sfc: Get port number from CS_PORT_NUM, not PCI function number
[zen-stable.git] / drivers / crypto / ixp4xx_crypto.c
blobf17ddf37a1edd3852def9fbe0f4f84b1a5348bca
1 /*
2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
22 #include <crypto/ctr.h>
23 #include <crypto/des.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aead.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
31 #include <mach/npe.h>
32 #include <mach/qmgr.h>
34 #define MAX_KEYLEN 32
36 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
37 #define NPE_CTX_LEN 80
38 #define AES_BLOCK128 16
40 #define NPE_OP_HASH_VERIFY 0x01
41 #define NPE_OP_CCM_ENABLE 0x04
42 #define NPE_OP_CRYPT_ENABLE 0x08
43 #define NPE_OP_HASH_ENABLE 0x10
44 #define NPE_OP_NOT_IN_PLACE 0x20
45 #define NPE_OP_HMAC_DISABLE 0x40
46 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 #define NPE_OP_CCM_GEN_MIC 0xcc
49 #define NPE_OP_HASH_GEN_ICV 0x50
50 #define NPE_OP_ENC_GEN_KEY 0xc9
52 #define MOD_ECB 0x0000
53 #define MOD_CTR 0x1000
54 #define MOD_CBC_ENC 0x2000
55 #define MOD_CBC_DEC 0x3000
56 #define MOD_CCM_ENC 0x4000
57 #define MOD_CCM_DEC 0x5000
59 #define KEYLEN_128 4
60 #define KEYLEN_192 6
61 #define KEYLEN_256 8
63 #define CIPH_DECR 0x0000
64 #define CIPH_ENCR 0x0400
66 #define MOD_DES 0x0000
67 #define MOD_TDEA2 0x0100
68 #define MOD_3DES 0x0200
69 #define MOD_AES 0x0800
70 #define MOD_AES128 (0x0800 | KEYLEN_128)
71 #define MOD_AES192 (0x0900 | KEYLEN_192)
72 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74 #define MAX_IVLEN 16
75 #define NPE_ID 2 /* NPE C */
76 #define NPE_QLEN 16
77 /* Space for registering when the first
78 * NPE_QLEN crypt_ctl are busy */
79 #define NPE_QLEN_TOTAL 64
81 #define SEND_QID 29
82 #define RECV_QID 30
84 #define CTL_FLAG_UNUSED 0x0000
85 #define CTL_FLAG_USED 0x1000
86 #define CTL_FLAG_PERFORM_ABLK 0x0001
87 #define CTL_FLAG_GEN_ICV 0x0002
88 #define CTL_FLAG_GEN_REVAES 0x0004
89 #define CTL_FLAG_PERFORM_AEAD 0x0008
90 #define CTL_FLAG_MASK 0x000f
92 #define HMAC_IPAD_VALUE 0x36
93 #define HMAC_OPAD_VALUE 0x5C
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 #define MD5_DIGEST_SIZE 16
98 struct buffer_desc {
99 u32 phys_next;
100 u16 buf_len;
101 u16 pkt_len;
102 u32 phys_addr;
103 u32 __reserved[4];
104 struct buffer_desc *next;
105 enum dma_data_direction dir;
108 struct crypt_ctl {
109 u8 mode; /* NPE_OP_* operation mode */
110 u8 init_len;
111 u16 reserved;
112 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
113 u32 icv_rev_aes; /* icv or rev aes */
114 u32 src_buf;
115 u32 dst_buf;
116 u16 auth_offs; /* Authentication start offset */
117 u16 auth_len; /* Authentication data length */
118 u16 crypt_offs; /* Cryption start offset */
119 u16 crypt_len; /* Cryption data length */
120 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
121 u32 crypto_ctx; /* NPE Crypto Param structure address */
123 /* Used by Host: 4*4 bytes*/
124 unsigned ctl_flags;
125 union {
126 struct ablkcipher_request *ablk_req;
127 struct aead_request *aead_req;
128 struct crypto_tfm *tfm;
129 } data;
130 struct buffer_desc *regist_buf;
131 u8 *regist_ptr;
134 struct ablk_ctx {
135 struct buffer_desc *src;
136 struct buffer_desc *dst;
139 struct aead_ctx {
140 struct buffer_desc *buffer;
141 struct scatterlist ivlist;
142 /* used when the hmac is not on one sg entry */
143 u8 *hmac_virt;
144 int encrypt;
147 struct ix_hash_algo {
148 u32 cfgword;
149 unsigned char *icv;
152 struct ix_sa_dir {
153 unsigned char *npe_ctx;
154 dma_addr_t npe_ctx_phys;
155 int npe_ctx_idx;
156 u8 npe_mode;
159 struct ixp_ctx {
160 struct ix_sa_dir encrypt;
161 struct ix_sa_dir decrypt;
162 int authkey_len;
163 u8 authkey[MAX_KEYLEN];
164 int enckey_len;
165 u8 enckey[MAX_KEYLEN];
166 u8 salt[MAX_IVLEN];
167 u8 nonce[CTR_RFC3686_NONCE_SIZE];
168 unsigned salted;
169 atomic_t configuring;
170 struct completion completion;
173 struct ixp_alg {
174 struct crypto_alg crypto;
175 const struct ix_hash_algo *hash;
176 u32 cfg_enc;
177 u32 cfg_dec;
179 int registered;
182 static const struct ix_hash_algo hash_alg_md5 = {
183 .cfgword = 0xAA010004,
184 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
185 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
187 static const struct ix_hash_algo hash_alg_sha1 = {
188 .cfgword = 0x00000005,
189 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
190 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
193 static struct npe *npe_c;
194 static struct dma_pool *buffer_pool = NULL;
195 static struct dma_pool *ctx_pool = NULL;
197 static struct crypt_ctl *crypt_virt = NULL;
198 static dma_addr_t crypt_phys;
200 static int support_aes = 1;
202 static void dev_release(struct device *dev)
204 return;
207 #define DRIVER_NAME "ixp4xx_crypto"
208 static struct platform_device pseudo_dev = {
209 .name = DRIVER_NAME,
210 .id = 0,
211 .num_resources = 0,
212 .dev = {
213 .coherent_dma_mask = DMA_BIT_MASK(32),
214 .release = dev_release,
218 static struct device *dev = &pseudo_dev.dev;
220 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
222 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
225 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
227 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
230 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
232 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
235 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
237 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
240 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
242 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
245 static int setup_crypt_desc(void)
247 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
248 crypt_virt = dma_alloc_coherent(dev,
249 NPE_QLEN * sizeof(struct crypt_ctl),
250 &crypt_phys, GFP_KERNEL);
251 if (!crypt_virt)
252 return -ENOMEM;
253 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
254 return 0;
257 static spinlock_t desc_lock;
258 static struct crypt_ctl *get_crypt_desc(void)
260 int i;
261 static int idx = 0;
262 unsigned long flags;
264 spin_lock_irqsave(&desc_lock, flags);
266 if (unlikely(!crypt_virt))
267 setup_crypt_desc();
268 if (unlikely(!crypt_virt)) {
269 spin_unlock_irqrestore(&desc_lock, flags);
270 return NULL;
272 i = idx;
273 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
274 if (++idx >= NPE_QLEN)
275 idx = 0;
276 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
277 spin_unlock_irqrestore(&desc_lock, flags);
278 return crypt_virt +i;
279 } else {
280 spin_unlock_irqrestore(&desc_lock, flags);
281 return NULL;
285 static spinlock_t emerg_lock;
286 static struct crypt_ctl *get_crypt_desc_emerg(void)
288 int i;
289 static int idx = NPE_QLEN;
290 struct crypt_ctl *desc;
291 unsigned long flags;
293 desc = get_crypt_desc();
294 if (desc)
295 return desc;
296 if (unlikely(!crypt_virt))
297 return NULL;
299 spin_lock_irqsave(&emerg_lock, flags);
300 i = idx;
301 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
302 if (++idx >= NPE_QLEN_TOTAL)
303 idx = NPE_QLEN;
304 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
305 spin_unlock_irqrestore(&emerg_lock, flags);
306 return crypt_virt +i;
307 } else {
308 spin_unlock_irqrestore(&emerg_lock, flags);
309 return NULL;
313 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
315 while (buf) {
316 struct buffer_desc *buf1;
317 u32 phys1;
319 buf1 = buf->next;
320 phys1 = buf->phys_next;
321 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
322 dma_pool_free(buffer_pool, buf, phys);
323 buf = buf1;
324 phys = phys1;
328 static struct tasklet_struct crypto_done_tasklet;
330 static void finish_scattered_hmac(struct crypt_ctl *crypt)
332 struct aead_request *req = crypt->data.aead_req;
333 struct aead_ctx *req_ctx = aead_request_ctx(req);
334 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
335 int authsize = crypto_aead_authsize(tfm);
336 int decryptlen = req->cryptlen - authsize;
338 if (req_ctx->encrypt) {
339 scatterwalk_map_and_copy(req_ctx->hmac_virt,
340 req->src, decryptlen, authsize, 1);
342 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
345 static void one_packet(dma_addr_t phys)
347 struct crypt_ctl *crypt;
348 struct ixp_ctx *ctx;
349 int failed;
351 failed = phys & 0x1 ? -EBADMSG : 0;
352 phys &= ~0x3;
353 crypt = crypt_phys2virt(phys);
355 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
356 case CTL_FLAG_PERFORM_AEAD: {
357 struct aead_request *req = crypt->data.aead_req;
358 struct aead_ctx *req_ctx = aead_request_ctx(req);
360 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
361 if (req_ctx->hmac_virt) {
362 finish_scattered_hmac(crypt);
364 req->base.complete(&req->base, failed);
365 break;
367 case CTL_FLAG_PERFORM_ABLK: {
368 struct ablkcipher_request *req = crypt->data.ablk_req;
369 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
371 if (req_ctx->dst) {
372 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
374 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
375 req->base.complete(&req->base, failed);
376 break;
378 case CTL_FLAG_GEN_ICV:
379 ctx = crypto_tfm_ctx(crypt->data.tfm);
380 dma_pool_free(ctx_pool, crypt->regist_ptr,
381 crypt->regist_buf->phys_addr);
382 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
383 if (atomic_dec_and_test(&ctx->configuring))
384 complete(&ctx->completion);
385 break;
386 case CTL_FLAG_GEN_REVAES:
387 ctx = crypto_tfm_ctx(crypt->data.tfm);
388 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
389 if (atomic_dec_and_test(&ctx->configuring))
390 complete(&ctx->completion);
391 break;
392 default:
393 BUG();
395 crypt->ctl_flags = CTL_FLAG_UNUSED;
398 static void irqhandler(void *_unused)
400 tasklet_schedule(&crypto_done_tasklet);
403 static void crypto_done_action(unsigned long arg)
405 int i;
407 for(i=0; i<4; i++) {
408 dma_addr_t phys = qmgr_get_entry(RECV_QID);
409 if (!phys)
410 return;
411 one_packet(phys);
413 tasklet_schedule(&crypto_done_tasklet);
416 static int init_ixp_crypto(void)
418 int ret = -ENODEV;
419 u32 msg[2] = { 0, 0 };
421 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
422 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
423 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
424 return ret;
426 npe_c = npe_request(NPE_ID);
427 if (!npe_c)
428 return ret;
430 if (!npe_running(npe_c)) {
431 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
432 if (ret) {
433 return ret;
435 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
436 goto npe_error;
437 } else {
438 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
439 goto npe_error;
441 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
442 goto npe_error;
445 switch ((msg[1]>>16) & 0xff) {
446 case 3:
447 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
448 npe_name(npe_c));
449 support_aes = 0;
450 break;
451 case 4:
452 case 5:
453 support_aes = 1;
454 break;
455 default:
456 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
457 npe_name(npe_c));
458 return -ENODEV;
460 /* buffer_pool will also be used to sometimes store the hmac,
461 * so assure it is large enough
463 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
464 buffer_pool = dma_pool_create("buffer", dev,
465 sizeof(struct buffer_desc), 32, 0);
466 ret = -ENOMEM;
467 if (!buffer_pool) {
468 goto err;
470 ctx_pool = dma_pool_create("context", dev,
471 NPE_CTX_LEN, 16, 0);
472 if (!ctx_pool) {
473 goto err;
475 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
476 "ixp_crypto:out", NULL);
477 if (ret)
478 goto err;
479 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
480 "ixp_crypto:in", NULL);
481 if (ret) {
482 qmgr_release_queue(SEND_QID);
483 goto err;
485 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
486 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
488 qmgr_enable_irq(RECV_QID);
489 return 0;
491 npe_error:
492 printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
493 ret = -EIO;
494 err:
495 if (ctx_pool)
496 dma_pool_destroy(ctx_pool);
497 if (buffer_pool)
498 dma_pool_destroy(buffer_pool);
499 npe_release(npe_c);
500 return ret;
503 static void release_ixp_crypto(void)
505 qmgr_disable_irq(RECV_QID);
506 tasklet_kill(&crypto_done_tasklet);
508 qmgr_release_queue(SEND_QID);
509 qmgr_release_queue(RECV_QID);
511 dma_pool_destroy(ctx_pool);
512 dma_pool_destroy(buffer_pool);
514 npe_release(npe_c);
516 if (crypt_virt) {
517 dma_free_coherent(dev,
518 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
519 crypt_virt, crypt_phys);
521 return;
524 static void reset_sa_dir(struct ix_sa_dir *dir)
526 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
527 dir->npe_ctx_idx = 0;
528 dir->npe_mode = 0;
531 static int init_sa_dir(struct ix_sa_dir *dir)
533 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
534 if (!dir->npe_ctx) {
535 return -ENOMEM;
537 reset_sa_dir(dir);
538 return 0;
541 static void free_sa_dir(struct ix_sa_dir *dir)
543 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
544 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
547 static int init_tfm(struct crypto_tfm *tfm)
549 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
550 int ret;
552 atomic_set(&ctx->configuring, 0);
553 ret = init_sa_dir(&ctx->encrypt);
554 if (ret)
555 return ret;
556 ret = init_sa_dir(&ctx->decrypt);
557 if (ret) {
558 free_sa_dir(&ctx->encrypt);
560 return ret;
563 static int init_tfm_ablk(struct crypto_tfm *tfm)
565 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
566 return init_tfm(tfm);
569 static int init_tfm_aead(struct crypto_tfm *tfm)
571 tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
572 return init_tfm(tfm);
575 static void exit_tfm(struct crypto_tfm *tfm)
577 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
578 free_sa_dir(&ctx->encrypt);
579 free_sa_dir(&ctx->decrypt);
582 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
583 int init_len, u32 ctx_addr, const u8 *key, int key_len)
585 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
586 struct crypt_ctl *crypt;
587 struct buffer_desc *buf;
588 int i;
589 u8 *pad;
590 u32 pad_phys, buf_phys;
592 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
593 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
594 if (!pad)
595 return -ENOMEM;
596 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
597 if (!buf) {
598 dma_pool_free(ctx_pool, pad, pad_phys);
599 return -ENOMEM;
601 crypt = get_crypt_desc_emerg();
602 if (!crypt) {
603 dma_pool_free(ctx_pool, pad, pad_phys);
604 dma_pool_free(buffer_pool, buf, buf_phys);
605 return -EAGAIN;
608 memcpy(pad, key, key_len);
609 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
610 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
611 pad[i] ^= xpad;
614 crypt->data.tfm = tfm;
615 crypt->regist_ptr = pad;
616 crypt->regist_buf = buf;
618 crypt->auth_offs = 0;
619 crypt->auth_len = HMAC_PAD_BLOCKLEN;
620 crypt->crypto_ctx = ctx_addr;
621 crypt->src_buf = buf_phys;
622 crypt->icv_rev_aes = target;
623 crypt->mode = NPE_OP_HASH_GEN_ICV;
624 crypt->init_len = init_len;
625 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
627 buf->next = 0;
628 buf->buf_len = HMAC_PAD_BLOCKLEN;
629 buf->pkt_len = 0;
630 buf->phys_addr = pad_phys;
632 atomic_inc(&ctx->configuring);
633 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
634 BUG_ON(qmgr_stat_overflow(SEND_QID));
635 return 0;
638 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
639 const u8 *key, int key_len, unsigned digest_len)
641 u32 itarget, otarget, npe_ctx_addr;
642 unsigned char *cinfo;
643 int init_len, ret = 0;
644 u32 cfgword;
645 struct ix_sa_dir *dir;
646 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
647 const struct ix_hash_algo *algo;
649 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
650 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
651 algo = ix_hash(tfm);
653 /* write cfg word to cryptinfo */
654 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
655 *(u32*)cinfo = cpu_to_be32(cfgword);
656 cinfo += sizeof(cfgword);
658 /* write ICV to cryptinfo */
659 memcpy(cinfo, algo->icv, digest_len);
660 cinfo += digest_len;
662 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
663 + sizeof(algo->cfgword);
664 otarget = itarget + digest_len;
665 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
666 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
668 dir->npe_ctx_idx += init_len;
669 dir->npe_mode |= NPE_OP_HASH_ENABLE;
671 if (!encrypt)
672 dir->npe_mode |= NPE_OP_HASH_VERIFY;
674 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
675 init_len, npe_ctx_addr, key, key_len);
676 if (ret)
677 return ret;
678 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
679 init_len, npe_ctx_addr, key, key_len);
682 static int gen_rev_aes_key(struct crypto_tfm *tfm)
684 struct crypt_ctl *crypt;
685 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
686 struct ix_sa_dir *dir = &ctx->decrypt;
688 crypt = get_crypt_desc_emerg();
689 if (!crypt) {
690 return -EAGAIN;
692 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
694 crypt->data.tfm = tfm;
695 crypt->crypt_offs = 0;
696 crypt->crypt_len = AES_BLOCK128;
697 crypt->src_buf = 0;
698 crypt->crypto_ctx = dir->npe_ctx_phys;
699 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
700 crypt->mode = NPE_OP_ENC_GEN_KEY;
701 crypt->init_len = dir->npe_ctx_idx;
702 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
704 atomic_inc(&ctx->configuring);
705 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
706 BUG_ON(qmgr_stat_overflow(SEND_QID));
707 return 0;
710 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
711 const u8 *key, int key_len)
713 u8 *cinfo;
714 u32 cipher_cfg;
715 u32 keylen_cfg = 0;
716 struct ix_sa_dir *dir;
717 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
718 u32 *flags = &tfm->crt_flags;
720 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
721 cinfo = dir->npe_ctx;
723 if (encrypt) {
724 cipher_cfg = cipher_cfg_enc(tfm);
725 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
726 } else {
727 cipher_cfg = cipher_cfg_dec(tfm);
729 if (cipher_cfg & MOD_AES) {
730 switch (key_len) {
731 case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
732 case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
733 case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
734 default:
735 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
736 return -EINVAL;
738 cipher_cfg |= keylen_cfg;
739 } else if (cipher_cfg & MOD_3DES) {
740 const u32 *K = (const u32 *)key;
741 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
742 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
744 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
745 return -EINVAL;
747 } else {
748 u32 tmp[DES_EXPKEY_WORDS];
749 if (des_ekey(tmp, key) == 0) {
750 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
753 /* write cfg word to cryptinfo */
754 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
755 cinfo += sizeof(cipher_cfg);
757 /* write cipher key to cryptinfo */
758 memcpy(cinfo, key, key_len);
759 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
760 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
761 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
762 key_len = DES3_EDE_KEY_SIZE;
764 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
765 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
766 if ((cipher_cfg & MOD_AES) && !encrypt) {
767 return gen_rev_aes_key(tfm);
769 return 0;
772 static struct buffer_desc *chainup_buffers(struct device *dev,
773 struct scatterlist *sg, unsigned nbytes,
774 struct buffer_desc *buf, gfp_t flags,
775 enum dma_data_direction dir)
777 for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
778 unsigned len = min(nbytes, sg->length);
779 struct buffer_desc *next_buf;
780 u32 next_buf_phys;
781 void *ptr;
783 nbytes -= len;
784 ptr = page_address(sg_page(sg)) + sg->offset;
785 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
786 if (!next_buf) {
787 buf = NULL;
788 break;
790 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
791 buf->next = next_buf;
792 buf->phys_next = next_buf_phys;
793 buf = next_buf;
795 buf->phys_addr = sg_dma_address(sg);
796 buf->buf_len = len;
797 buf->dir = dir;
799 buf->next = NULL;
800 buf->phys_next = 0;
801 return buf;
804 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
805 unsigned int key_len)
807 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
808 u32 *flags = &tfm->base.crt_flags;
809 int ret;
811 init_completion(&ctx->completion);
812 atomic_inc(&ctx->configuring);
814 reset_sa_dir(&ctx->encrypt);
815 reset_sa_dir(&ctx->decrypt);
817 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
818 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
820 ret = setup_cipher(&tfm->base, 0, key, key_len);
821 if (ret)
822 goto out;
823 ret = setup_cipher(&tfm->base, 1, key, key_len);
824 if (ret)
825 goto out;
827 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
828 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
829 ret = -EINVAL;
830 } else {
831 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
834 out:
835 if (!atomic_dec_and_test(&ctx->configuring))
836 wait_for_completion(&ctx->completion);
837 return ret;
840 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
841 unsigned int key_len)
843 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
845 /* the nonce is stored in bytes at end of key */
846 if (key_len < CTR_RFC3686_NONCE_SIZE)
847 return -EINVAL;
849 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
850 CTR_RFC3686_NONCE_SIZE);
852 key_len -= CTR_RFC3686_NONCE_SIZE;
853 return ablk_setkey(tfm, key, key_len);
856 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
858 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
859 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
860 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
861 struct ix_sa_dir *dir;
862 struct crypt_ctl *crypt;
863 unsigned int nbytes = req->nbytes;
864 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
865 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
866 struct buffer_desc src_hook;
867 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
868 GFP_KERNEL : GFP_ATOMIC;
870 if (qmgr_stat_full(SEND_QID))
871 return -EAGAIN;
872 if (atomic_read(&ctx->configuring))
873 return -EAGAIN;
875 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
877 crypt = get_crypt_desc();
878 if (!crypt)
879 return -ENOMEM;
881 crypt->data.ablk_req = req;
882 crypt->crypto_ctx = dir->npe_ctx_phys;
883 crypt->mode = dir->npe_mode;
884 crypt->init_len = dir->npe_ctx_idx;
886 crypt->crypt_offs = 0;
887 crypt->crypt_len = nbytes;
889 BUG_ON(ivsize && !req->info);
890 memcpy(crypt->iv, req->info, ivsize);
891 if (req->src != req->dst) {
892 struct buffer_desc dst_hook;
893 crypt->mode |= NPE_OP_NOT_IN_PLACE;
894 /* This was never tested by Intel
895 * for more than one dst buffer, I think. */
896 BUG_ON(req->dst->length < nbytes);
897 req_ctx->dst = NULL;
898 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
899 flags, DMA_FROM_DEVICE))
900 goto free_buf_dest;
901 src_direction = DMA_TO_DEVICE;
902 req_ctx->dst = dst_hook.next;
903 crypt->dst_buf = dst_hook.phys_next;
904 } else {
905 req_ctx->dst = NULL;
907 req_ctx->src = NULL;
908 if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
909 flags, src_direction))
910 goto free_buf_src;
912 req_ctx->src = src_hook.next;
913 crypt->src_buf = src_hook.phys_next;
914 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
915 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
916 BUG_ON(qmgr_stat_overflow(SEND_QID));
917 return -EINPROGRESS;
919 free_buf_src:
920 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
921 free_buf_dest:
922 if (req->src != req->dst) {
923 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
925 crypt->ctl_flags = CTL_FLAG_UNUSED;
926 return -ENOMEM;
929 static int ablk_encrypt(struct ablkcipher_request *req)
931 return ablk_perform(req, 1);
934 static int ablk_decrypt(struct ablkcipher_request *req)
936 return ablk_perform(req, 0);
939 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
941 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
942 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
943 u8 iv[CTR_RFC3686_BLOCK_SIZE];
944 u8 *info = req->info;
945 int ret;
947 /* set up counter block */
948 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
949 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
951 /* initialize counter portion of counter block */
952 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
953 cpu_to_be32(1);
955 req->info = iv;
956 ret = ablk_perform(req, 1);
957 req->info = info;
958 return ret;
961 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
962 unsigned int nbytes)
964 int offset = 0;
966 if (!nbytes)
967 return 0;
969 for (;;) {
970 if (start < offset + sg->length)
971 break;
973 offset += sg->length;
974 sg = scatterwalk_sg_next(sg);
976 return (start + nbytes > offset + sg->length);
979 static int aead_perform(struct aead_request *req, int encrypt,
980 int cryptoffset, int eff_cryptlen, u8 *iv)
982 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
983 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
984 unsigned ivsize = crypto_aead_ivsize(tfm);
985 unsigned authsize = crypto_aead_authsize(tfm);
986 struct ix_sa_dir *dir;
987 struct crypt_ctl *crypt;
988 unsigned int cryptlen;
989 struct buffer_desc *buf, src_hook;
990 struct aead_ctx *req_ctx = aead_request_ctx(req);
991 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
992 GFP_KERNEL : GFP_ATOMIC;
994 if (qmgr_stat_full(SEND_QID))
995 return -EAGAIN;
996 if (atomic_read(&ctx->configuring))
997 return -EAGAIN;
999 if (encrypt) {
1000 dir = &ctx->encrypt;
1001 cryptlen = req->cryptlen;
1002 } else {
1003 dir = &ctx->decrypt;
1004 /* req->cryptlen includes the authsize when decrypting */
1005 cryptlen = req->cryptlen -authsize;
1006 eff_cryptlen -= authsize;
1008 crypt = get_crypt_desc();
1009 if (!crypt)
1010 return -ENOMEM;
1012 crypt->data.aead_req = req;
1013 crypt->crypto_ctx = dir->npe_ctx_phys;
1014 crypt->mode = dir->npe_mode;
1015 crypt->init_len = dir->npe_ctx_idx;
1017 crypt->crypt_offs = cryptoffset;
1018 crypt->crypt_len = eff_cryptlen;
1020 crypt->auth_offs = 0;
1021 crypt->auth_len = req->assoclen + ivsize + cryptlen;
1022 BUG_ON(ivsize && !req->iv);
1023 memcpy(crypt->iv, req->iv, ivsize);
1025 if (req->src != req->dst) {
1026 BUG(); /* -ENOTSUP because of my lazyness */
1029 /* ASSOC data */
1030 buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
1031 flags, DMA_TO_DEVICE);
1032 req_ctx->buffer = src_hook.next;
1033 crypt->src_buf = src_hook.phys_next;
1034 if (!buf)
1035 goto out;
1036 /* IV */
1037 sg_init_table(&req_ctx->ivlist, 1);
1038 sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1039 buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
1040 DMA_BIDIRECTIONAL);
1041 if (!buf)
1042 goto free_chain;
1043 if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1044 /* The 12 hmac bytes are scattered,
1045 * we need to copy them into a safe buffer */
1046 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1047 &crypt->icv_rev_aes);
1048 if (unlikely(!req_ctx->hmac_virt))
1049 goto free_chain;
1050 if (!encrypt) {
1051 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1052 req->src, cryptlen, authsize, 0);
1054 req_ctx->encrypt = encrypt;
1055 } else {
1056 req_ctx->hmac_virt = NULL;
1058 /* Crypt */
1059 buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
1060 DMA_BIDIRECTIONAL);
1061 if (!buf)
1062 goto free_hmac_virt;
1063 if (!req_ctx->hmac_virt) {
1064 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1067 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1068 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1069 BUG_ON(qmgr_stat_overflow(SEND_QID));
1070 return -EINPROGRESS;
1071 free_hmac_virt:
1072 if (req_ctx->hmac_virt) {
1073 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1074 crypt->icv_rev_aes);
1076 free_chain:
1077 free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
1078 out:
1079 crypt->ctl_flags = CTL_FLAG_UNUSED;
1080 return -ENOMEM;
1083 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1085 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1086 u32 *flags = &tfm->base.crt_flags;
1087 unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1088 int ret;
1090 if (!ctx->enckey_len && !ctx->authkey_len)
1091 return 0;
1092 init_completion(&ctx->completion);
1093 atomic_inc(&ctx->configuring);
1095 reset_sa_dir(&ctx->encrypt);
1096 reset_sa_dir(&ctx->decrypt);
1098 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1099 if (ret)
1100 goto out;
1101 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1102 if (ret)
1103 goto out;
1104 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1105 ctx->authkey_len, digest_len);
1106 if (ret)
1107 goto out;
1108 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1109 ctx->authkey_len, digest_len);
1110 if (ret)
1111 goto out;
1113 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1114 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1115 ret = -EINVAL;
1116 goto out;
1117 } else {
1118 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1121 out:
1122 if (!atomic_dec_and_test(&ctx->configuring))
1123 wait_for_completion(&ctx->completion);
1124 return ret;
1127 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1129 int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1131 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1132 return -EINVAL;
1133 return aead_setup(tfm, authsize);
1136 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1137 unsigned int keylen)
1139 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1140 struct rtattr *rta = (struct rtattr *)key;
1141 struct crypto_authenc_key_param *param;
1143 if (!RTA_OK(rta, keylen))
1144 goto badkey;
1145 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1146 goto badkey;
1147 if (RTA_PAYLOAD(rta) < sizeof(*param))
1148 goto badkey;
1150 param = RTA_DATA(rta);
1151 ctx->enckey_len = be32_to_cpu(param->enckeylen);
1153 key += RTA_ALIGN(rta->rta_len);
1154 keylen -= RTA_ALIGN(rta->rta_len);
1156 if (keylen < ctx->enckey_len)
1157 goto badkey;
1159 ctx->authkey_len = keylen - ctx->enckey_len;
1160 memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1161 memcpy(ctx->authkey, key, ctx->authkey_len);
1163 return aead_setup(tfm, crypto_aead_authsize(tfm));
1164 badkey:
1165 ctx->enckey_len = 0;
1166 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1167 return -EINVAL;
1170 static int aead_encrypt(struct aead_request *req)
1172 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1173 return aead_perform(req, 1, req->assoclen + ivsize,
1174 req->cryptlen, req->iv);
1177 static int aead_decrypt(struct aead_request *req)
1179 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1180 return aead_perform(req, 0, req->assoclen + ivsize,
1181 req->cryptlen, req->iv);
1184 static int aead_givencrypt(struct aead_givcrypt_request *req)
1186 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1187 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1188 unsigned len, ivsize = crypto_aead_ivsize(tfm);
1189 __be64 seq;
1191 /* copied from eseqiv.c */
1192 if (!ctx->salted) {
1193 get_random_bytes(ctx->salt, ivsize);
1194 ctx->salted = 1;
1196 memcpy(req->areq.iv, ctx->salt, ivsize);
1197 len = ivsize;
1198 if (ivsize > sizeof(u64)) {
1199 memset(req->giv, 0, ivsize - sizeof(u64));
1200 len = sizeof(u64);
1202 seq = cpu_to_be64(req->seq);
1203 memcpy(req->giv + ivsize - len, &seq, len);
1204 return aead_perform(&req->areq, 1, req->areq.assoclen,
1205 req->areq.cryptlen +ivsize, req->giv);
1208 static struct ixp_alg ixp4xx_algos[] = {
1210 .crypto = {
1211 .cra_name = "cbc(des)",
1212 .cra_blocksize = DES_BLOCK_SIZE,
1213 .cra_u = { .ablkcipher = {
1214 .min_keysize = DES_KEY_SIZE,
1215 .max_keysize = DES_KEY_SIZE,
1216 .ivsize = DES_BLOCK_SIZE,
1217 .geniv = "eseqiv",
1221 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1222 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1224 }, {
1225 .crypto = {
1226 .cra_name = "ecb(des)",
1227 .cra_blocksize = DES_BLOCK_SIZE,
1228 .cra_u = { .ablkcipher = {
1229 .min_keysize = DES_KEY_SIZE,
1230 .max_keysize = DES_KEY_SIZE,
1234 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1235 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1236 }, {
1237 .crypto = {
1238 .cra_name = "cbc(des3_ede)",
1239 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1240 .cra_u = { .ablkcipher = {
1241 .min_keysize = DES3_EDE_KEY_SIZE,
1242 .max_keysize = DES3_EDE_KEY_SIZE,
1243 .ivsize = DES3_EDE_BLOCK_SIZE,
1244 .geniv = "eseqiv",
1248 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1249 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1250 }, {
1251 .crypto = {
1252 .cra_name = "ecb(des3_ede)",
1253 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1254 .cra_u = { .ablkcipher = {
1255 .min_keysize = DES3_EDE_KEY_SIZE,
1256 .max_keysize = DES3_EDE_KEY_SIZE,
1260 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1261 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1262 }, {
1263 .crypto = {
1264 .cra_name = "cbc(aes)",
1265 .cra_blocksize = AES_BLOCK_SIZE,
1266 .cra_u = { .ablkcipher = {
1267 .min_keysize = AES_MIN_KEY_SIZE,
1268 .max_keysize = AES_MAX_KEY_SIZE,
1269 .ivsize = AES_BLOCK_SIZE,
1270 .geniv = "eseqiv",
1274 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1275 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1276 }, {
1277 .crypto = {
1278 .cra_name = "ecb(aes)",
1279 .cra_blocksize = AES_BLOCK_SIZE,
1280 .cra_u = { .ablkcipher = {
1281 .min_keysize = AES_MIN_KEY_SIZE,
1282 .max_keysize = AES_MAX_KEY_SIZE,
1286 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1287 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1288 }, {
1289 .crypto = {
1290 .cra_name = "ctr(aes)",
1291 .cra_blocksize = AES_BLOCK_SIZE,
1292 .cra_u = { .ablkcipher = {
1293 .min_keysize = AES_MIN_KEY_SIZE,
1294 .max_keysize = AES_MAX_KEY_SIZE,
1295 .ivsize = AES_BLOCK_SIZE,
1296 .geniv = "eseqiv",
1300 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1301 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1302 }, {
1303 .crypto = {
1304 .cra_name = "rfc3686(ctr(aes))",
1305 .cra_blocksize = AES_BLOCK_SIZE,
1306 .cra_u = { .ablkcipher = {
1307 .min_keysize = AES_MIN_KEY_SIZE,
1308 .max_keysize = AES_MAX_KEY_SIZE,
1309 .ivsize = AES_BLOCK_SIZE,
1310 .geniv = "eseqiv",
1311 .setkey = ablk_rfc3686_setkey,
1312 .encrypt = ablk_rfc3686_crypt,
1313 .decrypt = ablk_rfc3686_crypt }
1316 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1317 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1318 }, {
1319 .crypto = {
1320 .cra_name = "authenc(hmac(md5),cbc(des))",
1321 .cra_blocksize = DES_BLOCK_SIZE,
1322 .cra_u = { .aead = {
1323 .ivsize = DES_BLOCK_SIZE,
1324 .maxauthsize = MD5_DIGEST_SIZE,
1328 .hash = &hash_alg_md5,
1329 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1330 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1331 }, {
1332 .crypto = {
1333 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1334 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1335 .cra_u = { .aead = {
1336 .ivsize = DES3_EDE_BLOCK_SIZE,
1337 .maxauthsize = MD5_DIGEST_SIZE,
1341 .hash = &hash_alg_md5,
1342 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1343 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1344 }, {
1345 .crypto = {
1346 .cra_name = "authenc(hmac(sha1),cbc(des))",
1347 .cra_blocksize = DES_BLOCK_SIZE,
1348 .cra_u = { .aead = {
1349 .ivsize = DES_BLOCK_SIZE,
1350 .maxauthsize = SHA1_DIGEST_SIZE,
1354 .hash = &hash_alg_sha1,
1355 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1356 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1357 }, {
1358 .crypto = {
1359 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1360 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1361 .cra_u = { .aead = {
1362 .ivsize = DES3_EDE_BLOCK_SIZE,
1363 .maxauthsize = SHA1_DIGEST_SIZE,
1367 .hash = &hash_alg_sha1,
1368 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1369 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1370 }, {
1371 .crypto = {
1372 .cra_name = "authenc(hmac(md5),cbc(aes))",
1373 .cra_blocksize = AES_BLOCK_SIZE,
1374 .cra_u = { .aead = {
1375 .ivsize = AES_BLOCK_SIZE,
1376 .maxauthsize = MD5_DIGEST_SIZE,
1380 .hash = &hash_alg_md5,
1381 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1382 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1383 }, {
1384 .crypto = {
1385 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1386 .cra_blocksize = AES_BLOCK_SIZE,
1387 .cra_u = { .aead = {
1388 .ivsize = AES_BLOCK_SIZE,
1389 .maxauthsize = SHA1_DIGEST_SIZE,
1393 .hash = &hash_alg_sha1,
1394 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1395 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1396 } };
1398 #define IXP_POSTFIX "-ixp4xx"
1399 static int __init ixp_module_init(void)
1401 int num = ARRAY_SIZE(ixp4xx_algos);
1402 int i,err ;
1404 if (platform_device_register(&pseudo_dev))
1405 return -ENODEV;
1407 spin_lock_init(&desc_lock);
1408 spin_lock_init(&emerg_lock);
1410 err = init_ixp_crypto();
1411 if (err) {
1412 platform_device_unregister(&pseudo_dev);
1413 return err;
1415 for (i=0; i< num; i++) {
1416 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1418 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1419 "%s"IXP_POSTFIX, cra->cra_name) >=
1420 CRYPTO_MAX_ALG_NAME)
1422 continue;
1424 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1425 continue;
1427 if (!ixp4xx_algos[i].hash) {
1428 /* block ciphers */
1429 cra->cra_type = &crypto_ablkcipher_type;
1430 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1431 CRYPTO_ALG_ASYNC;
1432 if (!cra->cra_ablkcipher.setkey)
1433 cra->cra_ablkcipher.setkey = ablk_setkey;
1434 if (!cra->cra_ablkcipher.encrypt)
1435 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1436 if (!cra->cra_ablkcipher.decrypt)
1437 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1438 cra->cra_init = init_tfm_ablk;
1439 } else {
1440 /* authenc */
1441 cra->cra_type = &crypto_aead_type;
1442 cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1443 CRYPTO_ALG_ASYNC;
1444 cra->cra_aead.setkey = aead_setkey;
1445 cra->cra_aead.setauthsize = aead_setauthsize;
1446 cra->cra_aead.encrypt = aead_encrypt;
1447 cra->cra_aead.decrypt = aead_decrypt;
1448 cra->cra_aead.givencrypt = aead_givencrypt;
1449 cra->cra_init = init_tfm_aead;
1451 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1452 cra->cra_module = THIS_MODULE;
1453 cra->cra_alignmask = 3;
1454 cra->cra_priority = 300;
1455 cra->cra_exit = exit_tfm;
1456 if (crypto_register_alg(cra))
1457 printk(KERN_ERR "Failed to register '%s'\n",
1458 cra->cra_name);
1459 else
1460 ixp4xx_algos[i].registered = 1;
1462 return 0;
1465 static void __exit ixp_module_exit(void)
1467 int num = ARRAY_SIZE(ixp4xx_algos);
1468 int i;
1470 for (i=0; i< num; i++) {
1471 if (ixp4xx_algos[i].registered)
1472 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1474 release_ixp_crypto();
1475 platform_device_unregister(&pseudo_dev);
1478 module_init(ixp_module_init);
1479 module_exit(ixp_module_exit);
1481 MODULE_LICENSE("GPL");
1482 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1483 MODULE_DESCRIPTION("IXP4xx hardware crypto");