3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/rbtree.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
34 #include <linux/atomic.h>
36 #include <asm/eeh_event.h>
38 #include <asm/machdep.h>
39 #include <asm/ppc-pci.h>
44 * EEH, or "Extended Error Handling" is a PCI bridge technology for
45 * dealing with PCI bus errors that can't be dealt with within the
46 * usual PCI framework, except by check-stopping the CPU. Systems
47 * that are designed for high-availability/reliability cannot afford
48 * to crash due to a "mere" PCI error, thus the need for EEH.
49 * An EEH-capable bridge operates by converting a detected error
50 * into a "slot freeze", taking the PCI adapter off-line, making
51 * the slot behave, from the OS'es point of view, as if the slot
52 * were "empty": all reads return 0xff's and all writes are silently
53 * ignored. EEH slot isolation events can be triggered by parity
54 * errors on the address or data busses (e.g. during posted writes),
55 * which in turn might be caused by low voltage on the bus, dust,
56 * vibration, humidity, radioactivity or plain-old failed hardware.
58 * Note, however, that one of the leading causes of EEH slot
59 * freeze events are buggy device drivers, buggy device microcode,
60 * or buggy device hardware. This is because any attempt by the
61 * device to bus-master data to a memory address that is not
62 * assigned to the device will trigger a slot freeze. (The idea
63 * is to prevent devices-gone-wild from corrupting system memory).
64 * Buggy hardware/drivers will have a miserable time co-existing
67 * Ideally, a PCI device driver, when suspecting that an isolation
68 * event has occurred (e.g. by reading 0xff's), will then ask EEH
69 * whether this is the case, and then take appropriate steps to
70 * reset the PCI slot, the PCI device, and then resume operations.
71 * However, until that day, the checking is done here, with the
72 * eeh_check_failure() routine embedded in the MMIO macros. If
73 * the slot is found to be isolated, an "EEH Event" is synthesized
74 * and sent out for processing.
77 /* If a device driver keeps reading an MMIO register in an interrupt
78 * handler after a slot isolation event, it might be broken.
79 * This sets the threshold for how many read attempts we allow
80 * before printing an error message.
82 #define EEH_MAX_FAILS 2100000
84 /* Time to wait for a PCI slot to report status, in milliseconds */
85 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
88 static int ibm_set_eeh_option
;
89 static int ibm_set_slot_reset
;
90 static int ibm_read_slot_reset_state
;
91 static int ibm_read_slot_reset_state2
;
92 static int ibm_slot_error_detail
;
93 static int ibm_get_config_addr_info
;
94 static int ibm_get_config_addr_info2
;
95 static int ibm_configure_bridge
;
96 static int ibm_configure_pe
;
98 int eeh_subsystem_enabled
;
99 EXPORT_SYMBOL(eeh_subsystem_enabled
);
101 /* Lock to avoid races due to multiple reports of an error */
102 static DEFINE_RAW_SPINLOCK(confirm_error_lock
);
104 /* Buffer for reporting slot-error-detail rtas calls. Its here
105 * in BSS, and not dynamically alloced, so that it ends up in
106 * RMO where RTAS can access it.
108 static unsigned char slot_errbuf
[RTAS_ERROR_LOG_MAX
];
109 static DEFINE_SPINLOCK(slot_errbuf_lock
);
110 static int eeh_error_buf_size
;
112 /* Buffer for reporting pci register dumps. Its here in BSS, and
113 * not dynamically alloced, so that it ends up in RMO where RTAS
116 #define EEH_PCI_REGS_LOG_LEN 4096
117 static unsigned char pci_regs_buf
[EEH_PCI_REGS_LOG_LEN
];
119 /* System monitoring statistics */
120 static unsigned long no_device
;
121 static unsigned long no_dn
;
122 static unsigned long no_cfg_addr
;
123 static unsigned long ignored_check
;
124 static unsigned long total_mmio_ffs
;
125 static unsigned long false_positives
;
126 static unsigned long slot_resets
;
128 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
130 /* --------------------------------------------------------------- */
131 /* Below lies the EEH event infrastructure */
133 static void rtas_slot_error_detail(struct pci_dn
*pdn
, int severity
,
134 char *driver_log
, size_t loglen
)
140 /* Log the error with the rtas logger */
141 spin_lock_irqsave(&slot_errbuf_lock
, flags
);
142 memset(slot_errbuf
, 0, eeh_error_buf_size
);
144 /* Use PE configuration address, if present */
145 config_addr
= pdn
->eeh_config_addr
;
146 if (pdn
->eeh_pe_config_addr
)
147 config_addr
= pdn
->eeh_pe_config_addr
;
149 rc
= rtas_call(ibm_slot_error_detail
,
150 8, 1, NULL
, config_addr
,
151 BUID_HI(pdn
->phb
->buid
),
152 BUID_LO(pdn
->phb
->buid
),
153 virt_to_phys(driver_log
), loglen
,
154 virt_to_phys(slot_errbuf
),
159 log_error(slot_errbuf
, ERR_TYPE_RTAS_LOG
, 0);
160 spin_unlock_irqrestore(&slot_errbuf_lock
, flags
);
164 * gather_pci_data - copy assorted PCI config space registers to buff
165 * @pdn: device to report data for
166 * @buf: point to buffer in which to log
167 * @len: amount of room in buffer
169 * This routine captures assorted PCI configuration space data,
170 * and puts them into a buffer for RTAS error logging.
172 static size_t gather_pci_data(struct pci_dn
*pdn
, char * buf
, size_t len
)
174 struct pci_dev
*dev
= pdn
->pcidev
;
179 n
+= scnprintf(buf
+n
, len
-n
, "%s\n", pdn
->node
->full_name
);
180 printk(KERN_WARNING
"EEH: of node=%s\n", pdn
->node
->full_name
);
182 rtas_read_config(pdn
, PCI_VENDOR_ID
, 4, &cfg
);
183 n
+= scnprintf(buf
+n
, len
-n
, "dev/vend:%08x\n", cfg
);
184 printk(KERN_WARNING
"EEH: PCI device/vendor: %08x\n", cfg
);
186 rtas_read_config(pdn
, PCI_COMMAND
, 4, &cfg
);
187 n
+= scnprintf(buf
+n
, len
-n
, "cmd/stat:%x\n", cfg
);
188 printk(KERN_WARNING
"EEH: PCI cmd/status register: %08x\n", cfg
);
191 printk(KERN_WARNING
"EEH: no PCI device for this of node\n");
195 /* Gather bridge-specific registers */
196 if (dev
->class >> 16 == PCI_BASE_CLASS_BRIDGE
) {
197 rtas_read_config(pdn
, PCI_SEC_STATUS
, 2, &cfg
);
198 n
+= scnprintf(buf
+n
, len
-n
, "sec stat:%x\n", cfg
);
199 printk(KERN_WARNING
"EEH: Bridge secondary status: %04x\n", cfg
);
201 rtas_read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &cfg
);
202 n
+= scnprintf(buf
+n
, len
-n
, "brdg ctl:%x\n", cfg
);
203 printk(KERN_WARNING
"EEH: Bridge control: %04x\n", cfg
);
206 /* Dump out the PCI-X command and status regs */
207 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
209 rtas_read_config(pdn
, cap
, 4, &cfg
);
210 n
+= scnprintf(buf
+n
, len
-n
, "pcix-cmd:%x\n", cfg
);
211 printk(KERN_WARNING
"EEH: PCI-X cmd: %08x\n", cfg
);
213 rtas_read_config(pdn
, cap
+4, 4, &cfg
);
214 n
+= scnprintf(buf
+n
, len
-n
, "pcix-stat:%x\n", cfg
);
215 printk(KERN_WARNING
"EEH: PCI-X status: %08x\n", cfg
);
218 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
219 cap
= pci_find_capability(dev
, PCI_CAP_ID_EXP
);
221 n
+= scnprintf(buf
+n
, len
-n
, "pci-e cap10:\n");
223 "EEH: PCI-E capabilities and status follow:\n");
225 for (i
=0; i
<=8; i
++) {
226 rtas_read_config(pdn
, cap
+4*i
, 4, &cfg
);
227 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
228 printk(KERN_WARNING
"EEH: PCI-E %02x: %08x\n", i
, cfg
);
231 cap
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ERR
);
233 n
+= scnprintf(buf
+n
, len
-n
, "pci-e AER:\n");
235 "EEH: PCI-E AER capability register set follows:\n");
237 for (i
=0; i
<14; i
++) {
238 rtas_read_config(pdn
, cap
+4*i
, 4, &cfg
);
239 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
240 printk(KERN_WARNING
"EEH: PCI-E AER %02x: %08x\n", i
, cfg
);
245 /* Gather status on devices under the bridge */
246 if (dev
->class >> 16 == PCI_BASE_CLASS_BRIDGE
) {
247 struct device_node
*dn
;
249 for_each_child_of_node(pdn
->node
, dn
) {
252 n
+= gather_pci_data(pdn
, buf
+n
, len
-n
);
259 void eeh_slot_error_detail(struct pci_dn
*pdn
, int severity
)
264 rtas_pci_enable(pdn
, EEH_THAW_MMIO
);
265 rtas_configure_bridge(pdn
);
266 eeh_restore_bars(pdn
);
267 loglen
= gather_pci_data(pdn
, pci_regs_buf
, EEH_PCI_REGS_LOG_LEN
);
269 rtas_slot_error_detail(pdn
, severity
, pci_regs_buf
, loglen
);
273 * read_slot_reset_state - Read the reset state of a device node's slot
274 * @dn: device node to read
275 * @rets: array to return results in
277 static int read_slot_reset_state(struct pci_dn
*pdn
, int rets
[])
282 if (ibm_read_slot_reset_state2
!= RTAS_UNKNOWN_SERVICE
) {
283 token
= ibm_read_slot_reset_state2
;
286 token
= ibm_read_slot_reset_state
;
287 rets
[2] = 0; /* fake PE Unavailable info */
291 /* Use PE configuration address, if present */
292 config_addr
= pdn
->eeh_config_addr
;
293 if (pdn
->eeh_pe_config_addr
)
294 config_addr
= pdn
->eeh_pe_config_addr
;
296 return rtas_call(token
, 3, outputs
, rets
, config_addr
,
297 BUID_HI(pdn
->phb
->buid
), BUID_LO(pdn
->phb
->buid
));
301 * eeh_wait_for_slot_status - returns error status of slot
302 * @pdn pci device node
303 * @max_wait_msecs maximum number to millisecs to wait
305 * Return negative value if a permanent error, else return
306 * Partition Endpoint (PE) status value.
308 * If @max_wait_msecs is positive, then this routine will
309 * sleep until a valid status can be obtained, or until
310 * the max allowed wait time is exceeded, in which case
314 eeh_wait_for_slot_status(struct pci_dn
*pdn
, int max_wait_msecs
)
321 rc
= read_slot_reset_state(pdn
, rets
);
323 if (rets
[1] == 0) return -1; /* EEH is not supported */
325 if (rets
[0] != 5) return rets
[0]; /* return actual status */
327 if (rets
[2] == 0) return -1; /* permanently unavailable */
329 if (max_wait_msecs
<= 0) break;
334 "EEH: Firmware returned bad wait value=%d\n", mwait
);
336 } else if (mwait
> 300*1000) {
338 "EEH: Firmware is taking too long, time=%d\n", mwait
);
341 max_wait_msecs
-= mwait
;
345 printk(KERN_WARNING
"EEH: Timed out waiting for slot status\n");
350 * eeh_token_to_phys - convert EEH address token to phys address
351 * @token i/o token, should be address in the form 0xA....
353 static inline unsigned long eeh_token_to_phys(unsigned long token
)
358 ptep
= find_linux_pte(init_mm
.pgd
, token
);
361 pa
= pte_pfn(*ptep
) << PAGE_SHIFT
;
363 return pa
| (token
& (PAGE_SIZE
-1));
367 * Return the "partitionable endpoint" (pe) under which this device lies
369 struct device_node
* find_device_pe(struct device_node
*dn
)
371 while ((dn
->parent
) && PCI_DN(dn
->parent
) &&
372 (PCI_DN(dn
->parent
)->eeh_mode
& EEH_MODE_SUPPORTED
)) {
378 /** Mark all devices that are children of this device as failed.
379 * Mark the device driver too, so that it can see the failure
380 * immediately; this is critical, since some drivers poll
381 * status registers in interrupts ... If a driver is polling,
382 * and the slot is frozen, then the driver can deadlock in
383 * an interrupt context, which is bad.
386 static void __eeh_mark_slot(struct device_node
*parent
, int mode_flag
)
388 struct device_node
*dn
;
390 for_each_child_of_node(parent
, dn
) {
392 /* Mark the pci device driver too */
393 struct pci_dev
*dev
= PCI_DN(dn
)->pcidev
;
395 PCI_DN(dn
)->eeh_mode
|= mode_flag
;
397 if (dev
&& dev
->driver
)
398 dev
->error_state
= pci_channel_io_frozen
;
400 __eeh_mark_slot(dn
, mode_flag
);
405 void eeh_mark_slot (struct device_node
*dn
, int mode_flag
)
408 dn
= find_device_pe (dn
);
410 /* Back up one, since config addrs might be shared */
411 if (!pcibios_find_pci_bus(dn
) && PCI_DN(dn
->parent
))
414 PCI_DN(dn
)->eeh_mode
|= mode_flag
;
416 /* Mark the pci device too */
417 dev
= PCI_DN(dn
)->pcidev
;
419 dev
->error_state
= pci_channel_io_frozen
;
421 __eeh_mark_slot(dn
, mode_flag
);
424 static void __eeh_clear_slot(struct device_node
*parent
, int mode_flag
)
426 struct device_node
*dn
;
428 for_each_child_of_node(parent
, dn
) {
430 PCI_DN(dn
)->eeh_mode
&= ~mode_flag
;
431 PCI_DN(dn
)->eeh_check_count
= 0;
432 __eeh_clear_slot(dn
, mode_flag
);
437 void eeh_clear_slot (struct device_node
*dn
, int mode_flag
)
440 raw_spin_lock_irqsave(&confirm_error_lock
, flags
);
442 dn
= find_device_pe (dn
);
444 /* Back up one, since config addrs might be shared */
445 if (!pcibios_find_pci_bus(dn
) && PCI_DN(dn
->parent
))
448 PCI_DN(dn
)->eeh_mode
&= ~mode_flag
;
449 PCI_DN(dn
)->eeh_check_count
= 0;
450 __eeh_clear_slot(dn
, mode_flag
);
451 raw_spin_unlock_irqrestore(&confirm_error_lock
, flags
);
454 void __eeh_set_pe_freset(struct device_node
*parent
, unsigned int *freset
)
456 struct device_node
*dn
;
458 for_each_child_of_node(parent
, dn
) {
461 struct pci_dev
*dev
= PCI_DN(dn
)->pcidev
;
463 if (dev
&& dev
->driver
)
464 *freset
|= dev
->needs_freset
;
466 __eeh_set_pe_freset(dn
, freset
);
471 void eeh_set_pe_freset(struct device_node
*dn
, unsigned int *freset
)
474 dn
= find_device_pe(dn
);
476 /* Back up one, since config addrs might be shared */
477 if (!pcibios_find_pci_bus(dn
) && PCI_DN(dn
->parent
))
480 dev
= PCI_DN(dn
)->pcidev
;
482 *freset
|= dev
->needs_freset
;
484 __eeh_set_pe_freset(dn
, freset
);
488 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
490 * @dev pci device, if known
492 * Check for an EEH failure for the given device node. Call this
493 * routine if the result of a read was all 0xff's and you want to
494 * find out if this is due to an EEH slot freeze. This routine
495 * will query firmware for the EEH status.
497 * Returns 0 if there has not been an EEH error; otherwise returns
498 * a non-zero value and queues up a slot isolation event notification.
500 * It is safe to call this routine in an interrupt context.
502 int eeh_dn_check_failure(struct device_node
*dn
, struct pci_dev
*dev
)
509 const char *location
;
513 if (!eeh_subsystem_enabled
)
520 dn
= find_device_pe(dn
);
523 /* Access to IO BARs might get this far and still not want checking. */
524 if (!(pdn
->eeh_mode
& EEH_MODE_SUPPORTED
) ||
525 pdn
->eeh_mode
& EEH_MODE_NOCHECK
) {
527 pr_debug("EEH: Ignored check (%x) for %s %s\n",
528 pdn
->eeh_mode
, eeh_pci_name(dev
), dn
->full_name
);
532 if (!pdn
->eeh_config_addr
&& !pdn
->eeh_pe_config_addr
) {
537 /* If we already have a pending isolation event for this
538 * slot, we know it's bad already, we don't need to check.
539 * Do this checking under a lock; as multiple PCI devices
540 * in one slot might report errors simultaneously, and we
541 * only want one error recovery routine running.
543 raw_spin_lock_irqsave(&confirm_error_lock
, flags
);
545 if (pdn
->eeh_mode
& EEH_MODE_ISOLATED
) {
546 pdn
->eeh_check_count
++;
547 if (pdn
->eeh_check_count
% EEH_MAX_FAILS
== 0) {
548 location
= of_get_property(dn
, "ibm,loc-code", NULL
);
549 printk (KERN_ERR
"EEH: %d reads ignored for recovering device at "
550 "location=%s driver=%s pci addr=%s\n",
551 pdn
->eeh_check_count
, location
,
552 dev
->driver
->name
, eeh_pci_name(dev
));
553 printk (KERN_ERR
"EEH: Might be infinite loop in %s driver\n",
561 * Now test for an EEH failure. This is VERY expensive.
562 * Note that the eeh_config_addr may be a parent device
563 * in the case of a device behind a bridge, or it may be
564 * function zero of a multi-function device.
565 * In any case they must share a common PHB.
567 ret
= read_slot_reset_state(pdn
, rets
);
569 /* If the call to firmware failed, punt */
571 printk(KERN_WARNING
"EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
574 pdn
->eeh_false_positives
++;
579 /* Note that config-io to empty slots may fail;
580 * they are empty when they don't have children. */
581 if ((rets
[0] == 5) && (rets
[2] == 0) && (dn
->child
== NULL
)) {
583 pdn
->eeh_false_positives
++;
588 /* If EEH is not supported on this device, punt. */
590 printk(KERN_WARNING
"EEH: event on unsupported device, rc=%d dn=%s\n",
593 pdn
->eeh_false_positives
++;
598 /* If not the kind of error we know about, punt. */
599 if (rets
[0] != 1 && rets
[0] != 2 && rets
[0] != 4 && rets
[0] != 5) {
601 pdn
->eeh_false_positives
++;
608 /* Avoid repeated reports of this failure, including problems
609 * with other functions on this device, and functions under
611 eeh_mark_slot (dn
, EEH_MODE_ISOLATED
);
612 raw_spin_unlock_irqrestore(&confirm_error_lock
, flags
);
614 eeh_send_failure_event (dn
, dev
);
616 /* Most EEH events are due to device driver bugs. Having
617 * a stack trace will help the device-driver authors figure
618 * out what happened. So print that out. */
623 raw_spin_unlock_irqrestore(&confirm_error_lock
, flags
);
627 EXPORT_SYMBOL_GPL(eeh_dn_check_failure
);
630 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
631 * @token i/o token, should be address in the form 0xA....
632 * @val value, should be all 1's (XXX why do we need this arg??)
634 * Check for an EEH failure at the given token address. Call this
635 * routine if the result of a read was all 0xff's and you want to
636 * find out if this is due to an EEH slot freeze event. This routine
637 * will query firmware for the EEH status.
639 * Note this routine is safe to call in an interrupt context.
641 unsigned long eeh_check_failure(const volatile void __iomem
*token
, unsigned long val
)
645 struct device_node
*dn
;
647 /* Finding the phys addr + pci device; this is pretty quick. */
648 addr
= eeh_token_to_phys((unsigned long __force
) token
);
649 dev
= pci_get_device_by_addr(addr
);
655 dn
= pci_device_to_OF_node(dev
);
656 eeh_dn_check_failure (dn
, dev
);
662 EXPORT_SYMBOL(eeh_check_failure
);
664 /* ------------------------------------------------------------- */
665 /* The code below deals with error recovery */
668 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
669 * @pdn pci device node
673 rtas_pci_enable(struct pci_dn
*pdn
, int function
)
678 /* Use PE configuration address, if present */
679 config_addr
= pdn
->eeh_config_addr
;
680 if (pdn
->eeh_pe_config_addr
)
681 config_addr
= pdn
->eeh_pe_config_addr
;
683 rc
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
685 BUID_HI(pdn
->phb
->buid
),
686 BUID_LO(pdn
->phb
->buid
),
690 printk(KERN_WARNING
"EEH: Unexpected state change %d, err=%d dn=%s\n",
691 function
, rc
, pdn
->node
->full_name
);
693 rc
= eeh_wait_for_slot_status (pdn
, PCI_BUS_RESET_WAIT_MSEC
);
694 if ((rc
== 4) && (function
== EEH_THAW_MMIO
))
701 * rtas_pci_slot_reset - raises/lowers the pci #RST line
702 * @pdn pci device node
703 * @state: 1/0 to raise/lower the #RST
705 * Clear the EEH-frozen condition on a slot. This routine
706 * asserts the PCI #RST line if the 'state' argument is '1',
707 * and drops the #RST line if 'state is '0'. This routine is
708 * safe to call in an interrupt context.
713 rtas_pci_slot_reset(struct pci_dn
*pdn
, int state
)
721 printk (KERN_WARNING
"EEH: in slot reset, device node %s has no phb\n",
722 pdn
->node
->full_name
);
726 /* Use PE configuration address, if present */
727 config_addr
= pdn
->eeh_config_addr
;
728 if (pdn
->eeh_pe_config_addr
)
729 config_addr
= pdn
->eeh_pe_config_addr
;
731 rc
= rtas_call(ibm_set_slot_reset
, 4, 1, NULL
,
733 BUID_HI(pdn
->phb
->buid
),
734 BUID_LO(pdn
->phb
->buid
),
737 /* Fundamental-reset not supported on this PE, try hot-reset */
738 if (rc
== -8 && state
== 3) {
739 rc
= rtas_call(ibm_set_slot_reset
, 4, 1, NULL
,
741 BUID_HI(pdn
->phb
->buid
),
742 BUID_LO(pdn
->phb
->buid
), 1);
745 "EEH: Unable to reset the failed slot,"
747 rc
, pdn
->node
->full_name
);
752 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
753 * @dev: pci device struct
754 * @state: reset state to enter
759 int pcibios_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
761 struct device_node
*dn
= pci_device_to_OF_node(dev
);
762 struct pci_dn
*pdn
= PCI_DN(dn
);
765 case pcie_deassert_reset
:
766 rtas_pci_slot_reset(pdn
, 0);
769 rtas_pci_slot_reset(pdn
, 1);
771 case pcie_warm_reset
:
772 rtas_pci_slot_reset(pdn
, 3);
782 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
783 * @pdn: pci device node to be reset.
786 static void __rtas_set_slot_reset(struct pci_dn
*pdn
)
788 unsigned int freset
= 0;
790 /* Determine type of EEH reset required for
791 * Partitionable Endpoint, a hot-reset (1)
792 * or a fundamental reset (3).
793 * A fundamental reset required by any device under
794 * Partitionable Endpoint trumps hot-reset.
796 eeh_set_pe_freset(pdn
->node
, &freset
);
799 rtas_pci_slot_reset(pdn
, 3);
801 rtas_pci_slot_reset(pdn
, 1);
803 /* The PCI bus requires that the reset be held high for at least
804 * a 100 milliseconds. We wait a bit longer 'just in case'. */
806 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
807 msleep (PCI_BUS_RST_HOLD_TIME_MSEC
);
809 /* We might get hit with another EEH freeze as soon as the
810 * pci slot reset line is dropped. Make sure we don't miss
811 * these, and clear the flag now. */
812 eeh_clear_slot (pdn
->node
, EEH_MODE_ISOLATED
);
814 rtas_pci_slot_reset (pdn
, 0);
816 /* After a PCI slot has been reset, the PCI Express spec requires
817 * a 1.5 second idle time for the bus to stabilize, before starting
819 #define PCI_BUS_SETTLE_TIME_MSEC 1800
820 msleep (PCI_BUS_SETTLE_TIME_MSEC
);
823 int rtas_set_slot_reset(struct pci_dn
*pdn
)
827 /* Take three shots at resetting the bus */
828 for (i
=0; i
<3; i
++) {
829 __rtas_set_slot_reset(pdn
);
831 rc
= eeh_wait_for_slot_status(pdn
, PCI_BUS_RESET_WAIT_MSEC
);
836 printk(KERN_ERR
"EEH: unrecoverable slot failure %s\n",
837 pdn
->node
->full_name
);
840 printk(KERN_ERR
"EEH: bus reset %d failed on slot %s, rc=%d\n",
841 i
+1, pdn
->node
->full_name
, rc
);
847 /* ------------------------------------------------------- */
848 /** Save and restore of PCI BARs
850 * Although firmware will set up BARs during boot, it doesn't
851 * set up device BAR's after a device reset, although it will,
852 * if requested, set up bridge configuration. Thus, we need to
853 * configure the PCI devices ourselves.
857 * __restore_bars - Restore the Base Address Registers
858 * @pdn: pci device node
860 * Loads the PCI configuration space base address registers,
861 * the expansion ROM base address, the latency timer, and etc.
862 * from the saved values in the device node.
864 static inline void __restore_bars (struct pci_dn
*pdn
)
869 if (NULL
==pdn
->phb
) return;
870 for (i
=4; i
<10; i
++) {
871 rtas_write_config(pdn
, i
*4, 4, pdn
->config_space
[i
]);
874 /* 12 == Expansion ROM Address */
875 rtas_write_config(pdn
, 12*4, 4, pdn
->config_space
[12]);
877 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
878 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
880 rtas_write_config (pdn
, PCI_CACHE_LINE_SIZE
, 1,
881 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
883 rtas_write_config (pdn
, PCI_LATENCY_TIMER
, 1,
884 SAVED_BYTE(PCI_LATENCY_TIMER
));
886 /* max latency, min grant, interrupt pin and line */
887 rtas_write_config(pdn
, 15*4, 4, pdn
->config_space
[15]);
889 /* Restore PERR & SERR bits, some devices require it,
890 don't touch the other command bits */
891 rtas_read_config(pdn
, PCI_COMMAND
, 4, &cmd
);
892 if (pdn
->config_space
[1] & PCI_COMMAND_PARITY
)
893 cmd
|= PCI_COMMAND_PARITY
;
895 cmd
&= ~PCI_COMMAND_PARITY
;
896 if (pdn
->config_space
[1] & PCI_COMMAND_SERR
)
897 cmd
|= PCI_COMMAND_SERR
;
899 cmd
&= ~PCI_COMMAND_SERR
;
900 rtas_write_config(pdn
, PCI_COMMAND
, 4, cmd
);
904 * eeh_restore_bars - restore the PCI config space info
906 * This routine performs a recursive walk to the children
907 * of this device as well.
909 void eeh_restore_bars(struct pci_dn
*pdn
)
911 struct device_node
*dn
;
915 if ((pdn
->eeh_mode
& EEH_MODE_SUPPORTED
) && !IS_BRIDGE(pdn
->class_code
))
916 __restore_bars (pdn
);
918 for_each_child_of_node(pdn
->node
, dn
)
919 eeh_restore_bars (PCI_DN(dn
));
923 * eeh_save_bars - save device bars
925 * Save the values of the device bars. Unlike the restore
926 * routine, this routine is *not* recursive. This is because
927 * PCI devices are added individually; but, for the restore,
928 * an entire slot is reset at a time.
930 static void eeh_save_bars(struct pci_dn
*pdn
)
937 for (i
= 0; i
< 16; i
++)
938 rtas_read_config(pdn
, i
* 4, 4, &pdn
->config_space
[i
]);
942 rtas_configure_bridge(struct pci_dn
*pdn
)
948 /* Use PE configuration address, if present */
949 config_addr
= pdn
->eeh_config_addr
;
950 if (pdn
->eeh_pe_config_addr
)
951 config_addr
= pdn
->eeh_pe_config_addr
;
953 /* Use new configure-pe function, if supported */
954 if (ibm_configure_pe
!= RTAS_UNKNOWN_SERVICE
)
955 token
= ibm_configure_pe
;
957 token
= ibm_configure_bridge
;
959 rc
= rtas_call(token
, 3, 1, NULL
,
961 BUID_HI(pdn
->phb
->buid
),
962 BUID_LO(pdn
->phb
->buid
));
964 printk (KERN_WARNING
"EEH: Unable to configure device bridge (%d) for %s\n",
965 rc
, pdn
->node
->full_name
);
969 /* ------------------------------------------------------------- */
970 /* The code below deals with enabling EEH for devices during the
971 * early boot sequence. EEH must be enabled before any PCI probing
977 struct eeh_early_enable_info
{
978 unsigned int buid_hi
;
979 unsigned int buid_lo
;
982 static int get_pe_addr (int config_addr
,
983 struct eeh_early_enable_info
*info
)
985 unsigned int rets
[3];
988 /* Use latest config-addr token on power6 */
989 if (ibm_get_config_addr_info2
!= RTAS_UNKNOWN_SERVICE
) {
990 /* Make sure we have a PE in hand */
991 ret
= rtas_call (ibm_get_config_addr_info2
, 4, 2, rets
,
992 config_addr
, info
->buid_hi
, info
->buid_lo
, 1);
993 if (ret
|| (rets
[0]==0))
996 ret
= rtas_call (ibm_get_config_addr_info2
, 4, 2, rets
,
997 config_addr
, info
->buid_hi
, info
->buid_lo
, 0);
1003 /* Use older config-addr token on power5 */
1004 if (ibm_get_config_addr_info
!= RTAS_UNKNOWN_SERVICE
) {
1005 ret
= rtas_call (ibm_get_config_addr_info
, 4, 2, rets
,
1006 config_addr
, info
->buid_hi
, info
->buid_lo
, 0);
1014 /* Enable eeh for the given device node. */
1015 static void *early_enable_eeh(struct device_node
*dn
, void *data
)
1017 unsigned int rets
[3];
1018 struct eeh_early_enable_info
*info
= data
;
1020 const u32
*class_code
= of_get_property(dn
, "class-code", NULL
);
1021 const u32
*vendor_id
= of_get_property(dn
, "vendor-id", NULL
);
1022 const u32
*device_id
= of_get_property(dn
, "device-id", NULL
);
1025 struct pci_dn
*pdn
= PCI_DN(dn
);
1027 pdn
->class_code
= 0;
1029 pdn
->eeh_check_count
= 0;
1030 pdn
->eeh_freeze_count
= 0;
1031 pdn
->eeh_false_positives
= 0;
1033 if (!of_device_is_available(dn
))
1036 /* Ignore bad nodes. */
1037 if (!class_code
|| !vendor_id
|| !device_id
)
1040 /* There is nothing to check on PCI to ISA bridges */
1041 if (dn
->type
&& !strcmp(dn
->type
, "isa")) {
1042 pdn
->eeh_mode
|= EEH_MODE_NOCHECK
;
1045 pdn
->class_code
= *class_code
;
1047 /* Ok... see if this device supports EEH. Some do, some don't,
1048 * and the only way to find out is to check each and every one. */
1049 regs
= of_get_property(dn
, "reg", NULL
);
1051 /* First register entry is addr (00BBSS00) */
1052 /* Try to enable eeh */
1053 ret
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
1054 regs
[0], info
->buid_hi
, info
->buid_lo
,
1059 pdn
->eeh_config_addr
= regs
[0];
1061 /* If the newer, better, ibm,get-config-addr-info is supported,
1062 * then use that instead. */
1063 pdn
->eeh_pe_config_addr
= get_pe_addr(pdn
->eeh_config_addr
, info
);
1065 /* Some older systems (Power4) allow the
1066 * ibm,set-eeh-option call to succeed even on nodes
1067 * where EEH is not supported. Verify support
1069 ret
= read_slot_reset_state(pdn
, rets
);
1070 if ((ret
== 0) && (rets
[1] == 1))
1075 eeh_subsystem_enabled
= 1;
1076 pdn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
1078 pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1079 dn
->full_name
, pdn
->eeh_config_addr
,
1080 pdn
->eeh_pe_config_addr
);
1083 /* This device doesn't support EEH, but it may have an
1084 * EEH parent, in which case we mark it as supported. */
1085 if (dn
->parent
&& PCI_DN(dn
->parent
)
1086 && (PCI_DN(dn
->parent
)->eeh_mode
& EEH_MODE_SUPPORTED
)) {
1087 /* Parent supports EEH. */
1088 pdn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
1089 pdn
->eeh_config_addr
= PCI_DN(dn
->parent
)->eeh_config_addr
;
1094 printk(KERN_WARNING
"EEH: %s: unable to get reg property.\n",
1103 * Initialize EEH by trying to enable it for all of the adapters in the system.
1104 * As a side effect we can determine here if eeh is supported at all.
1105 * Note that we leave EEH on so failed config cycles won't cause a machine
1106 * check. If a user turns off EEH for a particular adapter they are really
1107 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1108 * grant access to a slot if EEH isn't enabled, and so we always enable
1109 * EEH for all slots/all devices.
1111 * The eeh-force-off option disables EEH checking globally, for all slots.
1112 * Even if force-off is set, the EEH hardware is still enabled, so that
1113 * newer systems can boot.
1115 void __init
eeh_init(void)
1117 struct device_node
*phb
, *np
;
1118 struct eeh_early_enable_info info
;
1120 raw_spin_lock_init(&confirm_error_lock
);
1121 spin_lock_init(&slot_errbuf_lock
);
1123 np
= of_find_node_by_path("/rtas");
1127 ibm_set_eeh_option
= rtas_token("ibm,set-eeh-option");
1128 ibm_set_slot_reset
= rtas_token("ibm,set-slot-reset");
1129 ibm_read_slot_reset_state2
= rtas_token("ibm,read-slot-reset-state2");
1130 ibm_read_slot_reset_state
= rtas_token("ibm,read-slot-reset-state");
1131 ibm_slot_error_detail
= rtas_token("ibm,slot-error-detail");
1132 ibm_get_config_addr_info
= rtas_token("ibm,get-config-addr-info");
1133 ibm_get_config_addr_info2
= rtas_token("ibm,get-config-addr-info2");
1134 ibm_configure_bridge
= rtas_token ("ibm,configure-bridge");
1135 ibm_configure_pe
= rtas_token("ibm,configure-pe");
1137 if (ibm_set_eeh_option
== RTAS_UNKNOWN_SERVICE
)
1140 eeh_error_buf_size
= rtas_token("rtas-error-log-max");
1141 if (eeh_error_buf_size
== RTAS_UNKNOWN_SERVICE
) {
1142 eeh_error_buf_size
= 1024;
1144 if (eeh_error_buf_size
> RTAS_ERROR_LOG_MAX
) {
1145 printk(KERN_WARNING
"EEH: rtas-error-log-max is bigger than allocated "
1146 "buffer ! (%d vs %d)", eeh_error_buf_size
, RTAS_ERROR_LOG_MAX
);
1147 eeh_error_buf_size
= RTAS_ERROR_LOG_MAX
;
1150 /* Enable EEH for all adapters. Note that eeh requires buid's */
1151 for (phb
= of_find_node_by_name(NULL
, "pci"); phb
;
1152 phb
= of_find_node_by_name(phb
, "pci")) {
1155 buid
= get_phb_buid(phb
);
1156 if (buid
== 0 || PCI_DN(phb
) == NULL
)
1159 info
.buid_lo
= BUID_LO(buid
);
1160 info
.buid_hi
= BUID_HI(buid
);
1161 traverse_pci_devices(phb
, early_enable_eeh
, &info
);
1164 if (eeh_subsystem_enabled
)
1165 printk(KERN_INFO
"EEH: PCI Enhanced I/O Error Handling Enabled\n");
1167 printk(KERN_WARNING
"EEH: No capable adapters found\n");
1171 * eeh_add_device_early - enable EEH for the indicated device_node
1172 * @dn: device node for which to set up EEH
1174 * This routine must be used to perform EEH initialization for PCI
1175 * devices that were added after system boot (e.g. hotplug, dlpar).
1176 * This routine must be called before any i/o is performed to the
1177 * adapter (inluding any config-space i/o).
1178 * Whether this actually enables EEH or not for this device depends
1179 * on the CEC architecture, type of the device, on earlier boot
1180 * command-line arguments & etc.
1182 static void eeh_add_device_early(struct device_node
*dn
)
1184 struct pci_controller
*phb
;
1185 struct eeh_early_enable_info info
;
1187 if (!dn
|| !PCI_DN(dn
))
1189 phb
= PCI_DN(dn
)->phb
;
1191 /* USB Bus children of PCI devices will not have BUID's */
1192 if (NULL
== phb
|| 0 == phb
->buid
)
1195 info
.buid_hi
= BUID_HI(phb
->buid
);
1196 info
.buid_lo
= BUID_LO(phb
->buid
);
1197 early_enable_eeh(dn
, &info
);
1200 void eeh_add_device_tree_early(struct device_node
*dn
)
1202 struct device_node
*sib
;
1204 for_each_child_of_node(dn
, sib
)
1205 eeh_add_device_tree_early(sib
);
1206 eeh_add_device_early(dn
);
1208 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early
);
1211 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1212 * @dev: pci device for which to set up EEH
1214 * This routine must be used to complete EEH initialization for PCI
1215 * devices that were added after system boot (e.g. hotplug, dlpar).
1217 static void eeh_add_device_late(struct pci_dev
*dev
)
1219 struct device_node
*dn
;
1222 if (!dev
|| !eeh_subsystem_enabled
)
1225 pr_debug("EEH: Adding device %s\n", pci_name(dev
));
1227 dn
= pci_device_to_OF_node(dev
);
1229 if (pdn
->pcidev
== dev
) {
1230 pr_debug("EEH: Already referenced !\n");
1233 WARN_ON(pdn
->pcidev
);
1238 pci_addr_cache_insert_device(dev
);
1239 eeh_sysfs_add_device(dev
);
1242 void eeh_add_device_tree_late(struct pci_bus
*bus
)
1244 struct pci_dev
*dev
;
1246 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1247 eeh_add_device_late(dev
);
1248 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1249 struct pci_bus
*subbus
= dev
->subordinate
;
1251 eeh_add_device_tree_late(subbus
);
1255 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late
);
1258 * eeh_remove_device - undo EEH setup for the indicated pci device
1259 * @dev: pci device to be removed
1261 * This routine should be called when a device is removed from
1262 * a running system (e.g. by hotplug or dlpar). It unregisters
1263 * the PCI device from the EEH subsystem. I/O errors affecting
1264 * this device will no longer be detected after this call; thus,
1265 * i/o errors affecting this slot may leave this device unusable.
1267 static void eeh_remove_device(struct pci_dev
*dev
)
1269 struct device_node
*dn
;
1270 if (!dev
|| !eeh_subsystem_enabled
)
1273 /* Unregister the device with the EEH/PCI address search system */
1274 pr_debug("EEH: Removing device %s\n", pci_name(dev
));
1276 dn
= pci_device_to_OF_node(dev
);
1277 if (PCI_DN(dn
)->pcidev
== NULL
) {
1278 pr_debug("EEH: Not referenced !\n");
1281 PCI_DN(dn
)->pcidev
= NULL
;
1284 pci_addr_cache_remove_device(dev
);
1285 eeh_sysfs_remove_device(dev
);
1288 void eeh_remove_bus_device(struct pci_dev
*dev
)
1290 struct pci_bus
*bus
= dev
->subordinate
;
1291 struct pci_dev
*child
, *tmp
;
1293 eeh_remove_device(dev
);
1295 if (bus
&& dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1296 list_for_each_entry_safe(child
, tmp
, &bus
->devices
, bus_list
)
1297 eeh_remove_bus_device(child
);
1300 EXPORT_SYMBOL_GPL(eeh_remove_bus_device
);
1302 static int proc_eeh_show(struct seq_file
*m
, void *v
)
1304 if (0 == eeh_subsystem_enabled
) {
1305 seq_printf(m
, "EEH Subsystem is globally disabled\n");
1306 seq_printf(m
, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs
);
1308 seq_printf(m
, "EEH Subsystem is enabled\n");
1311 "no device node=%ld\n"
1312 "no config address=%ld\n"
1313 "check not wanted=%ld\n"
1314 "eeh_total_mmio_ffs=%ld\n"
1315 "eeh_false_positives=%ld\n"
1316 "eeh_slot_resets=%ld\n",
1317 no_device
, no_dn
, no_cfg_addr
,
1318 ignored_check
, total_mmio_ffs
,
1326 static int proc_eeh_open(struct inode
*inode
, struct file
*file
)
1328 return single_open(file
, proc_eeh_show
, NULL
);
1331 static const struct file_operations proc_eeh_operations
= {
1332 .open
= proc_eeh_open
,
1334 .llseek
= seq_lseek
,
1335 .release
= single_release
,
1338 static int __init
eeh_init_proc(void)
1340 if (machine_is(pseries
))
1341 proc_create("ppc64/eeh", 0, NULL
, &proc_eeh_operations
);
1344 __initcall(eeh_init_proc
);