2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 trace_ext4_begin_ordered_truncate(inode
, new_size
);
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
61 if (!EXT4_I(inode
)->jinode
)
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
64 EXT4_I(inode
)->jinode
,
68 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
69 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
70 struct buffer_head
*bh_result
, int create
);
71 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
72 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
73 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
74 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
77 * Test whether an inode is a fast symlink.
79 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
81 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
82 (inode
->i_sb
->s_blocksize
>> 9) : 0;
84 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
92 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
103 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
104 jbd_debug(2, "restarting handle %p\n", handle
);
105 up_write(&EXT4_I(inode
)->i_data_sem
);
106 ret
= ext4_journal_restart(handle
, nblocks
);
107 down_write(&EXT4_I(inode
)->i_data_sem
);
108 ext4_discard_preallocations(inode
);
114 * Called at the last iput() if i_nlink is zero.
116 void ext4_evict_inode(struct inode
*inode
)
121 trace_ext4_evict_inode(inode
);
123 ext4_ioend_wait(inode
);
125 if (inode
->i_nlink
) {
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
141 * Note that directories do not have this problem because they
142 * don't use page cache.
144 if (ext4_should_journal_data(inode
) &&
145 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
146 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
147 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
149 jbd2_log_start_commit(journal
, commit_tid
);
150 jbd2_log_wait_commit(journal
, commit_tid
);
151 filemap_write_and_wait(&inode
->i_data
);
153 truncate_inode_pages(&inode
->i_data
, 0);
157 if (!is_bad_inode(inode
))
158 dquot_initialize(inode
);
160 if (ext4_should_order_data(inode
))
161 ext4_begin_ordered_truncate(inode
, 0);
162 truncate_inode_pages(&inode
->i_data
, 0);
164 if (is_bad_inode(inode
))
167 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
168 if (IS_ERR(handle
)) {
169 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
175 ext4_orphan_del(NULL
, inode
);
180 ext4_handle_sync(handle
);
182 err
= ext4_mark_inode_dirty(handle
, inode
);
184 ext4_warning(inode
->i_sb
,
185 "couldn't mark inode dirty (err %d)", err
);
189 ext4_truncate(inode
);
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
197 if (!ext4_handle_has_enough_credits(handle
, 3)) {
198 err
= ext4_journal_extend(handle
, 3);
200 err
= ext4_journal_restart(handle
, 3);
202 ext4_warning(inode
->i_sb
,
203 "couldn't extend journal (err %d)", err
);
205 ext4_journal_stop(handle
);
206 ext4_orphan_del(NULL
, inode
);
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
219 ext4_orphan_del(handle
, inode
);
220 EXT4_I(inode
)->i_dtime
= get_seconds();
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
229 if (ext4_mark_inode_dirty(handle
, inode
))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode
);
233 ext4_free_inode(handle
, inode
);
234 ext4_journal_stop(handle
);
237 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
241 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
243 return &EXT4_I(inode
)->i_reserved_quota
;
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
251 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
253 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
254 return ext4_ext_calc_metadata_amount(inode
, lblock
);
256 return ext4_ind_calc_metadata_amount(inode
, lblock
);
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
263 void ext4_da_update_reserve_space(struct inode
*inode
,
264 int used
, int quota_claim
)
266 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
267 struct ext4_inode_info
*ei
= EXT4_I(inode
);
269 spin_lock(&ei
->i_block_reservation_lock
);
270 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
271 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
272 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__
, inode
->i_ino
, used
,
275 ei
->i_reserved_data_blocks
);
277 used
= ei
->i_reserved_data_blocks
;
280 /* Update per-inode reservations */
281 ei
->i_reserved_data_blocks
-= used
;
282 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
283 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
284 used
+ ei
->i_allocated_meta_blocks
);
285 ei
->i_allocated_meta_blocks
= 0;
287 if (ei
->i_reserved_data_blocks
== 0) {
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
293 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
294 ei
->i_reserved_meta_blocks
);
295 ei
->i_reserved_meta_blocks
= 0;
296 ei
->i_da_metadata_calc_len
= 0;
298 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
300 /* Update quota subsystem for data blocks */
302 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
309 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
317 if ((ei
->i_reserved_data_blocks
== 0) &&
318 (atomic_read(&inode
->i_writecount
) == 0))
319 ext4_discard_preallocations(inode
);
322 static int __check_block_validity(struct inode
*inode
, const char *func
,
324 struct ext4_map_blocks
*map
)
326 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
328 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map
->m_lblk
,
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
344 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
345 unsigned int max_pages
)
347 struct address_space
*mapping
= inode
->i_mapping
;
351 int i
, nr_pages
, done
= 0;
355 pagevec_init(&pvec
, 0);
358 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
360 (pgoff_t
)PAGEVEC_SIZE
);
363 for (i
= 0; i
< nr_pages
; i
++) {
364 struct page
*page
= pvec
.pages
[i
];
365 struct buffer_head
*bh
, *head
;
368 if (unlikely(page
->mapping
!= mapping
) ||
370 PageWriteback(page
) ||
371 page
->index
!= idx
) {
376 if (page_has_buffers(page
)) {
377 bh
= head
= page_buffers(page
);
379 if (!buffer_delay(bh
) &&
380 !buffer_unwritten(bh
))
382 bh
= bh
->b_this_page
;
383 } while (!done
&& (bh
!= head
));
390 if (num
>= max_pages
) {
395 pagevec_release(&pvec
);
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
403 static void set_buffers_da_mapped(struct inode
*inode
,
404 struct ext4_map_blocks
*map
)
406 struct address_space
*mapping
= inode
->i_mapping
;
411 index
= map
->m_lblk
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
412 end
= (map
->m_lblk
+ map
->m_len
- 1) >>
413 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
415 pagevec_init(&pvec
, 0);
416 while (index
<= end
) {
417 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
,
419 (pgoff_t
)PAGEVEC_SIZE
));
422 for (i
= 0; i
< nr_pages
; i
++) {
423 struct page
*page
= pvec
.pages
[i
];
424 struct buffer_head
*bh
, *head
;
426 if (unlikely(page
->mapping
!= mapping
) ||
430 if (page_has_buffers(page
)) {
431 bh
= head
= page_buffers(page
);
433 set_buffer_da_mapped(bh
);
434 bh
= bh
->b_this_page
;
435 } while (bh
!= head
);
439 pagevec_release(&pvec
);
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
463 * It returns the error in case of allocation failure.
465 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
466 struct ext4_map_blocks
*map
, int flags
)
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
473 (unsigned long) map
->m_lblk
);
475 * Try to see if we can get the block without requesting a new
478 down_read((&EXT4_I(inode
)->i_data_sem
));
479 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
480 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
481 EXT4_GET_BLOCKS_KEEP_SIZE
);
483 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
484 EXT4_GET_BLOCKS_KEEP_SIZE
);
486 up_read((&EXT4_I(inode
)->i_data_sem
));
488 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
489 int ret
= check_block_validity(inode
, map
);
494 /* If it is only a block(s) look up */
495 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
499 * Returns if the blocks have already allocated
501 * Note that if blocks have been preallocated
502 * ext4_ext_get_block() returns the create = 0
503 * with buffer head unmapped.
505 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
509 * When we call get_blocks without the create flag, the
510 * BH_Unwritten flag could have gotten set if the blocks
511 * requested were part of a uninitialized extent. We need to
512 * clear this flag now that we are committed to convert all or
513 * part of the uninitialized extent to be an initialized
514 * extent. This is because we need to avoid the combination
515 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 * set on the buffer_head.
518 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
521 * New blocks allocate and/or writing to uninitialized extent
522 * will possibly result in updating i_data, so we take
523 * the write lock of i_data_sem, and call get_blocks()
524 * with create == 1 flag.
526 down_write((&EXT4_I(inode
)->i_data_sem
));
529 * if the caller is from delayed allocation writeout path
530 * we have already reserved fs blocks for allocation
531 * let the underlying get_block() function know to
532 * avoid double accounting
534 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
535 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
537 * We need to check for EXT4 here because migrate
538 * could have changed the inode type in between
540 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
541 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
543 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
545 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
547 * We allocated new blocks which will result in
548 * i_data's format changing. Force the migrate
549 * to fail by clearing migrate flags
551 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
555 * Update reserved blocks/metadata blocks after successful
556 * block allocation which had been deferred till now. We don't
557 * support fallocate for non extent files. So we can update
558 * reserve space here.
561 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
562 ext4_da_update_reserve_space(inode
, retval
, 1);
564 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
565 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
567 /* If we have successfully mapped the delayed allocated blocks,
568 * set the BH_Da_Mapped bit on them. Its important to do this
569 * under the protection of i_data_sem.
571 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
572 set_buffers_da_mapped(inode
, map
);
575 up_write((&EXT4_I(inode
)->i_data_sem
));
576 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
577 int ret
= check_block_validity(inode
, map
);
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
587 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
588 struct buffer_head
*bh
, int flags
)
590 handle_t
*handle
= ext4_journal_current_handle();
591 struct ext4_map_blocks map
;
592 int ret
= 0, started
= 0;
596 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
598 if (flags
&& !handle
) {
599 /* Direct IO write... */
600 if (map
.m_len
> DIO_MAX_BLOCKS
)
601 map
.m_len
= DIO_MAX_BLOCKS
;
602 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
603 handle
= ext4_journal_start(inode
, dio_credits
);
604 if (IS_ERR(handle
)) {
605 ret
= PTR_ERR(handle
);
611 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
613 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
614 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
615 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
619 ext4_journal_stop(handle
);
623 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
624 struct buffer_head
*bh
, int create
)
626 return _ext4_get_block(inode
, iblock
, bh
,
627 create
? EXT4_GET_BLOCKS_CREATE
: 0);
631 * `handle' can be NULL if create is zero
633 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
634 ext4_lblk_t block
, int create
, int *errp
)
636 struct ext4_map_blocks map
;
637 struct buffer_head
*bh
;
640 J_ASSERT(handle
!= NULL
|| create
== 0);
644 err
= ext4_map_blocks(handle
, inode
, &map
,
645 create
? EXT4_GET_BLOCKS_CREATE
: 0);
653 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
658 if (map
.m_flags
& EXT4_MAP_NEW
) {
659 J_ASSERT(create
!= 0);
660 J_ASSERT(handle
!= NULL
);
663 * Now that we do not always journal data, we should
664 * keep in mind whether this should always journal the
665 * new buffer as metadata. For now, regular file
666 * writes use ext4_get_block instead, so it's not a
670 BUFFER_TRACE(bh
, "call get_create_access");
671 fatal
= ext4_journal_get_create_access(handle
, bh
);
672 if (!fatal
&& !buffer_uptodate(bh
)) {
673 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
674 set_buffer_uptodate(bh
);
677 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
678 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
682 BUFFER_TRACE(bh
, "not a new buffer");
692 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
693 ext4_lblk_t block
, int create
, int *err
)
695 struct buffer_head
*bh
;
697 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
700 if (buffer_uptodate(bh
))
702 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
704 if (buffer_uptodate(bh
))
711 static int walk_page_buffers(handle_t
*handle
,
712 struct buffer_head
*head
,
716 int (*fn
)(handle_t
*handle
,
717 struct buffer_head
*bh
))
719 struct buffer_head
*bh
;
720 unsigned block_start
, block_end
;
721 unsigned blocksize
= head
->b_size
;
723 struct buffer_head
*next
;
725 for (bh
= head
, block_start
= 0;
726 ret
== 0 && (bh
!= head
|| !block_start
);
727 block_start
= block_end
, bh
= next
) {
728 next
= bh
->b_this_page
;
729 block_end
= block_start
+ blocksize
;
730 if (block_end
<= from
|| block_start
>= to
) {
731 if (partial
&& !buffer_uptodate(bh
))
735 err
= (*fn
)(handle
, bh
);
743 * To preserve ordering, it is essential that the hole instantiation and
744 * the data write be encapsulated in a single transaction. We cannot
745 * close off a transaction and start a new one between the ext4_get_block()
746 * and the commit_write(). So doing the jbd2_journal_start at the start of
747 * prepare_write() is the right place.
749 * Also, this function can nest inside ext4_writepage() ->
750 * block_write_full_page(). In that case, we *know* that ext4_writepage()
751 * has generated enough buffer credits to do the whole page. So we won't
752 * block on the journal in that case, which is good, because the caller may
755 * By accident, ext4 can be reentered when a transaction is open via
756 * quota file writes. If we were to commit the transaction while thus
757 * reentered, there can be a deadlock - we would be holding a quota
758 * lock, and the commit would never complete if another thread had a
759 * transaction open and was blocking on the quota lock - a ranking
762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763 * will _not_ run commit under these circumstances because handle->h_ref
764 * is elevated. We'll still have enough credits for the tiny quotafile
767 static int do_journal_get_write_access(handle_t
*handle
,
768 struct buffer_head
*bh
)
770 int dirty
= buffer_dirty(bh
);
773 if (!buffer_mapped(bh
) || buffer_freed(bh
))
776 * __block_write_begin() could have dirtied some buffers. Clean
777 * the dirty bit as jbd2_journal_get_write_access() could complain
778 * otherwise about fs integrity issues. Setting of the dirty bit
779 * by __block_write_begin() isn't a real problem here as we clear
780 * the bit before releasing a page lock and thus writeback cannot
781 * ever write the buffer.
784 clear_buffer_dirty(bh
);
785 ret
= ext4_journal_get_write_access(handle
, bh
);
787 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
791 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
792 struct buffer_head
*bh_result
, int create
);
793 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
794 loff_t pos
, unsigned len
, unsigned flags
,
795 struct page
**pagep
, void **fsdata
)
797 struct inode
*inode
= mapping
->host
;
798 int ret
, needed_blocks
;
805 trace_ext4_write_begin(inode
, pos
, len
, flags
);
807 * Reserve one block more for addition to orphan list in case
808 * we allocate blocks but write fails for some reason
810 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
811 index
= pos
>> PAGE_CACHE_SHIFT
;
812 from
= pos
& (PAGE_CACHE_SIZE
- 1);
816 handle
= ext4_journal_start(inode
, needed_blocks
);
817 if (IS_ERR(handle
)) {
818 ret
= PTR_ERR(handle
);
822 /* We cannot recurse into the filesystem as the transaction is already
824 flags
|= AOP_FLAG_NOFS
;
826 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
828 ext4_journal_stop(handle
);
834 if (ext4_should_dioread_nolock(inode
))
835 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
837 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
839 if (!ret
&& ext4_should_journal_data(inode
)) {
840 ret
= walk_page_buffers(handle
, page_buffers(page
),
841 from
, to
, NULL
, do_journal_get_write_access
);
846 page_cache_release(page
);
848 * __block_write_begin may have instantiated a few blocks
849 * outside i_size. Trim these off again. Don't need
850 * i_size_read because we hold i_mutex.
852 * Add inode to orphan list in case we crash before
855 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
856 ext4_orphan_add(handle
, inode
);
858 ext4_journal_stop(handle
);
859 if (pos
+ len
> inode
->i_size
) {
860 ext4_truncate_failed_write(inode
);
862 * If truncate failed early the inode might
863 * still be on the orphan list; we need to
864 * make sure the inode is removed from the
865 * orphan list in that case.
868 ext4_orphan_del(NULL
, inode
);
872 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
881 if (!buffer_mapped(bh
) || buffer_freed(bh
))
883 set_buffer_uptodate(bh
);
884 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
887 static int ext4_generic_write_end(struct file
*file
,
888 struct address_space
*mapping
,
889 loff_t pos
, unsigned len
, unsigned copied
,
890 struct page
*page
, void *fsdata
)
892 int i_size_changed
= 0;
893 struct inode
*inode
= mapping
->host
;
894 handle_t
*handle
= ext4_journal_current_handle();
896 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
899 * No need to use i_size_read() here, the i_size
900 * cannot change under us because we hold i_mutex.
902 * But it's important to update i_size while still holding page lock:
903 * page writeout could otherwise come in and zero beyond i_size.
905 if (pos
+ copied
> inode
->i_size
) {
906 i_size_write(inode
, pos
+ copied
);
910 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
911 /* We need to mark inode dirty even if
912 * new_i_size is less that inode->i_size
913 * bu greater than i_disksize.(hint delalloc)
915 ext4_update_i_disksize(inode
, (pos
+ copied
));
919 page_cache_release(page
);
922 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 * makes the holding time of page lock longer. Second, it forces lock
924 * ordering of page lock and transaction start for journaling
928 ext4_mark_inode_dirty(handle
, inode
);
934 * We need to pick up the new inode size which generic_commit_write gave us
935 * `file' can be NULL - eg, when called from page_symlink().
937 * ext4 never places buffers on inode->i_mapping->private_list. metadata
938 * buffers are managed internally.
940 static int ext4_ordered_write_end(struct file
*file
,
941 struct address_space
*mapping
,
942 loff_t pos
, unsigned len
, unsigned copied
,
943 struct page
*page
, void *fsdata
)
945 handle_t
*handle
= ext4_journal_current_handle();
946 struct inode
*inode
= mapping
->host
;
949 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
950 ret
= ext4_jbd2_file_inode(handle
, inode
);
953 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
956 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
957 /* if we have allocated more blocks and copied
958 * less. We will have blocks allocated outside
959 * inode->i_size. So truncate them
961 ext4_orphan_add(handle
, inode
);
966 page_cache_release(page
);
969 ret2
= ext4_journal_stop(handle
);
973 if (pos
+ len
> inode
->i_size
) {
974 ext4_truncate_failed_write(inode
);
976 * If truncate failed early the inode might still be
977 * on the orphan list; we need to make sure the inode
978 * is removed from the orphan list in that case.
981 ext4_orphan_del(NULL
, inode
);
985 return ret
? ret
: copied
;
988 static int ext4_writeback_write_end(struct file
*file
,
989 struct address_space
*mapping
,
990 loff_t pos
, unsigned len
, unsigned copied
,
991 struct page
*page
, void *fsdata
)
993 handle_t
*handle
= ext4_journal_current_handle();
994 struct inode
*inode
= mapping
->host
;
997 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
998 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1001 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1002 /* if we have allocated more blocks and copied
1003 * less. We will have blocks allocated outside
1004 * inode->i_size. So truncate them
1006 ext4_orphan_add(handle
, inode
);
1011 ret2
= ext4_journal_stop(handle
);
1015 if (pos
+ len
> inode
->i_size
) {
1016 ext4_truncate_failed_write(inode
);
1018 * If truncate failed early the inode might still be
1019 * on the orphan list; we need to make sure the inode
1020 * is removed from the orphan list in that case.
1023 ext4_orphan_del(NULL
, inode
);
1026 return ret
? ret
: copied
;
1029 static int ext4_journalled_write_end(struct file
*file
,
1030 struct address_space
*mapping
,
1031 loff_t pos
, unsigned len
, unsigned copied
,
1032 struct page
*page
, void *fsdata
)
1034 handle_t
*handle
= ext4_journal_current_handle();
1035 struct inode
*inode
= mapping
->host
;
1041 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1042 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1045 BUG_ON(!ext4_handle_valid(handle
));
1048 if (!PageUptodate(page
))
1050 page_zero_new_buffers(page
, from
+copied
, to
);
1053 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1054 to
, &partial
, write_end_fn
);
1056 SetPageUptodate(page
);
1057 new_i_size
= pos
+ copied
;
1058 if (new_i_size
> inode
->i_size
)
1059 i_size_write(inode
, pos
+copied
);
1060 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1061 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1062 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1063 ext4_update_i_disksize(inode
, new_i_size
);
1064 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1070 page_cache_release(page
);
1071 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1072 /* if we have allocated more blocks and copied
1073 * less. We will have blocks allocated outside
1074 * inode->i_size. So truncate them
1076 ext4_orphan_add(handle
, inode
);
1078 ret2
= ext4_journal_stop(handle
);
1081 if (pos
+ len
> inode
->i_size
) {
1082 ext4_truncate_failed_write(inode
);
1084 * If truncate failed early the inode might still be
1085 * on the orphan list; we need to make sure the inode
1086 * is removed from the orphan list in that case.
1089 ext4_orphan_del(NULL
, inode
);
1092 return ret
? ret
: copied
;
1096 * Reserve a single cluster located at lblock
1098 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1101 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1102 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1103 unsigned int md_needed
;
1107 * recalculate the amount of metadata blocks to reserve
1108 * in order to allocate nrblocks
1109 * worse case is one extent per block
1112 spin_lock(&ei
->i_block_reservation_lock
);
1113 md_needed
= EXT4_NUM_B2C(sbi
,
1114 ext4_calc_metadata_amount(inode
, lblock
));
1115 trace_ext4_da_reserve_space(inode
, md_needed
);
1116 spin_unlock(&ei
->i_block_reservation_lock
);
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
1123 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1127 * We do still charge estimated metadata to the sb though;
1128 * we cannot afford to run out of free blocks.
1130 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1131 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1132 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1138 spin_lock(&ei
->i_block_reservation_lock
);
1139 ei
->i_reserved_data_blocks
++;
1140 ei
->i_reserved_meta_blocks
+= md_needed
;
1141 spin_unlock(&ei
->i_block_reservation_lock
);
1143 return 0; /* success */
1146 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1148 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1149 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1152 return; /* Nothing to release, exit */
1154 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1156 trace_ext4_da_release_space(inode
, to_free
);
1157 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1159 * if there aren't enough reserved blocks, then the
1160 * counter is messed up somewhere. Since this
1161 * function is called from invalidate page, it's
1162 * harmless to return without any action.
1164 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1165 "ino %lu, to_free %d with only %d reserved "
1166 "data blocks\n", inode
->i_ino
, to_free
,
1167 ei
->i_reserved_data_blocks
);
1169 to_free
= ei
->i_reserved_data_blocks
;
1171 ei
->i_reserved_data_blocks
-= to_free
;
1173 if (ei
->i_reserved_data_blocks
== 0) {
1175 * We can release all of the reserved metadata blocks
1176 * only when we have written all of the delayed
1177 * allocation blocks.
1178 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 * i_reserved_data_blocks, etc. refer to number of clusters.
1181 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1182 ei
->i_reserved_meta_blocks
);
1183 ei
->i_reserved_meta_blocks
= 0;
1184 ei
->i_da_metadata_calc_len
= 0;
1187 /* update fs dirty data blocks counter */
1188 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1190 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1192 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1195 static void ext4_da_page_release_reservation(struct page
*page
,
1196 unsigned long offset
)
1199 struct buffer_head
*head
, *bh
;
1200 unsigned int curr_off
= 0;
1201 struct inode
*inode
= page
->mapping
->host
;
1202 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1205 head
= page_buffers(page
);
1208 unsigned int next_off
= curr_off
+ bh
->b_size
;
1210 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1212 clear_buffer_delay(bh
);
1213 clear_buffer_da_mapped(bh
);
1215 curr_off
= next_off
;
1216 } while ((bh
= bh
->b_this_page
) != head
);
1218 /* If we have released all the blocks belonging to a cluster, then we
1219 * need to release the reserved space for that cluster. */
1220 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1221 while (num_clusters
> 0) {
1223 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1224 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1225 if (sbi
->s_cluster_ratio
== 1 ||
1226 !ext4_find_delalloc_cluster(inode
, lblk
, 1))
1227 ext4_da_release_space(inode
, 1);
1234 * Delayed allocation stuff
1238 * mpage_da_submit_io - walks through extent of pages and try to write
1239 * them with writepage() call back
1241 * @mpd->inode: inode
1242 * @mpd->first_page: first page of the extent
1243 * @mpd->next_page: page after the last page of the extent
1245 * By the time mpage_da_submit_io() is called we expect all blocks
1246 * to be allocated. this may be wrong if allocation failed.
1248 * As pages are already locked by write_cache_pages(), we can't use it
1250 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1251 struct ext4_map_blocks
*map
)
1253 struct pagevec pvec
;
1254 unsigned long index
, end
;
1255 int ret
= 0, err
, nr_pages
, i
;
1256 struct inode
*inode
= mpd
->inode
;
1257 struct address_space
*mapping
= inode
->i_mapping
;
1258 loff_t size
= i_size_read(inode
);
1259 unsigned int len
, block_start
;
1260 struct buffer_head
*bh
, *page_bufs
= NULL
;
1261 int journal_data
= ext4_should_journal_data(inode
);
1262 sector_t pblock
= 0, cur_logical
= 0;
1263 struct ext4_io_submit io_submit
;
1265 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1266 memset(&io_submit
, 0, sizeof(io_submit
));
1268 * We need to start from the first_page to the next_page - 1
1269 * to make sure we also write the mapped dirty buffer_heads.
1270 * If we look at mpd->b_blocknr we would only be looking
1271 * at the currently mapped buffer_heads.
1273 index
= mpd
->first_page
;
1274 end
= mpd
->next_page
- 1;
1276 pagevec_init(&pvec
, 0);
1277 while (index
<= end
) {
1278 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1281 for (i
= 0; i
< nr_pages
; i
++) {
1282 int commit_write
= 0, skip_page
= 0;
1283 struct page
*page
= pvec
.pages
[i
];
1285 index
= page
->index
;
1289 if (index
== size
>> PAGE_CACHE_SHIFT
)
1290 len
= size
& ~PAGE_CACHE_MASK
;
1292 len
= PAGE_CACHE_SIZE
;
1294 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1296 pblock
= map
->m_pblk
+ (cur_logical
-
1301 BUG_ON(!PageLocked(page
));
1302 BUG_ON(PageWriteback(page
));
1305 * If the page does not have buffers (for
1306 * whatever reason), try to create them using
1307 * __block_write_begin. If this fails,
1308 * skip the page and move on.
1310 if (!page_has_buffers(page
)) {
1311 if (__block_write_begin(page
, 0, len
,
1312 noalloc_get_block_write
)) {
1320 bh
= page_bufs
= page_buffers(page
);
1325 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1326 (cur_logical
<= (map
->m_lblk
+
1327 (map
->m_len
- 1)))) {
1328 if (buffer_delay(bh
)) {
1329 clear_buffer_delay(bh
);
1330 bh
->b_blocknr
= pblock
;
1332 if (buffer_da_mapped(bh
))
1333 clear_buffer_da_mapped(bh
);
1334 if (buffer_unwritten(bh
) ||
1336 BUG_ON(bh
->b_blocknr
!= pblock
);
1337 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1338 set_buffer_uninit(bh
);
1339 clear_buffer_unwritten(bh
);
1342 /* skip page if block allocation undone */
1343 if (buffer_delay(bh
) || buffer_unwritten(bh
))
1345 bh
= bh
->b_this_page
;
1346 block_start
+= bh
->b_size
;
1349 } while (bh
!= page_bufs
);
1355 /* mark the buffer_heads as dirty & uptodate */
1356 block_commit_write(page
, 0, len
);
1358 clear_page_dirty_for_io(page
);
1360 * Delalloc doesn't support data journalling,
1361 * but eventually maybe we'll lift this
1364 if (unlikely(journal_data
&& PageChecked(page
)))
1365 err
= __ext4_journalled_writepage(page
, len
);
1366 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1367 err
= ext4_bio_write_page(&io_submit
, page
,
1369 else if (buffer_uninit(page_bufs
)) {
1370 ext4_set_bh_endio(page_bufs
, inode
);
1371 err
= block_write_full_page_endio(page
,
1372 noalloc_get_block_write
,
1373 mpd
->wbc
, ext4_end_io_buffer_write
);
1375 err
= block_write_full_page(page
,
1376 noalloc_get_block_write
, mpd
->wbc
);
1379 mpd
->pages_written
++;
1381 * In error case, we have to continue because
1382 * remaining pages are still locked
1387 pagevec_release(&pvec
);
1389 ext4_io_submit(&io_submit
);
1393 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1397 struct pagevec pvec
;
1398 struct inode
*inode
= mpd
->inode
;
1399 struct address_space
*mapping
= inode
->i_mapping
;
1401 index
= mpd
->first_page
;
1402 end
= mpd
->next_page
- 1;
1403 while (index
<= end
) {
1404 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1407 for (i
= 0; i
< nr_pages
; i
++) {
1408 struct page
*page
= pvec
.pages
[i
];
1409 if (page
->index
> end
)
1411 BUG_ON(!PageLocked(page
));
1412 BUG_ON(PageWriteback(page
));
1413 block_invalidatepage(page
, 0);
1414 ClearPageUptodate(page
);
1417 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1418 pagevec_release(&pvec
);
1423 static void ext4_print_free_blocks(struct inode
*inode
)
1425 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1426 printk(KERN_CRIT
"Total free blocks count %lld\n",
1427 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1428 ext4_count_free_clusters(inode
->i_sb
)));
1429 printk(KERN_CRIT
"Free/Dirty block details\n");
1430 printk(KERN_CRIT
"free_blocks=%lld\n",
1431 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1432 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1433 printk(KERN_CRIT
"dirty_blocks=%lld\n",
1434 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1435 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1436 printk(KERN_CRIT
"Block reservation details\n");
1437 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
1438 EXT4_I(inode
)->i_reserved_data_blocks
);
1439 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
1440 EXT4_I(inode
)->i_reserved_meta_blocks
);
1445 * mpage_da_map_and_submit - go through given space, map them
1446 * if necessary, and then submit them for I/O
1448 * @mpd - bh describing space
1450 * The function skips space we know is already mapped to disk blocks.
1453 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1455 int err
, blks
, get_blocks_flags
;
1456 struct ext4_map_blocks map
, *mapp
= NULL
;
1457 sector_t next
= mpd
->b_blocknr
;
1458 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1459 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1460 handle_t
*handle
= NULL
;
1463 * If the blocks are mapped already, or we couldn't accumulate
1464 * any blocks, then proceed immediately to the submission stage.
1466 if ((mpd
->b_size
== 0) ||
1467 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1468 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1469 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1472 handle
= ext4_journal_current_handle();
1476 * Call ext4_map_blocks() to allocate any delayed allocation
1477 * blocks, or to convert an uninitialized extent to be
1478 * initialized (in the case where we have written into
1479 * one or more preallocated blocks).
1481 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1482 * indicate that we are on the delayed allocation path. This
1483 * affects functions in many different parts of the allocation
1484 * call path. This flag exists primarily because we don't
1485 * want to change *many* call functions, so ext4_map_blocks()
1486 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1487 * inode's allocation semaphore is taken.
1489 * If the blocks in questions were delalloc blocks, set
1490 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1491 * variables are updated after the blocks have been allocated.
1494 map
.m_len
= max_blocks
;
1495 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1496 if (ext4_should_dioread_nolock(mpd
->inode
))
1497 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1498 if (mpd
->b_state
& (1 << BH_Delay
))
1499 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1501 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1503 struct super_block
*sb
= mpd
->inode
->i_sb
;
1507 * If get block returns EAGAIN or ENOSPC and there
1508 * appears to be free blocks we will just let
1509 * mpage_da_submit_io() unlock all of the pages.
1514 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1520 * get block failure will cause us to loop in
1521 * writepages, because a_ops->writepage won't be able
1522 * to make progress. The page will be redirtied by
1523 * writepage and writepages will again try to write
1526 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1527 ext4_msg(sb
, KERN_CRIT
,
1528 "delayed block allocation failed for inode %lu "
1529 "at logical offset %llu with max blocks %zd "
1530 "with error %d", mpd
->inode
->i_ino
,
1531 (unsigned long long) next
,
1532 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1533 ext4_msg(sb
, KERN_CRIT
,
1534 "This should not happen!! Data will be lost\n");
1536 ext4_print_free_blocks(mpd
->inode
);
1538 /* invalidate all the pages */
1539 ext4_da_block_invalidatepages(mpd
);
1541 /* Mark this page range as having been completed */
1548 if (map
.m_flags
& EXT4_MAP_NEW
) {
1549 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1552 for (i
= 0; i
< map
.m_len
; i
++)
1553 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1555 if (ext4_should_order_data(mpd
->inode
)) {
1556 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1558 /* Only if the journal is aborted */
1566 * Update on-disk size along with block allocation.
1568 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1569 if (disksize
> i_size_read(mpd
->inode
))
1570 disksize
= i_size_read(mpd
->inode
);
1571 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1572 ext4_update_i_disksize(mpd
->inode
, disksize
);
1573 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1575 ext4_error(mpd
->inode
->i_sb
,
1576 "Failed to mark inode %lu dirty",
1581 mpage_da_submit_io(mpd
, mapp
);
1585 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1586 (1 << BH_Delay) | (1 << BH_Unwritten))
1589 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1591 * @mpd->lbh - extent of blocks
1592 * @logical - logical number of the block in the file
1593 * @bh - bh of the block (used to access block's state)
1595 * the function is used to collect contig. blocks in same state
1597 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1598 sector_t logical
, size_t b_size
,
1599 unsigned long b_state
)
1602 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1605 * XXX Don't go larger than mballoc is willing to allocate
1606 * This is a stopgap solution. We eventually need to fold
1607 * mpage_da_submit_io() into this function and then call
1608 * ext4_map_blocks() multiple times in a loop
1610 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1613 /* check if thereserved journal credits might overflow */
1614 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1615 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1617 * With non-extent format we are limited by the journal
1618 * credit available. Total credit needed to insert
1619 * nrblocks contiguous blocks is dependent on the
1620 * nrblocks. So limit nrblocks.
1623 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1624 EXT4_MAX_TRANS_DATA
) {
1626 * Adding the new buffer_head would make it cross the
1627 * allowed limit for which we have journal credit
1628 * reserved. So limit the new bh->b_size
1630 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1631 mpd
->inode
->i_blkbits
;
1632 /* we will do mpage_da_submit_io in the next loop */
1636 * First block in the extent
1638 if (mpd
->b_size
== 0) {
1639 mpd
->b_blocknr
= logical
;
1640 mpd
->b_size
= b_size
;
1641 mpd
->b_state
= b_state
& BH_FLAGS
;
1645 next
= mpd
->b_blocknr
+ nrblocks
;
1647 * Can we merge the block to our big extent?
1649 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1650 mpd
->b_size
+= b_size
;
1656 * We couldn't merge the block to our extent, so we
1657 * need to flush current extent and start new one
1659 mpage_da_map_and_submit(mpd
);
1663 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1665 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1669 * This function is grabs code from the very beginning of
1670 * ext4_map_blocks, but assumes that the caller is from delayed write
1671 * time. This function looks up the requested blocks and sets the
1672 * buffer delay bit under the protection of i_data_sem.
1674 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1675 struct ext4_map_blocks
*map
,
1676 struct buffer_head
*bh
)
1679 sector_t invalid_block
= ~((sector_t
) 0xffff);
1681 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1687 (unsigned long) map
->m_lblk
);
1689 * Try to see if we can get the block without requesting a new
1690 * file system block.
1692 down_read((&EXT4_I(inode
)->i_data_sem
));
1693 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1694 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1696 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1700 * XXX: __block_prepare_write() unmaps passed block,
1703 /* If the block was allocated from previously allocated cluster,
1704 * then we dont need to reserve it again. */
1705 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1706 retval
= ext4_da_reserve_space(inode
, iblock
);
1708 /* not enough space to reserve */
1712 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1713 * and it should not appear on the bh->b_state.
1715 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1717 map_bh(bh
, inode
->i_sb
, invalid_block
);
1719 set_buffer_delay(bh
);
1723 up_read((&EXT4_I(inode
)->i_data_sem
));
1729 * This is a special get_blocks_t callback which is used by
1730 * ext4_da_write_begin(). It will either return mapped block or
1731 * reserve space for a single block.
1733 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1734 * We also have b_blocknr = -1 and b_bdev initialized properly
1736 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1737 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1738 * initialized properly.
1740 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1741 struct buffer_head
*bh
, int create
)
1743 struct ext4_map_blocks map
;
1746 BUG_ON(create
== 0);
1747 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1749 map
.m_lblk
= iblock
;
1753 * first, we need to know whether the block is allocated already
1754 * preallocated blocks are unmapped but should treated
1755 * the same as allocated blocks.
1757 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1761 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1762 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1764 if (buffer_unwritten(bh
)) {
1765 /* A delayed write to unwritten bh should be marked
1766 * new and mapped. Mapped ensures that we don't do
1767 * get_block multiple times when we write to the same
1768 * offset and new ensures that we do proper zero out
1769 * for partial write.
1772 set_buffer_mapped(bh
);
1778 * This function is used as a standard get_block_t calback function
1779 * when there is no desire to allocate any blocks. It is used as a
1780 * callback function for block_write_begin() and block_write_full_page().
1781 * These functions should only try to map a single block at a time.
1783 * Since this function doesn't do block allocations even if the caller
1784 * requests it by passing in create=1, it is critically important that
1785 * any caller checks to make sure that any buffer heads are returned
1786 * by this function are either all already mapped or marked for
1787 * delayed allocation before calling block_write_full_page(). Otherwise,
1788 * b_blocknr could be left unitialized, and the page write functions will
1789 * be taken by surprise.
1791 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1792 struct buffer_head
*bh_result
, int create
)
1794 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1795 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1798 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1804 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1810 static int __ext4_journalled_writepage(struct page
*page
,
1813 struct address_space
*mapping
= page
->mapping
;
1814 struct inode
*inode
= mapping
->host
;
1815 struct buffer_head
*page_bufs
;
1816 handle_t
*handle
= NULL
;
1820 ClearPageChecked(page
);
1821 page_bufs
= page_buffers(page
);
1823 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1824 /* As soon as we unlock the page, it can go away, but we have
1825 * references to buffers so we are safe */
1828 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1829 if (IS_ERR(handle
)) {
1830 ret
= PTR_ERR(handle
);
1834 BUG_ON(!ext4_handle_valid(handle
));
1836 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1837 do_journal_get_write_access
);
1839 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1843 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1844 err
= ext4_journal_stop(handle
);
1848 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1849 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1854 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1855 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1858 * Note that we don't need to start a transaction unless we're journaling data
1859 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1860 * need to file the inode to the transaction's list in ordered mode because if
1861 * we are writing back data added by write(), the inode is already there and if
1862 * we are writing back data modified via mmap(), no one guarantees in which
1863 * transaction the data will hit the disk. In case we are journaling data, we
1864 * cannot start transaction directly because transaction start ranks above page
1865 * lock so we have to do some magic.
1867 * This function can get called via...
1868 * - ext4_da_writepages after taking page lock (have journal handle)
1869 * - journal_submit_inode_data_buffers (no journal handle)
1870 * - shrink_page_list via pdflush (no journal handle)
1871 * - grab_page_cache when doing write_begin (have journal handle)
1873 * We don't do any block allocation in this function. If we have page with
1874 * multiple blocks we need to write those buffer_heads that are mapped. This
1875 * is important for mmaped based write. So if we do with blocksize 1K
1876 * truncate(f, 1024);
1877 * a = mmap(f, 0, 4096);
1879 * truncate(f, 4096);
1880 * we have in the page first buffer_head mapped via page_mkwrite call back
1881 * but other bufer_heads would be unmapped but dirty(dirty done via the
1882 * do_wp_page). So writepage should write the first block. If we modify
1883 * the mmap area beyond 1024 we will again get a page_fault and the
1884 * page_mkwrite callback will do the block allocation and mark the
1885 * buffer_heads mapped.
1887 * We redirty the page if we have any buffer_heads that is either delay or
1888 * unwritten in the page.
1890 * We can get recursively called as show below.
1892 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1895 * But since we don't do any block allocation we should not deadlock.
1896 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1898 static int ext4_writepage(struct page
*page
,
1899 struct writeback_control
*wbc
)
1901 int ret
= 0, commit_write
= 0;
1904 struct buffer_head
*page_bufs
= NULL
;
1905 struct inode
*inode
= page
->mapping
->host
;
1907 trace_ext4_writepage(page
);
1908 size
= i_size_read(inode
);
1909 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1910 len
= size
& ~PAGE_CACHE_MASK
;
1912 len
= PAGE_CACHE_SIZE
;
1915 * If the page does not have buffers (for whatever reason),
1916 * try to create them using __block_write_begin. If this
1917 * fails, redirty the page and move on.
1919 if (!page_has_buffers(page
)) {
1920 if (__block_write_begin(page
, 0, len
,
1921 noalloc_get_block_write
)) {
1923 redirty_page_for_writepage(wbc
, page
);
1929 page_bufs
= page_buffers(page
);
1930 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1931 ext4_bh_delay_or_unwritten
)) {
1933 * We don't want to do block allocation, so redirty
1934 * the page and return. We may reach here when we do
1935 * a journal commit via journal_submit_inode_data_buffers.
1936 * We can also reach here via shrink_page_list but it
1937 * should never be for direct reclaim so warn if that
1940 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
1945 /* now mark the buffer_heads as dirty and uptodate */
1946 block_commit_write(page
, 0, len
);
1948 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1950 * It's mmapped pagecache. Add buffers and journal it. There
1951 * doesn't seem much point in redirtying the page here.
1953 return __ext4_journalled_writepage(page
, len
);
1955 if (buffer_uninit(page_bufs
)) {
1956 ext4_set_bh_endio(page_bufs
, inode
);
1957 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
1958 wbc
, ext4_end_io_buffer_write
);
1960 ret
= block_write_full_page(page
, noalloc_get_block_write
,
1967 * This is called via ext4_da_writepages() to
1968 * calculate the total number of credits to reserve to fit
1969 * a single extent allocation into a single transaction,
1970 * ext4_da_writpeages() will loop calling this before
1971 * the block allocation.
1974 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
1976 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
1979 * With non-extent format the journal credit needed to
1980 * insert nrblocks contiguous block is dependent on
1981 * number of contiguous block. So we will limit
1982 * number of contiguous block to a sane value
1984 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
1985 (max_blocks
> EXT4_MAX_TRANS_DATA
))
1986 max_blocks
= EXT4_MAX_TRANS_DATA
;
1988 return ext4_chunk_trans_blocks(inode
, max_blocks
);
1992 * write_cache_pages_da - walk the list of dirty pages of the given
1993 * address space and accumulate pages that need writing, and call
1994 * mpage_da_map_and_submit to map a single contiguous memory region
1995 * and then write them.
1997 static int write_cache_pages_da(struct address_space
*mapping
,
1998 struct writeback_control
*wbc
,
1999 struct mpage_da_data
*mpd
,
2000 pgoff_t
*done_index
)
2002 struct buffer_head
*bh
, *head
;
2003 struct inode
*inode
= mapping
->host
;
2004 struct pagevec pvec
;
2005 unsigned int nr_pages
;
2008 long nr_to_write
= wbc
->nr_to_write
;
2009 int i
, tag
, ret
= 0;
2011 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2014 pagevec_init(&pvec
, 0);
2015 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2016 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2018 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2019 tag
= PAGECACHE_TAG_TOWRITE
;
2021 tag
= PAGECACHE_TAG_DIRTY
;
2023 *done_index
= index
;
2024 while (index
<= end
) {
2025 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2026 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2030 for (i
= 0; i
< nr_pages
; i
++) {
2031 struct page
*page
= pvec
.pages
[i
];
2034 * At this point, the page may be truncated or
2035 * invalidated (changing page->mapping to NULL), or
2036 * even swizzled back from swapper_space to tmpfs file
2037 * mapping. However, page->index will not change
2038 * because we have a reference on the page.
2040 if (page
->index
> end
)
2043 *done_index
= page
->index
+ 1;
2046 * If we can't merge this page, and we have
2047 * accumulated an contiguous region, write it
2049 if ((mpd
->next_page
!= page
->index
) &&
2050 (mpd
->next_page
!= mpd
->first_page
)) {
2051 mpage_da_map_and_submit(mpd
);
2052 goto ret_extent_tail
;
2058 * If the page is no longer dirty, or its
2059 * mapping no longer corresponds to inode we
2060 * are writing (which means it has been
2061 * truncated or invalidated), or the page is
2062 * already under writeback and we are not
2063 * doing a data integrity writeback, skip the page
2065 if (!PageDirty(page
) ||
2066 (PageWriteback(page
) &&
2067 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2068 unlikely(page
->mapping
!= mapping
)) {
2073 wait_on_page_writeback(page
);
2074 BUG_ON(PageWriteback(page
));
2076 if (mpd
->next_page
!= page
->index
)
2077 mpd
->first_page
= page
->index
;
2078 mpd
->next_page
= page
->index
+ 1;
2079 logical
= (sector_t
) page
->index
<<
2080 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2082 if (!page_has_buffers(page
)) {
2083 mpage_add_bh_to_extent(mpd
, logical
,
2085 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2087 goto ret_extent_tail
;
2090 * Page with regular buffer heads,
2091 * just add all dirty ones
2093 head
= page_buffers(page
);
2096 BUG_ON(buffer_locked(bh
));
2098 * We need to try to allocate
2099 * unmapped blocks in the same page.
2100 * Otherwise we won't make progress
2101 * with the page in ext4_writepage
2103 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2104 mpage_add_bh_to_extent(mpd
, logical
,
2108 goto ret_extent_tail
;
2109 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2111 * mapped dirty buffer. We need
2112 * to update the b_state
2113 * because we look at b_state
2114 * in mpage_da_map_blocks. We
2115 * don't update b_size because
2116 * if we find an unmapped
2117 * buffer_head later we need to
2118 * use the b_state flag of that
2121 if (mpd
->b_size
== 0)
2122 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2125 } while ((bh
= bh
->b_this_page
) != head
);
2128 if (nr_to_write
> 0) {
2130 if (nr_to_write
== 0 &&
2131 wbc
->sync_mode
== WB_SYNC_NONE
)
2133 * We stop writing back only if we are
2134 * not doing integrity sync. In case of
2135 * integrity sync we have to keep going
2136 * because someone may be concurrently
2137 * dirtying pages, and we might have
2138 * synced a lot of newly appeared dirty
2139 * pages, but have not synced all of the
2145 pagevec_release(&pvec
);
2150 ret
= MPAGE_DA_EXTENT_TAIL
;
2152 pagevec_release(&pvec
);
2158 static int ext4_da_writepages(struct address_space
*mapping
,
2159 struct writeback_control
*wbc
)
2162 int range_whole
= 0;
2163 handle_t
*handle
= NULL
;
2164 struct mpage_da_data mpd
;
2165 struct inode
*inode
= mapping
->host
;
2166 int pages_written
= 0;
2167 unsigned int max_pages
;
2168 int range_cyclic
, cycled
= 1, io_done
= 0;
2169 int needed_blocks
, ret
= 0;
2170 long desired_nr_to_write
, nr_to_writebump
= 0;
2171 loff_t range_start
= wbc
->range_start
;
2172 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2173 pgoff_t done_index
= 0;
2175 struct blk_plug plug
;
2177 trace_ext4_da_writepages(inode
, wbc
);
2180 * No pages to write? This is mainly a kludge to avoid starting
2181 * a transaction for special inodes like journal inode on last iput()
2182 * because that could violate lock ordering on umount
2184 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2188 * If the filesystem has aborted, it is read-only, so return
2189 * right away instead of dumping stack traces later on that
2190 * will obscure the real source of the problem. We test
2191 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2192 * the latter could be true if the filesystem is mounted
2193 * read-only, and in that case, ext4_da_writepages should
2194 * *never* be called, so if that ever happens, we would want
2197 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2200 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2203 range_cyclic
= wbc
->range_cyclic
;
2204 if (wbc
->range_cyclic
) {
2205 index
= mapping
->writeback_index
;
2208 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2209 wbc
->range_end
= LLONG_MAX
;
2210 wbc
->range_cyclic
= 0;
2213 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2214 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2218 * This works around two forms of stupidity. The first is in
2219 * the writeback code, which caps the maximum number of pages
2220 * written to be 1024 pages. This is wrong on multiple
2221 * levels; different architectues have a different page size,
2222 * which changes the maximum amount of data which gets
2223 * written. Secondly, 4 megabytes is way too small. XFS
2224 * forces this value to be 16 megabytes by multiplying
2225 * nr_to_write parameter by four, and then relies on its
2226 * allocator to allocate larger extents to make them
2227 * contiguous. Unfortunately this brings us to the second
2228 * stupidity, which is that ext4's mballoc code only allocates
2229 * at most 2048 blocks. So we force contiguous writes up to
2230 * the number of dirty blocks in the inode, or
2231 * sbi->max_writeback_mb_bump whichever is smaller.
2233 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2234 if (!range_cyclic
&& range_whole
) {
2235 if (wbc
->nr_to_write
== LONG_MAX
)
2236 desired_nr_to_write
= wbc
->nr_to_write
;
2238 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2240 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2242 if (desired_nr_to_write
> max_pages
)
2243 desired_nr_to_write
= max_pages
;
2245 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2246 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2247 wbc
->nr_to_write
= desired_nr_to_write
;
2251 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2252 tag_pages_for_writeback(mapping
, index
, end
);
2254 blk_start_plug(&plug
);
2255 while (!ret
&& wbc
->nr_to_write
> 0) {
2258 * we insert one extent at a time. So we need
2259 * credit needed for single extent allocation.
2260 * journalled mode is currently not supported
2263 BUG_ON(ext4_should_journal_data(inode
));
2264 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2266 /* start a new transaction*/
2267 handle
= ext4_journal_start(inode
, needed_blocks
);
2268 if (IS_ERR(handle
)) {
2269 ret
= PTR_ERR(handle
);
2270 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2271 "%ld pages, ino %lu; err %d", __func__
,
2272 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2273 goto out_writepages
;
2277 * Now call write_cache_pages_da() to find the next
2278 * contiguous region of logical blocks that need
2279 * blocks to be allocated by ext4 and submit them.
2281 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2283 * If we have a contiguous extent of pages and we
2284 * haven't done the I/O yet, map the blocks and submit
2287 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2288 mpage_da_map_and_submit(&mpd
);
2289 ret
= MPAGE_DA_EXTENT_TAIL
;
2291 trace_ext4_da_write_pages(inode
, &mpd
);
2292 wbc
->nr_to_write
-= mpd
.pages_written
;
2294 ext4_journal_stop(handle
);
2296 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2297 /* commit the transaction which would
2298 * free blocks released in the transaction
2301 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2303 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2305 * Got one extent now try with rest of the pages.
2306 * If mpd.retval is set -EIO, journal is aborted.
2307 * So we don't need to write any more.
2309 pages_written
+= mpd
.pages_written
;
2312 } else if (wbc
->nr_to_write
)
2314 * There is no more writeout needed
2315 * or we requested for a noblocking writeout
2316 * and we found the device congested
2320 blk_finish_plug(&plug
);
2321 if (!io_done
&& !cycled
) {
2324 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2325 wbc
->range_end
= mapping
->writeback_index
- 1;
2330 wbc
->range_cyclic
= range_cyclic
;
2331 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2333 * set the writeback_index so that range_cyclic
2334 * mode will write it back later
2336 mapping
->writeback_index
= done_index
;
2339 wbc
->nr_to_write
-= nr_to_writebump
;
2340 wbc
->range_start
= range_start
;
2341 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2345 #define FALL_BACK_TO_NONDELALLOC 1
2346 static int ext4_nonda_switch(struct super_block
*sb
)
2348 s64 free_blocks
, dirty_blocks
;
2349 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2352 * switch to non delalloc mode if we are running low
2353 * on free block. The free block accounting via percpu
2354 * counters can get slightly wrong with percpu_counter_batch getting
2355 * accumulated on each CPU without updating global counters
2356 * Delalloc need an accurate free block accounting. So switch
2357 * to non delalloc when we are near to error range.
2359 free_blocks
= EXT4_C2B(sbi
,
2360 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
2361 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2362 if (2 * free_blocks
< 3 * dirty_blocks
||
2363 free_blocks
< (dirty_blocks
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2365 * free block count is less than 150% of dirty blocks
2366 * or free blocks is less than watermark
2371 * Even if we don't switch but are nearing capacity,
2372 * start pushing delalloc when 1/2 of free blocks are dirty.
2374 if (free_blocks
< 2 * dirty_blocks
)
2375 writeback_inodes_sb_if_idle(sb
, WB_REASON_FS_FREE_SPACE
);
2380 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2381 loff_t pos
, unsigned len
, unsigned flags
,
2382 struct page
**pagep
, void **fsdata
)
2384 int ret
, retries
= 0;
2387 struct inode
*inode
= mapping
->host
;
2391 index
= pos
>> PAGE_CACHE_SHIFT
;
2393 if (ext4_nonda_switch(inode
->i_sb
)) {
2394 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2395 return ext4_write_begin(file
, mapping
, pos
,
2396 len
, flags
, pagep
, fsdata
);
2398 *fsdata
= (void *)0;
2399 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2402 * With delayed allocation, we don't log the i_disksize update
2403 * if there is delayed block allocation. But we still need
2404 * to journalling the i_disksize update if writes to the end
2405 * of file which has an already mapped buffer.
2407 handle
= ext4_journal_start(inode
, 1);
2408 if (IS_ERR(handle
)) {
2409 ret
= PTR_ERR(handle
);
2412 /* We cannot recurse into the filesystem as the transaction is already
2414 flags
|= AOP_FLAG_NOFS
;
2416 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2418 ext4_journal_stop(handle
);
2424 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2427 ext4_journal_stop(handle
);
2428 page_cache_release(page
);
2430 * block_write_begin may have instantiated a few blocks
2431 * outside i_size. Trim these off again. Don't need
2432 * i_size_read because we hold i_mutex.
2434 if (pos
+ len
> inode
->i_size
)
2435 ext4_truncate_failed_write(inode
);
2437 page_len
= pos
& (PAGE_CACHE_SIZE
- 1);
2439 ret
= ext4_discard_partial_page_buffers_no_lock(handle
,
2440 inode
, page
, pos
- page_len
, page_len
,
2441 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
);
2445 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2452 * Check if we should update i_disksize
2453 * when write to the end of file but not require block allocation
2455 static int ext4_da_should_update_i_disksize(struct page
*page
,
2456 unsigned long offset
)
2458 struct buffer_head
*bh
;
2459 struct inode
*inode
= page
->mapping
->host
;
2463 bh
= page_buffers(page
);
2464 idx
= offset
>> inode
->i_blkbits
;
2466 for (i
= 0; i
< idx
; i
++)
2467 bh
= bh
->b_this_page
;
2469 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2474 static int ext4_da_write_end(struct file
*file
,
2475 struct address_space
*mapping
,
2476 loff_t pos
, unsigned len
, unsigned copied
,
2477 struct page
*page
, void *fsdata
)
2479 struct inode
*inode
= mapping
->host
;
2481 handle_t
*handle
= ext4_journal_current_handle();
2483 unsigned long start
, end
;
2484 int write_mode
= (int)(unsigned long)fsdata
;
2487 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2488 if (ext4_should_order_data(inode
)) {
2489 return ext4_ordered_write_end(file
, mapping
, pos
,
2490 len
, copied
, page
, fsdata
);
2491 } else if (ext4_should_writeback_data(inode
)) {
2492 return ext4_writeback_write_end(file
, mapping
, pos
,
2493 len
, copied
, page
, fsdata
);
2499 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2500 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2501 end
= start
+ copied
- 1;
2504 * generic_write_end() will run mark_inode_dirty() if i_size
2505 * changes. So let's piggyback the i_disksize mark_inode_dirty
2509 new_i_size
= pos
+ copied
;
2510 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2511 if (ext4_da_should_update_i_disksize(page
, end
)) {
2512 down_write(&EXT4_I(inode
)->i_data_sem
);
2513 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2515 * Updating i_disksize when extending file
2516 * without needing block allocation
2518 if (ext4_should_order_data(inode
))
2519 ret
= ext4_jbd2_file_inode(handle
,
2522 EXT4_I(inode
)->i_disksize
= new_i_size
;
2524 up_write(&EXT4_I(inode
)->i_data_sem
);
2525 /* We need to mark inode dirty even if
2526 * new_i_size is less that inode->i_size
2527 * bu greater than i_disksize.(hint delalloc)
2529 ext4_mark_inode_dirty(handle
, inode
);
2532 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2535 page_len
= PAGE_CACHE_SIZE
-
2536 ((pos
+ copied
- 1) & (PAGE_CACHE_SIZE
- 1));
2539 ret
= ext4_discard_partial_page_buffers_no_lock(handle
,
2540 inode
, page
, pos
+ copied
- 1, page_len
,
2541 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
);
2547 ret2
= ext4_journal_stop(handle
);
2551 return ret
? ret
: copied
;
2554 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2557 * Drop reserved blocks
2559 BUG_ON(!PageLocked(page
));
2560 if (!page_has_buffers(page
))
2563 ext4_da_page_release_reservation(page
, offset
);
2566 ext4_invalidatepage(page
, offset
);
2572 * Force all delayed allocation blocks to be allocated for a given inode.
2574 int ext4_alloc_da_blocks(struct inode
*inode
)
2576 trace_ext4_alloc_da_blocks(inode
);
2578 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2579 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2583 * We do something simple for now. The filemap_flush() will
2584 * also start triggering a write of the data blocks, which is
2585 * not strictly speaking necessary (and for users of
2586 * laptop_mode, not even desirable). However, to do otherwise
2587 * would require replicating code paths in:
2589 * ext4_da_writepages() ->
2590 * write_cache_pages() ---> (via passed in callback function)
2591 * __mpage_da_writepage() -->
2592 * mpage_add_bh_to_extent()
2593 * mpage_da_map_blocks()
2595 * The problem is that write_cache_pages(), located in
2596 * mm/page-writeback.c, marks pages clean in preparation for
2597 * doing I/O, which is not desirable if we're not planning on
2600 * We could call write_cache_pages(), and then redirty all of
2601 * the pages by calling redirty_page_for_writepage() but that
2602 * would be ugly in the extreme. So instead we would need to
2603 * replicate parts of the code in the above functions,
2604 * simplifying them because we wouldn't actually intend to
2605 * write out the pages, but rather only collect contiguous
2606 * logical block extents, call the multi-block allocator, and
2607 * then update the buffer heads with the block allocations.
2609 * For now, though, we'll cheat by calling filemap_flush(),
2610 * which will map the blocks, and start the I/O, but not
2611 * actually wait for the I/O to complete.
2613 return filemap_flush(inode
->i_mapping
);
2617 * bmap() is special. It gets used by applications such as lilo and by
2618 * the swapper to find the on-disk block of a specific piece of data.
2620 * Naturally, this is dangerous if the block concerned is still in the
2621 * journal. If somebody makes a swapfile on an ext4 data-journaling
2622 * filesystem and enables swap, then they may get a nasty shock when the
2623 * data getting swapped to that swapfile suddenly gets overwritten by
2624 * the original zero's written out previously to the journal and
2625 * awaiting writeback in the kernel's buffer cache.
2627 * So, if we see any bmap calls here on a modified, data-journaled file,
2628 * take extra steps to flush any blocks which might be in the cache.
2630 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2632 struct inode
*inode
= mapping
->host
;
2636 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2637 test_opt(inode
->i_sb
, DELALLOC
)) {
2639 * With delalloc we want to sync the file
2640 * so that we can make sure we allocate
2643 filemap_write_and_wait(mapping
);
2646 if (EXT4_JOURNAL(inode
) &&
2647 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2649 * This is a REALLY heavyweight approach, but the use of
2650 * bmap on dirty files is expected to be extremely rare:
2651 * only if we run lilo or swapon on a freshly made file
2652 * do we expect this to happen.
2654 * (bmap requires CAP_SYS_RAWIO so this does not
2655 * represent an unprivileged user DOS attack --- we'd be
2656 * in trouble if mortal users could trigger this path at
2659 * NB. EXT4_STATE_JDATA is not set on files other than
2660 * regular files. If somebody wants to bmap a directory
2661 * or symlink and gets confused because the buffer
2662 * hasn't yet been flushed to disk, they deserve
2663 * everything they get.
2666 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2667 journal
= EXT4_JOURNAL(inode
);
2668 jbd2_journal_lock_updates(journal
);
2669 err
= jbd2_journal_flush(journal
);
2670 jbd2_journal_unlock_updates(journal
);
2676 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2679 static int ext4_readpage(struct file
*file
, struct page
*page
)
2681 trace_ext4_readpage(page
);
2682 return mpage_readpage(page
, ext4_get_block
);
2686 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2687 struct list_head
*pages
, unsigned nr_pages
)
2689 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2692 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2694 struct buffer_head
*head
, *bh
;
2695 unsigned int curr_off
= 0;
2697 if (!page_has_buffers(page
))
2699 head
= bh
= page_buffers(page
);
2701 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2703 ext4_free_io_end(bh
->b_private
);
2704 bh
->b_private
= NULL
;
2705 bh
->b_end_io
= NULL
;
2707 curr_off
= curr_off
+ bh
->b_size
;
2708 bh
= bh
->b_this_page
;
2709 } while (bh
!= head
);
2712 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2714 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2716 trace_ext4_invalidatepage(page
, offset
);
2719 * free any io_end structure allocated for buffers to be discarded
2721 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2722 ext4_invalidatepage_free_endio(page
, offset
);
2724 * If it's a full truncate we just forget about the pending dirtying
2727 ClearPageChecked(page
);
2730 jbd2_journal_invalidatepage(journal
, page
, offset
);
2732 block_invalidatepage(page
, offset
);
2735 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2737 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2739 trace_ext4_releasepage(page
);
2741 WARN_ON(PageChecked(page
));
2742 if (!page_has_buffers(page
))
2745 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2747 return try_to_free_buffers(page
);
2751 * ext4_get_block used when preparing for a DIO write or buffer write.
2752 * We allocate an uinitialized extent if blocks haven't been allocated.
2753 * The extent will be converted to initialized after the IO is complete.
2755 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2756 struct buffer_head
*bh_result
, int create
)
2758 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2759 inode
->i_ino
, create
);
2760 return _ext4_get_block(inode
, iblock
, bh_result
,
2761 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2764 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2765 ssize_t size
, void *private, int ret
,
2768 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2769 ext4_io_end_t
*io_end
= iocb
->private;
2770 struct workqueue_struct
*wq
;
2771 unsigned long flags
;
2772 struct ext4_inode_info
*ei
;
2774 /* if not async direct IO or dio with 0 bytes write, just return */
2775 if (!io_end
|| !size
)
2778 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2779 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2780 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2783 /* if not aio dio with unwritten extents, just free io and return */
2784 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2785 ext4_free_io_end(io_end
);
2786 iocb
->private = NULL
;
2789 aio_complete(iocb
, ret
, 0);
2790 inode_dio_done(inode
);
2794 io_end
->offset
= offset
;
2795 io_end
->size
= size
;
2797 io_end
->iocb
= iocb
;
2798 io_end
->result
= ret
;
2800 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2802 /* Add the io_end to per-inode completed aio dio list*/
2803 ei
= EXT4_I(io_end
->inode
);
2804 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2805 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2806 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2808 /* queue the work to convert unwritten extents to written */
2809 queue_work(wq
, &io_end
->work
);
2810 iocb
->private = NULL
;
2812 /* XXX: probably should move into the real I/O completion handler */
2813 inode_dio_done(inode
);
2816 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2818 ext4_io_end_t
*io_end
= bh
->b_private
;
2819 struct workqueue_struct
*wq
;
2820 struct inode
*inode
;
2821 unsigned long flags
;
2823 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2826 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2827 printk("sb umounted, discard end_io request for inode %lu\n",
2828 io_end
->inode
->i_ino
);
2829 ext4_free_io_end(io_end
);
2834 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2835 * but being more careful is always safe for the future change.
2837 inode
= io_end
->inode
;
2838 ext4_set_io_unwritten_flag(inode
, io_end
);
2840 /* Add the io_end to per-inode completed io list*/
2841 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2842 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2843 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2845 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2846 /* queue the work to convert unwritten extents to written */
2847 queue_work(wq
, &io_end
->work
);
2849 bh
->b_private
= NULL
;
2850 bh
->b_end_io
= NULL
;
2851 clear_buffer_uninit(bh
);
2852 end_buffer_async_write(bh
, uptodate
);
2855 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2857 ext4_io_end_t
*io_end
;
2858 struct page
*page
= bh
->b_page
;
2859 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2860 size_t size
= bh
->b_size
;
2863 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2865 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2869 io_end
->offset
= offset
;
2870 io_end
->size
= size
;
2872 * We need to hold a reference to the page to make sure it
2873 * doesn't get evicted before ext4_end_io_work() has a chance
2874 * to convert the extent from written to unwritten.
2876 io_end
->page
= page
;
2877 get_page(io_end
->page
);
2879 bh
->b_private
= io_end
;
2880 bh
->b_end_io
= ext4_end_io_buffer_write
;
2885 * For ext4 extent files, ext4 will do direct-io write to holes,
2886 * preallocated extents, and those write extend the file, no need to
2887 * fall back to buffered IO.
2889 * For holes, we fallocate those blocks, mark them as uninitialized
2890 * If those blocks were preallocated, we mark sure they are splited, but
2891 * still keep the range to write as uninitialized.
2893 * The unwrritten extents will be converted to written when DIO is completed.
2894 * For async direct IO, since the IO may still pending when return, we
2895 * set up an end_io call back function, which will do the conversion
2896 * when async direct IO completed.
2898 * If the O_DIRECT write will extend the file then add this inode to the
2899 * orphan list. So recovery will truncate it back to the original size
2900 * if the machine crashes during the write.
2903 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2904 const struct iovec
*iov
, loff_t offset
,
2905 unsigned long nr_segs
)
2907 struct file
*file
= iocb
->ki_filp
;
2908 struct inode
*inode
= file
->f_mapping
->host
;
2910 size_t count
= iov_length(iov
, nr_segs
);
2912 loff_t final_size
= offset
+ count
;
2913 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2915 * We could direct write to holes and fallocate.
2917 * Allocated blocks to fill the hole are marked as uninitialized
2918 * to prevent parallel buffered read to expose the stale data
2919 * before DIO complete the data IO.
2921 * As to previously fallocated extents, ext4 get_block
2922 * will just simply mark the buffer mapped but still
2923 * keep the extents uninitialized.
2925 * for non AIO case, we will convert those unwritten extents
2926 * to written after return back from blockdev_direct_IO.
2928 * for async DIO, the conversion needs to be defered when
2929 * the IO is completed. The ext4 end_io callback function
2930 * will be called to take care of the conversion work.
2931 * Here for async case, we allocate an io_end structure to
2934 iocb
->private = NULL
;
2935 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2936 if (!is_sync_kiocb(iocb
)) {
2937 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
2941 * we save the io structure for current async
2942 * direct IO, so that later ext4_map_blocks()
2943 * could flag the io structure whether there
2944 * is a unwritten extents needs to be converted
2945 * when IO is completed.
2947 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
2950 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
2951 inode
->i_sb
->s_bdev
, iov
,
2953 ext4_get_block_write
,
2956 DIO_LOCKING
| DIO_SKIP_HOLES
);
2958 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2960 * The io_end structure takes a reference to the inode,
2961 * that structure needs to be destroyed and the
2962 * reference to the inode need to be dropped, when IO is
2963 * complete, even with 0 byte write, or failed.
2965 * In the successful AIO DIO case, the io_end structure will be
2966 * desctroyed and the reference to the inode will be dropped
2967 * after the end_io call back function is called.
2969 * In the case there is 0 byte write, or error case, since
2970 * VFS direct IO won't invoke the end_io call back function,
2971 * we need to free the end_io structure here.
2973 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
2974 ext4_free_io_end(iocb
->private);
2975 iocb
->private = NULL
;
2976 } else if (ret
> 0 && ext4_test_inode_state(inode
,
2977 EXT4_STATE_DIO_UNWRITTEN
)) {
2980 * for non AIO case, since the IO is already
2981 * completed, we could do the conversion right here
2983 err
= ext4_convert_unwritten_extents(inode
,
2987 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
2992 /* for write the the end of file case, we fall back to old way */
2993 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2996 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2997 const struct iovec
*iov
, loff_t offset
,
2998 unsigned long nr_segs
)
3000 struct file
*file
= iocb
->ki_filp
;
3001 struct inode
*inode
= file
->f_mapping
->host
;
3005 * If we are doing data journalling we don't support O_DIRECT
3007 if (ext4_should_journal_data(inode
))
3010 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3011 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3012 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3014 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3015 trace_ext4_direct_IO_exit(inode
, offset
,
3016 iov_length(iov
, nr_segs
), rw
, ret
);
3021 * Pages can be marked dirty completely asynchronously from ext4's journalling
3022 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3023 * much here because ->set_page_dirty is called under VFS locks. The page is
3024 * not necessarily locked.
3026 * We cannot just dirty the page and leave attached buffers clean, because the
3027 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3028 * or jbddirty because all the journalling code will explode.
3030 * So what we do is to mark the page "pending dirty" and next time writepage
3031 * is called, propagate that into the buffers appropriately.
3033 static int ext4_journalled_set_page_dirty(struct page
*page
)
3035 SetPageChecked(page
);
3036 return __set_page_dirty_nobuffers(page
);
3039 static const struct address_space_operations ext4_ordered_aops
= {
3040 .readpage
= ext4_readpage
,
3041 .readpages
= ext4_readpages
,
3042 .writepage
= ext4_writepage
,
3043 .write_begin
= ext4_write_begin
,
3044 .write_end
= ext4_ordered_write_end
,
3046 .invalidatepage
= ext4_invalidatepage
,
3047 .releasepage
= ext4_releasepage
,
3048 .direct_IO
= ext4_direct_IO
,
3049 .migratepage
= buffer_migrate_page
,
3050 .is_partially_uptodate
= block_is_partially_uptodate
,
3051 .error_remove_page
= generic_error_remove_page
,
3054 static const struct address_space_operations ext4_writeback_aops
= {
3055 .readpage
= ext4_readpage
,
3056 .readpages
= ext4_readpages
,
3057 .writepage
= ext4_writepage
,
3058 .write_begin
= ext4_write_begin
,
3059 .write_end
= ext4_writeback_write_end
,
3061 .invalidatepage
= ext4_invalidatepage
,
3062 .releasepage
= ext4_releasepage
,
3063 .direct_IO
= ext4_direct_IO
,
3064 .migratepage
= buffer_migrate_page
,
3065 .is_partially_uptodate
= block_is_partially_uptodate
,
3066 .error_remove_page
= generic_error_remove_page
,
3069 static const struct address_space_operations ext4_journalled_aops
= {
3070 .readpage
= ext4_readpage
,
3071 .readpages
= ext4_readpages
,
3072 .writepage
= ext4_writepage
,
3073 .write_begin
= ext4_write_begin
,
3074 .write_end
= ext4_journalled_write_end
,
3075 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3077 .invalidatepage
= ext4_invalidatepage
,
3078 .releasepage
= ext4_releasepage
,
3079 .direct_IO
= ext4_direct_IO
,
3080 .is_partially_uptodate
= block_is_partially_uptodate
,
3081 .error_remove_page
= generic_error_remove_page
,
3084 static const struct address_space_operations ext4_da_aops
= {
3085 .readpage
= ext4_readpage
,
3086 .readpages
= ext4_readpages
,
3087 .writepage
= ext4_writepage
,
3088 .writepages
= ext4_da_writepages
,
3089 .write_begin
= ext4_da_write_begin
,
3090 .write_end
= ext4_da_write_end
,
3092 .invalidatepage
= ext4_da_invalidatepage
,
3093 .releasepage
= ext4_releasepage
,
3094 .direct_IO
= ext4_direct_IO
,
3095 .migratepage
= buffer_migrate_page
,
3096 .is_partially_uptodate
= block_is_partially_uptodate
,
3097 .error_remove_page
= generic_error_remove_page
,
3100 void ext4_set_aops(struct inode
*inode
)
3102 if (ext4_should_order_data(inode
) &&
3103 test_opt(inode
->i_sb
, DELALLOC
))
3104 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3105 else if (ext4_should_order_data(inode
))
3106 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3107 else if (ext4_should_writeback_data(inode
) &&
3108 test_opt(inode
->i_sb
, DELALLOC
))
3109 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3110 else if (ext4_should_writeback_data(inode
))
3111 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3113 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3118 * ext4_discard_partial_page_buffers()
3119 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3120 * This function finds and locks the page containing the offset
3121 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3122 * Calling functions that already have the page locked should call
3123 * ext4_discard_partial_page_buffers_no_lock directly.
3125 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3126 struct address_space
*mapping
, loff_t from
,
3127 loff_t length
, int flags
)
3129 struct inode
*inode
= mapping
->host
;
3133 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3134 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3138 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3139 from
, length
, flags
);
3142 page_cache_release(page
);
3147 * ext4_discard_partial_page_buffers_no_lock()
3148 * Zeros a page range of length 'length' starting from offset 'from'.
3149 * Buffer heads that correspond to the block aligned regions of the
3150 * zeroed range will be unmapped. Unblock aligned regions
3151 * will have the corresponding buffer head mapped if needed so that
3152 * that region of the page can be updated with the partial zero out.
3154 * This function assumes that the page has already been locked. The
3155 * The range to be discarded must be contained with in the given page.
3156 * If the specified range exceeds the end of the page it will be shortened
3157 * to the end of the page that corresponds to 'from'. This function is
3158 * appropriate for updating a page and it buffer heads to be unmapped and
3159 * zeroed for blocks that have been either released, or are going to be
3162 * handle: The journal handle
3163 * inode: The files inode
3164 * page: A locked page that contains the offset "from"
3165 * from: The starting byte offset (from the begining of the file)
3166 * to begin discarding
3167 * len: The length of bytes to discard
3168 * flags: Optional flags that may be used:
3170 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3171 * Only zero the regions of the page whose buffer heads
3172 * have already been unmapped. This flag is appropriate
3173 * for updateing the contents of a page whose blocks may
3174 * have already been released, and we only want to zero
3175 * out the regions that correspond to those released blocks.
3177 * Returns zero on sucess or negative on failure.
3179 int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3180 struct inode
*inode
, struct page
*page
, loff_t from
,
3181 loff_t length
, int flags
)
3183 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3184 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3185 unsigned int blocksize
, max
, pos
;
3187 struct buffer_head
*bh
;
3190 blocksize
= inode
->i_sb
->s_blocksize
;
3191 max
= PAGE_CACHE_SIZE
- offset
;
3193 if (index
!= page
->index
)
3197 * correct length if it does not fall between
3198 * 'from' and the end of the page
3200 if (length
> max
|| length
< 0)
3203 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3205 if (!page_has_buffers(page
)) {
3207 * If the range to be discarded covers a partial block
3208 * we need to get the page buffers. This is because
3209 * partial blocks cannot be released and the page needs
3210 * to be updated with the contents of the block before
3211 * we write the zeros on top of it.
3213 if ((from
& (blocksize
- 1)) ||
3214 ((from
+ length
) & (blocksize
- 1))) {
3215 create_empty_buffers(page
, blocksize
, 0);
3218 * If there are no partial blocks,
3219 * there is nothing to update,
3220 * so we can return now
3226 /* Find the buffer that contains "offset" */
3227 bh
= page_buffers(page
);
3229 while (offset
>= pos
) {
3230 bh
= bh
->b_this_page
;
3236 while (pos
< offset
+ length
) {
3237 unsigned int end_of_block
, range_to_discard
;
3241 /* The length of space left to zero and unmap */
3242 range_to_discard
= offset
+ length
- pos
;
3244 /* The length of space until the end of the block */
3245 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3248 * Do not unmap or zero past end of block
3249 * for this buffer head
3251 if (range_to_discard
> end_of_block
)
3252 range_to_discard
= end_of_block
;
3256 * Skip this buffer head if we are only zeroing unampped
3257 * regions of the page
3259 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3263 /* If the range is block aligned, unmap */
3264 if (range_to_discard
== blocksize
) {
3265 clear_buffer_dirty(bh
);
3267 clear_buffer_mapped(bh
);
3268 clear_buffer_req(bh
);
3269 clear_buffer_new(bh
);
3270 clear_buffer_delay(bh
);
3271 clear_buffer_unwritten(bh
);
3272 clear_buffer_uptodate(bh
);
3273 zero_user(page
, pos
, range_to_discard
);
3274 BUFFER_TRACE(bh
, "Buffer discarded");
3279 * If this block is not completely contained in the range
3280 * to be discarded, then it is not going to be released. Because
3281 * we need to keep this block, we need to make sure this part
3282 * of the page is uptodate before we modify it by writeing
3283 * partial zeros on it.
3285 if (!buffer_mapped(bh
)) {
3287 * Buffer head must be mapped before we can read
3290 BUFFER_TRACE(bh
, "unmapped");
3291 ext4_get_block(inode
, iblock
, bh
, 0);
3292 /* unmapped? It's a hole - nothing to do */
3293 if (!buffer_mapped(bh
)) {
3294 BUFFER_TRACE(bh
, "still unmapped");
3299 /* Ok, it's mapped. Make sure it's up-to-date */
3300 if (PageUptodate(page
))
3301 set_buffer_uptodate(bh
);
3303 if (!buffer_uptodate(bh
)) {
3305 ll_rw_block(READ
, 1, &bh
);
3307 /* Uhhuh. Read error. Complain and punt.*/
3308 if (!buffer_uptodate(bh
))
3312 if (ext4_should_journal_data(inode
)) {
3313 BUFFER_TRACE(bh
, "get write access");
3314 err
= ext4_journal_get_write_access(handle
, bh
);
3319 zero_user(page
, pos
, range_to_discard
);
3322 if (ext4_should_journal_data(inode
)) {
3323 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3325 mark_buffer_dirty(bh
);
3327 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3329 bh
= bh
->b_this_page
;
3331 pos
+= range_to_discard
;
3338 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3339 * up to the end of the block which corresponds to `from'.
3340 * This required during truncate. We need to physically zero the tail end
3341 * of that block so it doesn't yield old data if the file is later grown.
3343 int ext4_block_truncate_page(handle_t
*handle
,
3344 struct address_space
*mapping
, loff_t from
)
3346 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3349 struct inode
*inode
= mapping
->host
;
3351 blocksize
= inode
->i_sb
->s_blocksize
;
3352 length
= blocksize
- (offset
& (blocksize
- 1));
3354 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3358 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3359 * starting from file offset 'from'. The range to be zero'd must
3360 * be contained with in one block. If the specified range exceeds
3361 * the end of the block it will be shortened to end of the block
3362 * that cooresponds to 'from'
3364 int ext4_block_zero_page_range(handle_t
*handle
,
3365 struct address_space
*mapping
, loff_t from
, loff_t length
)
3367 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3368 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3369 unsigned blocksize
, max
, pos
;
3371 struct inode
*inode
= mapping
->host
;
3372 struct buffer_head
*bh
;
3376 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3377 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3381 blocksize
= inode
->i_sb
->s_blocksize
;
3382 max
= blocksize
- (offset
& (blocksize
- 1));
3385 * correct length if it does not fall between
3386 * 'from' and the end of the block
3388 if (length
> max
|| length
< 0)
3391 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3393 if (!page_has_buffers(page
))
3394 create_empty_buffers(page
, blocksize
, 0);
3396 /* Find the buffer that contains "offset" */
3397 bh
= page_buffers(page
);
3399 while (offset
>= pos
) {
3400 bh
= bh
->b_this_page
;
3406 if (buffer_freed(bh
)) {
3407 BUFFER_TRACE(bh
, "freed: skip");
3411 if (!buffer_mapped(bh
)) {
3412 BUFFER_TRACE(bh
, "unmapped");
3413 ext4_get_block(inode
, iblock
, bh
, 0);
3414 /* unmapped? It's a hole - nothing to do */
3415 if (!buffer_mapped(bh
)) {
3416 BUFFER_TRACE(bh
, "still unmapped");
3421 /* Ok, it's mapped. Make sure it's up-to-date */
3422 if (PageUptodate(page
))
3423 set_buffer_uptodate(bh
);
3425 if (!buffer_uptodate(bh
)) {
3427 ll_rw_block(READ
, 1, &bh
);
3429 /* Uhhuh. Read error. Complain and punt. */
3430 if (!buffer_uptodate(bh
))
3434 if (ext4_should_journal_data(inode
)) {
3435 BUFFER_TRACE(bh
, "get write access");
3436 err
= ext4_journal_get_write_access(handle
, bh
);
3441 zero_user(page
, offset
, length
);
3443 BUFFER_TRACE(bh
, "zeroed end of block");
3446 if (ext4_should_journal_data(inode
)) {
3447 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3449 mark_buffer_dirty(bh
);
3453 page_cache_release(page
);
3457 int ext4_can_truncate(struct inode
*inode
)
3459 if (S_ISREG(inode
->i_mode
))
3461 if (S_ISDIR(inode
->i_mode
))
3463 if (S_ISLNK(inode
->i_mode
))
3464 return !ext4_inode_is_fast_symlink(inode
);
3469 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3470 * associated with the given offset and length
3472 * @inode: File inode
3473 * @offset: The offset where the hole will begin
3474 * @len: The length of the hole
3476 * Returns: 0 on sucess or negative on failure
3479 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3481 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3482 if (!S_ISREG(inode
->i_mode
))
3485 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3486 /* TODO: Add support for non extent hole punching */
3490 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) {
3491 /* TODO: Add support for bigalloc file systems */
3495 return ext4_ext_punch_hole(file
, offset
, length
);
3501 * We block out ext4_get_block() block instantiations across the entire
3502 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3503 * simultaneously on behalf of the same inode.
3505 * As we work through the truncate and commmit bits of it to the journal there
3506 * is one core, guiding principle: the file's tree must always be consistent on
3507 * disk. We must be able to restart the truncate after a crash.
3509 * The file's tree may be transiently inconsistent in memory (although it
3510 * probably isn't), but whenever we close off and commit a journal transaction,
3511 * the contents of (the filesystem + the journal) must be consistent and
3512 * restartable. It's pretty simple, really: bottom up, right to left (although
3513 * left-to-right works OK too).
3515 * Note that at recovery time, journal replay occurs *before* the restart of
3516 * truncate against the orphan inode list.
3518 * The committed inode has the new, desired i_size (which is the same as
3519 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3520 * that this inode's truncate did not complete and it will again call
3521 * ext4_truncate() to have another go. So there will be instantiated blocks
3522 * to the right of the truncation point in a crashed ext4 filesystem. But
3523 * that's fine - as long as they are linked from the inode, the post-crash
3524 * ext4_truncate() run will find them and release them.
3526 void ext4_truncate(struct inode
*inode
)
3528 trace_ext4_truncate_enter(inode
);
3530 if (!ext4_can_truncate(inode
))
3533 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3535 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3536 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3538 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3539 ext4_ext_truncate(inode
);
3541 ext4_ind_truncate(inode
);
3543 trace_ext4_truncate_exit(inode
);
3547 * ext4_get_inode_loc returns with an extra refcount against the inode's
3548 * underlying buffer_head on success. If 'in_mem' is true, we have all
3549 * data in memory that is needed to recreate the on-disk version of this
3552 static int __ext4_get_inode_loc(struct inode
*inode
,
3553 struct ext4_iloc
*iloc
, int in_mem
)
3555 struct ext4_group_desc
*gdp
;
3556 struct buffer_head
*bh
;
3557 struct super_block
*sb
= inode
->i_sb
;
3559 int inodes_per_block
, inode_offset
;
3562 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3565 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3566 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3571 * Figure out the offset within the block group inode table
3573 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3574 inode_offset
= ((inode
->i_ino
- 1) %
3575 EXT4_INODES_PER_GROUP(sb
));
3576 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3577 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3579 bh
= sb_getblk(sb
, block
);
3581 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3582 "unable to read itable block");
3585 if (!buffer_uptodate(bh
)) {
3589 * If the buffer has the write error flag, we have failed
3590 * to write out another inode in the same block. In this
3591 * case, we don't have to read the block because we may
3592 * read the old inode data successfully.
3594 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3595 set_buffer_uptodate(bh
);
3597 if (buffer_uptodate(bh
)) {
3598 /* someone brought it uptodate while we waited */
3604 * If we have all information of the inode in memory and this
3605 * is the only valid inode in the block, we need not read the
3609 struct buffer_head
*bitmap_bh
;
3612 start
= inode_offset
& ~(inodes_per_block
- 1);
3614 /* Is the inode bitmap in cache? */
3615 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3620 * If the inode bitmap isn't in cache then the
3621 * optimisation may end up performing two reads instead
3622 * of one, so skip it.
3624 if (!buffer_uptodate(bitmap_bh
)) {
3628 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3629 if (i
== inode_offset
)
3631 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3635 if (i
== start
+ inodes_per_block
) {
3636 /* all other inodes are free, so skip I/O */
3637 memset(bh
->b_data
, 0, bh
->b_size
);
3638 set_buffer_uptodate(bh
);
3646 * If we need to do any I/O, try to pre-readahead extra
3647 * blocks from the inode table.
3649 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3650 ext4_fsblk_t b
, end
, table
;
3653 table
= ext4_inode_table(sb
, gdp
);
3654 /* s_inode_readahead_blks is always a power of 2 */
3655 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3658 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3659 num
= EXT4_INODES_PER_GROUP(sb
);
3660 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3661 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
3662 num
-= ext4_itable_unused_count(sb
, gdp
);
3663 table
+= num
/ inodes_per_block
;
3667 sb_breadahead(sb
, b
++);
3671 * There are other valid inodes in the buffer, this inode
3672 * has in-inode xattrs, or we don't have this inode in memory.
3673 * Read the block from disk.
3675 trace_ext4_load_inode(inode
);
3677 bh
->b_end_io
= end_buffer_read_sync
;
3678 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3680 if (!buffer_uptodate(bh
)) {
3681 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3682 "unable to read itable block");
3692 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3694 /* We have all inode data except xattrs in memory here. */
3695 return __ext4_get_inode_loc(inode
, iloc
,
3696 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3699 void ext4_set_inode_flags(struct inode
*inode
)
3701 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3703 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3704 if (flags
& EXT4_SYNC_FL
)
3705 inode
->i_flags
|= S_SYNC
;
3706 if (flags
& EXT4_APPEND_FL
)
3707 inode
->i_flags
|= S_APPEND
;
3708 if (flags
& EXT4_IMMUTABLE_FL
)
3709 inode
->i_flags
|= S_IMMUTABLE
;
3710 if (flags
& EXT4_NOATIME_FL
)
3711 inode
->i_flags
|= S_NOATIME
;
3712 if (flags
& EXT4_DIRSYNC_FL
)
3713 inode
->i_flags
|= S_DIRSYNC
;
3716 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3717 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3719 unsigned int vfs_fl
;
3720 unsigned long old_fl
, new_fl
;
3723 vfs_fl
= ei
->vfs_inode
.i_flags
;
3724 old_fl
= ei
->i_flags
;
3725 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3726 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3728 if (vfs_fl
& S_SYNC
)
3729 new_fl
|= EXT4_SYNC_FL
;
3730 if (vfs_fl
& S_APPEND
)
3731 new_fl
|= EXT4_APPEND_FL
;
3732 if (vfs_fl
& S_IMMUTABLE
)
3733 new_fl
|= EXT4_IMMUTABLE_FL
;
3734 if (vfs_fl
& S_NOATIME
)
3735 new_fl
|= EXT4_NOATIME_FL
;
3736 if (vfs_fl
& S_DIRSYNC
)
3737 new_fl
|= EXT4_DIRSYNC_FL
;
3738 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3741 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3742 struct ext4_inode_info
*ei
)
3745 struct inode
*inode
= &(ei
->vfs_inode
);
3746 struct super_block
*sb
= inode
->i_sb
;
3748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3749 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3750 /* we are using combined 48 bit field */
3751 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3752 le32_to_cpu(raw_inode
->i_blocks_lo
);
3753 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3754 /* i_blocks represent file system block size */
3755 return i_blocks
<< (inode
->i_blkbits
- 9);
3760 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3764 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3766 struct ext4_iloc iloc
;
3767 struct ext4_inode
*raw_inode
;
3768 struct ext4_inode_info
*ei
;
3769 struct inode
*inode
;
3770 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3774 inode
= iget_locked(sb
, ino
);
3776 return ERR_PTR(-ENOMEM
);
3777 if (!(inode
->i_state
& I_NEW
))
3783 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3786 raw_inode
= ext4_raw_inode(&iloc
);
3787 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3788 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3789 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3790 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3791 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3792 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3794 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
3796 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3797 ei
->i_dir_start_lookup
= 0;
3798 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3799 /* We now have enough fields to check if the inode was active or not.
3800 * This is needed because nfsd might try to access dead inodes
3801 * the test is that same one that e2fsck uses
3802 * NeilBrown 1999oct15
3804 if (inode
->i_nlink
== 0) {
3805 if (inode
->i_mode
== 0 ||
3806 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3807 /* this inode is deleted */
3811 /* The only unlinked inodes we let through here have
3812 * valid i_mode and are being read by the orphan
3813 * recovery code: that's fine, we're about to complete
3814 * the process of deleting those. */
3816 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3817 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3818 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3819 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3821 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3822 inode
->i_size
= ext4_isize(raw_inode
);
3823 ei
->i_disksize
= inode
->i_size
;
3825 ei
->i_reserved_quota
= 0;
3827 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3828 ei
->i_block_group
= iloc
.block_group
;
3829 ei
->i_last_alloc_group
= ~0;
3831 * NOTE! The in-memory inode i_data array is in little-endian order
3832 * even on big-endian machines: we do NOT byteswap the block numbers!
3834 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3835 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3836 INIT_LIST_HEAD(&ei
->i_orphan
);
3839 * Set transaction id's of transactions that have to be committed
3840 * to finish f[data]sync. We set them to currently running transaction
3841 * as we cannot be sure that the inode or some of its metadata isn't
3842 * part of the transaction - the inode could have been reclaimed and
3843 * now it is reread from disk.
3846 transaction_t
*transaction
;
3849 read_lock(&journal
->j_state_lock
);
3850 if (journal
->j_running_transaction
)
3851 transaction
= journal
->j_running_transaction
;
3853 transaction
= journal
->j_committing_transaction
;
3855 tid
= transaction
->t_tid
;
3857 tid
= journal
->j_commit_sequence
;
3858 read_unlock(&journal
->j_state_lock
);
3859 ei
->i_sync_tid
= tid
;
3860 ei
->i_datasync_tid
= tid
;
3863 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3864 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3865 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3866 EXT4_INODE_SIZE(inode
->i_sb
)) {
3870 if (ei
->i_extra_isize
== 0) {
3871 /* The extra space is currently unused. Use it. */
3872 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3873 EXT4_GOOD_OLD_INODE_SIZE
;
3875 __le32
*magic
= (void *)raw_inode
+
3876 EXT4_GOOD_OLD_INODE_SIZE
+
3878 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3879 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3882 ei
->i_extra_isize
= 0;
3884 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3885 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3886 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3887 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3889 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3890 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3891 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3893 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3897 if (ei
->i_file_acl
&&
3898 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3899 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3903 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3904 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3905 (S_ISLNK(inode
->i_mode
) &&
3906 !ext4_inode_is_fast_symlink(inode
)))
3907 /* Validate extent which is part of inode */
3908 ret
= ext4_ext_check_inode(inode
);
3909 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3910 (S_ISLNK(inode
->i_mode
) &&
3911 !ext4_inode_is_fast_symlink(inode
))) {
3912 /* Validate block references which are part of inode */
3913 ret
= ext4_ind_check_inode(inode
);
3918 if (S_ISREG(inode
->i_mode
)) {
3919 inode
->i_op
= &ext4_file_inode_operations
;
3920 inode
->i_fop
= &ext4_file_operations
;
3921 ext4_set_aops(inode
);
3922 } else if (S_ISDIR(inode
->i_mode
)) {
3923 inode
->i_op
= &ext4_dir_inode_operations
;
3924 inode
->i_fop
= &ext4_dir_operations
;
3925 } else if (S_ISLNK(inode
->i_mode
)) {
3926 if (ext4_inode_is_fast_symlink(inode
)) {
3927 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3928 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3929 sizeof(ei
->i_data
) - 1);
3931 inode
->i_op
= &ext4_symlink_inode_operations
;
3932 ext4_set_aops(inode
);
3934 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3935 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3936 inode
->i_op
= &ext4_special_inode_operations
;
3937 if (raw_inode
->i_block
[0])
3938 init_special_inode(inode
, inode
->i_mode
,
3939 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3941 init_special_inode(inode
, inode
->i_mode
,
3942 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3945 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3949 ext4_set_inode_flags(inode
);
3950 unlock_new_inode(inode
);
3956 return ERR_PTR(ret
);
3959 static int ext4_inode_blocks_set(handle_t
*handle
,
3960 struct ext4_inode
*raw_inode
,
3961 struct ext4_inode_info
*ei
)
3963 struct inode
*inode
= &(ei
->vfs_inode
);
3964 u64 i_blocks
= inode
->i_blocks
;
3965 struct super_block
*sb
= inode
->i_sb
;
3967 if (i_blocks
<= ~0U) {
3969 * i_blocks can be represnted in a 32 bit variable
3970 * as multiple of 512 bytes
3972 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3973 raw_inode
->i_blocks_high
= 0;
3974 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3977 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3980 if (i_blocks
<= 0xffffffffffffULL
) {
3982 * i_blocks can be represented in a 48 bit variable
3983 * as multiple of 512 bytes
3985 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3986 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3987 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3989 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3990 /* i_block is stored in file system block size */
3991 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3992 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3993 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3999 * Post the struct inode info into an on-disk inode location in the
4000 * buffer-cache. This gobbles the caller's reference to the
4001 * buffer_head in the inode location struct.
4003 * The caller must have write access to iloc->bh.
4005 static int ext4_do_update_inode(handle_t
*handle
,
4006 struct inode
*inode
,
4007 struct ext4_iloc
*iloc
)
4009 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4010 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4011 struct buffer_head
*bh
= iloc
->bh
;
4012 int err
= 0, rc
, block
;
4014 /* For fields not not tracking in the in-memory inode,
4015 * initialise them to zero for new inodes. */
4016 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4017 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4019 ext4_get_inode_flags(ei
);
4020 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4021 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4022 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
4023 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
4025 * Fix up interoperability with old kernels. Otherwise, old inodes get
4026 * re-used with the upper 16 bits of the uid/gid intact
4029 raw_inode
->i_uid_high
=
4030 cpu_to_le16(high_16_bits(inode
->i_uid
));
4031 raw_inode
->i_gid_high
=
4032 cpu_to_le16(high_16_bits(inode
->i_gid
));
4034 raw_inode
->i_uid_high
= 0;
4035 raw_inode
->i_gid_high
= 0;
4038 raw_inode
->i_uid_low
=
4039 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4040 raw_inode
->i_gid_low
=
4041 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4042 raw_inode
->i_uid_high
= 0;
4043 raw_inode
->i_gid_high
= 0;
4045 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4047 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4048 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4049 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4050 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4052 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4054 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4055 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4056 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4057 cpu_to_le32(EXT4_OS_HURD
))
4058 raw_inode
->i_file_acl_high
=
4059 cpu_to_le16(ei
->i_file_acl
>> 32);
4060 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4061 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4062 if (ei
->i_disksize
> 0x7fffffffULL
) {
4063 struct super_block
*sb
= inode
->i_sb
;
4064 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4065 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4066 EXT4_SB(sb
)->s_es
->s_rev_level
==
4067 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4068 /* If this is the first large file
4069 * created, add a flag to the superblock.
4071 err
= ext4_journal_get_write_access(handle
,
4072 EXT4_SB(sb
)->s_sbh
);
4075 ext4_update_dynamic_rev(sb
);
4076 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4077 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4079 ext4_handle_sync(handle
);
4080 err
= ext4_handle_dirty_metadata(handle
, NULL
,
4081 EXT4_SB(sb
)->s_sbh
);
4084 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4085 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4086 if (old_valid_dev(inode
->i_rdev
)) {
4087 raw_inode
->i_block
[0] =
4088 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4089 raw_inode
->i_block
[1] = 0;
4091 raw_inode
->i_block
[0] = 0;
4092 raw_inode
->i_block
[1] =
4093 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4094 raw_inode
->i_block
[2] = 0;
4097 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4098 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4100 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4101 if (ei
->i_extra_isize
) {
4102 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4103 raw_inode
->i_version_hi
=
4104 cpu_to_le32(inode
->i_version
>> 32);
4105 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4108 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4109 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4112 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4114 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4117 ext4_std_error(inode
->i_sb
, err
);
4122 * ext4_write_inode()
4124 * We are called from a few places:
4126 * - Within generic_file_write() for O_SYNC files.
4127 * Here, there will be no transaction running. We wait for any running
4128 * trasnaction to commit.
4130 * - Within sys_sync(), kupdate and such.
4131 * We wait on commit, if tol to.
4133 * - Within prune_icache() (PF_MEMALLOC == true)
4134 * Here we simply return. We can't afford to block kswapd on the
4137 * In all cases it is actually safe for us to return without doing anything,
4138 * because the inode has been copied into a raw inode buffer in
4139 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4142 * Note that we are absolutely dependent upon all inode dirtiers doing the
4143 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4144 * which we are interested.
4146 * It would be a bug for them to not do this. The code:
4148 * mark_inode_dirty(inode)
4150 * inode->i_size = expr;
4152 * is in error because a kswapd-driven write_inode() could occur while
4153 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4154 * will no longer be on the superblock's dirty inode list.
4156 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4160 if (current
->flags
& PF_MEMALLOC
)
4163 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4164 if (ext4_journal_current_handle()) {
4165 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4170 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4173 err
= ext4_force_commit(inode
->i_sb
);
4175 struct ext4_iloc iloc
;
4177 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4180 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4181 sync_dirty_buffer(iloc
.bh
);
4182 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4183 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4184 "IO error syncing inode");
4195 * Called from notify_change.
4197 * We want to trap VFS attempts to truncate the file as soon as
4198 * possible. In particular, we want to make sure that when the VFS
4199 * shrinks i_size, we put the inode on the orphan list and modify
4200 * i_disksize immediately, so that during the subsequent flushing of
4201 * dirty pages and freeing of disk blocks, we can guarantee that any
4202 * commit will leave the blocks being flushed in an unused state on
4203 * disk. (On recovery, the inode will get truncated and the blocks will
4204 * be freed, so we have a strong guarantee that no future commit will
4205 * leave these blocks visible to the user.)
4207 * Another thing we have to assure is that if we are in ordered mode
4208 * and inode is still attached to the committing transaction, we must
4209 * we start writeout of all the dirty pages which are being truncated.
4210 * This way we are sure that all the data written in the previous
4211 * transaction are already on disk (truncate waits for pages under
4214 * Called with inode->i_mutex down.
4216 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4218 struct inode
*inode
= dentry
->d_inode
;
4221 const unsigned int ia_valid
= attr
->ia_valid
;
4223 error
= inode_change_ok(inode
, attr
);
4227 if (is_quota_modification(inode
, attr
))
4228 dquot_initialize(inode
);
4229 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4230 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4233 /* (user+group)*(old+new) structure, inode write (sb,
4234 * inode block, ? - but truncate inode update has it) */
4235 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
4236 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
4237 if (IS_ERR(handle
)) {
4238 error
= PTR_ERR(handle
);
4241 error
= dquot_transfer(inode
, attr
);
4243 ext4_journal_stop(handle
);
4246 /* Update corresponding info in inode so that everything is in
4247 * one transaction */
4248 if (attr
->ia_valid
& ATTR_UID
)
4249 inode
->i_uid
= attr
->ia_uid
;
4250 if (attr
->ia_valid
& ATTR_GID
)
4251 inode
->i_gid
= attr
->ia_gid
;
4252 error
= ext4_mark_inode_dirty(handle
, inode
);
4253 ext4_journal_stop(handle
);
4256 if (attr
->ia_valid
& ATTR_SIZE
) {
4257 inode_dio_wait(inode
);
4259 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4260 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4262 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4267 if (S_ISREG(inode
->i_mode
) &&
4268 attr
->ia_valid
& ATTR_SIZE
&&
4269 (attr
->ia_size
< inode
->i_size
)) {
4272 handle
= ext4_journal_start(inode
, 3);
4273 if (IS_ERR(handle
)) {
4274 error
= PTR_ERR(handle
);
4277 if (ext4_handle_valid(handle
)) {
4278 error
= ext4_orphan_add(handle
, inode
);
4281 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4282 rc
= ext4_mark_inode_dirty(handle
, inode
);
4285 ext4_journal_stop(handle
);
4287 if (ext4_should_order_data(inode
)) {
4288 error
= ext4_begin_ordered_truncate(inode
,
4291 /* Do as much error cleanup as possible */
4292 handle
= ext4_journal_start(inode
, 3);
4293 if (IS_ERR(handle
)) {
4294 ext4_orphan_del(NULL
, inode
);
4297 ext4_orphan_del(handle
, inode
);
4299 ext4_journal_stop(handle
);
4305 if (attr
->ia_valid
& ATTR_SIZE
) {
4306 if (attr
->ia_size
!= i_size_read(inode
)) {
4307 truncate_setsize(inode
, attr
->ia_size
);
4308 ext4_truncate(inode
);
4309 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
4310 ext4_truncate(inode
);
4314 setattr_copy(inode
, attr
);
4315 mark_inode_dirty(inode
);
4319 * If the call to ext4_truncate failed to get a transaction handle at
4320 * all, we need to clean up the in-core orphan list manually.
4322 if (orphan
&& inode
->i_nlink
)
4323 ext4_orphan_del(NULL
, inode
);
4325 if (!rc
&& (ia_valid
& ATTR_MODE
))
4326 rc
= ext4_acl_chmod(inode
);
4329 ext4_std_error(inode
->i_sb
, error
);
4335 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4338 struct inode
*inode
;
4339 unsigned long delalloc_blocks
;
4341 inode
= dentry
->d_inode
;
4342 generic_fillattr(inode
, stat
);
4345 * We can't update i_blocks if the block allocation is delayed
4346 * otherwise in the case of system crash before the real block
4347 * allocation is done, we will have i_blocks inconsistent with
4348 * on-disk file blocks.
4349 * We always keep i_blocks updated together with real
4350 * allocation. But to not confuse with user, stat
4351 * will return the blocks that include the delayed allocation
4352 * blocks for this file.
4354 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4356 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4360 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4362 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4363 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4364 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4368 * Account for index blocks, block groups bitmaps and block group
4369 * descriptor blocks if modify datablocks and index blocks
4370 * worse case, the indexs blocks spread over different block groups
4372 * If datablocks are discontiguous, they are possible to spread over
4373 * different block groups too. If they are contiuguous, with flexbg,
4374 * they could still across block group boundary.
4376 * Also account for superblock, inode, quota and xattr blocks
4378 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4380 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4386 * How many index blocks need to touch to modify nrblocks?
4387 * The "Chunk" flag indicating whether the nrblocks is
4388 * physically contiguous on disk
4390 * For Direct IO and fallocate, they calls get_block to allocate
4391 * one single extent at a time, so they could set the "Chunk" flag
4393 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4398 * Now let's see how many group bitmaps and group descriptors need
4408 if (groups
> ngroups
)
4410 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4411 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4413 /* bitmaps and block group descriptor blocks */
4414 ret
+= groups
+ gdpblocks
;
4416 /* Blocks for super block, inode, quota and xattr blocks */
4417 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4423 * Calculate the total number of credits to reserve to fit
4424 * the modification of a single pages into a single transaction,
4425 * which may include multiple chunks of block allocations.
4427 * This could be called via ext4_write_begin()
4429 * We need to consider the worse case, when
4430 * one new block per extent.
4432 int ext4_writepage_trans_blocks(struct inode
*inode
)
4434 int bpp
= ext4_journal_blocks_per_page(inode
);
4437 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4439 /* Account for data blocks for journalled mode */
4440 if (ext4_should_journal_data(inode
))
4446 * Calculate the journal credits for a chunk of data modification.
4448 * This is called from DIO, fallocate or whoever calling
4449 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4451 * journal buffers for data blocks are not included here, as DIO
4452 * and fallocate do no need to journal data buffers.
4454 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4456 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4460 * The caller must have previously called ext4_reserve_inode_write().
4461 * Give this, we know that the caller already has write access to iloc->bh.
4463 int ext4_mark_iloc_dirty(handle_t
*handle
,
4464 struct inode
*inode
, struct ext4_iloc
*iloc
)
4468 if (test_opt(inode
->i_sb
, I_VERSION
))
4469 inode_inc_iversion(inode
);
4471 /* the do_update_inode consumes one bh->b_count */
4474 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4475 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4481 * On success, We end up with an outstanding reference count against
4482 * iloc->bh. This _must_ be cleaned up later.
4486 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4487 struct ext4_iloc
*iloc
)
4491 err
= ext4_get_inode_loc(inode
, iloc
);
4493 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4494 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4500 ext4_std_error(inode
->i_sb
, err
);
4505 * Expand an inode by new_extra_isize bytes.
4506 * Returns 0 on success or negative error number on failure.
4508 static int ext4_expand_extra_isize(struct inode
*inode
,
4509 unsigned int new_extra_isize
,
4510 struct ext4_iloc iloc
,
4513 struct ext4_inode
*raw_inode
;
4514 struct ext4_xattr_ibody_header
*header
;
4516 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4519 raw_inode
= ext4_raw_inode(&iloc
);
4521 header
= IHDR(inode
, raw_inode
);
4523 /* No extended attributes present */
4524 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4525 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4526 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4528 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4532 /* try to expand with EAs present */
4533 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4538 * What we do here is to mark the in-core inode as clean with respect to inode
4539 * dirtiness (it may still be data-dirty).
4540 * This means that the in-core inode may be reaped by prune_icache
4541 * without having to perform any I/O. This is a very good thing,
4542 * because *any* task may call prune_icache - even ones which
4543 * have a transaction open against a different journal.
4545 * Is this cheating? Not really. Sure, we haven't written the
4546 * inode out, but prune_icache isn't a user-visible syncing function.
4547 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4548 * we start and wait on commits.
4550 * Is this efficient/effective? Well, we're being nice to the system
4551 * by cleaning up our inodes proactively so they can be reaped
4552 * without I/O. But we are potentially leaving up to five seconds'
4553 * worth of inodes floating about which prune_icache wants us to
4554 * write out. One way to fix that would be to get prune_icache()
4555 * to do a write_super() to free up some memory. It has the desired
4558 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4560 struct ext4_iloc iloc
;
4561 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4562 static unsigned int mnt_count
;
4566 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4567 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4568 if (ext4_handle_valid(handle
) &&
4569 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4570 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4572 * We need extra buffer credits since we may write into EA block
4573 * with this same handle. If journal_extend fails, then it will
4574 * only result in a minor loss of functionality for that inode.
4575 * If this is felt to be critical, then e2fsck should be run to
4576 * force a large enough s_min_extra_isize.
4578 if ((jbd2_journal_extend(handle
,
4579 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4580 ret
= ext4_expand_extra_isize(inode
,
4581 sbi
->s_want_extra_isize
,
4584 ext4_set_inode_state(inode
,
4585 EXT4_STATE_NO_EXPAND
);
4587 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4588 ext4_warning(inode
->i_sb
,
4589 "Unable to expand inode %lu. Delete"
4590 " some EAs or run e2fsck.",
4593 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4599 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4604 * ext4_dirty_inode() is called from __mark_inode_dirty()
4606 * We're really interested in the case where a file is being extended.
4607 * i_size has been changed by generic_commit_write() and we thus need
4608 * to include the updated inode in the current transaction.
4610 * Also, dquot_alloc_block() will always dirty the inode when blocks
4611 * are allocated to the file.
4613 * If the inode is marked synchronous, we don't honour that here - doing
4614 * so would cause a commit on atime updates, which we don't bother doing.
4615 * We handle synchronous inodes at the highest possible level.
4617 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4621 handle
= ext4_journal_start(inode
, 2);
4625 ext4_mark_inode_dirty(handle
, inode
);
4627 ext4_journal_stop(handle
);
4634 * Bind an inode's backing buffer_head into this transaction, to prevent
4635 * it from being flushed to disk early. Unlike
4636 * ext4_reserve_inode_write, this leaves behind no bh reference and
4637 * returns no iloc structure, so the caller needs to repeat the iloc
4638 * lookup to mark the inode dirty later.
4640 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4642 struct ext4_iloc iloc
;
4646 err
= ext4_get_inode_loc(inode
, &iloc
);
4648 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4649 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4651 err
= ext4_handle_dirty_metadata(handle
,
4657 ext4_std_error(inode
->i_sb
, err
);
4662 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4669 * We have to be very careful here: changing a data block's
4670 * journaling status dynamically is dangerous. If we write a
4671 * data block to the journal, change the status and then delete
4672 * that block, we risk forgetting to revoke the old log record
4673 * from the journal and so a subsequent replay can corrupt data.
4674 * So, first we make sure that the journal is empty and that
4675 * nobody is changing anything.
4678 journal
= EXT4_JOURNAL(inode
);
4681 if (is_journal_aborted(journal
))
4684 jbd2_journal_lock_updates(journal
);
4685 jbd2_journal_flush(journal
);
4688 * OK, there are no updates running now, and all cached data is
4689 * synced to disk. We are now in a completely consistent state
4690 * which doesn't have anything in the journal, and we know that
4691 * no filesystem updates are running, so it is safe to modify
4692 * the inode's in-core data-journaling state flag now.
4696 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4698 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4699 ext4_set_aops(inode
);
4701 jbd2_journal_unlock_updates(journal
);
4703 /* Finally we can mark the inode as dirty. */
4705 handle
= ext4_journal_start(inode
, 1);
4707 return PTR_ERR(handle
);
4709 err
= ext4_mark_inode_dirty(handle
, inode
);
4710 ext4_handle_sync(handle
);
4711 ext4_journal_stop(handle
);
4712 ext4_std_error(inode
->i_sb
, err
);
4717 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4719 return !buffer_mapped(bh
);
4722 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4724 struct page
*page
= vmf
->page
;
4728 struct file
*file
= vma
->vm_file
;
4729 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4730 struct address_space
*mapping
= inode
->i_mapping
;
4732 get_block_t
*get_block
;
4736 * This check is racy but catches the common case. We rely on
4737 * __block_page_mkwrite() to do a reliable check.
4739 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4740 /* Delalloc case is easy... */
4741 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4742 !ext4_should_journal_data(inode
) &&
4743 !ext4_nonda_switch(inode
->i_sb
)) {
4745 ret
= __block_page_mkwrite(vma
, vmf
,
4746 ext4_da_get_block_prep
);
4747 } while (ret
== -ENOSPC
&&
4748 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4753 size
= i_size_read(inode
);
4754 /* Page got truncated from under us? */
4755 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4757 ret
= VM_FAULT_NOPAGE
;
4761 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4762 len
= size
& ~PAGE_CACHE_MASK
;
4764 len
= PAGE_CACHE_SIZE
;
4766 * Return if we have all the buffers mapped. This avoids the need to do
4767 * journal_start/journal_stop which can block and take a long time
4769 if (page_has_buffers(page
)) {
4770 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4771 ext4_bh_unmapped
)) {
4772 /* Wait so that we don't change page under IO */
4773 wait_on_page_writeback(page
);
4774 ret
= VM_FAULT_LOCKED
;
4779 /* OK, we need to fill the hole... */
4780 if (ext4_should_dioread_nolock(inode
))
4781 get_block
= ext4_get_block_write
;
4783 get_block
= ext4_get_block
;
4785 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4786 if (IS_ERR(handle
)) {
4787 ret
= VM_FAULT_SIGBUS
;
4790 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4791 if (!ret
&& ext4_should_journal_data(inode
)) {
4792 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4793 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4795 ret
= VM_FAULT_SIGBUS
;
4796 ext4_journal_stop(handle
);
4799 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4801 ext4_journal_stop(handle
);
4802 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4805 ret
= block_page_mkwrite_return(ret
);