Merge branch 'fixes-modulesplit' into fixes
[zen-stable.git] / fs / dcache.c
blob274f13e2f0946ed66ac186833efa1898b84db3fa
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 EXPORT_SYMBOL(rename_lock);
87 static struct kmem_cache *dentry_cache __read_mostly;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
136 #endif
138 static void __d_free(struct rcu_head *head)
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
228 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry *dentry)
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
241 static void __dentry_lru_del(struct dentry *dentry)
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
249 * Remove a dentry with references from the LRU.
251 static void dentry_lru_del(struct dentry *dentry)
253 if (!list_empty(&dentry->d_lru)) {
254 spin_lock(&dcache_lru_lock);
255 __dentry_lru_del(dentry);
256 spin_unlock(&dcache_lru_lock);
261 * Remove a dentry that is unreferenced and about to be pruned
262 * (unhashed and destroyed) from the LRU, and inform the file system.
263 * This wrapper should be called _prior_ to unhashing a victim dentry.
265 static void dentry_lru_prune(struct dentry *dentry)
267 if (!list_empty(&dentry->d_lru)) {
268 if (dentry->d_flags & DCACHE_OP_PRUNE)
269 dentry->d_op->d_prune(dentry);
271 spin_lock(&dcache_lru_lock);
272 __dentry_lru_del(dentry);
273 spin_unlock(&dcache_lru_lock);
277 static void dentry_lru_move_tail(struct dentry *dentry)
279 spin_lock(&dcache_lru_lock);
280 if (list_empty(&dentry->d_lru)) {
281 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
282 dentry->d_sb->s_nr_dentry_unused++;
283 dentry_stat.nr_unused++;
284 } else {
285 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
287 spin_unlock(&dcache_lru_lock);
291 * d_kill - kill dentry and return parent
292 * @dentry: dentry to kill
293 * @parent: parent dentry
295 * The dentry must already be unhashed and removed from the LRU.
297 * If this is the root of the dentry tree, return NULL.
299 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
300 * d_kill.
302 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
303 __releases(dentry->d_lock)
304 __releases(parent->d_lock)
305 __releases(dentry->d_inode->i_lock)
307 list_del(&dentry->d_u.d_child);
309 * Inform try_to_ascend() that we are no longer attached to the
310 * dentry tree
312 dentry->d_flags |= DCACHE_DISCONNECTED;
313 if (parent)
314 spin_unlock(&parent->d_lock);
315 dentry_iput(dentry);
317 * dentry_iput drops the locks, at which point nobody (except
318 * transient RCU lookups) can reach this dentry.
320 d_free(dentry);
321 return parent;
325 * Unhash a dentry without inserting an RCU walk barrier or checking that
326 * dentry->d_lock is locked. The caller must take care of that, if
327 * appropriate.
329 static void __d_shrink(struct dentry *dentry)
331 if (!d_unhashed(dentry)) {
332 struct hlist_bl_head *b;
333 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
334 b = &dentry->d_sb->s_anon;
335 else
336 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 hlist_bl_lock(b);
339 __hlist_bl_del(&dentry->d_hash);
340 dentry->d_hash.pprev = NULL;
341 hlist_bl_unlock(b);
346 * d_drop - drop a dentry
347 * @dentry: dentry to drop
349 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
350 * be found through a VFS lookup any more. Note that this is different from
351 * deleting the dentry - d_delete will try to mark the dentry negative if
352 * possible, giving a successful _negative_ lookup, while d_drop will
353 * just make the cache lookup fail.
355 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
356 * reason (NFS timeouts or autofs deletes).
358 * __d_drop requires dentry->d_lock.
360 void __d_drop(struct dentry *dentry)
362 if (!d_unhashed(dentry)) {
363 __d_shrink(dentry);
364 dentry_rcuwalk_barrier(dentry);
367 EXPORT_SYMBOL(__d_drop);
369 void d_drop(struct dentry *dentry)
371 spin_lock(&dentry->d_lock);
372 __d_drop(dentry);
373 spin_unlock(&dentry->d_lock);
375 EXPORT_SYMBOL(d_drop);
378 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
379 * @dentry: dentry to drop
381 * This is called when we do a lookup on a placeholder dentry that needed to be
382 * looked up. The dentry should have been hashed in order for it to be found by
383 * the lookup code, but now needs to be unhashed while we do the actual lookup
384 * and clear the DCACHE_NEED_LOOKUP flag.
386 void d_clear_need_lookup(struct dentry *dentry)
388 spin_lock(&dentry->d_lock);
389 __d_drop(dentry);
390 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
391 spin_unlock(&dentry->d_lock);
393 EXPORT_SYMBOL(d_clear_need_lookup);
396 * Finish off a dentry we've decided to kill.
397 * dentry->d_lock must be held, returns with it unlocked.
398 * If ref is non-zero, then decrement the refcount too.
399 * Returns dentry requiring refcount drop, or NULL if we're done.
401 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
402 __releases(dentry->d_lock)
404 struct inode *inode;
405 struct dentry *parent;
407 inode = dentry->d_inode;
408 if (inode && !spin_trylock(&inode->i_lock)) {
409 relock:
410 spin_unlock(&dentry->d_lock);
411 cpu_relax();
412 return dentry; /* try again with same dentry */
414 if (IS_ROOT(dentry))
415 parent = NULL;
416 else
417 parent = dentry->d_parent;
418 if (parent && !spin_trylock(&parent->d_lock)) {
419 if (inode)
420 spin_unlock(&inode->i_lock);
421 goto relock;
424 if (ref)
425 dentry->d_count--;
427 * if dentry was on the d_lru list delete it from there.
428 * inform the fs via d_prune that this dentry is about to be
429 * unhashed and destroyed.
431 dentry_lru_prune(dentry);
432 /* if it was on the hash then remove it */
433 __d_drop(dentry);
434 return d_kill(dentry, parent);
438 * This is dput
440 * This is complicated by the fact that we do not want to put
441 * dentries that are no longer on any hash chain on the unused
442 * list: we'd much rather just get rid of them immediately.
444 * However, that implies that we have to traverse the dentry
445 * tree upwards to the parents which might _also_ now be
446 * scheduled for deletion (it may have been only waiting for
447 * its last child to go away).
449 * This tail recursion is done by hand as we don't want to depend
450 * on the compiler to always get this right (gcc generally doesn't).
451 * Real recursion would eat up our stack space.
455 * dput - release a dentry
456 * @dentry: dentry to release
458 * Release a dentry. This will drop the usage count and if appropriate
459 * call the dentry unlink method as well as removing it from the queues and
460 * releasing its resources. If the parent dentries were scheduled for release
461 * they too may now get deleted.
463 void dput(struct dentry *dentry)
465 if (!dentry)
466 return;
468 repeat:
469 if (dentry->d_count == 1)
470 might_sleep();
471 spin_lock(&dentry->d_lock);
472 BUG_ON(!dentry->d_count);
473 if (dentry->d_count > 1) {
474 dentry->d_count--;
475 spin_unlock(&dentry->d_lock);
476 return;
479 if (dentry->d_flags & DCACHE_OP_DELETE) {
480 if (dentry->d_op->d_delete(dentry))
481 goto kill_it;
484 /* Unreachable? Get rid of it */
485 if (d_unhashed(dentry))
486 goto kill_it;
489 * If this dentry needs lookup, don't set the referenced flag so that it
490 * is more likely to be cleaned up by the dcache shrinker in case of
491 * memory pressure.
493 if (!d_need_lookup(dentry))
494 dentry->d_flags |= DCACHE_REFERENCED;
495 dentry_lru_add(dentry);
497 dentry->d_count--;
498 spin_unlock(&dentry->d_lock);
499 return;
501 kill_it:
502 dentry = dentry_kill(dentry, 1);
503 if (dentry)
504 goto repeat;
506 EXPORT_SYMBOL(dput);
509 * d_invalidate - invalidate a dentry
510 * @dentry: dentry to invalidate
512 * Try to invalidate the dentry if it turns out to be
513 * possible. If there are other dentries that can be
514 * reached through this one we can't delete it and we
515 * return -EBUSY. On success we return 0.
517 * no dcache lock.
520 int d_invalidate(struct dentry * dentry)
523 * If it's already been dropped, return OK.
525 spin_lock(&dentry->d_lock);
526 if (d_unhashed(dentry)) {
527 spin_unlock(&dentry->d_lock);
528 return 0;
531 * Check whether to do a partial shrink_dcache
532 * to get rid of unused child entries.
534 if (!list_empty(&dentry->d_subdirs)) {
535 spin_unlock(&dentry->d_lock);
536 shrink_dcache_parent(dentry);
537 spin_lock(&dentry->d_lock);
541 * Somebody else still using it?
543 * If it's a directory, we can't drop it
544 * for fear of somebody re-populating it
545 * with children (even though dropping it
546 * would make it unreachable from the root,
547 * we might still populate it if it was a
548 * working directory or similar).
550 if (dentry->d_count > 1) {
551 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
552 spin_unlock(&dentry->d_lock);
553 return -EBUSY;
557 __d_drop(dentry);
558 spin_unlock(&dentry->d_lock);
559 return 0;
561 EXPORT_SYMBOL(d_invalidate);
563 /* This must be called with d_lock held */
564 static inline void __dget_dlock(struct dentry *dentry)
566 dentry->d_count++;
569 static inline void __dget(struct dentry *dentry)
571 spin_lock(&dentry->d_lock);
572 __dget_dlock(dentry);
573 spin_unlock(&dentry->d_lock);
576 struct dentry *dget_parent(struct dentry *dentry)
578 struct dentry *ret;
580 repeat:
582 * Don't need rcu_dereference because we re-check it was correct under
583 * the lock.
585 rcu_read_lock();
586 ret = dentry->d_parent;
587 spin_lock(&ret->d_lock);
588 if (unlikely(ret != dentry->d_parent)) {
589 spin_unlock(&ret->d_lock);
590 rcu_read_unlock();
591 goto repeat;
593 rcu_read_unlock();
594 BUG_ON(!ret->d_count);
595 ret->d_count++;
596 spin_unlock(&ret->d_lock);
597 return ret;
599 EXPORT_SYMBOL(dget_parent);
602 * d_find_alias - grab a hashed alias of inode
603 * @inode: inode in question
604 * @want_discon: flag, used by d_splice_alias, to request
605 * that only a DISCONNECTED alias be returned.
607 * If inode has a hashed alias, or is a directory and has any alias,
608 * acquire the reference to alias and return it. Otherwise return NULL.
609 * Notice that if inode is a directory there can be only one alias and
610 * it can be unhashed only if it has no children, or if it is the root
611 * of a filesystem.
613 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
614 * any other hashed alias over that one unless @want_discon is set,
615 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
617 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
619 struct dentry *alias, *discon_alias;
621 again:
622 discon_alias = NULL;
623 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
624 spin_lock(&alias->d_lock);
625 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
626 if (IS_ROOT(alias) &&
627 (alias->d_flags & DCACHE_DISCONNECTED)) {
628 discon_alias = alias;
629 } else if (!want_discon) {
630 __dget_dlock(alias);
631 spin_unlock(&alias->d_lock);
632 return alias;
635 spin_unlock(&alias->d_lock);
637 if (discon_alias) {
638 alias = discon_alias;
639 spin_lock(&alias->d_lock);
640 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
641 if (IS_ROOT(alias) &&
642 (alias->d_flags & DCACHE_DISCONNECTED)) {
643 __dget_dlock(alias);
644 spin_unlock(&alias->d_lock);
645 return alias;
648 spin_unlock(&alias->d_lock);
649 goto again;
651 return NULL;
654 struct dentry *d_find_alias(struct inode *inode)
656 struct dentry *de = NULL;
658 if (!list_empty(&inode->i_dentry)) {
659 spin_lock(&inode->i_lock);
660 de = __d_find_alias(inode, 0);
661 spin_unlock(&inode->i_lock);
663 return de;
665 EXPORT_SYMBOL(d_find_alias);
668 * Try to kill dentries associated with this inode.
669 * WARNING: you must own a reference to inode.
671 void d_prune_aliases(struct inode *inode)
673 struct dentry *dentry;
674 restart:
675 spin_lock(&inode->i_lock);
676 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
677 spin_lock(&dentry->d_lock);
678 if (!dentry->d_count) {
679 __dget_dlock(dentry);
680 __d_drop(dentry);
681 spin_unlock(&dentry->d_lock);
682 spin_unlock(&inode->i_lock);
683 dput(dentry);
684 goto restart;
686 spin_unlock(&dentry->d_lock);
688 spin_unlock(&inode->i_lock);
690 EXPORT_SYMBOL(d_prune_aliases);
693 * Try to throw away a dentry - free the inode, dput the parent.
694 * Requires dentry->d_lock is held, and dentry->d_count == 0.
695 * Releases dentry->d_lock.
697 * This may fail if locks cannot be acquired no problem, just try again.
699 static void try_prune_one_dentry(struct dentry *dentry)
700 __releases(dentry->d_lock)
702 struct dentry *parent;
704 parent = dentry_kill(dentry, 0);
706 * If dentry_kill returns NULL, we have nothing more to do.
707 * if it returns the same dentry, trylocks failed. In either
708 * case, just loop again.
710 * Otherwise, we need to prune ancestors too. This is necessary
711 * to prevent quadratic behavior of shrink_dcache_parent(), but
712 * is also expected to be beneficial in reducing dentry cache
713 * fragmentation.
715 if (!parent)
716 return;
717 if (parent == dentry)
718 return;
720 /* Prune ancestors. */
721 dentry = parent;
722 while (dentry) {
723 spin_lock(&dentry->d_lock);
724 if (dentry->d_count > 1) {
725 dentry->d_count--;
726 spin_unlock(&dentry->d_lock);
727 return;
729 dentry = dentry_kill(dentry, 1);
733 static void shrink_dentry_list(struct list_head *list)
735 struct dentry *dentry;
737 rcu_read_lock();
738 for (;;) {
739 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
740 if (&dentry->d_lru == list)
741 break; /* empty */
742 spin_lock(&dentry->d_lock);
743 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
744 spin_unlock(&dentry->d_lock);
745 continue;
749 * We found an inuse dentry which was not removed from
750 * the LRU because of laziness during lookup. Do not free
751 * it - just keep it off the LRU list.
753 if (dentry->d_count) {
754 dentry_lru_del(dentry);
755 spin_unlock(&dentry->d_lock);
756 continue;
759 rcu_read_unlock();
761 try_prune_one_dentry(dentry);
763 rcu_read_lock();
765 rcu_read_unlock();
769 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
770 * @sb: superblock to shrink dentry LRU.
771 * @count: number of entries to prune
772 * @flags: flags to control the dentry processing
774 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
776 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
778 struct dentry *dentry;
779 LIST_HEAD(referenced);
780 LIST_HEAD(tmp);
782 relock:
783 spin_lock(&dcache_lru_lock);
784 while (!list_empty(&sb->s_dentry_lru)) {
785 dentry = list_entry(sb->s_dentry_lru.prev,
786 struct dentry, d_lru);
787 BUG_ON(dentry->d_sb != sb);
789 if (!spin_trylock(&dentry->d_lock)) {
790 spin_unlock(&dcache_lru_lock);
791 cpu_relax();
792 goto relock;
796 * If we are honouring the DCACHE_REFERENCED flag and the
797 * dentry has this flag set, don't free it. Clear the flag
798 * and put it back on the LRU.
800 if (flags & DCACHE_REFERENCED &&
801 dentry->d_flags & DCACHE_REFERENCED) {
802 dentry->d_flags &= ~DCACHE_REFERENCED;
803 list_move(&dentry->d_lru, &referenced);
804 spin_unlock(&dentry->d_lock);
805 } else {
806 list_move_tail(&dentry->d_lru, &tmp);
807 spin_unlock(&dentry->d_lock);
808 if (!--count)
809 break;
811 cond_resched_lock(&dcache_lru_lock);
813 if (!list_empty(&referenced))
814 list_splice(&referenced, &sb->s_dentry_lru);
815 spin_unlock(&dcache_lru_lock);
817 shrink_dentry_list(&tmp);
821 * prune_dcache_sb - shrink the dcache
822 * @sb: superblock
823 * @nr_to_scan: number of entries to try to free
825 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
826 * done when we need more memory an called from the superblock shrinker
827 * function.
829 * This function may fail to free any resources if all the dentries are in
830 * use.
832 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
834 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
838 * shrink_dcache_sb - shrink dcache for a superblock
839 * @sb: superblock
841 * Shrink the dcache for the specified super block. This is used to free
842 * the dcache before unmounting a file system.
844 void shrink_dcache_sb(struct super_block *sb)
846 LIST_HEAD(tmp);
848 spin_lock(&dcache_lru_lock);
849 while (!list_empty(&sb->s_dentry_lru)) {
850 list_splice_init(&sb->s_dentry_lru, &tmp);
851 spin_unlock(&dcache_lru_lock);
852 shrink_dentry_list(&tmp);
853 spin_lock(&dcache_lru_lock);
855 spin_unlock(&dcache_lru_lock);
857 EXPORT_SYMBOL(shrink_dcache_sb);
860 * destroy a single subtree of dentries for unmount
861 * - see the comments on shrink_dcache_for_umount() for a description of the
862 * locking
864 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
866 struct dentry *parent;
868 BUG_ON(!IS_ROOT(dentry));
870 for (;;) {
871 /* descend to the first leaf in the current subtree */
872 while (!list_empty(&dentry->d_subdirs))
873 dentry = list_entry(dentry->d_subdirs.next,
874 struct dentry, d_u.d_child);
876 /* consume the dentries from this leaf up through its parents
877 * until we find one with children or run out altogether */
878 do {
879 struct inode *inode;
882 * remove the dentry from the lru, and inform
883 * the fs that this dentry is about to be
884 * unhashed and destroyed.
886 dentry_lru_prune(dentry);
887 __d_shrink(dentry);
889 if (dentry->d_count != 0) {
890 printk(KERN_ERR
891 "BUG: Dentry %p{i=%lx,n=%s}"
892 " still in use (%d)"
893 " [unmount of %s %s]\n",
894 dentry,
895 dentry->d_inode ?
896 dentry->d_inode->i_ino : 0UL,
897 dentry->d_name.name,
898 dentry->d_count,
899 dentry->d_sb->s_type->name,
900 dentry->d_sb->s_id);
901 BUG();
904 if (IS_ROOT(dentry)) {
905 parent = NULL;
906 list_del(&dentry->d_u.d_child);
907 } else {
908 parent = dentry->d_parent;
909 parent->d_count--;
910 list_del(&dentry->d_u.d_child);
913 inode = dentry->d_inode;
914 if (inode) {
915 dentry->d_inode = NULL;
916 list_del_init(&dentry->d_alias);
917 if (dentry->d_op && dentry->d_op->d_iput)
918 dentry->d_op->d_iput(dentry, inode);
919 else
920 iput(inode);
923 d_free(dentry);
925 /* finished when we fall off the top of the tree,
926 * otherwise we ascend to the parent and move to the
927 * next sibling if there is one */
928 if (!parent)
929 return;
930 dentry = parent;
931 } while (list_empty(&dentry->d_subdirs));
933 dentry = list_entry(dentry->d_subdirs.next,
934 struct dentry, d_u.d_child);
939 * destroy the dentries attached to a superblock on unmounting
940 * - we don't need to use dentry->d_lock because:
941 * - the superblock is detached from all mountings and open files, so the
942 * dentry trees will not be rearranged by the VFS
943 * - s_umount is write-locked, so the memory pressure shrinker will ignore
944 * any dentries belonging to this superblock that it comes across
945 * - the filesystem itself is no longer permitted to rearrange the dentries
946 * in this superblock
948 void shrink_dcache_for_umount(struct super_block *sb)
950 struct dentry *dentry;
952 if (down_read_trylock(&sb->s_umount))
953 BUG();
955 dentry = sb->s_root;
956 sb->s_root = NULL;
957 dentry->d_count--;
958 shrink_dcache_for_umount_subtree(dentry);
960 while (!hlist_bl_empty(&sb->s_anon)) {
961 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
962 shrink_dcache_for_umount_subtree(dentry);
967 * This tries to ascend one level of parenthood, but
968 * we can race with renaming, so we need to re-check
969 * the parenthood after dropping the lock and check
970 * that the sequence number still matches.
972 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
974 struct dentry *new = old->d_parent;
976 rcu_read_lock();
977 spin_unlock(&old->d_lock);
978 spin_lock(&new->d_lock);
981 * might go back up the wrong parent if we have had a rename
982 * or deletion
984 if (new != old->d_parent ||
985 (old->d_flags & DCACHE_DISCONNECTED) ||
986 (!locked && read_seqretry(&rename_lock, seq))) {
987 spin_unlock(&new->d_lock);
988 new = NULL;
990 rcu_read_unlock();
991 return new;
996 * Search for at least 1 mount point in the dentry's subdirs.
997 * We descend to the next level whenever the d_subdirs
998 * list is non-empty and continue searching.
1002 * have_submounts - check for mounts over a dentry
1003 * @parent: dentry to check.
1005 * Return true if the parent or its subdirectories contain
1006 * a mount point
1008 int have_submounts(struct dentry *parent)
1010 struct dentry *this_parent;
1011 struct list_head *next;
1012 unsigned seq;
1013 int locked = 0;
1015 seq = read_seqbegin(&rename_lock);
1016 again:
1017 this_parent = parent;
1019 if (d_mountpoint(parent))
1020 goto positive;
1021 spin_lock(&this_parent->d_lock);
1022 repeat:
1023 next = this_parent->d_subdirs.next;
1024 resume:
1025 while (next != &this_parent->d_subdirs) {
1026 struct list_head *tmp = next;
1027 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1028 next = tmp->next;
1030 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1031 /* Have we found a mount point ? */
1032 if (d_mountpoint(dentry)) {
1033 spin_unlock(&dentry->d_lock);
1034 spin_unlock(&this_parent->d_lock);
1035 goto positive;
1037 if (!list_empty(&dentry->d_subdirs)) {
1038 spin_unlock(&this_parent->d_lock);
1039 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1040 this_parent = dentry;
1041 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1042 goto repeat;
1044 spin_unlock(&dentry->d_lock);
1047 * All done at this level ... ascend and resume the search.
1049 if (this_parent != parent) {
1050 struct dentry *child = this_parent;
1051 this_parent = try_to_ascend(this_parent, locked, seq);
1052 if (!this_parent)
1053 goto rename_retry;
1054 next = child->d_u.d_child.next;
1055 goto resume;
1057 spin_unlock(&this_parent->d_lock);
1058 if (!locked && read_seqretry(&rename_lock, seq))
1059 goto rename_retry;
1060 if (locked)
1061 write_sequnlock(&rename_lock);
1062 return 0; /* No mount points found in tree */
1063 positive:
1064 if (!locked && read_seqretry(&rename_lock, seq))
1065 goto rename_retry;
1066 if (locked)
1067 write_sequnlock(&rename_lock);
1068 return 1;
1070 rename_retry:
1071 locked = 1;
1072 write_seqlock(&rename_lock);
1073 goto again;
1075 EXPORT_SYMBOL(have_submounts);
1078 * Search the dentry child list for the specified parent,
1079 * and move any unused dentries to the end of the unused
1080 * list for prune_dcache(). We descend to the next level
1081 * whenever the d_subdirs list is non-empty and continue
1082 * searching.
1084 * It returns zero iff there are no unused children,
1085 * otherwise it returns the number of children moved to
1086 * the end of the unused list. This may not be the total
1087 * number of unused children, because select_parent can
1088 * drop the lock and return early due to latency
1089 * constraints.
1091 static int select_parent(struct dentry * parent)
1093 struct dentry *this_parent;
1094 struct list_head *next;
1095 unsigned seq;
1096 int found = 0;
1097 int locked = 0;
1099 seq = read_seqbegin(&rename_lock);
1100 again:
1101 this_parent = parent;
1102 spin_lock(&this_parent->d_lock);
1103 repeat:
1104 next = this_parent->d_subdirs.next;
1105 resume:
1106 while (next != &this_parent->d_subdirs) {
1107 struct list_head *tmp = next;
1108 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1109 next = tmp->next;
1111 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1114 * move only zero ref count dentries to the end
1115 * of the unused list for prune_dcache
1117 if (!dentry->d_count) {
1118 dentry_lru_move_tail(dentry);
1119 found++;
1120 } else {
1121 dentry_lru_del(dentry);
1125 * We can return to the caller if we have found some (this
1126 * ensures forward progress). We'll be coming back to find
1127 * the rest.
1129 if (found && need_resched()) {
1130 spin_unlock(&dentry->d_lock);
1131 goto out;
1135 * Descend a level if the d_subdirs list is non-empty.
1137 if (!list_empty(&dentry->d_subdirs)) {
1138 spin_unlock(&this_parent->d_lock);
1139 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1140 this_parent = dentry;
1141 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1142 goto repeat;
1145 spin_unlock(&dentry->d_lock);
1148 * All done at this level ... ascend and resume the search.
1150 if (this_parent != parent) {
1151 struct dentry *child = this_parent;
1152 this_parent = try_to_ascend(this_parent, locked, seq);
1153 if (!this_parent)
1154 goto rename_retry;
1155 next = child->d_u.d_child.next;
1156 goto resume;
1158 out:
1159 spin_unlock(&this_parent->d_lock);
1160 if (!locked && read_seqretry(&rename_lock, seq))
1161 goto rename_retry;
1162 if (locked)
1163 write_sequnlock(&rename_lock);
1164 return found;
1166 rename_retry:
1167 if (found)
1168 return found;
1169 locked = 1;
1170 write_seqlock(&rename_lock);
1171 goto again;
1175 * shrink_dcache_parent - prune dcache
1176 * @parent: parent of entries to prune
1178 * Prune the dcache to remove unused children of the parent dentry.
1181 void shrink_dcache_parent(struct dentry * parent)
1183 struct super_block *sb = parent->d_sb;
1184 int found;
1186 while ((found = select_parent(parent)) != 0)
1187 __shrink_dcache_sb(sb, found, 0);
1189 EXPORT_SYMBOL(shrink_dcache_parent);
1192 * __d_alloc - allocate a dcache entry
1193 * @sb: filesystem it will belong to
1194 * @name: qstr of the name
1196 * Allocates a dentry. It returns %NULL if there is insufficient memory
1197 * available. On a success the dentry is returned. The name passed in is
1198 * copied and the copy passed in may be reused after this call.
1201 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1203 struct dentry *dentry;
1204 char *dname;
1206 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1207 if (!dentry)
1208 return NULL;
1210 if (name->len > DNAME_INLINE_LEN-1) {
1211 dname = kmalloc(name->len + 1, GFP_KERNEL);
1212 if (!dname) {
1213 kmem_cache_free(dentry_cache, dentry);
1214 return NULL;
1216 } else {
1217 dname = dentry->d_iname;
1219 dentry->d_name.name = dname;
1221 dentry->d_name.len = name->len;
1222 dentry->d_name.hash = name->hash;
1223 memcpy(dname, name->name, name->len);
1224 dname[name->len] = 0;
1226 dentry->d_count = 1;
1227 dentry->d_flags = 0;
1228 spin_lock_init(&dentry->d_lock);
1229 seqcount_init(&dentry->d_seq);
1230 dentry->d_inode = NULL;
1231 dentry->d_parent = dentry;
1232 dentry->d_sb = sb;
1233 dentry->d_op = NULL;
1234 dentry->d_fsdata = NULL;
1235 INIT_HLIST_BL_NODE(&dentry->d_hash);
1236 INIT_LIST_HEAD(&dentry->d_lru);
1237 INIT_LIST_HEAD(&dentry->d_subdirs);
1238 INIT_LIST_HEAD(&dentry->d_alias);
1239 INIT_LIST_HEAD(&dentry->d_u.d_child);
1240 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1242 this_cpu_inc(nr_dentry);
1244 return dentry;
1248 * d_alloc - allocate a dcache entry
1249 * @parent: parent of entry to allocate
1250 * @name: qstr of the name
1252 * Allocates a dentry. It returns %NULL if there is insufficient memory
1253 * available. On a success the dentry is returned. The name passed in is
1254 * copied and the copy passed in may be reused after this call.
1256 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1258 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1259 if (!dentry)
1260 return NULL;
1262 spin_lock(&parent->d_lock);
1264 * don't need child lock because it is not subject
1265 * to concurrency here
1267 __dget_dlock(parent);
1268 dentry->d_parent = parent;
1269 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1270 spin_unlock(&parent->d_lock);
1272 return dentry;
1274 EXPORT_SYMBOL(d_alloc);
1276 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1278 struct dentry *dentry = __d_alloc(sb, name);
1279 if (dentry)
1280 dentry->d_flags |= DCACHE_DISCONNECTED;
1281 return dentry;
1283 EXPORT_SYMBOL(d_alloc_pseudo);
1285 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1287 struct qstr q;
1289 q.name = name;
1290 q.len = strlen(name);
1291 q.hash = full_name_hash(q.name, q.len);
1292 return d_alloc(parent, &q);
1294 EXPORT_SYMBOL(d_alloc_name);
1296 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1298 WARN_ON_ONCE(dentry->d_op);
1299 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1300 DCACHE_OP_COMPARE |
1301 DCACHE_OP_REVALIDATE |
1302 DCACHE_OP_DELETE ));
1303 dentry->d_op = op;
1304 if (!op)
1305 return;
1306 if (op->d_hash)
1307 dentry->d_flags |= DCACHE_OP_HASH;
1308 if (op->d_compare)
1309 dentry->d_flags |= DCACHE_OP_COMPARE;
1310 if (op->d_revalidate)
1311 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1312 if (op->d_delete)
1313 dentry->d_flags |= DCACHE_OP_DELETE;
1314 if (op->d_prune)
1315 dentry->d_flags |= DCACHE_OP_PRUNE;
1318 EXPORT_SYMBOL(d_set_d_op);
1320 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1322 spin_lock(&dentry->d_lock);
1323 if (inode) {
1324 if (unlikely(IS_AUTOMOUNT(inode)))
1325 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1326 list_add(&dentry->d_alias, &inode->i_dentry);
1328 dentry->d_inode = inode;
1329 dentry_rcuwalk_barrier(dentry);
1330 spin_unlock(&dentry->d_lock);
1331 fsnotify_d_instantiate(dentry, inode);
1335 * d_instantiate - fill in inode information for a dentry
1336 * @entry: dentry to complete
1337 * @inode: inode to attach to this dentry
1339 * Fill in inode information in the entry.
1341 * This turns negative dentries into productive full members
1342 * of society.
1344 * NOTE! This assumes that the inode count has been incremented
1345 * (or otherwise set) by the caller to indicate that it is now
1346 * in use by the dcache.
1349 void d_instantiate(struct dentry *entry, struct inode * inode)
1351 BUG_ON(!list_empty(&entry->d_alias));
1352 if (inode)
1353 spin_lock(&inode->i_lock);
1354 __d_instantiate(entry, inode);
1355 if (inode)
1356 spin_unlock(&inode->i_lock);
1357 security_d_instantiate(entry, inode);
1359 EXPORT_SYMBOL(d_instantiate);
1362 * d_instantiate_unique - instantiate a non-aliased dentry
1363 * @entry: dentry to instantiate
1364 * @inode: inode to attach to this dentry
1366 * Fill in inode information in the entry. On success, it returns NULL.
1367 * If an unhashed alias of "entry" already exists, then we return the
1368 * aliased dentry instead and drop one reference to inode.
1370 * Note that in order to avoid conflicts with rename() etc, the caller
1371 * had better be holding the parent directory semaphore.
1373 * This also assumes that the inode count has been incremented
1374 * (or otherwise set) by the caller to indicate that it is now
1375 * in use by the dcache.
1377 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1378 struct inode *inode)
1380 struct dentry *alias;
1381 int len = entry->d_name.len;
1382 const char *name = entry->d_name.name;
1383 unsigned int hash = entry->d_name.hash;
1385 if (!inode) {
1386 __d_instantiate(entry, NULL);
1387 return NULL;
1390 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1391 struct qstr *qstr = &alias->d_name;
1394 * Don't need alias->d_lock here, because aliases with
1395 * d_parent == entry->d_parent are not subject to name or
1396 * parent changes, because the parent inode i_mutex is held.
1398 if (qstr->hash != hash)
1399 continue;
1400 if (alias->d_parent != entry->d_parent)
1401 continue;
1402 if (dentry_cmp(qstr->name, qstr->len, name, len))
1403 continue;
1404 __dget(alias);
1405 return alias;
1408 __d_instantiate(entry, inode);
1409 return NULL;
1412 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1414 struct dentry *result;
1416 BUG_ON(!list_empty(&entry->d_alias));
1418 if (inode)
1419 spin_lock(&inode->i_lock);
1420 result = __d_instantiate_unique(entry, inode);
1421 if (inode)
1422 spin_unlock(&inode->i_lock);
1424 if (!result) {
1425 security_d_instantiate(entry, inode);
1426 return NULL;
1429 BUG_ON(!d_unhashed(result));
1430 iput(inode);
1431 return result;
1434 EXPORT_SYMBOL(d_instantiate_unique);
1437 * d_alloc_root - allocate root dentry
1438 * @root_inode: inode to allocate the root for
1440 * Allocate a root ("/") dentry for the inode given. The inode is
1441 * instantiated and returned. %NULL is returned if there is insufficient
1442 * memory or the inode passed is %NULL.
1445 struct dentry * d_alloc_root(struct inode * root_inode)
1447 struct dentry *res = NULL;
1449 if (root_inode) {
1450 static const struct qstr name = { .name = "/", .len = 1 };
1452 res = __d_alloc(root_inode->i_sb, &name);
1453 if (res)
1454 d_instantiate(res, root_inode);
1456 return res;
1458 EXPORT_SYMBOL(d_alloc_root);
1460 static struct dentry * __d_find_any_alias(struct inode *inode)
1462 struct dentry *alias;
1464 if (list_empty(&inode->i_dentry))
1465 return NULL;
1466 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1467 __dget(alias);
1468 return alias;
1471 static struct dentry * d_find_any_alias(struct inode *inode)
1473 struct dentry *de;
1475 spin_lock(&inode->i_lock);
1476 de = __d_find_any_alias(inode);
1477 spin_unlock(&inode->i_lock);
1478 return de;
1483 * d_obtain_alias - find or allocate a dentry for a given inode
1484 * @inode: inode to allocate the dentry for
1486 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1487 * similar open by handle operations. The returned dentry may be anonymous,
1488 * or may have a full name (if the inode was already in the cache).
1490 * When called on a directory inode, we must ensure that the inode only ever
1491 * has one dentry. If a dentry is found, that is returned instead of
1492 * allocating a new one.
1494 * On successful return, the reference to the inode has been transferred
1495 * to the dentry. In case of an error the reference on the inode is released.
1496 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1497 * be passed in and will be the error will be propagate to the return value,
1498 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1500 struct dentry *d_obtain_alias(struct inode *inode)
1502 static const struct qstr anonstring = { .name = "" };
1503 struct dentry *tmp;
1504 struct dentry *res;
1506 if (!inode)
1507 return ERR_PTR(-ESTALE);
1508 if (IS_ERR(inode))
1509 return ERR_CAST(inode);
1511 res = d_find_any_alias(inode);
1512 if (res)
1513 goto out_iput;
1515 tmp = __d_alloc(inode->i_sb, &anonstring);
1516 if (!tmp) {
1517 res = ERR_PTR(-ENOMEM);
1518 goto out_iput;
1521 spin_lock(&inode->i_lock);
1522 res = __d_find_any_alias(inode);
1523 if (res) {
1524 spin_unlock(&inode->i_lock);
1525 dput(tmp);
1526 goto out_iput;
1529 /* attach a disconnected dentry */
1530 spin_lock(&tmp->d_lock);
1531 tmp->d_inode = inode;
1532 tmp->d_flags |= DCACHE_DISCONNECTED;
1533 list_add(&tmp->d_alias, &inode->i_dentry);
1534 hlist_bl_lock(&tmp->d_sb->s_anon);
1535 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1536 hlist_bl_unlock(&tmp->d_sb->s_anon);
1537 spin_unlock(&tmp->d_lock);
1538 spin_unlock(&inode->i_lock);
1539 security_d_instantiate(tmp, inode);
1541 return tmp;
1543 out_iput:
1544 if (res && !IS_ERR(res))
1545 security_d_instantiate(res, inode);
1546 iput(inode);
1547 return res;
1549 EXPORT_SYMBOL(d_obtain_alias);
1552 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1553 * @inode: the inode which may have a disconnected dentry
1554 * @dentry: a negative dentry which we want to point to the inode.
1556 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1557 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1558 * and return it, else simply d_add the inode to the dentry and return NULL.
1560 * This is needed in the lookup routine of any filesystem that is exportable
1561 * (via knfsd) so that we can build dcache paths to directories effectively.
1563 * If a dentry was found and moved, then it is returned. Otherwise NULL
1564 * is returned. This matches the expected return value of ->lookup.
1567 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1569 struct dentry *new = NULL;
1571 if (IS_ERR(inode))
1572 return ERR_CAST(inode);
1574 if (inode && S_ISDIR(inode->i_mode)) {
1575 spin_lock(&inode->i_lock);
1576 new = __d_find_alias(inode, 1);
1577 if (new) {
1578 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1579 spin_unlock(&inode->i_lock);
1580 security_d_instantiate(new, inode);
1581 d_move(new, dentry);
1582 iput(inode);
1583 } else {
1584 /* already taking inode->i_lock, so d_add() by hand */
1585 __d_instantiate(dentry, inode);
1586 spin_unlock(&inode->i_lock);
1587 security_d_instantiate(dentry, inode);
1588 d_rehash(dentry);
1590 } else
1591 d_add(dentry, inode);
1592 return new;
1594 EXPORT_SYMBOL(d_splice_alias);
1597 * d_add_ci - lookup or allocate new dentry with case-exact name
1598 * @inode: the inode case-insensitive lookup has found
1599 * @dentry: the negative dentry that was passed to the parent's lookup func
1600 * @name: the case-exact name to be associated with the returned dentry
1602 * This is to avoid filling the dcache with case-insensitive names to the
1603 * same inode, only the actual correct case is stored in the dcache for
1604 * case-insensitive filesystems.
1606 * For a case-insensitive lookup match and if the the case-exact dentry
1607 * already exists in in the dcache, use it and return it.
1609 * If no entry exists with the exact case name, allocate new dentry with
1610 * the exact case, and return the spliced entry.
1612 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1613 struct qstr *name)
1615 int error;
1616 struct dentry *found;
1617 struct dentry *new;
1620 * First check if a dentry matching the name already exists,
1621 * if not go ahead and create it now.
1623 found = d_hash_and_lookup(dentry->d_parent, name);
1624 if (!found) {
1625 new = d_alloc(dentry->d_parent, name);
1626 if (!new) {
1627 error = -ENOMEM;
1628 goto err_out;
1631 found = d_splice_alias(inode, new);
1632 if (found) {
1633 dput(new);
1634 return found;
1636 return new;
1640 * If a matching dentry exists, and it's not negative use it.
1642 * Decrement the reference count to balance the iget() done
1643 * earlier on.
1645 if (found->d_inode) {
1646 if (unlikely(found->d_inode != inode)) {
1647 /* This can't happen because bad inodes are unhashed. */
1648 BUG_ON(!is_bad_inode(inode));
1649 BUG_ON(!is_bad_inode(found->d_inode));
1651 iput(inode);
1652 return found;
1656 * We are going to instantiate this dentry, unhash it and clear the
1657 * lookup flag so we can do that.
1659 if (unlikely(d_need_lookup(found)))
1660 d_clear_need_lookup(found);
1663 * Negative dentry: instantiate it unless the inode is a directory and
1664 * already has a dentry.
1666 new = d_splice_alias(inode, found);
1667 if (new) {
1668 dput(found);
1669 found = new;
1671 return found;
1673 err_out:
1674 iput(inode);
1675 return ERR_PTR(error);
1677 EXPORT_SYMBOL(d_add_ci);
1680 * __d_lookup_rcu - search for a dentry (racy, store-free)
1681 * @parent: parent dentry
1682 * @name: qstr of name we wish to find
1683 * @seq: returns d_seq value at the point where the dentry was found
1684 * @inode: returns dentry->d_inode when the inode was found valid.
1685 * Returns: dentry, or NULL
1687 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1688 * resolution (store-free path walking) design described in
1689 * Documentation/filesystems/path-lookup.txt.
1691 * This is not to be used outside core vfs.
1693 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1694 * held, and rcu_read_lock held. The returned dentry must not be stored into
1695 * without taking d_lock and checking d_seq sequence count against @seq
1696 * returned here.
1698 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1699 * function.
1701 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1702 * the returned dentry, so long as its parent's seqlock is checked after the
1703 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1704 * is formed, giving integrity down the path walk.
1706 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1707 unsigned *seq, struct inode **inode)
1709 unsigned int len = name->len;
1710 unsigned int hash = name->hash;
1711 const unsigned char *str = name->name;
1712 struct hlist_bl_head *b = d_hash(parent, hash);
1713 struct hlist_bl_node *node;
1714 struct dentry *dentry;
1717 * Note: There is significant duplication with __d_lookup_rcu which is
1718 * required to prevent single threaded performance regressions
1719 * especially on architectures where smp_rmb (in seqcounts) are costly.
1720 * Keep the two functions in sync.
1724 * The hash list is protected using RCU.
1726 * Carefully use d_seq when comparing a candidate dentry, to avoid
1727 * races with d_move().
1729 * It is possible that concurrent renames can mess up our list
1730 * walk here and result in missing our dentry, resulting in the
1731 * false-negative result. d_lookup() protects against concurrent
1732 * renames using rename_lock seqlock.
1734 * See Documentation/filesystems/path-lookup.txt for more details.
1736 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1737 struct inode *i;
1738 const char *tname;
1739 int tlen;
1741 if (dentry->d_name.hash != hash)
1742 continue;
1744 seqretry:
1745 *seq = read_seqcount_begin(&dentry->d_seq);
1746 if (dentry->d_parent != parent)
1747 continue;
1748 if (d_unhashed(dentry))
1749 continue;
1750 tlen = dentry->d_name.len;
1751 tname = dentry->d_name.name;
1752 i = dentry->d_inode;
1753 prefetch(tname);
1755 * This seqcount check is required to ensure name and
1756 * len are loaded atomically, so as not to walk off the
1757 * edge of memory when walking. If we could load this
1758 * atomically some other way, we could drop this check.
1760 if (read_seqcount_retry(&dentry->d_seq, *seq))
1761 goto seqretry;
1762 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1763 if (parent->d_op->d_compare(parent, *inode,
1764 dentry, i,
1765 tlen, tname, name))
1766 continue;
1767 } else {
1768 if (dentry_cmp(tname, tlen, str, len))
1769 continue;
1772 * No extra seqcount check is required after the name
1773 * compare. The caller must perform a seqcount check in
1774 * order to do anything useful with the returned dentry
1775 * anyway.
1777 *inode = i;
1778 return dentry;
1780 return NULL;
1784 * d_lookup - search for a dentry
1785 * @parent: parent dentry
1786 * @name: qstr of name we wish to find
1787 * Returns: dentry, or NULL
1789 * d_lookup searches the children of the parent dentry for the name in
1790 * question. If the dentry is found its reference count is incremented and the
1791 * dentry is returned. The caller must use dput to free the entry when it has
1792 * finished using it. %NULL is returned if the dentry does not exist.
1794 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1796 struct dentry *dentry;
1797 unsigned seq;
1799 do {
1800 seq = read_seqbegin(&rename_lock);
1801 dentry = __d_lookup(parent, name);
1802 if (dentry)
1803 break;
1804 } while (read_seqretry(&rename_lock, seq));
1805 return dentry;
1807 EXPORT_SYMBOL(d_lookup);
1810 * __d_lookup - search for a dentry (racy)
1811 * @parent: parent dentry
1812 * @name: qstr of name we wish to find
1813 * Returns: dentry, or NULL
1815 * __d_lookup is like d_lookup, however it may (rarely) return a
1816 * false-negative result due to unrelated rename activity.
1818 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1819 * however it must be used carefully, eg. with a following d_lookup in
1820 * the case of failure.
1822 * __d_lookup callers must be commented.
1824 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1826 unsigned int len = name->len;
1827 unsigned int hash = name->hash;
1828 const unsigned char *str = name->name;
1829 struct hlist_bl_head *b = d_hash(parent, hash);
1830 struct hlist_bl_node *node;
1831 struct dentry *found = NULL;
1832 struct dentry *dentry;
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1842 * The hash list is protected using RCU.
1844 * Take d_lock when comparing a candidate dentry, to avoid races
1845 * with d_move().
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1852 * See Documentation/filesystems/path-lookup.txt for more details.
1854 rcu_read_lock();
1856 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1857 const char *tname;
1858 int tlen;
1860 if (dentry->d_name.hash != hash)
1861 continue;
1863 spin_lock(&dentry->d_lock);
1864 if (dentry->d_parent != parent)
1865 goto next;
1866 if (d_unhashed(dentry))
1867 goto next;
1870 * It is safe to compare names since d_move() cannot
1871 * change the qstr (protected by d_lock).
1873 tlen = dentry->d_name.len;
1874 tname = dentry->d_name.name;
1875 if (parent->d_flags & DCACHE_OP_COMPARE) {
1876 if (parent->d_op->d_compare(parent, parent->d_inode,
1877 dentry, dentry->d_inode,
1878 tlen, tname, name))
1879 goto next;
1880 } else {
1881 if (dentry_cmp(tname, tlen, str, len))
1882 goto next;
1885 dentry->d_count++;
1886 found = dentry;
1887 spin_unlock(&dentry->d_lock);
1888 break;
1889 next:
1890 spin_unlock(&dentry->d_lock);
1892 rcu_read_unlock();
1894 return found;
1898 * d_hash_and_lookup - hash the qstr then search for a dentry
1899 * @dir: Directory to search in
1900 * @name: qstr of name we wish to find
1902 * On hash failure or on lookup failure NULL is returned.
1904 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1906 struct dentry *dentry = NULL;
1909 * Check for a fs-specific hash function. Note that we must
1910 * calculate the standard hash first, as the d_op->d_hash()
1911 * routine may choose to leave the hash value unchanged.
1913 name->hash = full_name_hash(name->name, name->len);
1914 if (dir->d_flags & DCACHE_OP_HASH) {
1915 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1916 goto out;
1918 dentry = d_lookup(dir, name);
1919 out:
1920 return dentry;
1924 * d_validate - verify dentry provided from insecure source (deprecated)
1925 * @dentry: The dentry alleged to be valid child of @dparent
1926 * @dparent: The parent dentry (known to be valid)
1928 * An insecure source has sent us a dentry, here we verify it and dget() it.
1929 * This is used by ncpfs in its readdir implementation.
1930 * Zero is returned in the dentry is invalid.
1932 * This function is slow for big directories, and deprecated, do not use it.
1934 int d_validate(struct dentry *dentry, struct dentry *dparent)
1936 struct dentry *child;
1938 spin_lock(&dparent->d_lock);
1939 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1940 if (dentry == child) {
1941 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1942 __dget_dlock(dentry);
1943 spin_unlock(&dentry->d_lock);
1944 spin_unlock(&dparent->d_lock);
1945 return 1;
1948 spin_unlock(&dparent->d_lock);
1950 return 0;
1952 EXPORT_SYMBOL(d_validate);
1955 * When a file is deleted, we have two options:
1956 * - turn this dentry into a negative dentry
1957 * - unhash this dentry and free it.
1959 * Usually, we want to just turn this into
1960 * a negative dentry, but if anybody else is
1961 * currently using the dentry or the inode
1962 * we can't do that and we fall back on removing
1963 * it from the hash queues and waiting for
1964 * it to be deleted later when it has no users
1968 * d_delete - delete a dentry
1969 * @dentry: The dentry to delete
1971 * Turn the dentry into a negative dentry if possible, otherwise
1972 * remove it from the hash queues so it can be deleted later
1975 void d_delete(struct dentry * dentry)
1977 struct inode *inode;
1978 int isdir = 0;
1980 * Are we the only user?
1982 again:
1983 spin_lock(&dentry->d_lock);
1984 inode = dentry->d_inode;
1985 isdir = S_ISDIR(inode->i_mode);
1986 if (dentry->d_count == 1) {
1987 if (inode && !spin_trylock(&inode->i_lock)) {
1988 spin_unlock(&dentry->d_lock);
1989 cpu_relax();
1990 goto again;
1992 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1993 dentry_unlink_inode(dentry);
1994 fsnotify_nameremove(dentry, isdir);
1995 return;
1998 if (!d_unhashed(dentry))
1999 __d_drop(dentry);
2001 spin_unlock(&dentry->d_lock);
2003 fsnotify_nameremove(dentry, isdir);
2005 EXPORT_SYMBOL(d_delete);
2007 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2009 BUG_ON(!d_unhashed(entry));
2010 hlist_bl_lock(b);
2011 entry->d_flags |= DCACHE_RCUACCESS;
2012 hlist_bl_add_head_rcu(&entry->d_hash, b);
2013 hlist_bl_unlock(b);
2016 static void _d_rehash(struct dentry * entry)
2018 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2022 * d_rehash - add an entry back to the hash
2023 * @entry: dentry to add to the hash
2025 * Adds a dentry to the hash according to its name.
2028 void d_rehash(struct dentry * entry)
2030 spin_lock(&entry->d_lock);
2031 _d_rehash(entry);
2032 spin_unlock(&entry->d_lock);
2034 EXPORT_SYMBOL(d_rehash);
2037 * dentry_update_name_case - update case insensitive dentry with a new name
2038 * @dentry: dentry to be updated
2039 * @name: new name
2041 * Update a case insensitive dentry with new case of name.
2043 * dentry must have been returned by d_lookup with name @name. Old and new
2044 * name lengths must match (ie. no d_compare which allows mismatched name
2045 * lengths).
2047 * Parent inode i_mutex must be held over d_lookup and into this call (to
2048 * keep renames and concurrent inserts, and readdir(2) away).
2050 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2052 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2053 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2055 spin_lock(&dentry->d_lock);
2056 write_seqcount_begin(&dentry->d_seq);
2057 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2058 write_seqcount_end(&dentry->d_seq);
2059 spin_unlock(&dentry->d_lock);
2061 EXPORT_SYMBOL(dentry_update_name_case);
2063 static void switch_names(struct dentry *dentry, struct dentry *target)
2065 if (dname_external(target)) {
2066 if (dname_external(dentry)) {
2068 * Both external: swap the pointers
2070 swap(target->d_name.name, dentry->d_name.name);
2071 } else {
2073 * dentry:internal, target:external. Steal target's
2074 * storage and make target internal.
2076 memcpy(target->d_iname, dentry->d_name.name,
2077 dentry->d_name.len + 1);
2078 dentry->d_name.name = target->d_name.name;
2079 target->d_name.name = target->d_iname;
2081 } else {
2082 if (dname_external(dentry)) {
2084 * dentry:external, target:internal. Give dentry's
2085 * storage to target and make dentry internal
2087 memcpy(dentry->d_iname, target->d_name.name,
2088 target->d_name.len + 1);
2089 target->d_name.name = dentry->d_name.name;
2090 dentry->d_name.name = dentry->d_iname;
2091 } else {
2093 * Both are internal. Just copy target to dentry
2095 memcpy(dentry->d_iname, target->d_name.name,
2096 target->d_name.len + 1);
2097 dentry->d_name.len = target->d_name.len;
2098 return;
2101 swap(dentry->d_name.len, target->d_name.len);
2104 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2107 * XXXX: do we really need to take target->d_lock?
2109 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2110 spin_lock(&target->d_parent->d_lock);
2111 else {
2112 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2113 spin_lock(&dentry->d_parent->d_lock);
2114 spin_lock_nested(&target->d_parent->d_lock,
2115 DENTRY_D_LOCK_NESTED);
2116 } else {
2117 spin_lock(&target->d_parent->d_lock);
2118 spin_lock_nested(&dentry->d_parent->d_lock,
2119 DENTRY_D_LOCK_NESTED);
2122 if (target < dentry) {
2123 spin_lock_nested(&target->d_lock, 2);
2124 spin_lock_nested(&dentry->d_lock, 3);
2125 } else {
2126 spin_lock_nested(&dentry->d_lock, 2);
2127 spin_lock_nested(&target->d_lock, 3);
2131 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2132 struct dentry *target)
2134 if (target->d_parent != dentry->d_parent)
2135 spin_unlock(&dentry->d_parent->d_lock);
2136 if (target->d_parent != target)
2137 spin_unlock(&target->d_parent->d_lock);
2141 * When switching names, the actual string doesn't strictly have to
2142 * be preserved in the target - because we're dropping the target
2143 * anyway. As such, we can just do a simple memcpy() to copy over
2144 * the new name before we switch.
2146 * Note that we have to be a lot more careful about getting the hash
2147 * switched - we have to switch the hash value properly even if it
2148 * then no longer matches the actual (corrupted) string of the target.
2149 * The hash value has to match the hash queue that the dentry is on..
2152 * __d_move - move a dentry
2153 * @dentry: entry to move
2154 * @target: new dentry
2156 * Update the dcache to reflect the move of a file name. Negative
2157 * dcache entries should not be moved in this way. Caller must hold
2158 * rename_lock, the i_mutex of the source and target directories,
2159 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2161 static void __d_move(struct dentry * dentry, struct dentry * target)
2163 if (!dentry->d_inode)
2164 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2166 BUG_ON(d_ancestor(dentry, target));
2167 BUG_ON(d_ancestor(target, dentry));
2169 dentry_lock_for_move(dentry, target);
2171 write_seqcount_begin(&dentry->d_seq);
2172 write_seqcount_begin(&target->d_seq);
2174 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2177 * Move the dentry to the target hash queue. Don't bother checking
2178 * for the same hash queue because of how unlikely it is.
2180 __d_drop(dentry);
2181 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2183 /* Unhash the target: dput() will then get rid of it */
2184 __d_drop(target);
2186 list_del(&dentry->d_u.d_child);
2187 list_del(&target->d_u.d_child);
2189 /* Switch the names.. */
2190 switch_names(dentry, target);
2191 swap(dentry->d_name.hash, target->d_name.hash);
2193 /* ... and switch the parents */
2194 if (IS_ROOT(dentry)) {
2195 dentry->d_parent = target->d_parent;
2196 target->d_parent = target;
2197 INIT_LIST_HEAD(&target->d_u.d_child);
2198 } else {
2199 swap(dentry->d_parent, target->d_parent);
2201 /* And add them back to the (new) parent lists */
2202 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2205 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2207 write_seqcount_end(&target->d_seq);
2208 write_seqcount_end(&dentry->d_seq);
2210 dentry_unlock_parents_for_move(dentry, target);
2211 spin_unlock(&target->d_lock);
2212 fsnotify_d_move(dentry);
2213 spin_unlock(&dentry->d_lock);
2217 * d_move - move a dentry
2218 * @dentry: entry to move
2219 * @target: new dentry
2221 * Update the dcache to reflect the move of a file name. Negative
2222 * dcache entries should not be moved in this way. See the locking
2223 * requirements for __d_move.
2225 void d_move(struct dentry *dentry, struct dentry *target)
2227 write_seqlock(&rename_lock);
2228 __d_move(dentry, target);
2229 write_sequnlock(&rename_lock);
2231 EXPORT_SYMBOL(d_move);
2234 * d_ancestor - search for an ancestor
2235 * @p1: ancestor dentry
2236 * @p2: child dentry
2238 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2239 * an ancestor of p2, else NULL.
2241 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2243 struct dentry *p;
2245 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2246 if (p->d_parent == p1)
2247 return p;
2249 return NULL;
2253 * This helper attempts to cope with remotely renamed directories
2255 * It assumes that the caller is already holding
2256 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2258 * Note: If ever the locking in lock_rename() changes, then please
2259 * remember to update this too...
2261 static struct dentry *__d_unalias(struct inode *inode,
2262 struct dentry *dentry, struct dentry *alias)
2264 struct mutex *m1 = NULL, *m2 = NULL;
2265 struct dentry *ret;
2267 /* If alias and dentry share a parent, then no extra locks required */
2268 if (alias->d_parent == dentry->d_parent)
2269 goto out_unalias;
2271 /* See lock_rename() */
2272 ret = ERR_PTR(-EBUSY);
2273 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2274 goto out_err;
2275 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2276 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2277 goto out_err;
2278 m2 = &alias->d_parent->d_inode->i_mutex;
2279 out_unalias:
2280 __d_move(alias, dentry);
2281 ret = alias;
2282 out_err:
2283 spin_unlock(&inode->i_lock);
2284 if (m2)
2285 mutex_unlock(m2);
2286 if (m1)
2287 mutex_unlock(m1);
2288 return ret;
2292 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2293 * named dentry in place of the dentry to be replaced.
2294 * returns with anon->d_lock held!
2296 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2298 struct dentry *dparent, *aparent;
2300 dentry_lock_for_move(anon, dentry);
2302 write_seqcount_begin(&dentry->d_seq);
2303 write_seqcount_begin(&anon->d_seq);
2305 dparent = dentry->d_parent;
2306 aparent = anon->d_parent;
2308 switch_names(dentry, anon);
2309 swap(dentry->d_name.hash, anon->d_name.hash);
2311 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2312 list_del(&dentry->d_u.d_child);
2313 if (!IS_ROOT(dentry))
2314 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2315 else
2316 INIT_LIST_HEAD(&dentry->d_u.d_child);
2318 anon->d_parent = (dparent == dentry) ? anon : dparent;
2319 list_del(&anon->d_u.d_child);
2320 if (!IS_ROOT(anon))
2321 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2322 else
2323 INIT_LIST_HEAD(&anon->d_u.d_child);
2325 write_seqcount_end(&dentry->d_seq);
2326 write_seqcount_end(&anon->d_seq);
2328 dentry_unlock_parents_for_move(anon, dentry);
2329 spin_unlock(&dentry->d_lock);
2331 /* anon->d_lock still locked, returns locked */
2332 anon->d_flags &= ~DCACHE_DISCONNECTED;
2336 * d_materialise_unique - introduce an inode into the tree
2337 * @dentry: candidate dentry
2338 * @inode: inode to bind to the dentry, to which aliases may be attached
2340 * Introduces an dentry into the tree, substituting an extant disconnected
2341 * root directory alias in its place if there is one. Caller must hold the
2342 * i_mutex of the parent directory.
2344 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2346 struct dentry *actual;
2348 BUG_ON(!d_unhashed(dentry));
2350 if (!inode) {
2351 actual = dentry;
2352 __d_instantiate(dentry, NULL);
2353 d_rehash(actual);
2354 goto out_nolock;
2357 spin_lock(&inode->i_lock);
2359 if (S_ISDIR(inode->i_mode)) {
2360 struct dentry *alias;
2362 /* Does an aliased dentry already exist? */
2363 alias = __d_find_alias(inode, 0);
2364 if (alias) {
2365 actual = alias;
2366 write_seqlock(&rename_lock);
2368 if (d_ancestor(alias, dentry)) {
2369 /* Check for loops */
2370 actual = ERR_PTR(-ELOOP);
2371 } else if (IS_ROOT(alias)) {
2372 /* Is this an anonymous mountpoint that we
2373 * could splice into our tree? */
2374 __d_materialise_dentry(dentry, alias);
2375 write_sequnlock(&rename_lock);
2376 __d_drop(alias);
2377 goto found;
2378 } else {
2379 /* Nope, but we must(!) avoid directory
2380 * aliasing */
2381 actual = __d_unalias(inode, dentry, alias);
2383 write_sequnlock(&rename_lock);
2384 if (IS_ERR(actual))
2385 dput(alias);
2386 goto out_nolock;
2390 /* Add a unique reference */
2391 actual = __d_instantiate_unique(dentry, inode);
2392 if (!actual)
2393 actual = dentry;
2394 else
2395 BUG_ON(!d_unhashed(actual));
2397 spin_lock(&actual->d_lock);
2398 found:
2399 _d_rehash(actual);
2400 spin_unlock(&actual->d_lock);
2401 spin_unlock(&inode->i_lock);
2402 out_nolock:
2403 if (actual == dentry) {
2404 security_d_instantiate(dentry, inode);
2405 return NULL;
2408 iput(inode);
2409 return actual;
2411 EXPORT_SYMBOL_GPL(d_materialise_unique);
2413 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2415 *buflen -= namelen;
2416 if (*buflen < 0)
2417 return -ENAMETOOLONG;
2418 *buffer -= namelen;
2419 memcpy(*buffer, str, namelen);
2420 return 0;
2423 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2425 return prepend(buffer, buflen, name->name, name->len);
2429 * prepend_path - Prepend path string to a buffer
2430 * @path: the dentry/vfsmount to report
2431 * @root: root vfsmnt/dentry (may be modified by this function)
2432 * @buffer: pointer to the end of the buffer
2433 * @buflen: pointer to buffer length
2435 * Caller holds the rename_lock.
2437 * If path is not reachable from the supplied root, then the value of
2438 * root is changed (without modifying refcounts).
2440 static int prepend_path(const struct path *path, struct path *root,
2441 char **buffer, int *buflen)
2443 struct dentry *dentry = path->dentry;
2444 struct vfsmount *vfsmnt = path->mnt;
2445 bool slash = false;
2446 int error = 0;
2448 br_read_lock(vfsmount_lock);
2449 while (dentry != root->dentry || vfsmnt != root->mnt) {
2450 struct dentry * parent;
2452 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2453 /* Global root? */
2454 if (vfsmnt->mnt_parent == vfsmnt) {
2455 goto global_root;
2457 dentry = vfsmnt->mnt_mountpoint;
2458 vfsmnt = vfsmnt->mnt_parent;
2459 continue;
2461 parent = dentry->d_parent;
2462 prefetch(parent);
2463 spin_lock(&dentry->d_lock);
2464 error = prepend_name(buffer, buflen, &dentry->d_name);
2465 spin_unlock(&dentry->d_lock);
2466 if (!error)
2467 error = prepend(buffer, buflen, "/", 1);
2468 if (error)
2469 break;
2471 slash = true;
2472 dentry = parent;
2475 out:
2476 if (!error && !slash)
2477 error = prepend(buffer, buflen, "/", 1);
2479 br_read_unlock(vfsmount_lock);
2480 return error;
2482 global_root:
2484 * Filesystems needing to implement special "root names"
2485 * should do so with ->d_dname()
2487 if (IS_ROOT(dentry) &&
2488 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2489 WARN(1, "Root dentry has weird name <%.*s>\n",
2490 (int) dentry->d_name.len, dentry->d_name.name);
2492 root->mnt = vfsmnt;
2493 root->dentry = dentry;
2494 goto out;
2498 * __d_path - return the path of a dentry
2499 * @path: the dentry/vfsmount to report
2500 * @root: root vfsmnt/dentry (may be modified by this function)
2501 * @buf: buffer to return value in
2502 * @buflen: buffer length
2504 * Convert a dentry into an ASCII path name.
2506 * Returns a pointer into the buffer or an error code if the
2507 * path was too long.
2509 * "buflen" should be positive.
2511 * If path is not reachable from the supplied root, then the value of
2512 * root is changed (without modifying refcounts).
2514 char *__d_path(const struct path *path, struct path *root,
2515 char *buf, int buflen)
2517 char *res = buf + buflen;
2518 int error;
2520 prepend(&res, &buflen, "\0", 1);
2521 write_seqlock(&rename_lock);
2522 error = prepend_path(path, root, &res, &buflen);
2523 write_sequnlock(&rename_lock);
2525 if (error)
2526 return ERR_PTR(error);
2527 return res;
2531 * same as __d_path but appends "(deleted)" for unlinked files.
2533 static int path_with_deleted(const struct path *path, struct path *root,
2534 char **buf, int *buflen)
2536 prepend(buf, buflen, "\0", 1);
2537 if (d_unlinked(path->dentry)) {
2538 int error = prepend(buf, buflen, " (deleted)", 10);
2539 if (error)
2540 return error;
2543 return prepend_path(path, root, buf, buflen);
2546 static int prepend_unreachable(char **buffer, int *buflen)
2548 return prepend(buffer, buflen, "(unreachable)", 13);
2552 * d_path - return the path of a dentry
2553 * @path: path to report
2554 * @buf: buffer to return value in
2555 * @buflen: buffer length
2557 * Convert a dentry into an ASCII path name. If the entry has been deleted
2558 * the string " (deleted)" is appended. Note that this is ambiguous.
2560 * Returns a pointer into the buffer or an error code if the path was
2561 * too long. Note: Callers should use the returned pointer, not the passed
2562 * in buffer, to use the name! The implementation often starts at an offset
2563 * into the buffer, and may leave 0 bytes at the start.
2565 * "buflen" should be positive.
2567 char *d_path(const struct path *path, char *buf, int buflen)
2569 char *res = buf + buflen;
2570 struct path root;
2571 struct path tmp;
2572 int error;
2575 * We have various synthetic filesystems that never get mounted. On
2576 * these filesystems dentries are never used for lookup purposes, and
2577 * thus don't need to be hashed. They also don't need a name until a
2578 * user wants to identify the object in /proc/pid/fd/. The little hack
2579 * below allows us to generate a name for these objects on demand:
2581 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2582 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2584 get_fs_root(current->fs, &root);
2585 write_seqlock(&rename_lock);
2586 tmp = root;
2587 error = path_with_deleted(path, &tmp, &res, &buflen);
2588 if (error)
2589 res = ERR_PTR(error);
2590 write_sequnlock(&rename_lock);
2591 path_put(&root);
2592 return res;
2594 EXPORT_SYMBOL(d_path);
2597 * d_path_with_unreachable - return the path of a dentry
2598 * @path: path to report
2599 * @buf: buffer to return value in
2600 * @buflen: buffer length
2602 * The difference from d_path() is that this prepends "(unreachable)"
2603 * to paths which are unreachable from the current process' root.
2605 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2607 char *res = buf + buflen;
2608 struct path root;
2609 struct path tmp;
2610 int error;
2612 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2613 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2615 get_fs_root(current->fs, &root);
2616 write_seqlock(&rename_lock);
2617 tmp = root;
2618 error = path_with_deleted(path, &tmp, &res, &buflen);
2619 if (!error && !path_equal(&tmp, &root))
2620 error = prepend_unreachable(&res, &buflen);
2621 write_sequnlock(&rename_lock);
2622 path_put(&root);
2623 if (error)
2624 res = ERR_PTR(error);
2626 return res;
2630 * Helper function for dentry_operations.d_dname() members
2632 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2633 const char *fmt, ...)
2635 va_list args;
2636 char temp[64];
2637 int sz;
2639 va_start(args, fmt);
2640 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2641 va_end(args);
2643 if (sz > sizeof(temp) || sz > buflen)
2644 return ERR_PTR(-ENAMETOOLONG);
2646 buffer += buflen - sz;
2647 return memcpy(buffer, temp, sz);
2651 * Write full pathname from the root of the filesystem into the buffer.
2653 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2655 char *end = buf + buflen;
2656 char *retval;
2658 prepend(&end, &buflen, "\0", 1);
2659 if (buflen < 1)
2660 goto Elong;
2661 /* Get '/' right */
2662 retval = end-1;
2663 *retval = '/';
2665 while (!IS_ROOT(dentry)) {
2666 struct dentry *parent = dentry->d_parent;
2667 int error;
2669 prefetch(parent);
2670 spin_lock(&dentry->d_lock);
2671 error = prepend_name(&end, &buflen, &dentry->d_name);
2672 spin_unlock(&dentry->d_lock);
2673 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2674 goto Elong;
2676 retval = end;
2677 dentry = parent;
2679 return retval;
2680 Elong:
2681 return ERR_PTR(-ENAMETOOLONG);
2684 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2686 char *retval;
2688 write_seqlock(&rename_lock);
2689 retval = __dentry_path(dentry, buf, buflen);
2690 write_sequnlock(&rename_lock);
2692 return retval;
2694 EXPORT_SYMBOL(dentry_path_raw);
2696 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2698 char *p = NULL;
2699 char *retval;
2701 write_seqlock(&rename_lock);
2702 if (d_unlinked(dentry)) {
2703 p = buf + buflen;
2704 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2705 goto Elong;
2706 buflen++;
2708 retval = __dentry_path(dentry, buf, buflen);
2709 write_sequnlock(&rename_lock);
2710 if (!IS_ERR(retval) && p)
2711 *p = '/'; /* restore '/' overriden with '\0' */
2712 return retval;
2713 Elong:
2714 return ERR_PTR(-ENAMETOOLONG);
2718 * NOTE! The user-level library version returns a
2719 * character pointer. The kernel system call just
2720 * returns the length of the buffer filled (which
2721 * includes the ending '\0' character), or a negative
2722 * error value. So libc would do something like
2724 * char *getcwd(char * buf, size_t size)
2726 * int retval;
2728 * retval = sys_getcwd(buf, size);
2729 * if (retval >= 0)
2730 * return buf;
2731 * errno = -retval;
2732 * return NULL;
2735 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2737 int error;
2738 struct path pwd, root;
2739 char *page = (char *) __get_free_page(GFP_USER);
2741 if (!page)
2742 return -ENOMEM;
2744 get_fs_root_and_pwd(current->fs, &root, &pwd);
2746 error = -ENOENT;
2747 write_seqlock(&rename_lock);
2748 if (!d_unlinked(pwd.dentry)) {
2749 unsigned long len;
2750 struct path tmp = root;
2751 char *cwd = page + PAGE_SIZE;
2752 int buflen = PAGE_SIZE;
2754 prepend(&cwd, &buflen, "\0", 1);
2755 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2756 write_sequnlock(&rename_lock);
2758 if (error)
2759 goto out;
2761 /* Unreachable from current root */
2762 if (!path_equal(&tmp, &root)) {
2763 error = prepend_unreachable(&cwd, &buflen);
2764 if (error)
2765 goto out;
2768 error = -ERANGE;
2769 len = PAGE_SIZE + page - cwd;
2770 if (len <= size) {
2771 error = len;
2772 if (copy_to_user(buf, cwd, len))
2773 error = -EFAULT;
2775 } else {
2776 write_sequnlock(&rename_lock);
2779 out:
2780 path_put(&pwd);
2781 path_put(&root);
2782 free_page((unsigned long) page);
2783 return error;
2787 * Test whether new_dentry is a subdirectory of old_dentry.
2789 * Trivially implemented using the dcache structure
2793 * is_subdir - is new dentry a subdirectory of old_dentry
2794 * @new_dentry: new dentry
2795 * @old_dentry: old dentry
2797 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2798 * Returns 0 otherwise.
2799 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2802 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2804 int result;
2805 unsigned seq;
2807 if (new_dentry == old_dentry)
2808 return 1;
2810 do {
2811 /* for restarting inner loop in case of seq retry */
2812 seq = read_seqbegin(&rename_lock);
2814 * Need rcu_readlock to protect against the d_parent trashing
2815 * due to d_move
2817 rcu_read_lock();
2818 if (d_ancestor(old_dentry, new_dentry))
2819 result = 1;
2820 else
2821 result = 0;
2822 rcu_read_unlock();
2823 } while (read_seqretry(&rename_lock, seq));
2825 return result;
2828 int path_is_under(struct path *path1, struct path *path2)
2830 struct vfsmount *mnt = path1->mnt;
2831 struct dentry *dentry = path1->dentry;
2832 int res;
2834 br_read_lock(vfsmount_lock);
2835 if (mnt != path2->mnt) {
2836 for (;;) {
2837 if (mnt->mnt_parent == mnt) {
2838 br_read_unlock(vfsmount_lock);
2839 return 0;
2841 if (mnt->mnt_parent == path2->mnt)
2842 break;
2843 mnt = mnt->mnt_parent;
2845 dentry = mnt->mnt_mountpoint;
2847 res = is_subdir(dentry, path2->dentry);
2848 br_read_unlock(vfsmount_lock);
2849 return res;
2851 EXPORT_SYMBOL(path_is_under);
2853 void d_genocide(struct dentry *root)
2855 struct dentry *this_parent;
2856 struct list_head *next;
2857 unsigned seq;
2858 int locked = 0;
2860 seq = read_seqbegin(&rename_lock);
2861 again:
2862 this_parent = root;
2863 spin_lock(&this_parent->d_lock);
2864 repeat:
2865 next = this_parent->d_subdirs.next;
2866 resume:
2867 while (next != &this_parent->d_subdirs) {
2868 struct list_head *tmp = next;
2869 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2870 next = tmp->next;
2872 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2873 if (d_unhashed(dentry) || !dentry->d_inode) {
2874 spin_unlock(&dentry->d_lock);
2875 continue;
2877 if (!list_empty(&dentry->d_subdirs)) {
2878 spin_unlock(&this_parent->d_lock);
2879 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2880 this_parent = dentry;
2881 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2882 goto repeat;
2884 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2885 dentry->d_flags |= DCACHE_GENOCIDE;
2886 dentry->d_count--;
2888 spin_unlock(&dentry->d_lock);
2890 if (this_parent != root) {
2891 struct dentry *child = this_parent;
2892 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2893 this_parent->d_flags |= DCACHE_GENOCIDE;
2894 this_parent->d_count--;
2896 this_parent = try_to_ascend(this_parent, locked, seq);
2897 if (!this_parent)
2898 goto rename_retry;
2899 next = child->d_u.d_child.next;
2900 goto resume;
2902 spin_unlock(&this_parent->d_lock);
2903 if (!locked && read_seqretry(&rename_lock, seq))
2904 goto rename_retry;
2905 if (locked)
2906 write_sequnlock(&rename_lock);
2907 return;
2909 rename_retry:
2910 locked = 1;
2911 write_seqlock(&rename_lock);
2912 goto again;
2916 * find_inode_number - check for dentry with name
2917 * @dir: directory to check
2918 * @name: Name to find.
2920 * Check whether a dentry already exists for the given name,
2921 * and return the inode number if it has an inode. Otherwise
2922 * 0 is returned.
2924 * This routine is used to post-process directory listings for
2925 * filesystems using synthetic inode numbers, and is necessary
2926 * to keep getcwd() working.
2929 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2931 struct dentry * dentry;
2932 ino_t ino = 0;
2934 dentry = d_hash_and_lookup(dir, name);
2935 if (dentry) {
2936 if (dentry->d_inode)
2937 ino = dentry->d_inode->i_ino;
2938 dput(dentry);
2940 return ino;
2942 EXPORT_SYMBOL(find_inode_number);
2944 static __initdata unsigned long dhash_entries;
2945 static int __init set_dhash_entries(char *str)
2947 if (!str)
2948 return 0;
2949 dhash_entries = simple_strtoul(str, &str, 0);
2950 return 1;
2952 __setup("dhash_entries=", set_dhash_entries);
2954 static void __init dcache_init_early(void)
2956 int loop;
2958 /* If hashes are distributed across NUMA nodes, defer
2959 * hash allocation until vmalloc space is available.
2961 if (hashdist)
2962 return;
2964 dentry_hashtable =
2965 alloc_large_system_hash("Dentry cache",
2966 sizeof(struct hlist_bl_head),
2967 dhash_entries,
2969 HASH_EARLY,
2970 &d_hash_shift,
2971 &d_hash_mask,
2974 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2975 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2978 static void __init dcache_init(void)
2980 int loop;
2983 * A constructor could be added for stable state like the lists,
2984 * but it is probably not worth it because of the cache nature
2985 * of the dcache.
2987 dentry_cache = KMEM_CACHE(dentry,
2988 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2990 /* Hash may have been set up in dcache_init_early */
2991 if (!hashdist)
2992 return;
2994 dentry_hashtable =
2995 alloc_large_system_hash("Dentry cache",
2996 sizeof(struct hlist_bl_head),
2997 dhash_entries,
3000 &d_hash_shift,
3001 &d_hash_mask,
3004 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3005 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3008 /* SLAB cache for __getname() consumers */
3009 struct kmem_cache *names_cachep __read_mostly;
3010 EXPORT_SYMBOL(names_cachep);
3012 EXPORT_SYMBOL(d_genocide);
3014 void __init vfs_caches_init_early(void)
3016 dcache_init_early();
3017 inode_init_early();
3020 void __init vfs_caches_init(unsigned long mempages)
3022 unsigned long reserve;
3024 /* Base hash sizes on available memory, with a reserve equal to
3025 150% of current kernel size */
3027 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3028 mempages -= reserve;
3030 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3031 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3033 dcache_init();
3034 inode_init();
3035 files_init(mempages);
3036 mnt_init();
3037 bdev_cache_init();
3038 chrdev_init();