2 * linux/arch/unicore32/mm/init.c
4 * Copyright (C) 2010 GUAN Xue-tao
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/sizes.h>
33 static unsigned long phys_initrd_start __initdata
= 0x01000000;
34 static unsigned long phys_initrd_size __initdata
= SZ_8M
;
36 static int __init
early_initrd(char *p
)
38 unsigned long start
, size
;
41 start
= memparse(p
, &endp
);
43 size
= memparse(endp
+ 1, NULL
);
45 phys_initrd_start
= start
;
46 phys_initrd_size
= size
;
50 early_param("initrd", early_initrd
);
53 * This keeps memory configuration data used by a couple memory
54 * initialization functions, as well as show_mem() for the skipping
55 * of holes in the memory map. It is populated by uc32_add_memory().
57 struct meminfo meminfo
;
59 void show_mem(unsigned int filter
)
61 int free
= 0, total
= 0, reserved
= 0;
62 int shared
= 0, cached
= 0, slab
= 0, i
;
63 struct meminfo
*mi
= &meminfo
;
65 printk(KERN_DEFAULT
"Mem-info:\n");
66 show_free_areas(filter
);
68 for_each_bank(i
, mi
) {
69 struct membank
*bank
= &mi
->bank
[i
];
70 unsigned int pfn1
, pfn2
;
71 struct page
*page
, *end
;
73 pfn1
= bank_pfn_start(bank
);
74 pfn2
= bank_pfn_end(bank
);
76 page
= pfn_to_page(pfn1
);
77 end
= pfn_to_page(pfn2
- 1) + 1;
81 if (PageReserved(page
))
83 else if (PageSwapCache(page
))
85 else if (PageSlab(page
))
87 else if (!page_count(page
))
90 shared
+= page_count(page
) - 1;
95 printk(KERN_DEFAULT
"%d pages of RAM\n", total
);
96 printk(KERN_DEFAULT
"%d free pages\n", free
);
97 printk(KERN_DEFAULT
"%d reserved pages\n", reserved
);
98 printk(KERN_DEFAULT
"%d slab pages\n", slab
);
99 printk(KERN_DEFAULT
"%d pages shared\n", shared
);
100 printk(KERN_DEFAULT
"%d pages swap cached\n", cached
);
103 static void __init
find_limits(unsigned long *min
, unsigned long *max_low
,
104 unsigned long *max_high
)
106 struct meminfo
*mi
= &meminfo
;
110 *max_low
= *max_high
= 0;
112 for_each_bank(i
, mi
) {
113 struct membank
*bank
= &mi
->bank
[i
];
114 unsigned long start
, end
;
116 start
= bank_pfn_start(bank
);
117 end
= bank_pfn_end(bank
);
130 static void __init
uc32_bootmem_init(unsigned long start_pfn
,
131 unsigned long end_pfn
)
133 struct memblock_region
*reg
;
134 unsigned int boot_pages
;
139 * Allocate the bootmem bitmap page. This must be in a region
140 * of memory which has already been mapped.
142 boot_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
143 bitmap
= memblock_alloc_base(boot_pages
<< PAGE_SHIFT
, L1_CACHE_BYTES
,
144 __pfn_to_phys(end_pfn
));
147 * Initialise the bootmem allocator, handing the
148 * memory banks over to bootmem.
151 pgdat
= NODE_DATA(0);
152 init_bootmem_node(pgdat
, __phys_to_pfn(bitmap
), start_pfn
, end_pfn
);
154 /* Free the lowmem regions from memblock into bootmem. */
155 for_each_memblock(memory
, reg
) {
156 unsigned long start
= memblock_region_memory_base_pfn(reg
);
157 unsigned long end
= memblock_region_memory_end_pfn(reg
);
164 free_bootmem(__pfn_to_phys(start
), (end
- start
) << PAGE_SHIFT
);
167 /* Reserve the lowmem memblock reserved regions in bootmem. */
168 for_each_memblock(reserved
, reg
) {
169 unsigned long start
= memblock_region_reserved_base_pfn(reg
);
170 unsigned long end
= memblock_region_reserved_end_pfn(reg
);
177 reserve_bootmem(__pfn_to_phys(start
),
178 (end
- start
) << PAGE_SHIFT
, BOOTMEM_DEFAULT
);
182 static void __init
uc32_bootmem_free(unsigned long min
, unsigned long max_low
,
183 unsigned long max_high
)
185 unsigned long zone_size
[MAX_NR_ZONES
], zhole_size
[MAX_NR_ZONES
];
186 struct memblock_region
*reg
;
189 * initialise the zones.
191 memset(zone_size
, 0, sizeof(zone_size
));
194 * The memory size has already been determined. If we need
195 * to do anything fancy with the allocation of this memory
196 * to the zones, now is the time to do it.
198 zone_size
[0] = max_low
- min
;
201 * Calculate the size of the holes.
202 * holes = node_size - sum(bank_sizes)
204 memcpy(zhole_size
, zone_size
, sizeof(zhole_size
));
205 for_each_memblock(memory
, reg
) {
206 unsigned long start
= memblock_region_memory_base_pfn(reg
);
207 unsigned long end
= memblock_region_memory_end_pfn(reg
);
209 if (start
< max_low
) {
210 unsigned long low_end
= min(end
, max_low
);
211 zhole_size
[0] -= low_end
- start
;
216 * Adjust the sizes according to any special requirements for
219 arch_adjust_zones(zone_size
, zhole_size
);
221 free_area_init_node(0, zone_size
, min
, zhole_size
);
224 int pfn_valid(unsigned long pfn
)
226 return memblock_is_memory(pfn
<< PAGE_SHIFT
);
228 EXPORT_SYMBOL(pfn_valid
);
230 static void uc32_memory_present(void)
234 static int __init
meminfo_cmp(const void *_a
, const void *_b
)
236 const struct membank
*a
= _a
, *b
= _b
;
237 long cmp
= bank_pfn_start(a
) - bank_pfn_start(b
);
238 return cmp
< 0 ? -1 : cmp
> 0 ? 1 : 0;
241 void __init
uc32_memblock_init(struct meminfo
*mi
)
245 sort(&meminfo
.bank
, meminfo
.nr_banks
, sizeof(meminfo
.bank
[0]),
249 for (i
= 0; i
< mi
->nr_banks
; i
++)
250 memblock_add(mi
->bank
[i
].start
, mi
->bank
[i
].size
);
252 /* Register the kernel text, kernel data and initrd with memblock. */
253 memblock_reserve(__pa(_text
), _end
- _text
);
255 #ifdef CONFIG_BLK_DEV_INITRD
256 if (phys_initrd_size
) {
257 memblock_reserve(phys_initrd_start
, phys_initrd_size
);
259 /* Now convert initrd to virtual addresses */
260 initrd_start
= __phys_to_virt(phys_initrd_start
);
261 initrd_end
= initrd_start
+ phys_initrd_size
;
265 uc32_mm_memblock_reserve();
271 void __init
bootmem_init(void)
273 unsigned long min
, max_low
, max_high
;
275 max_low
= max_high
= 0;
277 find_limits(&min
, &max_low
, &max_high
);
279 uc32_bootmem_init(min
, max_low
);
281 #ifdef CONFIG_SWIOTLB
285 * Sparsemem tries to allocate bootmem in memory_present(),
286 * so must be done after the fixed reservations
288 uc32_memory_present();
291 * sparse_init() needs the bootmem allocator up and running.
296 * Now free the memory - free_area_init_node needs
297 * the sparse mem_map arrays initialized by sparse_init()
298 * for memmap_init_zone(), otherwise all PFNs are invalid.
300 uc32_bootmem_free(min
, max_low
, max_high
);
302 high_memory
= __va((max_low
<< PAGE_SHIFT
) - 1) + 1;
305 * This doesn't seem to be used by the Linux memory manager any
306 * more, but is used by ll_rw_block. If we can get rid of it, we
307 * also get rid of some of the stuff above as well.
309 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
310 * the system, not the maximum PFN.
312 max_low_pfn
= max_low
- PHYS_PFN_OFFSET
;
313 max_pfn
= max_high
- PHYS_PFN_OFFSET
;
316 static inline int free_area(unsigned long pfn
, unsigned long end
, char *s
)
318 unsigned int pages
= 0, size
= (end
- pfn
) << (PAGE_SHIFT
- 10);
320 for (; pfn
< end
; pfn
++) {
321 struct page
*page
= pfn_to_page(pfn
);
322 ClearPageReserved(page
);
323 init_page_count(page
);
329 printk(KERN_INFO
"Freeing %s memory: %dK\n", s
, size
);
335 free_memmap(unsigned long start_pfn
, unsigned long end_pfn
)
337 struct page
*start_pg
, *end_pg
;
338 unsigned long pg
, pgend
;
341 * Convert start_pfn/end_pfn to a struct page pointer.
343 start_pg
= pfn_to_page(start_pfn
- 1) + 1;
344 end_pg
= pfn_to_page(end_pfn
);
347 * Convert to physical addresses, and
348 * round start upwards and end downwards.
350 pg
= PAGE_ALIGN(__pa(start_pg
));
351 pgend
= __pa(end_pg
) & PAGE_MASK
;
354 * If there are free pages between these,
355 * free the section of the memmap array.
358 free_bootmem(pg
, pgend
- pg
);
362 * The mem_map array can get very big. Free the unused area of the memory map.
364 static void __init
free_unused_memmap(struct meminfo
*mi
)
366 unsigned long bank_start
, prev_bank_end
= 0;
370 * This relies on each bank being in address order.
371 * The banks are sorted previously in bootmem_init().
373 for_each_bank(i
, mi
) {
374 struct membank
*bank
= &mi
->bank
[i
];
376 bank_start
= bank_pfn_start(bank
);
379 * If we had a previous bank, and there is a space
380 * between the current bank and the previous, free it.
382 if (prev_bank_end
&& prev_bank_end
< bank_start
)
383 free_memmap(prev_bank_end
, bank_start
);
386 * Align up here since the VM subsystem insists that the
387 * memmap entries are valid from the bank end aligned to
388 * MAX_ORDER_NR_PAGES.
390 prev_bank_end
= ALIGN(bank_pfn_end(bank
), MAX_ORDER_NR_PAGES
);
395 * mem_init() marks the free areas in the mem_map and tells us how much
396 * memory is free. This is done after various parts of the system have
397 * claimed their memory after the kernel image.
399 void __init
mem_init(void)
401 unsigned long reserved_pages
, free_pages
;
402 struct memblock_region
*reg
;
405 max_mapnr
= pfn_to_page(max_pfn
+ PHYS_PFN_OFFSET
) - mem_map
;
407 /* this will put all unused low memory onto the freelists */
408 free_unused_memmap(&meminfo
);
410 totalram_pages
+= free_all_bootmem();
412 reserved_pages
= free_pages
= 0;
414 for_each_bank(i
, &meminfo
) {
415 struct membank
*bank
= &meminfo
.bank
[i
];
416 unsigned int pfn1
, pfn2
;
417 struct page
*page
, *end
;
419 pfn1
= bank_pfn_start(bank
);
420 pfn2
= bank_pfn_end(bank
);
422 page
= pfn_to_page(pfn1
);
423 end
= pfn_to_page(pfn2
- 1) + 1;
426 if (PageReserved(page
))
428 else if (!page_count(page
))
431 } while (page
< end
);
435 * Since our memory may not be contiguous, calculate the
436 * real number of pages we have in this system
438 printk(KERN_INFO
"Memory:");
440 for_each_memblock(memory
, reg
) {
441 unsigned long pages
= memblock_region_memory_end_pfn(reg
) -
442 memblock_region_memory_base_pfn(reg
);
443 num_physpages
+= pages
;
444 printk(" %ldMB", pages
>> (20 - PAGE_SHIFT
));
446 printk(" = %luMB total\n", num_physpages
>> (20 - PAGE_SHIFT
));
448 printk(KERN_NOTICE
"Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
449 nr_free_pages() << (PAGE_SHIFT
-10),
450 free_pages
<< (PAGE_SHIFT
-10),
451 reserved_pages
<< (PAGE_SHIFT
-10),
452 totalhigh_pages
<< (PAGE_SHIFT
-10));
454 printk(KERN_NOTICE
"Virtual kernel memory layout:\n"
455 " vector : 0x%08lx - 0x%08lx (%4ld kB)\n"
456 " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
457 " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
458 " modules : 0x%08lx - 0x%08lx (%4ld MB)\n"
459 " .init : 0x%p" " - 0x%p" " (%4d kB)\n"
460 " .text : 0x%p" " - 0x%p" " (%4d kB)\n"
461 " .data : 0x%p" " - 0x%p" " (%4d kB)\n",
463 VECTORS_BASE
, VECTORS_BASE
+ PAGE_SIZE
,
464 DIV_ROUND_UP(PAGE_SIZE
, SZ_1K
),
465 VMALLOC_START
, VMALLOC_END
,
466 DIV_ROUND_UP((VMALLOC_END
- VMALLOC_START
), SZ_1M
),
467 PAGE_OFFSET
, (unsigned long)high_memory
,
468 DIV_ROUND_UP(((unsigned long)high_memory
- PAGE_OFFSET
), SZ_1M
),
469 MODULES_VADDR
, MODULES_END
,
470 DIV_ROUND_UP((MODULES_END
- MODULES_VADDR
), SZ_1M
),
472 __init_begin
, __init_end
,
473 DIV_ROUND_UP((__init_end
- __init_begin
), SZ_1K
),
475 DIV_ROUND_UP((_etext
- _stext
), SZ_1K
),
477 DIV_ROUND_UP((_edata
- _sdata
), SZ_1K
));
479 BUILD_BUG_ON(TASK_SIZE
> MODULES_VADDR
);
480 BUG_ON(TASK_SIZE
> MODULES_VADDR
);
482 if (PAGE_SIZE
>= 16384 && num_physpages
<= 128) {
484 * On a machine this small we won't get
485 * anywhere without overcommit, so turn
488 sysctl_overcommit_memory
= OVERCOMMIT_ALWAYS
;
492 void free_initmem(void)
494 totalram_pages
+= free_area(__phys_to_pfn(__pa(__init_begin
)),
495 __phys_to_pfn(__pa(__init_end
)),
499 #ifdef CONFIG_BLK_DEV_INITRD
501 static int keep_initrd
;
503 void free_initrd_mem(unsigned long start
, unsigned long end
)
506 totalram_pages
+= free_area(__phys_to_pfn(__pa(start
)),
507 __phys_to_pfn(__pa(end
)),
511 static int __init
keepinitrd_setup(char *__unused
)
517 __setup("keepinitrd", keepinitrd_setup
);