none are immutable, incoherent, or uncached).
210 static int homecache_mask(struct page *page, int pages,
211 struct cpumask *home_mask)
213 int i;
214 int cached_coherently = 1;
215 cpumask_clear(home_mask);
216 for (i = 0; i < pages; ++i) {
217 int home = page_home(&page[i]);
218 if (home == PAGE_HOME_IMMUTABLE ||
219 home == PAGE_HOME_INCOHERENT) {
220 cpumask_copy(home_mask, cpu_possible_mask);
221 return 0;
223 #if CHIP_HAS_CBOX_HOME_MAP()
224 if (home == PAGE_HOME_HASH) {
225 cpumask_or(home_mask, home_mask, &hash_for_home_map);
226 continue;
228 #endif
229 if (home == PAGE_HOME_UNCACHED) {
230 cached_coherently = 0;
231 continue;
233 BUG_ON(home < 0 || home >= NR_CPUS);
234 cpumask_set_cpu(home, home_mask);
236 return cached_coherently;
240 * Return the passed length, or zero if it's long enough that we
241 * believe we should evict the whole L2 cache.
243 static unsigned long cache_flush_length(unsigned long length)
245 return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length;
248 /* Flush a page out of whatever cache(s) it is in. */
249 void homecache_flush_cache(struct page *page, int order)
251 int pages = 1 << order;
252 int length = cache_flush_length(pages * PAGE_SIZE);
253 unsigned long pfn = page_to_pfn(page);
254 struct cpumask home_mask;
256 homecache_mask(page, pages, &home_mask);
257 flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0);
258 sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE);
262 /* Report the home corresponding to a given PTE. */
263 static int pte_to_home(pte_t pte)
265 if (hv_pte_get_nc(pte))
266 return PAGE_HOME_IMMUTABLE;
267 switch (hv_pte_get_mode(pte)) {
268 case HV_PTE_MODE_CACHE_TILE_L3:
269 return get_remote_cache_cpu(pte);
270 case HV_PTE_MODE_CACHE_NO_L3:
271 return PAGE_HOME_INCOHERENT;
272 case HV_PTE_MODE_UNCACHED:
273 return PAGE_HOME_UNCACHED;
274 #if CHIP_HAS_CBOX_HOME_MAP()
275 case HV_PTE_MODE_CACHE_HASH_L3:
276 return PAGE_HOME_HASH;
277 #endif
279 panic("Bad PTE %#llx\n", pte.val);
282 /* Update the home of a PTE if necessary (can also be used for a pgprot_t). */
283 pte_t pte_set_home(pte_t pte, int home)
285 /* Check for non-linear file mapping "PTEs" and pass them through. */
286 if (pte_file(pte))
287 return pte;
289 #if CHIP_HAS_MMIO()
290 /* Check for MMIO mappings and pass them through. */
291 if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO)
292 return pte;
293 #endif
297 * Only immutable pages get NC mappings. If we have a
298 * non-coherent PTE, but the underlying page is not
299 * immutable, it's likely the result of a forced
300 * caching setting running up against ptrace setting
301 * the page to be writable underneath. In this case,
302 * just keep the PTE coherent.
304 if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) {
305 pte = hv_pte_clear_nc(pte);
306 pr_err("non-immutable page incoherently referenced: %#llx\n",
307 pte.val);
310 switch (home) {
312 case PAGE_HOME_UNCACHED:
313 pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
314 break;
316 case PAGE_HOME_INCOHERENT:
317 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
318 break;
320 case PAGE_HOME_IMMUTABLE:
322 * We could home this page anywhere, since it's immutable,
323 * but by default just home it to follow "hash_default".
325 BUG_ON(hv_pte_get_writable(pte));
326 if (pte_get_forcecache(pte)) {
327 /* Upgrade "force any cpu" to "No L3" for immutable. */
328 if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3
329 && pte_get_anyhome(pte)) {
330 pte = hv_pte_set_mode(pte,
331 HV_PTE_MODE_CACHE_NO_L3);
333 } else
334 #if CHIP_HAS_CBOX_HOME_MAP()
335 if (hash_default)
336 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
337 else
338 #endif
339 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
340 pte = hv_pte_set_nc(pte);
341 break;
343 #if CHIP_HAS_CBOX_HOME_MAP()
344 case PAGE_HOME_HASH:
345 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
346 break;
347 #endif
349 default:
350 BUG_ON(home < 0 || home >= NR_CPUS ||
351 !cpu_is_valid_lotar(home));
352 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
353 pte = set_remote_cache_cpu(pte, home);
354 break;
357 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
358 if (noallocl2)
359 pte = hv_pte_set_no_alloc_l2(pte);
361 /* Simplify "no local and no l3" to "uncached" */
362 if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) &&
363 hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) {
364 pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
366 #endif
368 /* Checking this case here gives a better panic than from the hv. */
369 BUG_ON(hv_pte_get_mode(pte) == 0);
371 return pte;
373 EXPORT_SYMBOL(pte_set_home);
376 * The routines in this section are the "static" versions of the normal
377 * dynamic homecaching routines; they just set the home cache
378 * of a kernel page once, and require a full-chip cache/TLB flush,
379 * so they're not suitable for anything but infrequent use.
382 #if CHIP_HAS_CBOX_HOME_MAP()
383 static inline int initial_page_home(void) { return PAGE_HOME_HASH; }
384 #else
385 static inline int initial_page_home(void) { return 0; }
386 #endif
388 int page_home(struct page *page)
390 if (PageHighMem(page)) {
391 return initial_page_home();
392 } else {
393 unsigned long kva = (unsigned long)page_address(page);
394 return pte_to_home(*virt_to_pte(NULL, kva));
398 void homecache_change_page_home(struct page *page, int order, int home)
400 int i, pages = (1 << order);
401 unsigned long kva;
403 BUG_ON(PageHighMem(page));
404 BUG_ON(page_count(page) > 1);
405 BUG_ON(page_mapcount(page) != 0);
406 kva = (unsigned long) page_address(page);
407 flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map,
408 kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask,
409 NULL, 0);
411 for (i = 0; i < pages; ++i, kva += PAGE_SIZE) {
412 pte_t *ptep = virt_to_pte(NULL, kva);
413 pte_t pteval = *ptep;
414 BUG_ON(!pte_present(pteval) || pte_huge(pteval));
415 __set_pte(ptep, pte_set_home(pteval, home));
419 struct page *homecache_alloc_pages(gfp_t gfp_mask,
420 unsigned int order, int home)
422 struct page *page;
423 BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
424 page = alloc_pages(gfp_mask, order);
425 if (page)
426 homecache_change_page_home(page, order, home);
427 return page;
429 EXPORT_SYMBOL(homecache_alloc_pages);
431 struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
432 unsigned int order, int home)
434 struct page *page;
435 BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
436 page = alloc_pages_node(nid, gfp_mask, order);
437 if (page)
438 homecache_change_page_home(page, order, home);
439 return page;
442 void homecache_free_pages(unsigned long addr, unsigned int order)
444 struct page *page;
446 if (addr == 0)
447 return;
449 VM_BUG_ON(!virt_addr_valid((void *)addr));
450 page = virt_to_page((void *)addr);
451 if (put_page_testzero(page)) {
452 int pages = (1 << order);
453 homecache_change_page_home(page, order, initial_page_home());
454 while (pages--)
455 __free_page(page++);